
Causal Attribution Analysis for Continuous Outcomes

Shanshan Luo 1 Yixuan Yu 1 Chunchen Liu 2 Feng Xie * 1 Zhi Geng 1

Abstract
Previous studies have extensively addressed the
attribution problem for binary outcome variables.
However, in many practical scenarios, the out-
come variable is continuous, and simply binariz-
ing it may result in information loss or biased
conclusions. To address this issue, we propose
a series of posterior causal estimands for retro-
spectively evaluating multiple correlated causes
from a continuous outcome. These estimands
include posterior intervention effects, posterior
total causal effects, and posterior natural direct
effects. Under assumptions of sequential ignora-
bility, monotonicity, and perfect positive rank, we
show that the posterior causal estimands of inter-
est are identifiable and present the corresponding
identification equations. We also provide a simple
but effective estimation procedure and establish
asymptotic properties of the proposed estimators.
An artificial hypertension example and a real de-
velopmental toxicity dataset are employed to il-
lustrate our method.

1. Introduction
In social science (VanderWeele, 2012), health risk assess-
ment (Khoury et al., 2004), legal contexts (Sanders et al.,
2021), and explainable artificial intelligence (Galhotra et al.,
2021), researchers are interested not only in assessing the
effects of causes (Rosenbaum & Rubin, 1983; Robins et al.,
1994; Angrist et al., 1996; Bang & Robins, 2005; Ding et al.,
2011; Zhao et al., 2012; Jiang et al., 2016; Fan Li & Za-
slavsky, 2018; Yang et al., 2020), but also in inferring causes
from specific outcomes (Pearl, 1995; Dawid, 2000; Tian &
Pearl, 2000; Kuroki & Cai, 2011; Dawid & Musio, 2022;
Pearl, 2022; Lu et al., 2023; Li et al., 2023). For instance, for
hypertensive patients, researchers may retrospectively eval-
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uate whether the development of hypertension was caused
by dietary habits, exercise routines, and physical character-
istics. Additionally, such questions are also very common
in developmental toxicity risk studies, where researchers in
clinical trials aim to determine whether abnormal weight
loss in pups is caused by potentially toxic agents, organ
disease, or other risk factors.

To explain such retrospective studies, researchers need to
use counterfactual scenarios that imagine what would have
happened if certain conditions experienced previously had
been different (Lu et al., 2023). For example, for a patient
with high blood pressure who never exercises, it is inferred
what his blood pressure would have been like if there had
been an intervention to make him exercise regularly. Simi-
larly, for a pup exposed to a toxic reagent and abnormally
thin, it is inferred how its body weight would have changed
if it had received a placebo instead. Pearl (2000) introduced
a three layer causal hierarchy, comprising association, in-
tervention, and counterfactual levels. Retrospective causal
analysis, which assesses the causes of observed effects, falls
under the third level of this framework. The first two lev-
els primarily involve predicting or evaluating the effects
of interventions. In contrast, the third level focuses on de-
termining whether observed outcomes can be attributed to
prior interventions or exposures (Pearl, 2015; Dawid et al.,
2014; 2015).

While randomized experiments and standard assumptions
effectively address the first two levels of causation (Rosen-
baum & Rubin, 1983; Pearl, 2014), they are not enough to
address the challenges posed by the third level (Dawid &
Musio, 2022). This limitation presents a significant chal-
lenge for traditional causal inference methods when dealing
with such retrospective analysis problems. To formally
answer such questions, Pearl (1999) outlined three coun-
terfactual definitions of causal relationships to capture the
necessity or sufficiency of a cause for a given binary effect.
Additionally, Dawid et al. (2014) introduced the probabil-
ity of causation to infer the cause for a given binary effect.
When there are multiple potentially correlated causes, Lu
et al. (2023) and Li et al. (2023) introduced posterior causal
effects under observed post-treatment variables to retro-
spectively deduce causes from a single effect and multiple
effects, respectively. In many clinical trials, the outcome
variables of interest may be continuous, such as weight,
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blood pressure, and income. However, most existing lit-
erature primarily conducts attribution analysis for binary
outcomes (Pearl, 1999; Dawid et al., 2014; Lu et al., 2023).
Research on continuous outcome variables remains limited,
and the formal definitions, identification expressions, and es-
timation procedures for continuous outcomes require further
exploration.

In this paper, we propose a new framework for causal attri-
bution with continuous outcomes. Unlike most prior work
which focuses on binary responses, our method is tailored
to continuous settings and enables retrospective analysis of
how multiple causes contribute to an observed outcome. Our
contributions are as follows: First, we extend the posterior
attribution framework to continuous outcomes, which intro-
duces new technical challenges and practical relevance, as
binarizing outcomes often leads to information loss or bias.
Second, under sequential ignorability and the perfect posi-
tive rank assumption (Heckman et al., 1997), we prove that
individual treatment effects and posterior intervention ef-
fects are identifiable. Third, assuming monotonicity among
multiple causes (Lu et al., 2023; Li et al., 2023), we estab-
lish the identifiability of all proposed estimands and provide
explicit identification formulas. Fourth, we develop a novel
two-step estimation procedure: we recover individual-level
counterfactual mappings and treatment effects, and then
estimate the remaining posterior causal estimands based on
these mappings. Fifth, we also present simplified identifi-
cation results under a known directed acyclic graph (DAG),
and illustrate the application of our methods using an artifi-
cial hypertension example. Proofs of all theoretical results
are provided in the Supplementary Materials.

This paper is structured as follows. Section 2 presents the
notation and definitions. Section 3 discusses the identifia-
bility of the proposed posterior causal estimands. Section 4
outlines a two-step estimation method for the proposed esti-
mands. In Section 5, we employ an artificial hypertension
example to illustrate our proposed method. Finally, Section
6 concludes with a brief summary.

2. Notation and definitions
Assuming that we observe n independent and identically
distributed samples from a superpopulation. We first con-
sider the scenario with a single cause and a single outcome.
For each unit i, let Xi represent a binary potential cause,
where Xi = 1 indicates receiving treatment, and Xi = 0 in-
dicates receiving control. Let Yi be the observed continuous
outcome. Let Yi,X=0 and Yi,X=1 denote the potential out-
comes corresponding to Xi = 0 and Xi = 1, respectively.
Many common measurements, such as weight, blood pres-
sure, and income, are typically continuous, but Yi may fall
within a specific interval of interest denoted as Ei. Therefore,
given the evidence (Xi, Ei), we aim to evaluate the effect

of changes in Xi on the outcome Yi, thereby evaluating the
likelihood of Xi being the cause of event Ei.

Next, we consider the case with multiple causes X =
(X1, . . . , Xp) and a single outcome Y , where X is a bi-
nary vector of causes, and the causes may affect each other.
Without loss of generality, we assume that the causes are
arranged in a topological order such that Xl is not a cause of
Xk for k < l. For example, X is a sequence of observations
ordered in time, or X consists of variables in a directed
acyclic graph (DAG) where Xk is not a descendant of Xl

for k < l. For generic sets of variables W and U , we use
Wu to denote the potential outcome of W that would have
resulted if U were intervened to level u. In particular, if
W = (W1, . . . ,Ws), then Wu = {(W1)u . . . , (Ws)u}. We
make the consistency assumption that connects observed
variables to potential outcomes, i.e., Wu = W if U = u
(Pearl, 2015). We further suppose the composition assump-
tion holds in the sense that for any variable sets W,V and
U,Wvu = Wv if Uv = u (Pearl, 2015). The consistency as-
sumption can be viewed as a special case of the composition
assumption if V is empty.

To measure how likely Xk is a cause of the continuous effect
given observed evidence (x, E), we extend the concept of
posterior total causal effect (postTCE) defined by Lu et al.
(2023) as follows:

PostTCE (Xk ⇒ Y | x, E)
= E (YXk=1 − YXk=0 | x, E) ,

where we use “x” to represent “X = x” for notational
simplicity. It is important to note that this definition includes
the event E defined by the observed outcome, and cannot
simply be considered as a conditional average causal effect
(CATE). As advocated by Lu et al. (2023), a larger value of
the posterior total causal effect indicates that the effect or
outcome is more attributable to the cause Xk. The cause that
produces the largest posterior total causal effect is usually
considered the highest risk factor.

Similar to the direct causal effect considered by Pearl (2000),
we define the posterior natural direct effect of Xk on Y
given the observed evidence (x, E), which quantifies the ef-
fect of Xk on Y not mediated through intermediate variables.
Let Ak = (X1, . . . , Xk−1) and Dk = (Xk+1, . . . , Xp).
Then X = (Ak, Xk, Dk), and x = (ak, xk, dk) denotes a
value of X . Given the evidence (x, E), the posterior natural
direct effect (postNDE) of Xk on Y is:

PostNDE(Xk ⇒ Y | x, E)
= E{YXk=1,Dk(ak,0) − YXk=0 | x, E},

where Dk(ak, 0) is the potential outcome under (Ak, Xk) =
(ak, 0). Throughout this paper, we use Dk(ak, xk) and
(Dk)ak,xk

interchangeably in the nested potential outcomes.
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The postNDE describes the effect observed when each indi-
vidual in the subpopulation (x, E) switches from Xk = 0 to
Xk = 1, while keeping Dk at its value when Xk = 0.

Parallel to the natural indirect effect considered by Pearl
(2000), we also define the posterior natural indirect effect
(postNIE) of Xk on Y given the evidence (x, E) as follows:

PostNIE(Xk ⇒ Y | x, E)
= E{YXk=1 − YXk=1,Dk(ak,0) | x, E}.

The postNIE quantifies, for each individual in the subpopu-
lation (x, E), the effect observed when Xk is set to Xk = 1,
while all intermediate variables along the pathway from
Xk to Y change from state Dk(ak, 1) to state Dk(ak, 0).
Through the definitions, we have that:

PostTCE(Xk ⇒ Y | x, E)
= PostNDE(Xk ⇒ Y | x, E) + PostNIE(Xk ⇒ Y | x, E).

Given the observed evidence (x, E), in addition to assessing
the a posteriori total, direct and indirect effects of a particu-
lar cause Xk, we need to consider assessing the synergistic
effects of a joint intervention with all possible causes in an
alternative state X = x′. Indeed, synergistic effects are
important in many applications. For example, having heart
disease alone may have a limited effect on blood pressure,
whereas the combination of an unhealthy diet and heart
disease may jointly contribute to elevated blood pressure.
Therefore, the posterior intervention causal effect (postICE)
for another state X = x′ is defined as follows:

PostICE(Yx′ | x, E) = E (Yx′ − Y | x, E) . (1)

The individual treatment effect (ITE) for any pair (x′, x∗)
can be defined as ITE(x′, x∗) = Yx′ − Yx∗ , representing
the difference in potential outcomes for each individual
under two different treatment conditions. Inferring ITEs
presents a fundamental challenge because we can only ob-
serve one potential outcome for each unit (Rosenbaum &
Rubin, 1983).

Table S3 in Section S1 of the Supplementary Material com-
pares our estimands for continuous outcomes with those
for binary outcomes in Lu et al. (2023), illustrating their
notational alignment and practical relevance.

3. Identifiability of posterior causal estimands
and required assumptions

3.1. Assumptions required for identifiability

Define W = (X,Y ) and let Wr:s denote a subvector
(Wr,Wr+1, . . . ,Ws) of W for r ≤ s. Let w∗

r:s =
(w∗

r , . . . , w
∗
s) ⪯ wr:s = (wr, . . . , ws) denote that w∗

i ≤

wi for all r ≤ i ≤ s. To identify the proposed estimands,
we make the following commonly used assumptions in pre-
vious studies (Heckman et al., 1997; Pearl, 2000; 2014; Lu
et al., 2023; Li et al., 2023).

Assumption 3.1 (Sequential ignorability). We consider the
following assumptions:

(i) there is no confounding between Ws and W1:s−1, i.e.,
(Ws)w1:s−1

⊥⊥W1:s−1 for all w1:s−1 and s = 2, . . . , p+
1;

(ii) the elements in {(Ws)w1:s−1
}p+1
s=1 are mutually inde-

pendent for any given w1:p.

The independence condition in Assumption 3.1 can be re-
laxed by introducing the baseline covariates, and we omit
it for simplicity. The Assumption 3.1(i) implies that the
potential outcome of each variable is independent of the
prior variables in causal order. Under the Assumption
3.1(i), if Ws has a nonparametric causal structural model
Ws = ms (W1:s−1, ϵs) with an unknown function ms (·, ϵs)
and a error variable ϵs ⊥⊥W1:s−1, then Assumption 3.1(ii)
holds naturally because Assumption 3.1(i) implies that
ϵs ⊥⊥ ϵ1:s−1 for s = 2, . . . , p + q, which further implies
Assumption 3.1(ii). Assumption 3.1 rules out unobserved
confounders between any two variables in W . However,
each variable Xk may still confound the relationship be-
tween Y and Xl, or between Xl and Xs, provided k < l, s.
Assumption 3.1 is frequently employed in causal inference
with complex systems, including mediation analysis (Imai
et al., 2010) and longitudinal data involving time-dependent
confounders (Robins, 2000).

Assumption 3.2 (Monotonicity). For s = 2, . . . , p, we
assume that (Ws)w∗

1:s−1
≤ (Ws)w1:s−1

whenever w∗
1:s−1 ⪯

w1:s−1 holds.

Assumption 3.2 implies that each cause has a non-negative
effect on subsequent causes. This assumption is commonly
expressed in epidemiology as “no prevention”, meaning
that no individual is helped by exposure to a risk factor.
To identify the posterior causal estimands, Lu et al. (2023)
and Li et al. (2023) also introduce the same monotonicity
assumption across multiple potentially correlated causes.
The validity of monotonicity cannot be tested directly, but
under Assumption 3.1, the monotonicity can be falsified by
imposing testable restrictions on the observed data distribu-
tion. For example, for any w∗

1:s−1 ⪯ w1:s−1, the following
equality can be used to falsify the monotonicity assumption:

pr(Ws = 1 | W1:s−1 = w∗
1:s−1)

≤ pr(Ws = 1 | W1:s−1 = w1:s−1).

Assumption 3.3 (Perfect positive rank). We assume
that Wp+1 = mp+1(W1:p, ϵp+1), or equivalently Y =
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mp+1(X, ϵp+1), where ϵp+1 represents a scalar-valued er-
ror variable. The unknown link function mp+1(X, ·) is
continuous and strictly increasing in ϵp+1.

For continuous outcome variables, Assumption 3.3 in our
framework states that the individual-level outcome is a
monotonic function of an unobserved latent variable ϵp+1.
This implies that individuals preserve their relative ranks
across different treatment conditions. Such rank-preserving
behavior is commonly used to identify individual treatment
effects or quantile treatment effects in counterfactual causal
inference literature (Heckman et al., 1997; Chernozhukov
& Hansen, 2005), but it is a relatively novel assumption in
retrospective attribution analysis. For the linear model,

Y = α0 + α1X1 + · · ·+ αpXp + ϵp+1, (2)

Assumption 3.3 holds naturally. Note that Assumption 3.3
imposes a condition only on the outcome variable Xp+1 =
Y , while Assumption 3.2 concerns the structural relation-
ship among multiple causes (X1, . . . , Xp). Since these two
assumptions relate to different variables, the former does
not imply the latter.

Lu et al. (2023) considered the monotonicity assumption
of the binary outcome with respect to multiple correlated
causes X , denoted as YX=x∗ ⩽ YX=x for any x∗ ⪯ x.
However, this monotonic relationship may not be applicable
when the outcome variable is continuous. Specifically, the
condition implies that increasing any component of the treat-
ment vector, while keeping others fixed or increased, should
not decrease the outcome. In the linear model (2), satisfying
this monotonicity assumption requires all coefficients to be
non-negative, i.e., αj ≥ 0 for all j = 1, . . . , p, which may
be overly restrictive for continuous outcomes.

The basic restriction in Assumption 3.3 is also referred to
as the rank preservation or rank invariance (Heckman et al.,
1997; Chernozhukov & Hansen, 2005; Vuong & Xu, 2017;
Feng et al., 2020). If an individual with regular exercise and
without heart disease (i.e., x = (1, 0)) has the lowest blood
pressure in the subpopulation {(Xi, Yi) : Xi = x}, then
according to Assumption 3.3, an individual with no exercise
and heart disease (i.e., x′ = (0, 1)) should also have the
lowest blood pressure in the corresponding subpopulation
{(Xi, Yi) : Xi = x′}; and vice versa. The strict monotonic
increase of ϵ can be changed to the strict monotonic decrease
without affecting the subsequent discussion. For simplicity,
we assume the strict monotonic increase. For any given
error ϵ∗p+1, Assumption 3.3 requires that the relative rank
or quantile of Yx ≡ mp+1(x, ϵ

∗
p+1) be the same as that of

Yx′ ≡ mp+1(x
′, ϵ∗p+1) for any x ̸= x′. A stronger version

of Assumption 3.3 assumes that the error term ϵp+1 is ad-
ditive, that is, Y = m∗

p+1(X) + ϵp+1 for some real-valued
function m∗

p+1(·). Moreover, the heteroscedasticity model
also satisfies Assumption 3.3: Y = m∗

p+1(X)+σ(X)ϵp+1,

for some real-valued function m∗
p+1(X) and positive func-

tion σ(X).

3.2. Identification equations of posterior causal
estimands

Under Assumptions 3.1 and 3.3, we first consider the
identifiability of ITEs and postICEs. Let SYx

denote the
support of the potential outcome Yx, which can be iden-
tified by SY |X=x under Assumption 3.1. The key to
our identification strategy is to match the potential out-
come Yx ≡ mp+1(x, ϵp+1) with another potential outcome
Yx′ ≡ mp+1(x

′, ϵp+1) through a mapping ϕx→x′(·), such
that Yx′ = ϕx→x′ (Yx). This mapping ϕx→x′(·) is termed
a counterfactual mapping (Vuong & Xu, 2017; Feng et al.,
2020), because it allows us to find the counterfactual out-
come Yx′ from Yx using the function ϕx→x′(·), and vice
versa.

Let m−1
p+1(x, ·) be the inverse function of mp+1(x, ·). Ac-

cording to Assumption 3.3, for any pair (X,Y ) = (x, y),
we can uniquely represent the error term as ϵp+1 =
m−1

p+1(x, y), although the specific form of m−1
p+1(x, y) is un-

known. Therefore, Yx′ is uniquely defined by ϕx→x′(y) ≡
mp+1{x′,m−1

p+1(x, y)} for each y ∈ SYx . Moreover,
the counterfactual mapping ϕx→x′(·) is a continuous and
strictly increasing function from SYx

onto SYx′ . Thus, if we
can identify ϕx→x′(y) for all y ∈ SYx

and x ̸= x′, we can
recover ITEs for each individual.
Lemma 3.4. Under Assumptions 3.1 and 3.3, for any y ∈
SYx , the counterfactual mapping ϕx→x′(·) is identified by
the continuous extension of

ϕx→x′(y) = F−1
x′ {Fx(y)}, ∀y ∈ S◦

Yx
, (3)

where Fx(y) = pr(Y ≤ y | X = x) and S◦
Yx

is the inte-
rior of SYx . Moreover, the ITEs of every individual in the
population can be identified.

Lemma 3.4 establishes the identifiability of the counterfac-
tual mapping ϕx→x′(·) on SYx constructively by matching
the quantiles of Yx and Yx′ . We provide further intuition
for Lemma 3.4. When we observe an individual in the sub-
population {(Xi = x, Yi)} with the highest blood pressure,
we can recover the joint distribution of individual i by iden-
tifying the individual with the highest blood pressure in
each observed subgroup {(Xj = x′, Yj)} for any x′ ̸= x.
Given the identifiability of the counterfactual mapping and
ITEs, the postICEs can also be identified using an inverse
probability weighting expression (Horvitz & Thompson,
1952),

PostICE (Yx′ | x, E) = E

[
I(X = x, E)
pr(X = x, E) {ϕx→x′(Y )− Y }

]
,

(4)

where I(·) denotes the indicator function.
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Assumptions 3.1 and 3.3 establish the identifiability of ITEs
and postICEs. However, they are not sufficient to ensure
the identifiability of other posterior causal estimands (e.g.,
postNDEs and PostNIEs) when considering a specific cause
Xk. This is due to the challenge posed by identifying expec-
tations of the nested potential outcomes given the observed
evidence. For example, the postNDE involves the condi-
tional expectation of the cross-world intervention potential
outcome YXk=1,Dk(ak,0), which cannot be identified using
Lemma 3.4 alone. Before formally identifying these ex-
pectations, we provide another lemma for identifying the
conditional probability of the counterfactual outcomes of
the causes.

Lemma 3.5. Under Assumptions 3.1 and 3.2, given the
observed evidence (ak, xk, dk, E), let d∗k = (x∗

k+1, . . . , x
∗
p)

and dk = (xk+1, . . . , xp).

(i) For d∗k ⪯ dk, we have,

pr{Dk(ak, 0) = d∗k | ak, 1, dk}
=

∏p
s=k+1{(1− x∗

s) + (2x∗
s − 1)xsR0s},

where R0s =
pr(Xs = 1 | ak, 0, x∗

k+1, . . . , x
∗
s−1)

pr(Xs = 1 | ak, 1, xk+1, . . . , xs−1)
.

(ii) For dk ⪯ d∗k, we have,

pr{Dk(ak, 1) = d∗k | ak, 0, dk}
=

∏p
s=k+1{x∗

s + (1− 2x∗
s)(1− xs)R1s},

where R1s =
pr(Xs = 0 | ak, 1, x∗

k+1, . . . , x
∗
s−1)

pr(Xs = 0 | ak, 0, xk+1, . . . , xs−1)
.

Theorem 3.6. Under Assumptions 3.1-3.3, given the evi-
dence (ak, xk, dk, E), the postNDE, postNIE, and postTCE
of Xk on Y can be identified as follows:

(i) given xk = 1, for any x⋆
k ∈ {0, 1}, we have,

E{Yx⋆
k,Dk(ak,1) | x, E} = E(Yx⋆

k,dk
| x, E),

E{Yx⋆
k,Dk(ak,0) | x, E}

=
∑

d∗
k⪯dk

E(Yx⋆
k,d

∗
k
| x, E)pr{Dk(ak, 0) = d∗k | x},

(ii) given xk = 0, for any x⋆
k ∈ {0, 1}, we have,

E{Yx⋆
k,Dk(ak,0) | x, E} = E(Yx⋆

k,dk
| x, E),

E{Yx⋆
k,Dk(ak,1) | x, E}

=
∑

dk⪯d∗
k
E(Yx⋆

k,d
∗
k
| x, E)pr{Dk(ak, 1) = d∗k | x},

where E(Yx⋆
k,d

∗
k
| x, E) can be identified by Lemma 3.4, and

pr{Dk(ak, x
′
k) = d∗k | x} for x′

k ∈ {0, 1} can be identified
by Lemma 3.5.

Theorem 3.6 illustrates that with the additional monotonicity
assumption 3.2, we can also identify postNDE, postNIE,
and postTCE. In some cases, we may only want to conduct
attribution analysis for continuous effects based on evidence
from a subset of (X, E), while Lemma 3.4 and Theorem
3.6 are based on fully observed evidence (x, E). For some
s < p, let (X ′, E) = (Xi1 , . . . , Xis , E) denote a subset
of (X, E). We can summarize the remaining set X\X ′ to
obtain the expected results for the subset (X ′, E) based on
Lemma 3.4 and Theorem 3.6. To simplify the exposition,
we omit this part. We also refer to Corollary 1 in Lu et al.
(2023) and Theorem 3 in Li et al. (2023) for parallel results.

3.3. Identification equations of posterior causal effects
under causal networks

In this section, we consider the causal structure of observed
variables (X,Y ) represented by a directed acyclic graph
(DAG) or network. We aim to present the simplified identi-
fication expressions for the posterior causal estimands given
a known DAG. For k = 1, . . . , p, let Pak and PaY denote
the sets of parents of Xk and Y in the graph, respectively.
The joint probability distribution pr(X,Y ) can be factor-
ized as pr(X,Y ) =

∏p
k=1 pr(Xk | Pak) pr(Y | PaY ). We

assume pr(x, y) > 0 for each (x, y). For a given graph,
the sequential ignorability assumption (Assumption 3.1)
posits that there is no unobserved variable intervening be-
tween any two or more nodes in the DAG. The monotonicity
assumption 3.2 implies that each node Xk has a positive
individual monotonic effect on its child nodes. Furthermore,
Assumption 3.3 can be simplified such that the unknown
link function mp+1(PaY , ϵp+1) only needs to be continuous
with respect to PaY and strictly increasing in ϵp+1. Specifi-
cally, the continuous outcome variable is only required to
perfectly match the quantiles of potential outcomes under
different realizations of its parent nodes PaY . We define a
simpler counterfactual mapping ϕpay→pa′y

(·) to character-
ize the mapping relationship of the parent nodes of Y under
different realizations pay and pa′y . The theoretic results pre-
sented in Lemma 3.4 and (4) can be simplified for a given
graph.

Corollary 3.7. Suppose that the causal network of
(X1, . . . , Xp, Y ) is a DAG. Then, under Assumptions 3.1
and 3.3, for any x ̸= x′ and y ∈ SYx

, let pay ⊂ x and
pa′y ⊂ x′, the counterfactual mapping ϕx→x′(·) can be
reduced as follows:

ϕx→x′(y) = ϕpay→pa′y
(y) = F−1

pa′y
{Fpay (y)}, ∀y ∈ S◦

Yx
,

where mpay (y) = pr(Y ≤ y | PaY = pay). Moreover, the
ITEs of every individual in the population can be identified.
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The following equation also holds:

E (Yx′ | x, E) = E(Ypa′y
| pay, E)

= E

{ I(Pay = pay, E)
pr(Pay = pay, E)

ϕpay→pa′y
(Y )

}
,

and the postICE is identifiable.

Corollary 3.7 indicates that the counterfactual mapping de-
pends only on PaY , the postICEs and ITEs can be calculated
using the low-dimensional probabilities pr(Y ≤ y | pay).
Similarly, the identification equations of the conditional
probability pr{Dk(ak, 0) = d∗k | x} can also be simplified
by replacing R0s and R1s in Lemma 3.5 with R∗

0s and R∗
1s:

R∗
0s = pr(Xs = 0 | pa∗s)/pr(Xs = 0 | pas),

R∗
1s = pr(Xs = 1 | pa∗s)/pr(Xs = 1 | pas),

(5)

where pa∗s ⊂ (ak, 0, x
∗
k+1, . . . , x

∗
s−1) and pas ⊂

(ak, 1, xk+1, . . . , xs−1). The following Corollary 3.8 pro-
vides a simplified identification equation of other posterior
causal estimands for a given graph.

Corollary 3.8. Suppose that the causal network of
(X1, . . . , Xp, Y ) is a DAG. Under Assumptions 3.1-3.3,
given the observed evidence (ak, xk, dk, E), the postNDE,
postNIE, and postTCE of Xk on Y can be identified using
the following equations:

(i) when xk = 1, for any x⋆
k ∈ {0, 1}, we have,

E{Yx⋆
k,Dk(ak,1) | x, E} = E(Ypa⋆ | pay, E),

E{Yx⋆
k,Dk(ak,0) | x, E} =∑
d∗
k⪯dk

E(Ypa∗y
| pay, E)pr{Dk(ak, 0) = d∗k | x},

(ii) when xk = 0, for any x⋆
k ∈ {0, 1}, we have,

E{Yx⋆
k,Dk(ak,0) | x, E} = E(Ypa⋆ | pay, E),

E{Yx⋆
k,Dk(ak,1) | x, E} =∑
dk⪯d∗

k
E(Ypa∗y

| pay, E)pr{Dk(ak, 1) = d∗k | x},

where E(Ypa⋆y
| pay, E) and E(Ypa∗y

| pay, E) can be
identified by Corollary 3.7 for pa⋆y ⊂ (ak, x

⋆
k, dk) and

pa∗y ⊂ (ak, x
⋆
k, d

∗
k), and pr{Dk(ak, x

′
k) = d∗k | x} can

be identified by Lemma 3.5 and (5) for any x′
k ∈ {0, 1}.

The theoretic results in this section are very useful in prac-
tice and can greatly simplify the computation, especially
when the dimensionality of the causes is large. We suggest
that practitioners first obtain a simple DAG, or a larger one
but with the correct order of nodes, from expert knowledge
or conditional independence tests.

4. Estimation
In this section, we propose a simple but effective method for
estimating the counterfactual outcome mapping ϕx→x′(·) as
well as the posterior causal estimands. Let {(Xi, Yi) : i =
1, · · · , n} be the independent and identically distributed
samples generated according to Assumptions 3.1-3.3. Our
estimation procedure consists of two steps: first, for each
observation (Xi, Yi) = (x, y), we estimate the counterfac-
tual mapping ϕx→x′(y) for x′ ̸= x using a simple estimator
that minimizes a convex population objective function and
constructs pseudo samples of the counterfactual outcomes
for all individuals. In the second step, we nonparametri-
cally estimate the posterior causal estimands based on the
counterfactual mapping ϕx→x′(·). For simplicity, let SYx

denote a compact interval [ylx, y
u
x ] for any X = x, where

−∞ < ylx < yux < +∞. We also assume the compact sup-
port [ylx, y

u
x ] is known. Otherwise, it can be estimated using

the methods proposed in Korostelev & Tsybakov (2012).
To establish the asymptotic properties of the estimators to
be proposed in this section, we make the following assump-
tions.

Assumption 4.1. (i) The function mp+1(x, ϵp+1) is con-
tinuously differentiable in error term ϵp+1 for any X = x;
(ii) The probability density function of the error term ϵp+1

is continuous; (iii) infy∈[yl
x,y

u
x ]
gx(y) > 0 for any X = x,

where gx(y) = ∂Fx(y)/∂y.

Assumptions 4.1(i) and 4.1(ii) are regularity conditions
and, together with Assumptions 3.1 and 3.3, ensure that
the marginal distribution Fx(y) is absolutely continuous
with respect to the Lebesgue measure, and its probability
density function gx(y) is also continuous for any X = x.
Assumption 4.1(iii) is introduced for the sake of simplic-
ity in explanation. Trimming techniques can be employed
to relax this assumption, but they may introduce technical
complexities.

We now aim to derive a counterfactual outcome mapping
ϕx→x′(·) from two marginal distributions Fx(·) and Fx′(·).
For a given y ∈ R, we define the objective function as
follows: ρx→x′(t; y) = E {sign(Y − y) | X = x} × t −
E(|Y − t| | X = x′), where sign(u) ≡ 2× I(u > 0)− 1.
The above objective function is motivated by the quantile
regression method in Koenker & Bassett (1978) and Feng
et al. (2020). Simple calculations reveal that the first-order
and second-order conditions of this objective function are
given by:

∂ρx→x′(t; y)

∂t
= 2 {Fx′(t)− Fx(y)} = 0,

∂2ρx→x′(t; y)

∂t2
= 2gx′(t) ≥ 0.

The following lemma demonstrates that for any y ∈ S◦
Yx

,
the objective function ρx→x′(·; y) is uniquely minimized at
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the counterfactual outcome ϕx→x′(y).

Lemma 4.2. Under Assumptions 3.1-3.3, ρx→x′(·; y) is
continuously differentiable and weakly convex on R. Addi-
tionally, ρx→x′(·; y) is strictly convex on S◦

Yx′ and uniquely
minimized on R at ϕx→x′(y) when y ∈ S◦

Yx
.

The objective function ρx→x′(·; y) in Lemma 4.2 has sev-
eral important properties that support the validity of our es-
timation procedure. It is continuously differentiable, which
ensures that gradient-based optimization methods can be
effectively applied. Moreover, the function ρx→x′(·; y) is
strictly convex in the interior of the support, which implies
the uniqueness of the solution. Lemma 4.2 also provides the
foundation for our nonparametric estimation of the counter-
factual mappings and posterior causal estimands. For the i
th observational unit (Xi = x, Yi), let

ρ̂x→x′ (t;Yi) =

∑n
j=1 sign(Yj − Yi)× I(Xj = x)∑n

j=1 I(Xj = x)
× t

−
∑n

j=1 |Yj − t| × I(Xj = x′)∑n
j=1 I(Xj = x′)

.

Hence, we can estimate the counterfactual outcome of the i
th unit by,

ϕ̂x→x′ (Yi) = argmin
t∈[yl

x′ ,y
u
x′ ]

ρ̂x→x′ (t;Yi) , if Xi = x. (6)

By separately minimizing ρ̂x→x′ (·;Yi) for each unit i with
(Xi = x, Yi), we can estimate the counterfactual out-
come for an individual i under state X = x′ by the coun-
terfactual mapping ϕ̂x→x′ (Yi) in (6), and the individual
treatment effect ITE(x′, x∗) can be estimated as follows:
∆̂ITE,i(x

′, x∗) = ϕ̂x→x′ (Yi) − ϕ̂x→x∗ (Yi) . Moreover,
other posterior causal estimands can also be constructed
using similar moment estimators.

5. Example: risk factors for hypertension
In this section, we will use the example provided in Lu et al.
(2023) to explain our proposed causal attribution estimands,
and assess the posterior causal effects of risk factors on con-
tinuous hypertension. Figure 1 presents the causal network
and the corresponding conditional probabilities, where Ex-
ercise (E), Diet (D), Heart Disease (HD), Heartburn (Hb),
and Chest Pain (CP) are potential causes of hypertension.
Let E = 1 denote no daily exercise, D = 1 denote un-
healthy diet, HD = 1 denote heart disease, Hb = 1 denote
heartburn, CP = 1 denote chest pain, and BP denote con-
tinuous blood pressure Y . We generate the data without
unobserved confounders to satisfy Assumption 3.1. We also
ensure that the relationships among the causes satisfy the
monotonicity assumption (Assumption 3.2). For instance,
lack of daily exercise (E = 1) and poor diet (D = 1)

Table 1: Results of posterior intervention causal effects
based on different evidence.

PostICE(Yx′ | x, Y > 140)
(x1, x4)
= (0, 0)

(x1, x4)
= (0, 1)

(x1, x4)
= (1, 0)

(x1, x4)
= (1, 1)

(x′
1, x

′
4) = (0, 0) 0.00 -12.43 -1.76 -18.19

(x′
1, x

′
4) = (0, 1) 3.34 0.00 2.34 -5.43

(x′
1, x

′
4) = (1, 0) 1.75 -10.01 0.00 -15.75

(x′
1, x

′
4) = (1, 1) 12.05 5.57 10.86 0.00

are not preventive for heart disease HD. The various po-
tential outcomes also satisfy the perfect rank assumption
(Assumption 3.3). Specifically, we modeled blood pres-
sure Y as a continuous outcome variable and ensured that,
after binarization, its distribution matches that observed
in Lu et al. (2023). The topological order in Figure 1
is X = (X1, . . . , X5) = (E,D,Hb,HD,CP). The joint
probability of X and Y is calculated by substituting the con-
ditional probabilities from Figure 1 into the following equa-
tion: pr(E,D,Hb,HD,CP,BP) = pr(E) pr(D) pr(Hb |
D) pr(HD | E,D)pr(CP | Hb,HD)pr(BP | HD). With-
out loss of generality, we consider the event E = I(Y >
140), which indicates whether hypertension is present. The
posterior causal estimands can be used to analyze the
causes of hypertension for a patient based on the evidence
(x, Y > 140).

We first present the postICEs for hypertension, based on dif-
ferent observed evidence, as shown in Table 1. According
to Corollary 3.7, we know that the postICEs are only related
to the parent nodes of BP, namely X1 (exercise) and X4

(heart disease). We find that the largest change in postICEs
occurs with the evidence (x1, x4, E) = (1, 1, Y > 140)
and the intervened treatment (x′

1, x
′
4) = (0, 0). Specifi-

cally, for individuals who do not exercise, have heart dis-
ease, and have high blood pressure, if they had exercised
previously and did not have heart disease, i.e., receiving
treatment (x′

1, x
′
4) = (0, 0), their blood pressure would

significantly decrease by 18.19, that is, PostICE(Yx′ |
X1 = 1, X4 = 1, Y > 140) ≈ −18.19. Conversely, in
the evidence (x1, x4, E) = (0, 0, Y > 140), i.e., individu-
als who exercise, do not have heart disease, and have high
blood pressure, if they had not exercised previously and
did not have heart disease, i.e., receiving (x′

1, x
′
4) = (1, 0),

their blood pressure would slightly increase by 1.75, that is,
PostICE(Yx′ | X1 = 0, X4 = 0, Y > 140) ≈ 1.75.

Since our data generation mechanism ensures the exact
same observed data distribution as described in Lu et al.
(2023) after binarizing outcome Y , we directly use their
posterior total causal effects in their Table 1 for comparative
analysis. We use the symbol asterisks (*) to differentiate
from the definitions provided in this paper. Specifically, let
Y ∗
Xk=xk

be the binary event I(YXk=xk
> 140), we adopt

the definitions of the binary outcomes from Lu et al. (2023),
denoted as PN∗(Xk ⇒ E) and postTCE∗(Xk ⇒ E |

7



Causal Attribution for Continuous Outcomes

Exercise
 (X1)

Diet
 (X2)

Heartburn
 (X3)

Heart
disease

 (X4)

Chest pain 
(X5)

Blood
pressure

(Y)

E=1

0.3

D=1

0.75
Hb=1

D=0 0.2

D=1 0.85

HD=1
E=0
D=0 0.20

E=0
D=1 0.85

E=1
D=0 0.20

E=1
D=1 0.85

CP=1
Hb=0
HD=0 0.11

Hb=0
HD=1 0.48

Hb=1
HD=0 0.32

Hb=1
HD=1 0.74

BP BP > 140

E=0
HD=0 U(108, 148) 0.15

E=0
HD=1 U(138.5, 148.5) 0.80

E=1
HD=0 U(110, 150) 0.25

E=1
HD=1 U(138, 158) 0.9

Figure 1: A causal network representing hypertension and its risk factors, where U(a, b) denotes a uniform distribution on
the interval [a, b].

Table 2: Results of marginal probabilities of necessity and
posterior causal estimands based on the evidence {X =
(1, 1, 1, 1, 1), Y > 140}.

X1 X2 X3 X4 X5

PN∗(Xk ⇒ E) 0.347 0.230 0.133 0.760 0.563
postTCE∗(Xk ⇒ E | x, Y > 140) 0.344 0.207 0 0.722 0
postNDE(Xk ⇒ Y | x, Y > 140) 3.823 0 0 17.023 0
postNIE(Xk ⇒ Y | x, Y > 140) 6.805 4.561 0 0 0
postTCE(Xk ⇒ Y | x, Y > 140) 10.628 4.561 0 17.023 0

x, Y > 140), as follows: PN∗(Xk ⇒ E) = pr(Y ∗
Xk=0 =

0 | ak, Xk = 1, dk, Y > 140),

postTCE∗(Xk ⇒ E | x, Y > 140)

= E(Y ∗
Xk=1 − Y ∗

Xk=0 | x, Y > 140).

The above definitions can be identified using Lemma 1 and
Theorem 1 in Lu et al. (2023). We do not consider the
causal estimands postNDE∗(Xk ⇒ E | x, Y > 140) and
postNIE∗(Xk ⇒ E | x, Y > 140), because there is no
literature to support the identifiability results for these two
causal quantities after binarization.

Given the observed evidence {X = (1, 1, 1, 1, 1), Y >
140}, Table 2 presents the results for each potential risk
factor Xk with respect to posterior causal estimands. The
first row of Table 2 displays the probabilities of necessity
PN∗(Xk ⇒ E) computed after binarizing the outcome vari-
able Y , while the second row presents postTCE∗(Xk ⇒
E | x, Y > 140). The third to fifth rows present the re-
sults for postNDEs, PostNIEs, and PostTCEs considered
in this paper. We find that the second and fifth rows of the

table show very similar results in terms of sign and ordering.
Specifically, HD, E, and D (denoted as X1, X2, and X4,
respectively) all have non-zero postTCE values, indicating
that they are risk factors for blood pressure. Among them,
HD (i.e., X4) has the largest postTCE, indicating that HD is
the most important risk factor for blood pressure. In addi-
tion, the value of PN∗(X4 ⇒ E) is also the largest, further
confirming the importance of HD as a risk factor. Notably,
for HD (i.e., X4), it can be observed that the postNDE is
equal to the postTCE of BP. On the other hand, the postNDE
for E (i.e., X1) is smaller than the postTCE for BP, implying
that E has direct and indirect causal effects on BP. The third
to fifth rows of the table present the postNDE, postNIE,
and postTCE values for Hb and CP (denoted as X3 and X5,
respectively), which are all equal to zero. This indicates
that they are not risk factors for blood pressure. From the
causal network in Figure 1, it can be observed that there is
no causal path from Hb (i.e., X3) and CP (i.e., X4) to BP.
However, PN∗(X5 ⇒ E) is greater than PN∗(X1 ⇒ E)
and PN∗(X2 ⇒ E) as shown in the first row.

We also present additional analysis conclusions under differ-
ent evidence in Section S8 of the Supplementary Material.
To assess the stability of the proposed estimation procedure
in Section 4 of the Supplementary Material, we conduct sim-
ulation studies by generating data according to the causal
network depicted in Figure 1. The estimated results of Table
2 under different sample sizes were provided. The simu-
lation results indicate negligible biases and small standard
errors, particularly for large sample sizes. For detailed infor-
mation on data generation procedures and simulation results,
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please refer to Section S9 of the Supplementary Material. In
Section S10 of the Supplementary Material, we also apply
the proposed method to a real dataset (NTP, 2023).

6. Discussion
Dawid et al. (2014) pointed out that statistical inference
about the causes of effects is particularly challenging and is
difficult to justify even in randomized experiments. While
some prior research has addressed attribution analysis prob-
lems with binary outcomes (Pearl, 2000; Dawid et al., 2015;
Dawid & Musio, 2022; Li et al., 2023), evaluating the causes
of continuous outcomes or effects remains underexplored.
The identifiability of ITEs and postICEs with multiple po-
tentially correlated causes is motivated by the identification
of ITEs in the case of a single cause (Heckman et al., 1997).
However, even if ITEs are identified, it is insufficient for
retrospective assessment of a specific cause of effects, as the
monotonicity assumption 3.2 is still necessary. In practice,
for estimation purposes, we can begin by recovering the
counterfactual mappings between different potential out-
comes as well as ITEs through quantile regression (Koenker
& Bassett, 1978; Heckman et al., 1997; Feng et al., 2020);
then, we can utilize the identification expressions in Lemma
3.4 and Theorem 3.6 for nonparametric estimation.

Our work is also related to recent studies that explain causal
attribution using ideas from information theory and Shapley
values. Specifically, Schamberg et al. (2020) uses informa-
tion measures to separate direct and indirect effects, and
Jung et al. (2022) suggests a method based on Shapley val-
ues to measure the importance of different factors in causal
models. These methods mainly focus on average effects
across the whole population and look at how outcomes
would change under possible interventions. In contrast,
we focus on explaining what caused a particular observed
outcome. By conditioning on the observed treatments and
outcome, we define a set of posterior causal estimands that
allow for retrospective and individual-level explanations.
This can be especially useful in applications where personal-
ized decisions or responsibility need to be considered, such
as in medicine or legal settings. Our method is complemen-
tary to these prior approaches, offering a distinct and useful
perspective on causal inference with continuous outcomes.

In this paper, we focused on the posterior total, direct, and
indirect effects of multiple causes. An interesting future
direction is to look at how specific causal paths affect the
outcome. For example, one may want to know how much
of the effect is transmitted through a certain pathway, such
as through a known mediator. This idea, known as path-
specific effect, has been discussed in earlier work by Pearl
(2001). Extending our method to handle such effects could
help provide more detailed explanations, especially in set-
tings where causal pathways are well established.

Beyond the path-specific effects, there are also several po-
tential directions for future research. Firstly, in addition to
continuous outcomes, the attribution analysis of continuous
causes is common in practice and is an issue of great interest.
Second, the problem of retrospective analysis when multiple
causes and multiple continuous outcomes are involved in
many medical diagnoses is also worth exploring (Li et al.,
2023). Finally, it is also interesting to discuss the bounds of
the proposed estimands or to consider sensitivity analysis
when the monotonicity assumption does not hold (Tian &
Pearl, 2000; Dawid et al., 2024). These issues are beyond
the scope of this paper and are left for future research.
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Blöbaum, P., and Bareinboim, E. On measuring causal
contributions via do-interventions. In Proceedings of
the 39th International Conference on Machine Learning
(ICML), pp. 10476–10501. PMLR, 2022.

Khoury, M. J., Yang, Q., Gwinn, M., Little, J., and Flanders,
W. D. An epidemiologic assessment of genomic profiling
for measuring susceptibility to common diseases and tar-
geting interventions. Genetics in Medicine, 6(1):38–47,
2004.

Koenker, R. and Bassett, G. Regression quantiles. Econo-
metrica, 46(1):33, 1978.

Korostelev, A. P. and Tsybakov, A. B. Minimax theory of
image reconstruction, volume 82. Springer Science &
Business Media, 2012.

Kuroki, M. and Cai, Z. Statistical analysis of ‘probabilities
of causation’using co-variate information. Scandinavian
Journal of Statistics, 38(3):564–577, 2011.

Li, W., Lu, Z., Jia, J., Xie, M., and Geng, Z. Retro-
spective causal inference with multiple effect variables.
Biometrika, 111(2):573–589, 2023.

Lu, Z., Geng, Z., Li, W., Zhu, S., and Jia, J. Evalu-
ating causes of effects by posterior effects of causes.
Biometrika, 110(2):449–465, 2023.

NTP. NTP. TR-602: Tris(Chloropropyl)phosphate
(13674-84-5). Chemical Effects in Biological Systems
(CEBS). Research Triangle Park, NC (USA): Na-
tional Toxicology Program (NTP). Accessed 2024-
03-06. https://cebs.niehs.nih.gov/cebs/
publication/TR-602, 2023.

Pearl, J. Causal diagrams for empirical research. Biometrika,
82(4):669–688, 1995.

Pearl, J. Probabilities of causation: Three counterfactual
interpretations and their identification. Synthese, 1(121):
93–149, 1999.

Pearl, J. Causality: Models, reasoning, and inference. Cam-
bridge:Cambridge University Press, 2000.

Pearl, J. Direct and indirect effects. In Proc. of the 17th
Conference on Uncertainty in Artificial Intelligence, 2001,
pp. 411–420, 2001.

Pearl, J. Interpretation and identification of causal mediation.
Psychological methods, 19(4):459, 2014.

10

https://cebs.niehs.nih.gov/cebs/publication/TR-602
https://cebs.niehs.nih.gov/cebs/publication/TR-602


Causal Attribution for Continuous Outcomes

Pearl, J. Causes of effects and effects of causes. Sociological
Methods & Research, 44(1):149–164, 2015.

Pearl, J. Probabilities of causation: three counterfactual
interpretations and their identification. In Probabilistic
and Causal Inference: The Works of Judea Pearl, pp.
317–372. 2022.

Robins, J. M. Marginal structural models versus structural
nested models as tools for causal inference. In Statistical
models in epidemiology, the environment, and clinical
trials, pp. 95–133. Springer New York, New York, NY,
2000.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. Estimation
of regression coefficients when some regressors are not
always observed. Journal of the American Statistical
Association, 89(427):846–866, 1994.

Rosenbaum, P. and Rubin, D. The central role of the
propensity score in observational studies for causal ef-
fects. Biometrika, 70(1):41–55, 1983.

Sanders, J., Faigman, D. L., Imrey, P. B., and Dawid, P.
Differential etiology: inferring specific causation in the
law from group data in science. Ariz. L. Rev., 63:851,
2021.

Schamberg, G., Chapman, W., Xie, S.-P., and Coleman,
T. P. Direct and indirect effects—an information theoretic
perspective. Entropy, 22(8):854, 2020.

Tian, J. and Pearl, J. Probabilities of causation: Bounds
and identification. Annals of Mathematics and Artificial
Intelligence, 28(1-4):287–313, 2000.

VanderWeele, T. J. The Sufficient Cause Framework in
Statistics, Philosophy and the Biomedical and Social
Sciences. John Wiley & Sons, Ltd, 2012. ISBN
9781119945710.

Vuong, Q. and Xu, H. Counterfactual mapping and in-
dividual treatment effects in nonseparable models with
binary endogeneity. Quantitative Economics, 8(2):589–
610, 2017.

Yang, S., Kim, J. K., and Song, R. Doubly robust inference
when combining probability and non-probability samples
with high dimensional data. Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 82(2):
445–465, 2020.

Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. Es-
timating individualized treatment rules using outcome
weighted learning. Journal of the American Statistical
Association, 107(499):1106–1118, 2012.

11



Causal Attribution for Continuous Outcomes

Supplementary Material
The Supplementary Material contains proofs of all theoretical results, identifiability results under a causal network, simulation
details of the proposed procedure, and a real data analysis.

S1. Comparison of posterior causal estimands
This section provides the definitions of posterior causal estimands under both continuous and binary outcomes. Let Y ∗

denote a binary outcome, and let Y ∗
X=x represent the potential outcome under intervention X = x. Following the framework

of Lu et al. (2023), Table S3 clearly illustrates the notational correspondence between our proposed estimands and their
binary counterparts. While the definitions of PostNDE∗ and PostNIE∗ in Table S3 are conceptually consistent with their
continuous counterparts, their identifiability in the binary outcome setting has not been formally established in the existing
literature.

Table S3: Definitions of posterior causal estimands under continuous and binary outcomes.

Estimand Outcome Type Definition

PostTCE
Continuous PostTCE(Xk ⇒ Y | x, E) = E(YXk=1 − YXk=0 | x, E)

Binary PostTCE∗(Xk ⇒ E | x, Y ∗ = 1) = E(Y ∗
Xk=1 − Y ∗

Xk=0 | x, Y ∗ = 1)

PostNDE
Continuous PostNDE(Xk ⇒ Y | x, E) = E{YXk=1,Dk(ak,0) − YXk=0 | x, E}

Binary PostNDE∗(Xk ⇒ E | x, Y ∗ = 1) = E{Y ∗
Xk=1,Dk(ak,0)

− Y ∗
Xk=0 | x, Y ∗ = 1}

PostNIE
Continuous PostNIE(Xk ⇒ Y | x, E) = E{YXk=1 − YXk=1,Dk(ak,0) | x, E}

Binary PostNIE∗(Xk ⇒ E | x, Y ∗ = 1) = E{Y ∗
Xk=1 − Y ∗

Xk=1,Dk(ak,0)
| x, Y ∗ = 1}

PostICE
Continuous PostICE(Yx′ | x, E) = E(Yx′ − Y | x, E)

Binary PostICE∗(Y ∗
x′ | x, Y ∗ = 1) = E(Y ∗

x′ − Y ∗ | x, Y ∗ = 1)

ITE
Continuous ITE(x′, x∗) = Yx′ − Yx∗

Binary ITE(x′, x∗) = Y ∗
x′ − Y ∗

x∗

From a practical perspective, the choice of which estimand to use depends on the specific analytical goal. For example, given
the observed evidence, PostTCE is appropriate when the interest lies in evaluating the overall effect of a single cause, while
PostNDE and PostNIE are useful when disentangling direct and indirect pathways is of primary interest. PostICE may be
preferred in settings involving multiple simultaneous interventions, where understanding the joint contribution of correlated
causes is crucial. Finally, ITE provides individual-level contrast and is most relevant in personalized decision-making
contexts, such as precision medicine or targeted policy analysis.

S2. The proof of Lemma 3.4
Proof. For any x ̸= x′, we recall that the definitions of two marginal distributions Fx(y) and Fx′(y) are Fx(y) = pr(Y ≤
y | X = x) and Fx′(y) = pr(Y ≤ y | X = x′). Let Fϵp+1

(t) = pr(ϵp+1 ≤ t) denote the marginal distribution of the error
term ϵp+1. Let Sϵp+1 be the support of the error term ϵp+1. Since the function mp+1(·, ϵp+1) is strictly monotonic in ϵp+1

under Assumption 3.3, for any τ ∈ S◦
ϵp+1

(the interior of Sϵp+1 ), we have,

Fϵp+1(τ) = Fx′{mp+1(x
′, τ)} = Fx{mp+1(x, τ)}.

Hence, we have mp+1(x
′, τ) ∈ S◦

Yx′ . By the fact that the marginal distribution Fx′(·) is continuous and strictly increasing
at mp+1(x

′, τ), we have,

mp+1(x
′, τ) = F−1

x′ [Fx{mp+1(x, τ)}] .

Let y = mp+1(x, τ) ∈ S◦
Yx

, and we have τ = m−1
p+1(x, y). Then the above equation becomes

mp+1(x
′, τ) = F−1

x′ {Fx(y)} ,

12
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which shows that ϕx→x′(y) is identified on S◦
Yx

(the interior of SYx
) by

ϕx→x′(y) = mp+1(x
′, τ) = F−1

x′ {Fx(y)} .

The function ϕx→x′(y) is identified on SYx
by its continuous extension. The remaining results follow immediately.

S3. The proof of Lemma 3.5
Proof. Without loss of generality, let xk+1:k = x∗

k+1:k = ∅. Let Xj:l = (Xj , . . . , Xl) and xj:l = (xj , . . . , xl). We first
simplify the expression of the conditional probability as follows:

pr{Dk(ak, x
∗
k) = d∗k | x}

=pr{Dk(ak, x
∗
k) = d∗k | Dk(ak, xk) = dk}

=
pr{Dk(ak, x

∗
k) = d∗k, Dk(ak, xk) = dk}

pr{Dk(ak, xk) = dk}

=
pr{Xk+1(ak, x

∗
k) = x∗

k+1, . . . , Xp(ap−1, x
∗
k:p−1) = x∗

p, Xk+1(ak, xk) = xk+1, . . . , Xp(ap−1, xk:p−1) = xp}
pr{Xk+1(ak, xk) = xk+1, . . . , Xp(ap−1, xk:p−1) = xp}

=
pr{Xk+1(ak, x

∗
k) = x∗

k+1, Xk+1(ak, xk) = xk+1} × . . .× pr{Xp(ap−1, x
∗
k:p−1) = x∗

p, Xp(ap−1, xk:p−1) = xp}
pr{Xk+1(ak, xk) = xk+1} × . . .× pr{Xp(ap−1, xk:p−1) = xp}

=
∏p

s=k+1 pr{Xs(ak, x
∗
k:s−1) = x∗

s | Xs(ak, xk:s−1) = xs}.

where the second-to-last equation holds due to Assumption 3.1.

We first consider the case (i), namely (x∗
k, xk) = (0, 1) and d∗k = (x∗

k+1, . . . , x
∗
p) ⪯ dk = (xk+1, . . . , xp). Under the

monotonicity assumption 3.2, we have,

pr{Xs(ak, 0, x
∗
k+1:s−1) = 1 | Xs(ak, 1, xk+1:s−1) = 1} =

pr{Xs(ak, 0, x
∗
k+1:s−1) = 1, Xs(ak, 1, xk+1:s−1) = 1}

pr{Xs(ak, 1, xk+1:s−1) = 1}

=
pr{Xs(ak, 0, x

∗
k+1:s−1) = 1}

pr{Xs(ak, 1, xk+1:s−1) = 1}

=
pr(Xs = 1 | ak, 0, x∗

k+1:s−1)

pr(Xs = 1 | ak, 1, xk+1:s−1)
.

pr{Xs(ak, 0, x
∗
k+1:s−1) = 0 | Xs(ak, 1, xk+1:s−1) = 1} = 1− pr{Xs(ak, 0, x

∗
k+1:s−1) = 1 | Xs(ak, 1, xk+1:s−1) = 1}.

pr{Xs(ak, 0, x
∗
k+1:s−1) = 0 | Xs(ak, 1, xk+1:s−1) = 0} =

pr{Xs(ak, 0, x
∗
k+1:s−1) = 0, Xs(ak, 1, xk+1:s−1) = 0}

pr{Xs(ak, 1, xk+1:s−1) = 0}

=
pr{Xs(ak, 1, xk+1:s−1) = 0}
pr{Xs(ak, 1, xk+1:s−1) = 0}
= 1.

pr{Xs(ak, 0, x
∗
k+1:s−1) = 1 | Xs(ak, 1, xk+1:s−1) = 0}

= 1− pr{Xs(ak, 0, x
∗
k+1:s−1) = 0 | Xs(ak, 1, xk+1:s−1) = 0}

= 0.

Therefore, we have,

pr{Xs(ak, 0, x
∗
k+1:s−1) = x∗

s | Xs(ak, 1, xk+1:s−1) = xs} = (1− x∗
s) + (2x∗

s − 1)xsR0s,

where

R0s =
pr(Xs = 1 | ak, 0, x∗

k+1, . . . , x
∗
s−1)

pr(Xs = 1 | ak, 1, xk+1, . . . , xs−1)
.

We next consider the case (ii), namely (x∗
k, xk) = (1, 0) and dk = (xk+1, . . . , xp) ⪯ d∗k = (x∗

k+1, . . . , x
∗
p). Under the
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monotonicity assumption 3.2, we have,

pr{Xs(ak, 1, x
∗
k+1:s−1) = 0 | Xs(ak, 0, xk+1:s−1) = 0} =

pr{Xs(ak, 1, x
∗
k+1:s−1) = 0, Xs(ak, 0, xk+1:s−1) = 0}

pr{Xs(ak, 0, xk+1:s−1) = 0}

=
pr{Xs(ak, 1, x

∗
k+1:s−1) = 0}

pr{Xs(ak, 0, xk+1:s−1) = 0}

=
pr(Xs = 0 | ak, 1, x∗

k+1:s−1)

pr(Xs = 0 | ak, 0, xk+1:s−1)
.

pr{Xs(ak, 1, x
∗
k+1:s−1) = 1 | Xs(ak, 0, xk+1:s−1) = 0} = 1− pr{Xs(ak, 1, x

∗
k+1:s−1) = 0 | Xs(ak, 0, xk+1:s−1) = 0}.

pr{Xs(ak, 1, x
∗
k+1:s−1) = 1 | Xs(ak, 0, xk+1:s−1) = 1} =

pr{Xs(ak, 1, x
∗
k+1:s−1) = 1, Xs(ak, 0, xk+1:s−1) = 1}

pr{Xs(ak, 0, xk+1:s−1) = 1}

=
pr{Xs(ak, 0, xk+1:s−1) = 1}
pr{Xs(ak, 0, xk+1:s−1) = 1}

= 1.

pr{Xs(ak, 1, x
∗
k+1:s−1) = 0 | Xs(ak, 0, xk+1:s−1) = 1}

= 1− pr{Xs(ak, 1, x
∗
k+1:s−1) = 1 | Xs(ak, 0, xk+1:s−1) = 1}

= 0.

Therefore, we have,

pr{Xs(ak, 1, x
∗
k+1:s−1) = x∗

s | Xs(ak, 0, xk+1:s−1) = xs} = x∗
s + (1− 2x∗

s)(1− xs)R1s,

where

R1s =
pr(Xs = 0 | ak, 1, x∗

k+1, . . . , x
∗
s−1)

pr(Xs = 0 | ak, 0, xk+1, . . . , xs−1)
.

S4. The proof of Theorem 3.6
Proof. When xk = 1, we first consider E{Yak,x∗

k,Dk(ak,1)}:

E{Yak,x∗
k,Dk(ak,1) | ak, 1, dk, Y ∈ E} = E{Yak,x∗

k,Dk(ak,1) | ak, 1, Dk(ak, 1) = dk, Y ∈ E}
= E{Yak,x∗

k,dk
| ak, 1, Dk(ak, 1) = dk, Y ∈ E}

= E(Yak,x∗
k,dk

| ak, 1, dk, Y ∈ E).

We next consider E{Yak,x∗
k,Dk(ak,0)}:

E{Yak,x∗
k,Dk(ak,0) | ak, 1, dk, Y ∈ E}

=
∑

d∗
k⪯dk

E{Yak,x∗
k,d

∗
k
| ak, 1, dk, Dk(ak, 0) = d∗k, Y ∈ E}pr{Dk(ak, 0) = d∗k | ak, 1, dk}

=
∑

d∗
k⪯dk

E(Yak,x∗
k,d

∗
k
| ak, 1, dk, Y ∈ E)pr{Dk(ak, 0) = d∗k | ak, 1, dk},

where the second equality holds due to Assumption 3.1 (ii) and Assumption 3.2. The proofs for xk = 0 follow a similar
logic; for simplicity, we omit them.

S5. The proof of Corollary 3.7
Proof. Note that because mp+1(X, ·) is strictly monotone in ϵp+1, for any τ ∈ S◦

ϵp+1
(the interior of Sϵ) and for any

pa∗y ̸= pa′y , we have:

Fϵp+1
(τ) = Fpa∗y

{mp+1(pa
∗
y, τ)} = Fpa′y

{mp+1(pa
′
y, τ)}.

The remaining proof follows a similar logic as Section S2; we omit it for simplicity.

14



Causal Attribution for Continuous Outcomes

S6. The proof of Corollary 3.8
Proof. Given the Bayesian network, the distribution of each node depends only on its parent nodes. The proof is straightfor-
ward, and we omit it for brevity.

S7. The proof of Lemma 4.2
Proof. First, we differentiate ρx→x′ (yx′ ; yx) with respect to yx. Noting that

∂E(|Y − y| | X = x)t

∂t
= −E{sign(Y − y) | X = x} = 1− 2pr(Y < y | X = x) = 1− 2Fx(y),

∂E(|Y − t| | X = x′)

∂t
= −E{sign(Y − t) | X = x′} = 1− 2pr(Y < t | X = x′) = 1− 2Fx′(t),

where sign(u) ≡ 2× I(u > 0)− 1. It follows that

∂ρx→x′(t; y)

∂t
= 2 {Fx′(t)− Fx(y)} = 0.

Fix yx ∈ R. Note that the marginal distribution Fx′(·) is weakly increasing on R and strictly increasing on S◦
Yx′ .

Therefore, ρx→x′ (·; yx) is weakly and strictly convex on R and S◦
Yx

. Furthermore, under Assumption 3.3, we know that
ϕx→x′(yx) = F−1

x′ {Fx(yx)}. For yx′ ∈ S◦
Yx′ , we have Fx (yx) = Fx′ (yx′) if and only if yx′ = ϕx→x′ (yx′). Thus,

yx′ = ϕx→x′ (yx) uniquely solves the first-order condition ∂
∂tρx→x′ (t; yx) = 0.

S8. Additional analysis for hypertension example in Section 5
In this section, we present additional analysis conclusions under different evidence. Given the observed evidence {X =
(1, 1, 1, 0, 1), Y > 140}, Table S4 presents the results for the posterior causal estimands with respect to each possible
risk factor Xk. The first two rows of results are directly obtained from Lu et al. (2023) for comparison purposes. In the
second row, we observe that postTCE∗ (X1 ⇒ E | ·) = 0.2, and postTCE∗ (Xk ⇒ E | ·) = 0 for k = 2, . . . , 5. Our
results regarding postTCE are presented in the fifth row, showing a significant increase in blood pressure by 10.483 units
when suffering from heart disease, i.e., postTCE (X4 ⇒ Y | ·) = 10.483. Our results differ from Lu et al. (2023) with
respect to X4. This is because Lu et al. (2023) additionally requires the monotonicity assumption of the outcome variable
for identifiability in the binary outcome case. This assumption ensures that given the evidence X4 = 0 (indicating no
heart disease), X1 is the unique risk factor. However, the perfect rank assumption 3.3 introduced for the continuous
variable does not guarantee this. It can also be observed that the probability of necessity is not zero for X2, X3, and X5;
postTCE∗ (Xk ⇒ E | ·), postTCE (Xk ⇒ Y | ·), and postNDE (Xk ⇒ Y | ·) are zero when X4 = 0 for k = 1, 2, 5.
Additionally, it can be observed from the fourth row that postNIE (Xk ⇒ Y | ·) = 0 for all k = 1, . . . , 5, suggesting that
all causes have no indirect effect on BP. From the causal network in Figure 1, since the evidence indicates no heart disease,
i.e., X4 = 0, it can be intuitively understood that X4 blocks other nodes from transmitting effects to the outcome along the
paths.

Table S4: Results of marginal probabilities of necessity and posterior causal estimands based on the evidence {X =
(1, 1, 1, 0, 1), Y > 140}.

X1 X2 X3 X4 X5

PN∗(Xk ⇒ E) 0.347 0.230 0.133 # 0.563
postTCE∗ (Xk ⇒ E | x, Y > 140) 0.200 0 0 0 0
postNDE (Xk ⇒ Y | x, Y > 140) 2.000 0 0 10.483 0
postNIE (Xk ⇒ Y | x, Y > 140) 0 0 0 0 0
postTCE (Xk ⇒ Y | x, Y > 140) 2.000 0 0 10.483 0

# Corresponding quantity is undefined.

For the observed evidence {X = (1, 0, 1, 1, 1), Y > 140}, where X2 = 0 indicates a healthy diet, the values of postTCE
and postNDE are shown in Table S5. Comparing it with Table 2, we see that

postTCE {X1 ⇒ Y | X = (1, 0, 1, 1, 1), Y > 140} = 12.418 > postTCE {X1 ⇒ Y | X = (1, 1, 1, 1, 1), Y > 140} = 10.628,
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Table S5: Results of marginal probabilities of necessity and posterior causal estimands based on the evidence {X =
(1, 0, 1, 1, 1), Y > 140}.

X1 X2 X3 X4 X5

postTCE∗ (Xk ⇒ E | x, Y > 140) 0.449 0 0 0.722 0
postNDE (Xk ⇒ Y | x, Y > 140) 3.424 0 0 16.856 0
postNIE (Xk ⇒ Y | x, Y > 140) 8.994 0 0 0 0
postTCE (Xk ⇒ Y | x, Y > 140) 12.418 0 0 16.856 0

and

postTCE {X2 ⇒ Y | X = (1, 0, 1, 1, 1), Y > 140} = 0 < postTCE {X2 ⇒ Y | X = (1, 1, 1, 1, 1), Y > 140} = 4.561.

This is because changing X2 = 1 to X2 = 0 in the evidence increases the possibility that X1 is the cause and decreases the
possibility that X2 is the cause. Similar conclusions are also found in Lu et al. (2023) in the binary case.

S9. Simulation studies for hypertension example in Section 5
S9.1. Data generating details

In this section, we provide additional simulation studies related to Section 5. To generate simulation data that satisfies Figure
1 in Lu et al. (2023), we consider the following data generation process.

(a) X1 is Bernoulli with pr(X1 = 1) = 0.3.

(b) X2 is Bernoulli with pr(X2 = 1) = 0.75.

(c) Let G3 = {X3(X2 = 1), X3(X2 = 0)}, then G3 can take values on 00, 01, and 11 under monotonicity assumption
3.2,

pr(G3 = 00) = 0.15, pr(G3 = 01) = 0.65, pr(G3 = 11) = 0.2.

Here, X3 is generated as follows:

X3 = 0 if G3 = 00,

X3 = 1 if G3 = 11,

X3 = 0 if G3 = 01, X2 = 0,

X3 = 0 if G3 = 01, X2 = 1.

(iv) Let G4 = {X3(X1 = 0, X2 = 0), X3(X1 = 0, X2 = 1), X3(X1 = 1, X2 = 0), X3(X1 = 1, X2 = 1)}, then G4 can
take values on 0000, 0001, 0011, 0101, 0111, and 1111 under monotonicity assumption 3.2,

pr(G4 = 0000) = 0.25, pr(G4 = 0001) = 0.10, pr(G4 = 0011) = 0.20,

pr(G4 = 0101) = 0.10, pr(G4 = 0111) = 0.10, pr(G4 = 1111) = 0.25.
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Here, X4 is generated as follows:

X4 = 0 if G4 = 0000,

X4 = 1 if G4 = 0001, X1 = 1, X2 = 1,

X4 = 0 if G4 = 0001, X1 = 0, X2 = 1,

X4 = 0 if G4 = 0001, X1 = 1, X2 = 0,

X4 = 0 if G4 = 0001, X1 = 0, X2 = 0,

X4 = 1 if G4 = 0011, X1 = 1,

X4 = 0 if G4 = 0011, X1 = 0,

X4 = 1 if G4 = 0101, X2 = 1,

X4 = 0 if G4 = 0101, X2 = 0,

X4 = 1 if G4 = 0111, X1 = 1, X2 = 1,

X4 = 1 if G4 = 0111, X1 = 0, X2 = 1,

X4 = 1 if G4 = 0111, X1 = 1, X2 = 0,

X4 = 0 if G4 = 0111, X1 = 0, X2 = 0,

X4 = 1 if G4 = 1111.

(d) Let G5 = {X3(X3 = 0, X4 = 0), X3(X3 = 0, X4 = 1), X3(X3 = 1, X4 = 0), X3(X3 = 1, X4 = 1)}, then G5 can
take values on 0000, 0001, 0011, 0101, 0111, and 1111 under monotonicity assumption 3.2,

pr(G5 = 0000) = 0.10, pr(G5 = 0001) = 0.05, pr(G5 = 0011) = 0.45,

pr(G5 = 0101) = 0.05, pr(G5 = 0111) = 0.25, pr(G5 = 1111) = 0.10.

Here, X5 is generated as follows:

X5 = 0 if G5 = 0000,

X5 = 1 if G5 = 0001, X3 = 1, X4 = 1,

X5 = 0 if G5 = 0001, X3 = 0, X4 = 1,

X5 = 0 if G5 = 0001, X3 = 1, X4 = 0,

X5 = 0 if G5 = 0001, X3 = 0, X4 = 0,

X5 = 1 if G5 = 0011, X3 = 1,

X5 = 0 if G5 = 0011, X3 = 0,

X5 = 1 if G5 = 0101, X4 = 1,

X5 = 0 if G5 = 0101, X4 = 0,

X5 = 1 if G5 = 0111, X3 = 1, X4 = 1,

X5 = 1 if G5 = 0111, X3 = 0, X4 = 1,

X5 = 1 if G5 = 0111, X3 = 1, X4 = 0,

X5 = 0 if G5 = 0111, X3 = 0, X4 = 0,

X5 = 1 if G5 = 1111.

The above data generation process will result in an observation distribution exactly identical to Lu et al. (2023) and will be
utilized to compute the true values of posterior causal estimands considered in this paper.

S9.2. The simulation results for posterior causal estimands

In this section, we conducted simulation studies to assess the performance of the proposed procedure in finite samples. We
generated numerical examples corresponding to Figure 1 of the main text using the method described in Section S9.1. Using
data generated from 2000000 samples, we obtained the estimated results presented in Tables 2, S4, and S5 of the main text,
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as well as the true values provided in Tables S6 and S7 of the Supplementary Material. Additionally, we considered sample
sizes of n = 1000, 2000, and 10000, and averaged the results over 500 repetitions. These simulation results demonstrate the
stability of the proposed identification expressions. Specifically, we observed that the estimated values are close to the true
values, and the standard errors are relatively small. As the sample size increases, both the bias and standard errors decrease.

(i) Table S6 presents the true values and estimated results of the posterior intervention causal effect based on different
evidence.

(ii) Table S7 presents the true values of the posterior natural direct and indirect causal effect based on different evidence.

(iii) Tables S8-S10 present the estimated results of the posterior direct effect based on different evidence.

(iv) Tables S11-S13 present the estimated results of the posterior indirect effect based on different evidence.

Table S6: Posterior intervention causal effect based on different pieces of evidence.

PostICE(Y ′
x | x, Y > 140) (x1, x4) = (0, 0) (x1, x4) = (0, 1) (x1, x4) = (1, 0) (x1, x4) = (1, 1)

True values

(x′
1, x

′
4) = (0, 0) 0 -13.26 -2 -19

(x′
1, x

′
4) = (0, 1) 3.50 0 2.25 -5

(x′
1, x

′
4) = (1, 0) 2 -11.26 0 -17

(x′
1, x

′
4) = (1, 1) 12 5.25 10.5 0

n = 1000

(x′
1, x

′
4) = (0, 0) 0.000 (0.000) -13.252 (0.722) -1.757 (1.210) -18.955 (0.769)

(x′
1, x

′
4) = (0, 1) 3.477 (0.317) 0.000 (0.000) 2.391 (0.699) -4.998 (0.432)

(x′
1, x

′
4) = (1, 0) 1.561 (1.129) -11.532 (1.496) 0.000 (0.000) -17.224 (1.480)

(x′
1, x

′
4) = (1, 1) 11.967 (0.435) 5.227 (0.518) 10.676 (0.835) 0.000 (0.000)

n = 2000

(x′
1, x

′
4) = (0, 0) 0.000 (0.000) -13.224 (0.554) -1.921 (0.928) -18.962 (0.602)

(x′
1, x

′
4) = (0, 1) 3.463 (0.216) 0.000 (0.000) 2.273 (0.495) -4.997 (0.300)

(x′
1, x

′
4) = (1, 0) 1.808 (0.862) -11.322 (1.031) 0.000 (0.000) -17.057 (1.073)

(x′
1, x

′
4) = (1, 1) 11.944 (0.296) 5.240 (0.361) 10.518 (0.631) 0.000 (0.000)

n = 10000

(x′
1, x

′
4) = (0, 0) 0.000 (0.0000) -13.261 (0.2636) -1.950 (0.3588) -19.036 (0.2550)

(x′
1, x

′
4) = (0, 1) 3.503 (0.0992) 0.000 (0.0000) 2.291 (0.1965) -5.005 (0.1383)

(x′
1, x

′
4) = (1, 0) 1.926 (0.3298) -11.307 (0.4901) 0.000 (0.0000) -17.076 (0.4652)

(x′
1, x

′
4) = (1, 1) 11.995 (0.1558) 5.261 (0.1576) 10.543 (0.2530) 0.000 (0.0000)
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Table S7: True values of posterior natural direct effect and posterior natural indirect effect.

Case Evidence Posterior natural direct effect Posterior natural indirect effect
(x, E) X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

1 (0,0,0,0,0,E) 2.000 0.000 0.000 3.482 0.000 3.885 0.918 0.000 0.000 0.000
2 (0,0,0,0,1,E) 2.000 0.000 0.000 3.331 0.000 3.694 0.796 0.000 0.000 0.000
3 (0,0,0,1,0,E) 5.197 0.000 0.000 13.408 0.000 0.000 0.000 0.000 0.000 0.000
4 (0,0,0,1,1,E) 5.201 0.000 0.000 13.396 0.000 0.000 0.000 0.000 0.000 0.000
5 (0,0,1,0,0,E) 2.000 0.000 0.000 3.539 0.000 4.460 0.992 0.000 0.000 0.000
6 (0,0,1,0,1,E) 2.000 0.000 0.000 3.434 0.000 3.908 0.838 0.000 0.000 0.000
7 (0,0,1,1,0,E) 5.416 0.000 0.000 12.751 0.000 0.000 0.000 0.000 0.000 0.000
8 (0,0,1,1,1,E) 5.171 0.000 0.000 13.486 0.000 0.000 0.000 0.000 0.000 0.000
9 (0,1,0,0,0,E) 2.000 0.000 0.000 3.455 0.000 5.655 0.000 0.000 0.000 0.000

10 (0,1,0,0,1,E) 2.000 0.000 0.000 3.585 0.000 5.474 0.000 0.000 0.000 0.000
11 (0,1,0,1,0,E) 5.126 0.000 0.000 13.621 0.000 0.000 5.926 0.000 0.000 0.000
12 (0,1,0,1,1,E) 5.291 0.000 0.000 13.127 0.000 0.000 5.950 0.000 0.000 0.000
13 (0,1,1,0,0,E) 2.000 0.000 0.000 3.547 0.000 5.664 0.000 0.000 0.000 0.000
14 (0,1,1,0,1,E) 2.000 0.000 0.000 3.483 0.000 5.407 0.000 0.000 0.000 0.000
15 (0,1,1,1,0,E) 5.192 0.000 0.000 13.425 0.000 0.000 5.874 0.000 0.000 0.000
16 (0,1,1,1,1,E) 5.246 0.000 0.000 13.263 0.000 0.000 5.916 0.000 0.000 0.000
17 (1,0,0,0,0,E) 2.000 0.000 0.000 10.490 0.000 0.000 4.602 0.000 0.000 0.000
18 (1,0,0,0,1,E) 2.000 0.000 0.000 10.365 0.000 0.000 4.864 0.000 0.000 0.000
19 (1,0,0,1,0,E) 3.342 0.000 0.000 16.955 0.000 9.184 0.000 0.000 0.000 0.000
20 (1,0,0,1,1,E) 3.304 0.000 0.000 17.188 0.000 9.477 0.000 0.000 0.000 0.000
21 (1,0,1,0,0,E) 2.000 0.000 0.000 10.569 0.000 0.000 4.793 0.000 0.000 0.000
22 (1,0,1,0,1,E) 2.000 0.000 0.000 10.645 0.000 0.000 3.802 0.000 0.000 0.000
23 (1,0,1,1,0,E) 3.504 0.000 0.000 17.188 0.000 8.130 0.000 0.000 0.000 0.000
24 (1,0,1,1,1,E) 3.424 0.000 0.000 16.856 0.000 8.994 0.000 0.000 0.000 0.000
25 (1,1,0,0,0,E) 2.000 0.000 0.000 10.363 0.000 0.000 0.000 0.000 0.000 0.000
26 (1,1,0,0,1,E) 2.000 0.000 0.000 10.586 0.000 0.000 0.000 0.000 0.000 0.000
27 (1,1,0,1,0,E) 3.867 0.000 0.000 16.809 0.000 6.740 4.306 0.000 0.000 0.000
28 (1,1,0,1,1,E) 3.799 0.000 0.000 17.045 0.000 6.692 4.251 0.000 0.000 0.000
29 (1,1,1,0,0,E) 2.000 0.000 0.000 10.463 0.000 0.000 0.000 0.000 0.000 0.000
30 (1,1,1,0,1,E) 2.000 0.000 0.000 10.483 0.000 0.000 0.000 0.000 0.000 0.000
31 (1,1,1,1,0,E) 3.837 0.000 0.000 16.993 0.000 6.595 4.603 0.000 0.000 0.000
32 (1,1,1,1,1,E) 3.823 0.000 0.000 17.023 0.000 6.805 4.561 0.000 0.000 0.000

S10. Real data analysis: risk factors for abnormal weight
In this section, we apply the proposed method to a real dataset from the developmental toxicology experiments conducted
by the National Toxicology Program (NTP) (NTP, 2023). The primary objective of this study is to analyze whether
tris(1-chloro-2-propyl) phosphate (TCPP) is a risk factor for abnormal weight loss in B6C3F1/N mice, or if there are other
causes that are the potential risks. In this experiment, a total of 120 mice were randomly exposed to six different dose levels
of TCPP via dosed feed: 0, 1250, 2500, 5000, 10000, or 20000 ppm, for a duration of 3 months. Each pup’s data includes
gender (male/female), weekly body weights, organ weights, and whether organs exhibit pathology. In our analysis, let X1

represent the gender of the mice, where X1 = 0 indicates female mice and X1 = 1 indicates male mice. Let X2 denote the
dose, where X2 = 0 represents exposure to the low dose group including 0, 1250, and 2500 ppm, and X2 = 1 represents
exposure to the high dose group including 5000, 10000, and 20000 ppm. Let X3 denote whether the liver or kidney exhibits
pathology, where X3 = 0 indicates no pathology and X3 = 1 indicates pathology. We choose the body weight at the end of
three months as the outcome Y . In this analysis, we focus on assessing the potential risk factors affecting the body weight of
underweight mice, indicated by the event E = I(Y < 27).

We first use the R package “bnlearn” to construct a Bayesian network based on the collected data as shown in Figure S2. It
is clear that dose X2 indirectly affects body weight Y through the organ disease X3. Since both gender (i.e., X1) and dose
(i.e., X2) can be considered as randomized trials, we can estimate the causal effect of X1 on Y using the difference in means
estimator, i.e., E(YX1=1 − YX1=0) ≈ 6.09; which implies that males are heavier. Similarly, we can estimate the causal
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Table S8: The simulation results for the postNDE under a sample size of 1000.

Case Evidence
(x, E)

PostNDE(Xk ⇒ Y | x, Y > 140)
X1 X2 X3 X4 X5

1 (0,0,0,0,0,E) 1.561 (1.134) 0.000 (0.000) 0.000 (0.000) 3.489 (0.318) 0.000 (0.000)
2 (0,0,0,0,1,E) 1.561 (1.134) 0.000 (0.000) 0.000 (0.000) 3.489 (0.318) 0.000 (0.000)
3 (0,0,0,1,0,E) 5.226 (0.519) 0.000 (0.000) 0.000 (0.000) 13.255 (0.722) 0.000 (0.000)
4 (0,0,0,1,1,E) 5.226 (0.519) 0.000 (0.000) 0.000 (0.000) 13.255 (0.722) 0.000 (0.000)
5 (0,0,1,0,0,E) 1.561 (1.134) 0.000 (0.000) 0.000 (0.000) 3.489 (0.318) 0.000 (0.000)
6 (0,0,1,0,1,E) 1.561 (1.134) 0.000 (0.000) 0.000 (0.000) 3.489 (0.318) 0.000 (0.000)
7 (0,0,0,1,0,E) 5.226 (0.519) 0.000 (0.000) 0.000 (0.000) 13.255 (0.722) 0.000 (0.000)
8 (0,0,1,1,1,E) 5.226 (0.519) 0.000 (0.000) 0.000 (0.000) 13.255 (0.722) 0.000 (0.000)
9 (0,1,0,0,0,E) 1.561 (1.134) 0.000 (0.000) 0.000 (0.000) 3.489 (0.318) 0.000 (0.000)

10 (0,1,0,0,1,E) 1.561 (1.134) 0.000 (0.000) 0.000 (0.000) 3.489 (0.318) 0.000 (0.000)
11 (0,1,0,1,0,E) 5.226 (0.519) 0.000 (0.000) 0.000 (0.000) 13.255 (0.722) 0.000 (0.000)
12 (0,1,0,1,1,E) 5.226 (0.519) 0.000 (0.000) 0.000 (0.000) 13.255 (0.722) 0.000 (0.000)
13 (0,1,1,0,0,E) 1.561 (1.134) 0.000 (0.000) 0.000 (0.000) 3.489 (0.318) 0.000 (0.000)
14 (0,1,1,0,1,E) 1.561 (1.134) 0.000 (0.000) 0.000 (0.000) 3.489 (0.318) 0.000 (0.000)
15 (0,1,1,1,0,E) 5.226 (0.519) 0.000 (0.000) 0.000 (0.000) 13.255 (0.722) 0.000 (0.000)
16 (0,1,1,1,1,E) 5.226 (0.519) 0.000 (0.000) 0.000 (0.000) 13.255 (0.722) 0.000 (0.000)
17 (1,0,0,0,0,E) 1.755 (1.194) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
18 (1,0,0,0,1,E) 1.756 (1.197) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
19 (1,0,0,1,0,E) 3.230 (0.903) 0.000 (0.000) 0.000 (0.000) 17.220 (1.479) 0.000 (0.000)
20 (1,0,0,1,1,E) 3.230 (0.903) 0.000 (0.000) 0.000 (0.000) 17.220 (1.479) 0.000 (0.000)
21 (1,0,1,0,0,E) 1.755 (1.194) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
22 (1,0,1,0,1,E) 1.753 (1.193) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
23 (1,0,1,1,0,E) 3.371 (1.153) 0.000 (0.000) 0.000 (0.000) 17.220 (1.479) 0.000 (0.000)
24 (1,0,1,1,1,E) 3.365 (1.148) 0.000 (0.000) 0.000 (0.000) 17.217 (1.478) 0.000 (0.000)
25 (1,1,0,0,0,E) 1.755 (1.194) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
26 (1,1,0,0,1,E) 1.804 (1.124) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
27 (1,1,0,1,0,E) 3.732 (0.740) 0.000 (0.000) 0.000 (0.000) 17.220 (1.479) 0.000 (0.000)
28 (1,1,0,1,1,E) 3.732 (0.740) 0.000 (0.000) 0.000 (0.000) 17.220 (1.479) 0.000 (0.000)
29 (1,1,1,0,0,E) 1.755 (1.194) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
30 (1,1,1,0,1,E) 1.755 (1.194) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
31 (1,1,1,1,0,E) 3.692 (0.667) 0.000 (0.000) 0.000 (0.000) 17.220 (1.479) 0.000 (0.000)
32 (1,1,1,1,1,E) 3.692 (0.667) 0.000 (0.000) 0.000 (0.000) 17.220 (1.479) 0.000 (0.000)

effect of X2 on Y to be -3.353, i.e., E(YX2=1 − YX2=0) ≈ −3.353, which suggests that the higher dose lead to weight loss.
Figure S2 also provides a simple descriptive statistical analysis of these potential risk factors. We observe that as the toxin
level increases, the occurrence rate of organ disease also increases. In addition, males showed higher variability in organ
abnormalities compared to females, as demonstrated in previous studies (Bianco et al., 2023). These empirical findings
align with monotonicity assumption 3.2, i.e., X3(0, 0) ≤ {X3(0, 1), X3(1, 0)} ≤ X3(1, 1). In this data analysis, we choose
not to binarize the outcome and, therefore, do not report the results of the binarized posterior causal effects, as the outcome
variable fails to satisfy the monotonicity assumption regarding the causes (Assumption 2(b) in Lu et al. (2023)).

We now present the estimation results of postICEs based on various observed evidence in Table S14. According to Corollary
3.7 and Figure S2, we know that the postICEs are only related to the parent nodes of body weight, namely X1 (gender) and X3

(organ disease). Considering the evidence (X1, X3, E) = (0, 1, Y < 27), we observe PostICE(Yx′ | x, Y < 27) = 10.51,
which indicates that changing from male mice without organ disease (i.e., (x′

1, x
′
3) = (1, 0)) to female mice with organ

disease results in the most significant weight loss, totaling 10.51. For the evidence (x1, x3, E) = (0, 0, Y < 27), we
observe PostICE(Yx′ | x, Y < 27) = −1.42, which indicates that changing from female mice with organ disease (i.e.,
(x′

1, x
′
3) = (0, 1)) to female mice without organ disease results in a slight decrease of about 1.42. In summary, for a given

posterior evidence, changing from female mice (X1 = 0) to male mice (X1 = 1) results in an increase in body weight,
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Table S9: The simulation results for the postNDE under a sample size of 2000.

Case Evidence
(x, E)

PostNDE(Xk ⇒ Y | x, Y > 140)
X1 X2 X3 X4 X5

1 (0,0,0,0,0,E) 1.808 (0.863) 0.000 (0.000) 0.000 (0.000) 3.469 (0.217) 0.000 (0.000)
2 (0,0,0,0,1,E) 1.808 (0.863) 0.000 (0.000) 0.000 (0.000) 3.469 (0.217) 0.000 (0.000)
3 (0,0,0,1,0,E) 5.239 (0.361) 0.000 (0.000) 0.000 (0.000) 13.226 (0.554) 0.000 (0.000)
4 (0,0,0,1,1,E) 5.239 (0.361) 0.000 (0.000) 0.000 (0.000) 13.226 (0.554) 0.000 (0.000)
5 (0,0,1,0,0,E) 1.808 (0.863) 0.000 (0.000) 0.914 (0.200) 3.469 (0.217) 0.000 (0.000)
6 (0,0,1,0,1,E) 1.808 (0.863) 0.000 (0.000) 0.000 (0.000) 3.469 (0.217) 0.000 (0.000)
7 (0,0,0,1,0,E) 5.239 (0.361) 0.000 (0.000) 0.000 (0.000) 13.226 (0.554) 0.000 (0.000)
8 (0,0,1,1,1,E) 5.239 (0.361) 0.000 (0.000) 0.000 (0.000) 13.226 (0.554) 0.000 (0.000)
9 (0,1,0,0,0,E) 1.808 (0.863) 0.000 (0.000) 0.000 (0.000) 3.469 (0.217) 0.000 (0.000)

10 (0,1,0,0,1,E) 1.808 (0.863) 0.000 (0.000) 0.000 (0.000) 3.469 (0.217) 0.000 (0.000)
11 (0,1,0,1,0,E) 5.239 (0.361) 0.000 (0.000) 0.000 (0.000) 13.226 (0.554) 0.000 (0.000)
12 (0,1,0,1,1,E) 5.239 (0.361) 0.000 (0.000) 0.000 (0.000) 13.226 (0.554) 0.000 (0.000)
13 (0,1,1,0,0,E) 1.808 (0.863) 0.000 (0.000) 0.000 (0.000) 3.469 (0.217) 0.000 (0.000)
14 (0,1,1,0,1,E) 1.808 (0.863) 0.000 (0.000) 0.000 (0.000) 3.469 (0.217) 0.000 (0.000)
15 (0,1,1,1,0,E) 5.239 (0.361) 0.000 (0.000) 0.000 (0.000) 13.226 (0.554) 0.000 (0.000)
16 (0,1,1,1,1,E) 5.239 (0.361) 0.000 (0.000) 0.000 (0.000) 13.226 (0.554) 0.000 (0.000)
17 (1,0,0,0,0,E) 1.920 (0.921) 0.000 (0.000) 0.000 (0.000) 10.501 (0.625) 0.000 (0.000)
18 (1,0,0,0,1,E) 1.922 (0.922) 0.000 (0.000) 0.000 (0.000) 10.501 (0.625) 0.000 (0.000)
19 (1,0,0,1,0,E) 3.310 (0.622) 0.000 (0.000) 0.000 (0.000) 17.055 (1.073) 0.000 (0.000)
20 (1,0,0,1,1,E) 3.310 (0.622) 0.000 (0.000) 0.000 (0.000) 17.055 (1.073) 0.000 (0.000)
21 (1,0,1,0,0,E) 1.920 (0.921) 0.000 (0.000) 0.000 (0.000) 10.501 (0.625) 0.000 (0.000)
22 (1,0,1,0,1,E) 1.920 (0.921) 0.000 (0.000) 0.000 (0.000) 10.501 (0.625) 0.000 (0.000)
23 (1,0,1,1,0,E) 3.318 (0.724) 0.000 (0.000) 0.000 (0.000) 17.055 (1.073) 0.000 (0.000)
24 (1,0,1,1,1,E) 3.318 (0.724) 0.000 (0.000) 0.000 (0.000) 17.055 (1.073) 0.000 (0.000)
25 (1,1,0,0,0,E) 1.920 (0.921) 0.000 (0.000) 0.000 (0.000) 10.501 (0.625) 0.000 (0.000)
26 (1,1,0,0,1,E) 1.804 (1.124) 0.000 (0.000) 0.000 (0.000) 10.641 (0.821) 0.000 (0.000)
27 (1,1,0,1,0,E) 3.753 (0.523) 0.000 (0.000) 0.000 (0.000) 17.055 (1.073) 0.000 (0.000)
28 (1,1,0,1,1,E) 3.753 (0.523) 0.000 (0.000) 0.000 (0.000) 17.055 (1.073) 0.000 (0.000)
29 (1,1,1,0,0,E) 1.920 (0.921) 0.000 (0.000) 0.000 (0.000) 10.501 (0.625) 0.000 (0.000)
30 (1,1,1,0,1,E) 1.920 (0.921) 0.000 (0.000) 0.000 (0.000) 10.501 (0.625) 0.000 (0.000)
31 (1,1,1,1,0,E) 3.760 (0.461) 0.000 (0.000) 0.000 (0.000) 17.055 (1.073) 0.000 (0.000)
32 (1,1,1,1,1,E) 3.760 (0.461) 0.000 (0.000) 0.000 (0.000) 17.055 (1.073) 0.000 (0.000)

while changing from mice without organ disease (X3 = 0) to mice with organ disease (X3 = 1) results in a decrease in
body weight in most cases.

Table S15 presents the estimation results of the posterior causal estimands for each potential risk factor. Given the evidence
(X1, X2, X3, E) = (1, 1, 1, Y < 27), we find that the PostNDE value for gender X1 is the highest, indicating that gender
might be the most important direct factor, followed by organ disease X3. The PostNDE value for toxin dose X2 is 0,
which is consistent with the conclusions drawn from the Bayesian network in Figure S2. In addition, given the evidence
(X1, X2, X3, E) = (1, 1, 1, Y < 27), we observed that both gender X1 and toxin dose X2 have an indirect effect on the
outcome, with the absolute value of PostNIE for gender X1 being significantly greater than that for toxin dose X2, while
organ disease X3 has no indirect effect, suggesting that gender may be the most important indirect factor influencing body
weight among the three factors, followed by toxin dose X2. However, in terms of the postTCE, organ disease X3 has the
largest value, suggesting that organ disease X3 is the most important total risk factor for low body weight, followed by toxin
dose X2, while gender X1 has the least effect.

Under the evidence (1, 0, 0, Y < 27) and (0, 1, 1, Y < 27), toxin dose X2 exhibits the most significant PostNIE value for
weight loss, indicating that toxin dose X2 is the most important indirect risk factor in these situations. In summary, for
most evidence in Table S15, either gender X1 or organ disease X3 has the highest absolute PostTCE value, especially X3,
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Table S10: The simulation results for the postNDE under a sample size of 10000.

Case Evidence
(x, E)

postNDE(Xk ⇒ Y | x, Y > 140)
X1 X2 X3 X4 X5

1 (0,0,0,0,0,E) 1.961(0.351) 0.000(0.000) 0.000(0.000) 3.504(0.102) 0.000(0.000)
2 (0,0,0,0,1,E) 1.961(0.351) 0.000(0.000) 0.000(0.000) 3.504(0.102) 0.000(0.000)
3 (0,0,0,1,0,E) 5.259(0.171) 0.000(0.000) 0.000(0.000) 13.259(0.261) 0.000(0.000)
4 (0,0,0,1,1,E) 5.259(0.171) 0.000(0.000) 0.000(0.000) 13.259(0.261) 0.000(0.000)
5 (0,0,1,0,0,E) 1.961(0.351) 0.000(0.000) 0.000(0.000) 3.504(0.102) 0.000(0.000)
6 (0,0,1,0,1,E) 1.961(0.351) 0.000(0.000) 0.000(0.000) 3.504(0.102) 0.000(0.000)
7 (0,0,0,1,0,E) 5.259(0.171) 0.000(0.000) 0.000(0.000) 13.259(0.261) 0.000(0.000)
8 (0,0,1,1,1,E) 5.259(0.171) 0.000(0.000) 0.000(0.000) 13.259(0.261) 0.000(0.000)
9 (0,1,0,0,0,E) 1.961(0.351) 0.000(0.000) 0.000(0.000) 3.504(0.102) 0.000(0.000)
10 (0,1,0,0,1,E) 1.961(0.351) 0.000(0.000) 0.000(0.000) 3.504(0.102) 0.000(0.000)
11 (0,1,0,1,0,E) 5.259(0.171) 0.000(0.000) 0.000(0.000) 13.259(0.261) 0.000(0.000)
12 (0,1,0,1,1,E) 5.259(0.171) 0.000(0.000) 0.000(0.000) 13.259(0.261) 0.000(0.000)
13 (0,1,1,0,0,E) 1.961(0.351) 0.000(0.000) 0.000(0.000) 3.504(0.102) 0.000(0.000)
14 (0,1,1,0,1,E) 1.961(0.351) 0.000(0.000) 0.000(0.000) 3.504(0.102) 0.000(0.000)
15 (0,1,1,1,0,E) 5.259(0.171) 0.000(0.000) 0.000(0.000) 13.259(0.261) 0.000(0.000)
16 (0,1,1,1,1,E) 5.259(0.171) 0.000(0.000) 0.000(0.000) 13.259(0.261) 0.000(0.000)
17 (1,0,0,0,0,E) 1.983(0.382) 0.000(0.000) 0.000(0.000) 10.513(0.267) 0.000(0.000)
18 (1,0,0,0,1,E) 1.983(0.382) 0.000(0.000) 0.000(0.000) 10.513(0.267) 0.000(0.000)
19 (1,0,0,1,0,E) 3.357(0.267) 0.000(0.000) 0.000(0.000) 17.050(0.466) 0.000(0.000)
20 (1,0,0,1,1,E) 3.357(0.267) 0.000(0.000) 0.000(0.000) 17.050(0.466) 0.000(0.000)
21 (1,0,1,0,0,E) 1.983(0.382) 0.000(0.000) 0.000(0.000) 10.513(0.267) 0.000(0.000)
22 (1,0,1,0,1,E) 1.983(0.382) 0.000(0.000) 0.000(0.000) 10.513(0.267) 0.000(0.000)
23 (1,0,1,1,0,E) 3.364(0.322) 0.000(0.000) 0.000(0.000) 17.050(0.466) 0.000(0.000)
24 (1,0,1,1,1,E) 3.364(0.322) 0.000(0.000) 0.000(0.000) 17.050(0.466) 0.000(0.000)
25 (1,1,0,0,0,E) 1.983(0.382) 0.000(0.000) 0.000(0.000) 10.513(0.267) 0.000(0.000)
26 (1,1,0,0,1,E) 1.983(0.382) 0.000(0.000) 0.000(0.000) 10.513(0.267) 0.000(0.000)
27 (1,1,0,1,0,E) 3.796(0.229) 0.000(0.000) 0.000(0.000) 17.050(0.466) 0.000(0.000)
28 (1,1,0,1,1,E) 3.798(0.228) 0.000(0.000) 0.000(0.000) 17.045(0.466) 0.000(0.000)
29 (1,1,1,0,0,E) 1.983(0.382) 0.000(0.000) 0.000(0.000) 10.513(0.267) 0.000(0.000)
30 (1,1,1,0,1,E) 1.978(0.381) 0.000(0.000) 0.000(0.000) 10.519(0.269) 0.000(0.000)
31 (1,1,1,1,0,E) 3.798(0.228) 0.000(0.000) 0.000(0.000) 17.047(0.470) 0.000(0.000)
32 (1,1,1,1,1,E) 3.790(0.195) 0.000(0.000) 0.000(0.000) 17.076(0.465) 0.000(0.000)

suggesting that organ disease is the most important risk factor leading to weight loss.
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Table S11: The simulation results for the postNIE under a sample size of 1000.

Case Evidence
(x, E)

PostNIE(Xk ⇒ Y | x, Y > 140)
X1 X2 X3 X4 X5

1 (0,0,0,0,0,E) 4.157 (1.094) 0.926 (0.186) -0.001 (0.376) 0.000 (0.000) 0.000 (0.000)
2 (0,0,0,0,1,E) 4.159 (1.093) 0.926 (0.186) -0.001 (0.376) 0.000 (0.000) 0.000 (0.000)
3 (0,0,0,1,0,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
4 (0,0,0,1,1,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 (0,0,1,0,0,E) 4.058 (1.995) 0.903 (0.286) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
6 (0,0,1,0,1,E) 4.082 (2.013) 0.901 (0.286) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
7 (0,0,0,1,0,E) 0.000 (0.000) 0.000 (0.000) -1.186 (5.424) 0.000 (0.000) 0.000 (0.000)
8 (0,0,1,1,1,E) 0.000 (0.000) 0.000 (0.000) -1.186 (5.424) 0.000 (0.000) 0.000 (0.000)
9 (0,1,0,0,0,E) 5.580 (1.742) 0.000 (0.000) -0.056 (0.429) 0.000 (0.000) 0.000 (0.000)

10 (0,1,0,0,1,E) 5.580 (1.742) 0.000 (0.000) -0.056 (0.429) 0.000 (0.000) 0.000 (0.000)
11 (0,1,0,1,0,E) 0.000 (0.000) 5.801 (1.560) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
12 (0,1,0,1,1,E) 0.000 (0.000) 5.801 (1.560) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
13 (0,1,1,0,0,E) 5.707 (0.874) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
14 (0,1,1,0,1,E) 5.707 (0.874) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
15 (0,1,1,1,0,E) 0.000 (0.000) 5.870 (1.056) -0.094 (1.876) 0.000 (0.000) 0.000 (0.000)
16 (0,1,1,1,1,E) 0.000 (0.000) 5.870 (1.056) -0.094 (1.876) 0.000 (0.000) 0.000 (0.000)
17 (1,0,0,0,0,E) 0.000 (0.000) 4.616 (1.206) -0.266 (3.567) 0.000 (0.000) 0.000 (0.000)
18 (1,0,0,0,1,E) 0.000 (0.000) 4.616 (1.206) -0.246 (3.591) 0.000 (0.000) 0.000 (0.000)
19 (1,0,0,1,0,E) 9.322 (1.777) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
20 (1,0,0,1,1,E) 9.322 (1.777) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
21 (1,0,1,0,0,E) 0.000 (0.000) 4.544 (2.096) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
22 (1,0,1,0,1,E) 0.000 (0.000) 4.159 (2.725) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
23 (1,0,1,1,0,E) 8.688 (4.183) 0.000 (0.000) -1.352 (6.608) 0.000 (0.000) 0.000 (0.000)
24 (1,0,1,1,1,E) 8.708 (4.163) 0.000 (0.000) -1.345 (6.613) 0.000 (0.000) 0.000 (0.000)
25 (1,1,0,0,0,E) 0.000 (0.000) 0.000 (0.000) -1.177 (5.164) 0.000 (0.000) 0.000 (0.000)
26 (1,1,0,0,1,E) 0.000 (0.000) 0.000 (0.000) -1.177 (5.164) 0.000 (0.000) 0.000 (0.000)
27 (1,1,0,1,0,E) 6.711 (1.876) 4.408 (2.022) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
28 (1,1,0,1,1,E) 6.711 (1.876) 4.408 (2.022) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
29 (1,1,1,0,0,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
30 (1,1,1,0,1,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
31 (1,1,1,1,0,E) 6.902 (0.902) 4.582 (1.508) 0.043 (1.996) 0.000 (0.000) 0.000 (0.000)
32 (1,1,1,1,1,E) 6.902 (0.902) 4.588 (1.503) 0.043 (1.996) 0.000 (0.000) 0.000 (0.000)
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Table S12: The simulation results for the postNIE under a sample size of 2000.

Case Evidence
(x, E)

PostNIE(Xk ⇒ Y | x, Y > 140)
X1 X2 X3 X4 X5

1 (0,0,0,0,0,E) 4.059 (0.748) 0.921 (0.120) -0.004 (0.256) 0.000 (0.000) 0.000 (0.000)
2 (0,0,0,0,1,E) 4.059 (0.748) 0.921 (0.120) -0.004 (0.256) 0.000 (0.000) 0.000 (0.000)
3 (0,0,0,1,0,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
4 (0,0,0,1,1,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 (0,0,1,0,0,E) 4.120 (1.418) 0.914 (0.200) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
6 (0,0,1,0,1,E) 4.120 (1.418) 0.914 (0.200) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
7 (0,0,0,1,0,E) 0.000 (0.000) 0.000 (0.000) -0.576 (3.295) 0.000 (0.000) 0.000 (0.000)
8 (0,0,1,1,1,E) 0.000 (0.000) 0.000 (0.000) -0.576 (3.295) 0.000 (0.000) 0.000 (0.000)
9 (0,1,0,0,0,E) 5.531 (1.246) 0.000 (0.000) -0.005 (0.271) 0.000 (0.000) 0.000 (0.000)

10 (0,1,0,0,1,E) 5.531 (1.246) 0.000 (0.000) -0.005 (0.271) 0.000 (0.000) 0.000 (0.000)
11 (0,1,0,1,0,E) 0.000 (0.000) 5.808 (1.006) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
12 (0,1,0,1,1,E) 0.000 (0.000) 5.808 (1.006) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
13 (0,1,1,0,0,E) 5.544 (0.653) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
14 (0,1,1,0,1,E) 5.544 (0.653) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
15 (0,1,1,1,0,E) 0.000 (0.000) 5.887 (0.746) 0.041 (1.254) 0.000 (0.000) 0.000 (0.000)
16 (0,1,1,1,1,E) 0.000 (0.000) 5.887 (0.746) 0.041 (1.254) 0.000 (0.000) 0.000 (0.000)
17 (1,0,0,0,0,E) 0.000 (0.000) 4.606 (0.828) 0.025 (2.427) 0.000 (0.000) 0.000 (0.000)
18 (1,0,0,0,1,E) 0.000 (0.000) 4.606 (0.828) 0.025 (2.427) 0.000 (0.000) 0.000 (0.000)
19 (1,0,0,1,0,E) 9.308 (1.114) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
20 (1,0,0,1,1,E) 9.308 (1.114) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
21 (1,0,1,0,0,E) 0.000 (0.000) 4.406 (1.524) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
22 (1,0,1,0,1,E) 0.000 (0.000) 4.296 (1.620) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
23 (1,0,1,1,0,E) 9.227 (2.246) 0.000 (0.000) -0.376 (3.501) 0.000 (0.000) 0.000 (0.000)
24 (1,0,1,1,1,E) 9.227 (2.246) 0.000 (0.000) -0.376 (3.501) 0.000 (0.000) 0.000 (0.000)
25 (1,1,0,0,0,E) 0.000 (0.000) 0.000 (0.000) -0.546 (2.909) 0.000 (0.000) 0.000 (0.000)
26 (1,1,0,0,1,E) 0.000 (0.000) 0.000 (0.000) -0.546 (2.909) 0.000 (0.000) 0.000 (0.000)
27 (1,1,0,1,0,E) 6.819 (1.306) 4.437 (1.473) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
28 (1,1,0,1,1,E) 6.819 (1.306) 4.437 (1.473) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
29 (1,1,1,0,0,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
30 (1,1,1,0,1,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
31 (1,1,1,1,0,E) 6.827 (0.693) 4.489 (1.034) 0.007 (1.395) 0.000 (0.000) 0.000 (0.000)
32 (1,1,1,1,1,E) 6.827 (0.693) 4.489 (1.034) 0.007 (1.395) 0.000 (0.000) 0.000 (0.000)
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Table S13: The simulation results for postNIE under sample size 10000.

Case Evidence
(x, E)

PostNIE(Xk ⇒ Y | x, Y > 140)
X1 X2 X3 X4 X5

1 (0,0,0,0,0,E) 4.004 (0.331) 0.934 (0.057) 0.001 (0.122) 0.000 (0.000) 0.000 (0.000)
2 (0,0,0,0,1,E) 4.004 (0.331) 0.934 (0.057) 0.001 (0.122) 0.000 (0.000) 0.000 (0.000)
3 (0,0,0,1,0,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
4 (0,0,0,1,1,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5 (0,0,1,0,0,E) 3.989 (0.590) 0.931 (0.088) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
6 (0,0,1,0,1,E) 3.989 (0.590) 0.931 (0.088) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
7 (0,0,0,1,0,E) 0.000 (0.000) 0.000 (0.000) -0.098 (1.409) 0.000 (0.000) 0.000 (0.000)
8 (0,0,1,1,1,E) 0.000 (0.000) 0.000 (0.000) -0.098 (1.409) 0.000 (0.000) 0.000 (0.000)
9 (0,1,0,0,0,E) 5.458 (0.491) 0.000 (0.000) -0.004 (0.256) 0.000 (0.000) 0.000 (0.000)

10 (0,1,0,0,1,E) 5.458 (0.491) 0.000 (0.000) -0.004 (0.126) 0.000 (0.000) 0.000 (0.000)
11 (0,1,0,1,0,E) 0.000 (0.000) 5.880 (0.466) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
12 (0,1,0,1,1,E) 0.000 (0.000) 5.880 (0.466) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
13 (0,1,1,0,0,E) 5.472 (0.259) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
14 (0,1,1,0,1,E) 5.472 (0.259) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
15 (0,1,1,1,0,E) 0.000 (0.000) 5.886 (0.336) -0.005 (0.577) 0.000 (0.000) 0.000 (0.000)
16 (0,1,1,1,1,E) 0.000 (0.000) 5.886 (0.336) -0.005 (0.577) 0.000 (0.000) 0.000 (0.000)
17 (1,0,0,0,0,E) 0.000 (0.000) 4.664 (0.346) -0.037 (1.038) 0.000 (0.000) 0.000 (0.000)
18 (1,0,0,0,1,E) 0.000 (0.000) 4.664 (0.346) -0.037 (1.038) 0.000 (0.000) 0.000 (0.000)
19 (1,0,0,1,0,E) 9.275 (0.501) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
20 (1,0,0,1,1,E) 9.275 (0.501) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
21 (1,0,1,0,0,E) 0.000 (0.000) 4.640 (0.586) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
22 (1,0,1,0,1,E) 0.000 (0.000) 4.640 (0.586) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
23 (1,0,1,1,0,E) 9.220 (1.009) 0.000 (0.000) -0.114 (1.414) 0.000 (0.000) 0.000 (0.000)
24 (1,0,1,1,1,E) 9.220 (1.009) 0.000 (0.000) -0.114 (1.414) 0.000 (0.000) 0.000 (0.000)
25 (1,1,0,0,0,E) 0.000 (0.000) 0.000 (0.000) -0.069 (1.093) 0.000 (0.000) 0.000 (0.000)
26 (1,1,0,0,1,E) 0.000 (0.000) 0.000 (0.000) -0.069 (1.093) 0.000 (0.000) 0.000 (0.000)
27 (1,1,0,1,0,E) 6.800 (0.551) 4.541 (0.606) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
28 (1,1,0,1,1,E) 6.793 (0.553) 4.532 (0.600) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
29 (1,1,1,0,0,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
30 (1,1,1,0,1,E) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
31 (1,1,1,1,0,E) 6.812 (0.282) 4.567 (0.451) 0.019 (0.577) 0.000 (0.000) 0.000 (0.000)
32 (1,1,1,1,1,E) 6.816 (0.270) 4.620 (0.461) 0.008 (0.584) 0.000 (0.000) 0.000 (0.000)
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Figure S2: A causal network representing developmental toxicology experiments, including body weight and its potential
risk factors.
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Table S14: Results of postICEs based on different evidence.

PostICE(Yx′ | x, Y < 27) (x1, x3) = (0, 0) (x1, x3) = (0, 1) (x1, x3) = (1, 0) (x1, x3) = (1, 1)

(x′
1, x

′
3) = (0, 0) 0.00 1.59 -7.10 -2.77

(x′
1, x

′
3) = (0, 1) -1.42 0.00 -5.50 -3.35

(x′
1, x

′
3) = (1, 0) 8.81 10.51 0.00 5.58

(x′
1, x

′
3) = (1, 1) 2.84 4.46 -8.90 0.00

Table S15: Results of posterior causal estimands based on the various evidence for the NTP dataset.

Evidence X = x

Posterior causal estimands (0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

PostNDE(X1 ⇒ Y | x, Y < 27) 8.83 7.00 8.83 7.00 10.00 8.31 10.00 8.12
PostNDE(X2 ⇒ Y | x, Y < 27) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PostNDE(X3 ⇒ Y | x, Y < 27) -1.43 -8.90 -1.43 -8.90 -6.30 -5.51 -6.30 -5.51
PostNIE(X1 ⇒ Y | x, Y < 27) -0.60 0.00 -5.18 0.00 0.00 -5.51 0.00 -5.30
PostNIE(X2 ⇒ Y | x, Y < 27) -0.05 -7.58 0.00 0.00 0.00 0.00 -6.30 -4.87
PostNIE(X3 ⇒ Y | x, Y < 27) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PostTCE(X1 ⇒ Y | x, Y < 27) 8.23 7.00 3.65 7.00 10.00 2.80 10.00 2.82
PostTCE(X2 ⇒ Y | x, Y < 27) -0.05 -7.58 0.00 0.00 0.00 0.00 -6.30 -4.87
PostTCE(X3 ⇒ Y | x, Y < 27) -1.43 -8.90 -1.43 -8.90 -6.30 -5.51 -6.30 -5.51

26


