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ABSTRACT

Recent developments in 3D reconstruction and neural rendering have significantly
propelled the capabilities of photo-realistic 3D scene rendering across various aca-
demic and industrial fields. The 3D Gaussian Splatting technique, alongside its
derivatives, integrates the advantages of primitive-based and volumetric repre-
sentations to deliver top-tier rendering quality and efficiency. Despite these ad-
vancements, the method tends to generate excessive redundant noisy Gaussians
overfitted to every training view, which degrades the rendering quality. Addition-
ally, while 3D Gaussian Splatting excels in small-scale and object-centric scenes,
its application to larger scenes is hindered by constraints such as limited video
memory, excessive optimization duration, and variable appearance across views.
To address these challenges, we introduce GaussianFocus, an innovative approach
that incorporates a patch attention algorithm to refine rendering quality and im-
plements a Gaussian constraints strategy to minimize redundancy. Moreover, we
propose a subdivision reconstruction strategy for large-scale scenes, dividing them
into smaller mergeable blocks for individual training. Our results indicate that
GaussianFocus significantly reduces unnecessary Gaussians and enhances render-
ing quality, surpassing existing State-of-The-Art (SoTA) methods. Furthermore,
we demonstrate the capability of our approach to effectively manage and render
large scenes, such as urban environments, maintaining high fidelity in the visual
output. (The link to the code will be made available after publication)

1 INTRODUCTION

Novel View Synthesis (NVS) is fundamental for modern computer graphics and vision, extending to
virtual reality, autonomous driving, and robotics. Primitive-based models such as meshes and point
clouds (Lassner & Zollhofer, 2021; Munkberg et al., 2022; Yifan et al., 2019), optimized for GPU
rasterization, deliver fast but often lower-quality images with discontinuities. The introduction of
Neural Radiance Fields (NeRF) by (Mildenhall et al., 2021) marked a significant advancement, em-
ploying a multi-layer perceptron (MLP) to achieve high-quality, geometrically consistent renderings
of new viewpoints. However, NeRF’s reliance on time-consuming stochastic sampling can lead to
slower performance and potential noise issues.

Recent advancements in 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) have significantly en-
hanced rendering quality and speed. This technique refines a series of 3D Gaussians initialised with
using Structure from Motion (SfM) (Snavely et al., 2006) to model scenes with inherent volumetric
continuity, facilitating fast rasterization by projecting onto 2D planes. However, 3DGS often pro-
duces artifacts when camera viewpoints deviate from the training set and lack detail during zooming.
To address these issues, newer models (Yu et al., 2024; Lu et al., 2024) employ a 3D smoothing filter
to regularize the maximum frequency and utilize anchor points to initialize 3D Gaussians, thereby
enhancing visual accuracy and applicability in diverse scenarios. Despite these advances, 3DGS-
based models still tend to use oversized Gaussian spheres that ignore scene structure, leading to re-
dundancy and scalability issues in complex environments. Additionally, these models struggle with
detail reconstruction, particularly at edges and high-frequency areas. This often leads to suboptimal
rendering quality. Moreover, reconstructing large-scale scenes like towns or cities represents a sig-
nificant challenge due to GPU memory constraints and computational demands. To mitigate these
problems, models often reduce training input randomly, which compromises reconstruction quality
and results in incomplete outcomes.
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Figure 1: GaussianFocus. As illustrated by the red and yellow boxes in the images, our method
consistently surpasses the 3DGS model in various scenes, showing distinct advantages in challeng-
ing environments characterized by slender geometries, intricate details, and lighting effects.

To address quality issues in 3D Gaussian Splatting (3DGS), we introduce GaussianFocus, a frame-
work designed for enhanced fidelity in both general and large-scale scene reconstructions. Gaus-
sianFocus employs a patch attention algorithm and Sobel operators to refine edge details and spa-
tial frequency during training, thereby improving scene fidelity. We also apply constraints on the
size of Gaussian spheres during initialization and training phases, which refines texture details and
diminishes the occurrence of “air walls”. These “air walls” are spurious barriers or noise in 3D
reconstructions, typically resulting from oversized Gaussian spheres that disrupt visual coherence.
For reconstructing extensive scenes, our method uses bounding boxes to divide each scene along the
XYZ axes into manageable blocks. Each block is independently processed in our 3D reconstruc-
tion pipeline, ensuring precise attention to its specific features. After processing, these blocks are
seamlessly recombined, producing a coherent and detailed large-scale reconstruction.

Through rigorous experiments, our GaussianFocus model has outperformed traditional 3DGS mod-
els (Kerbl et al., 2023), as evidenced in Fig. 1. It notably reduces artifacts associated with oversized
Gaussian spheres, thereby enhancing the quality of 3D reconstructions. Our subdivision strategy for
large-scale scenes considerably lowers GPU computational demands, allowing for the use of all in-
put data and maintaining superior reconstruction quality. This represents a significant improvement
over previous approaches (Kerbl et al., 2023; Yu et al., 2024; Lu et al., 2024; Guédon & Lepetit,
2024), which often required sub-sampling of input data to manage computational loads. Gaussian-
Focus thus significantly improves the realism and quality of 3D reconstructions.

In summary, the contributions of this work are as follows:

1. We propose a 3DGS-based patch attention algorithm with designed edge and frequency
losses to enhance the details and reduce spatial frequency artifacts within scene reconstruc-
tions. This improves the detailing quality and intricacy of the rendered scenes.
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2. We impose constraints on overly large Gaussian spheres to mitigate the occurrence of “air
walls”, thus refining the scene reconstruction’s fidelity and enhancing the granularity of
the resulting models. Moreover, these constraints allow the achievement of superior recon-
struction results with fewer training iterations.

3. For large-scale scene reconstruction, our approach involves subdividing the scene for indi-
vidual reconstruction and subsequent recombination. This method addresses the challenge
posed by existing 3DGS-based models that fail to directly reconstruct extensive scenes,
thereby enhancing the scalability and applicability of our reconstruction framework.

In this paper, we structure the content as follows: Section 2 indicates the preliminary concepts.
Section 3 outlines the methods we employed. In Section 4, we present our experimental framework
compare its performance to other advanced 3DGS-based models and discuss the ablation studies.
We conclude the paper in Section 5. For a review of related work of our paper, implementation
details and model limitation, please refer to Appendix A.

2 PRELIMINARIES

In the foundational aspects of the 3DGS framework (Kerbl et al., 2023), the scene is represented
using anisotropic 3D Gaussians that integrate differential properties typical of a volume-based ap-
proach but are rendered more effectively through a grid-based rasterization technique. Beginning
with a collection of structure-from-motion (SfM) (Snavely et al., 2006) data points, each point is
established as the centroid (µ) for a 3D Gaussian. The formula for a 3D Gaussian G(x) is given by:

G(x) = exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (1)

where x represents a point within the 3D space, and Σ represents the Gaussian covariance matrix
which is constructed using

Σ = RSSTRT . (2)

This configuration is derived from a scaling matrix S and a rotational matrix R, guaranteeing its
positivity and semi-definiteness.

Each Gaussian is not only linked with a colour ci, defined through spherical harmonics but also
paired with an opacity α, impacting the merging process in rendering. Diverging from classic vol-
umetric methods that employ ray-marching, this model projects 3D Gaussians onto a 2D plane
G2D(x) and processes them through a grid-based rasterizer for sorting and α-blending. The α-
blending formula is specified as

C(x′) =
∑
i∈K

ciσi

i−1∏
j=1

(1− σj), (3)

where σi = αiG
2D
i (x′), x′ represents the specified pixel position, and K counts the Gaussians for

that specified pixel in two dimensions. This approach facilitates the direct learning and optimization
of the Gaussian features through a trainable differentiable rasterizer.

3 METHODOLOGY

The traditional 3DGS (Kerbl et al., 2023) and its variants (Yu et al., 2024; Guédon & Lepetit, 2024;
Lu et al., 2024) employ Gaussian optimization to reconstruct scenes, often failing to accurately
represent actual scene structures and struggling with oversized Gaussians that blur scenes and lead to
information loss. Limited GPU memory and extended optimization times further hinder their ability
to reconstruct large scenes. Our enhanced framework, detailed in Fig. 2, addresses these limitations
by imposing constraints on the size and quantity of 3D Gaussian spheres, reducing redundancy and
improving robustness against varying viewing conditions. We incorporate attention mechanisms and
a combination of edge and frequency loss to refine reconstruction quality.
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Figure 2: Overview of GaussianFocus: Our model will monitor the size of Gaussian spheres during
initialization and training. Constraints are applied to the scaling matrix S within the covariance
matrix to prevent Gaussian spheres’ excessive growth. Subsequently, the rendered image is divided
into 64 parts. Each part independently calculates its attention values, which are then concatenated to
form a comprehensive attention map. This map is multiplied back onto the original rendered image
to produce an attention-enhanced image. Finally, this enhanced image and the original rendered
image undergo multiple loss calculations against the ground truth. These include reconstruction
(L1), structural similarity (LD−SSIM ), edge (LEdge), and frequency (LFrequency) losses.

3.1 3D GAUSSIAN-BASED PATCH ATTENTION ENHANCEMENT

Given the significant computational demands, it is impractical to directly compute attention values
for the entire rendered image due to the extensive data processing involved. Instead, both model-
rendered image Pi and the Ground Truth images Gi are segmented into 8x8 regions to manage
computational complexity effectively. For each segment of Pi, a query vector qij is extracted using a
2D convolutional layer which is designed to capture detailed features and spatial relationships within
the segment. Correspondingly, the key kij and value vij for each segment j of Gi are derived through
similar 2D convolutional layers. These steps ensure that the essential components for the multi-
head attention mechanism—queries, keys, and values (QKV)—are accurately assembled based on
localized image features. The attention weights wij for each segment can be calculated using the
following equation:

wij = Softmax(αij), αij = qij · kTij , (4)

where αij represents the unnormalized attention scores, which are computed as the dot product of
the query and the transposed key. This product measures the compatibility between different parts
of the image, facilitating a focused synthesis of features. The attention map for each segment aij is
generated by applying the weighted sum of the values using the attention weights:

aij = vij · wij , (5)

where wij scales the value vij according to the relevance of each segment’s features, thereby pro-
ducing a segment-specific attention map that highlights pertinent features. Concatenating these
individual attention maps yields a comprehensive attention map Ai for the image, which can be
represented by:

Ai =
⊕
j

aij (6)

where the sum over j aggregates the contributions of all segments into a unified attention profile
for the entire image. This comprehensive attention map Ai is then used to produce an attention-
enhanced image P

′

i by element-wise multiplying it with the rendered image Pi:

P
′

i = Pi ⊗Ai, (7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Subdivision-Based Reconstruction of Large Scenes Procedure. Our method divides
large scenes into blocks for reconstruction.

which enhances the original image by amplifying features that are deemed significant based on the
attention mechanism. To further enhance the reconstruction’s accuracy, we compute edge loss LEdge

and frequency loss LFrequency for this enhanced image in conjunction with the ground truth image.
These losses are calculated alongside the standard loss comparisons between the original rendered
image and the ground truth image. They will be discussed in Section 3.4.

3.2 GAUSSIAN SPHERE CONSTRAINTS

During the initialization of Gaussian spheres, we impose constraints on the scaling matrix S to
control the covariance matrix’s influence, essential for accurately modelling spatial relationships in
the scene. The adjustment of S is dictated by the density of the initial point cloud data: for denser
point clouds, we set a lower initial scaling value to reduce overlaps and redundancy, while for sparser
distributions, we increase it to ensure sufficient scene coverage. This careful calibration of scaling
factors helps maintain an optimal balance between preserving detail and enhancing computational
efficiency. The scaling matrix constraint is defined as follows:

Si = Si · α, if Si > τ, (8)

where Si denotes the scales in the scaling matrix of the Gaussians. The τ serves as a threshold scale
and α is a modulating factor, both of them adjusted experimentally. In our experiment, we set τ = 0.3
and α = 0.2. The adaptive scaling in our model not only mitigates computational load but also aligns
with the varying densities of real-world data. Enhancing the traditional “split and clone” strategy
of the 3DGS (Kerbl et al., 2023) model, we integrate a filtering mechanism to manage excessively
large Gaussians during training. This involves implementing a selection criterion to identify large
Gaussians post-splitting, followed by a strategic reduction in their scale. Additionally, we employ
a selective splitting strategy for older Gaussians that have remained in the model over extended
periods. This technique is based on both the age and the operational efficiency of the Gaussian in
terms of scene representation:

Selective Split (Sγ), if Sγ > Ω (9)

where Sγ denotes the scales of the scaling matrix of aged Gaussians and Ω is the threshold set to
identify old Gaussians that require reevaluation. We set Ω = 0.3 in our experiment. These strategies
ensure that our method maintains a balanced approach to managing the size and number of Gaussians
within the 3DGS framework.

3.3 SUBDIVISION-BASED RECONSTRUCTION OF LARGE SCENES

In response to 3DGS challenges (Kerbl et al., 2023; Yu et al., 2024; Lu et al., 2024), our method
initiates a preprocessing step to acquire initial points from Structure-from-Motion (SfM) (Snavely
et al., 2006) of the large scene. As shown in Fig. 3, a three-dimensional bounding box is then
constructed to encompass all initial point clouds. We divide this bounding box along its xyz axes
into n× n× n blocks, where each block is defined to contain its respective subset of point clouds:

Bijk = {pc ∈ Point Cloud : (xi ≤ pcx < xi+1) ∧ (yj ≤ pcy < yj+1) ∧ (zk ≤ pcz < zk+1)} ,
(10)

where pc represents a point in the point cloud and xi, yj , zk denote the boundaries of block Bijk.
We have integrated a distance iteration algorithm to address the potential for sparse outlier points

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

SSIM ↑ PSNR ↑ LPIPS ↓
Original Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Original Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Original Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg.

NeRF 0.933 0.966 0.970 0.948 0.954 31.27 31.98 29.98 26.52 29.94 0.059 0.040 0.049 0.059 0.052
Mip-NeRF 0.960 0.968 0.970 0.960 0.965 32.50 33.00 31.20 28.10 31.20 0.044 0.030 0.035 0.051 0.040

Instant-NGP 0.963 0.968 0.965 0.946 0.961 33.05 33.10 29.80 26.45 30.60 0.046 0.036 0.048 0.072 0.051
TensoRF 0.958 0.970 0.960 0.950 0.960 32.60 32.75 30.20 26.30 30.46 0.046 0.035 0.047 0.070 0.050
Tri-MipRF 0.961 0.969 0.953 0.908 0.948 32.75 33.00 29.70 24.10 29.89 0.048 0.038 0.048 0.072 0.051

3DGS 0.973 0.952 0.868 0.761 0.889 33.50 27.10 21.60 17.80 25.00 0.032 0.022 0.068 0.118 0.060
3DGS + EWA 0.967 0.974 0.955 0.943 0.960 33.60 31.80 27.95 24.75 29.53 0.035 0.026 0.036 0.049 0.037
Ours 0.971 0.975 0.972 0.975 0.973 33.29 33.96 31.64 28.65 31.89 0.031 0.017 0.023 0.028 0.025

Table 1: Quantitative Comparison with Baselines on the Blender Dataset (Mildenhall et al.,
2021). All models are evaluated at four progressively lower resolutions and trained using images
at original resolutions. Our method outperforms other models at 1/2, 1/4, and 1/8 resolutions and
achieves comparative results at the original resolution.

to skew the subdivision logic. This algorithm iterates through all points, identifying and discarding
those that do not contribute meaningfully to the division process:

Iterate ∀pc ∈ Point Cloud : if dist(pc,Blockijk) > θ then discard pc, (11)

where dist(·) calculates the distance from the point to the nearest block boundary, and θ is a threshold
value defining the maximum allowable distance for inclusion. Corresponding camera and Structure-
from-Motion (SfM) points associated with each block are classified to assemble the essential initial
files required for training. Each block undergoes independent training. The process concludes with
the recombination of the divided scene’s 3D files, thus completing the reconstruction of the entire
large scene. This modular approach alleviates the computational and memory constraints typically
linked with large-scale scene reconstruction. By employing this method, we efficiently manage large
scene datasets and enhance the scalability of our reconstruction processes.

3.4 TRAINING LOSSES

In our GaussianFocus model, following 3DGS, the loss function incorporates both L1 and D-SSIM
terms. The L1 term measures absolute differences between predictions and targets, while D-SSIM
enhances perceptual image and video quality. To improve the structural accuracy during training,
we designed an edge loss term that leverages the Sobel operator to extract edge information effec-
tively. This operator is applied to each channel of both the input and target images to compute their
respective gradients in the x and y directions. The edge loss is then calculated as the average of the
L1 loss of these gradients:

LEdge =
1

2
(L1(∇xpi,∇xp̂i) + L1(∇ypi,∇yp̂i)) , (12)

where ∇x and ∇y represent the gradient operator calculated using the Sobel filter, capturing edge
information along the x and y directions. The pi and p̂i represent the pixels of the ground truth image
Gi and the corresponding pixel in the rendered image Pi, Moreover, we introduce the frequency loss
term to address the challenge of high-frequency detail loss. It approximates the frequency domain
loss by employing gradient loss computations in the x and y directions for both the input and target
images. This term is essential for preserving high-frequency details and is computed as:

LFrequency =
1

2
(L1(Gx(pi), Gx(p̂i)) + L1(Gy(pi), Gy(p̂i))) , (13)

where Gx and Gy are the changes in pixel values along the horizontal and vertical axes. The over-
all loss function for the GaussianFocus model integrates these individual loss components into a
weighted sum, optimizing the reconstruction quality across multiple dimensions:

LTotal =

{
(1− λ)L1(pi, p̂i) + λLD-SSIM(pi, p̂i) + βLEdge(pi, p̂

′
i) + ηLFrequency(pi, p̂

′
i), every 50 iterations,

(1− λ)L1(pi, p̂i) + λLD-SSIM(pi, p̂i) + βLEdge(pi, p̂i) + ηLFrequency(pi, p̂i), otherwise,
(14)

where p̂
′

i denotes the pixel in the attention-enhanced image. The λ, β and η are the respective
weights assigned to the loss components and they are set to 0.2.
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Figure 4: Qualitative Comparison Results on the Mip-NeRF 360 Dataset (Barron et al., 2022).
These models were trained using images downsampled by a factor of eight and then rendered at full
resolution to depict the quality of zooming in and close-ups. In contrast to previous approaches, our
model achieves a higher level of accuracy and detail than other models and can render images that
are almost identical to the ground truth.

SSIM ↑ PSNR ↑ LPIPS ↓
1/8 Res. 1/4 Res. 1/2 Res. Full Res. Avg. 1/8 Res. 1/4 Res. 1/2 Res. Full Res. Avg. 1/8 Res. 1/4 Res. 1/2 Res. Full Res. Avg.

Instant-NGP 0.748 0.645 0.620 0.690 0.676 26.85 24.90 24.15 24.40 25.08 0.238 0.373 0.452 0.466 0.382
Mip-NeRF 360 0.858 0.730 0.665 0.700 0.738 29.24 25.31 24.08 24.17 25.70 0.125 0.263 0.368 0.431 0.297
Zip-NeRF 0.877 0.690 0.571 0.555 0.673 29.64 23.25 20.91 20.24 23.51 0.101 0.263 0.418 0.492 0.319

3DGS 0.882 0.735 0.616 0.622 0.714 29.25 23.44 20.80 19.52 23.25 0.105 0.242 0.396 0.483 0.307
3DGS + EWA 0.882 0.773 0.673 0.646 0.744 29.34 25.87 23.69 22.83 25.43 0.112 0.235 0.371 0.448 0.292
Ours 0.883 0.811 0.749 0.766 0.802 29.35 27.22 26.41 26.25 27.31 0.111 0.210 0.301 0.389 0.253

Table 2: Quantitative Comparison with Baselines on the Mip-NeRF 360 Dataset (Barron et al.,
2022). Each approach is rendered in four different resolutions (1/8, 1/4, 1/2, and the full resolution)
after being trained at the lowest resolution (1/8). Our approach produces similar results at the 1/8
resolution and outperforms other models at 1/2, 1/4, and full resolutions.

4 EXPERIMENTS

4.1 BASELINES

We selected Mip-Splatting (Yu et al., 2024) and 3D-GS (Kerbl et al., 2023) as our primary baseline
due to their established state-of-the-art performance in novel view synthesis. In our evaluation, we
included several other prominent techniques, such as Mip-NeRF360 (Barron et al., 2022), Mip-
NeRF (Barron et al., 2021), Instant-NGP (Müller et al., 2022), Zip-NeRF (Barron et al., 2023),
Scaffold-GS (Lu et al., 2024), SuGaR (Guédon & Lepetit, 2024), TensoRF (Chen et al., 2022),
and Tri-MipRF (Hu et al., 2023). We also considered NeRF (Mildenhall et al., 2021) and 3DGS +
EWA (Zwicker et al., 2001) for further comparison. They are the most representative models.

4.2 DATASETS AND METRICS

We carried out an extensive evaluation of multiple scenes sourced from publicly available datasets,
including a dataset that features a division of a large scene. Specifically, we assessed our
method using seven scenes drawn from Mip-NeRF360 (Barron et al., 2022), the synthetic Blender
dataset (Mildenhall et al., 2021), a Villa scene and Mill-19 dataset (Turki et al., 2022). The evalua-
tion metrics we report include Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Mea-
sure (SSIM) (Wang et al., 2004), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018). For Mip-NeRF360 and Blender datasets, we present the average values of these metrics
across all scenes to provide a comprehensive overview of our approach’s performance.

7
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Figure 5: Training Progression on the Villa Dataset. We present the quality of the reconstructed
villa scene at different training iterations. Compared to the SoTA Mip-Splatting (Yu et al., 2024),
our method not only converges faster but also achieves better reconstruction quality with less noise.

Model SSIM ↑ PSNR ↑ LPIPS ↓
NeRF 0.611 23.77 0.452
Mip-NeRF 0.621 23.99 0.439
Mip-NeRF 360 0.795 27.63 0.233
Instant NGP 0.709 25.59 0.299
Zip-NeRF 0.831 28.38 0.196
3DGS 0.832 27.69 0.217
3DGS + EWA 0.818 27.74 0.214
Scaffold-GS 0.802 27.63 0.235
SuGaR (without mesh) 0.788 26.77 0.238
Mip-Splatting 0.827 27.79 0.203
Ours 0.825 27.69 0.208

Table 3: Quantitative Comparison with Baselines on the Mip-NeRF 360 Dataset (Barron et al.,
2022). All approaches are trained and rendered at the same resolution. Our model presents compa-
rable results with other baselines.

4.3 RESULT ANALYSIS

Comparison on the Blender Dataset Following prior work (Yu et al., 2024), we trained our model
on scenes at their original resolution and rendered them at four different resolutions: original, 1/2,
1/4, and 1/8. The quantitative results are detailed in Table. 1 which shows our method outperforms
baselines. Our analysis includes NeRF-based (Mildenhall et al., 2021) and 3DGS-based (Kerbl et al.,
2023) methods that highlight consistent performance gains across all resolutions, especially at lower
resolutions.

Comparison on the Mip-NeRF 360 Dataset In our experiments, we trained models on data
downsampled by a factor of eight, and then rendered images at different resolutions (1/8, 1/4, 1/2,
and original resolution). As illustrated in Table. 2, our method matches prior work at the training
resolution (1/8) and significantly outperforms existing state-of-the-art methods at higher resolutions
(1/4, 1/2, and original). Fig. 4 demonstrates that our approach renders high-fidelity images without
introducing high-frequency artifacts. This is in stark contrast to Mip-NeRF 360 (Barron et al., 2022)
and Zip-NeRF (Barron et al., 2023), which tend to falter at higher resolutions due to their MLP
architectures’ limitations in managing unrepresented frequencies during training. Moreover, the
3DGS method (Kerbl et al., 2023) often yields significant degradation artifacts due to its reliance
on dilation processes. Although the 3DGS + EWA method (Zwicker et al., 2001) mitigates some
issues, it still produces noticeable high-frequency artifacts. Our method avoids these issues and more
accurately represents the ground truth. Additionally, our method effectively reduces blurred artifacts
in Mip-splatting (Yu et al., 2024). We further tested our method using the Mip-NeRF 360 dataset,
following the protocol where models are trained and evaluated at the same scale. We downsampled
indoor scenes by a factor of two and outdoor scenes by a factor of four. The results are detailed in
Table. 3, which show that our method achieves performance comparable to both 3DGS (Kerbl et al.,
2023) and 3DGS + EWA (Zwicker et al., 2001). This confirms our method’s consistent performance
across a range of different conditions.

8
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Figure 6: Reconstructed Result on the Large Scene Dataset (Mill-19) (Turki et al., 2022). We
divide the large scene into individual blocks for separate reconstruction. Here, we display the re-
combined results of multiple blocks and the result of the full scene.

Figure 7: Ablation of Gaussian Patch Attention Strategy. We present an ablation study of our
model trained on the Garden scene (Barron et al., 2022), comparing results at 30k iterations with
and without the application of the Gaussian Patch Attention Enhancement Strategy.

Comparison on the Villa Dataset In the Villa Dataset experiment, we evaluated the training
progression of our model against Mip-Splatting (Yu et al., 2024), with both models trained at the
original resolution. We presented the results in Fig. 5, showing the performance of both models
at various training stages: 100, 900, 2000, and 5000 iterations. Our model showed significant
improvements by the 900th iteration. At the same stage, scenes produced by Mip-Splatting (Yu
et al., 2024) were still blurry and of lower quality. This difference in performance can be attributed
to our Gaussian Constraints Strategy, which effectively controls the growth of Gaussian spheres,
leading to faster convergence and superior reconstruction quality. Even after 5000 iterations, the
finer details like the roof, windows, and exterior walls reconstructed by Mip-Splatting remained
significantly less detailed compared to the achievements of our model in just 900 iterations.

Evaluation on the Large Scene Dataset In our study, we addressed the challenges of reconstruct-
ing large scenes like small towns or city-scale environments, which are unmanageable for traditional
3DGS-based (Kerbl et al., 2023) and NeRF-based (Mildenhall et al., 2021) models due to memory
constraints and long optimization times. We used the Mill-19 Rubble scene (Turki et al., 2022),
which had excessively noisy point clouds requiring reprocessing and selective image filtering. We
subdivided the scene, which contained over 1,700 images, into 64 blocks. Each block was inde-
pendently trained with 200 to 500 images. This reduced memory demands and allowed efficient
parallel training in just 20 minutes. Our reconstruction results depicted in Fig. 6, show the seamless
reassembly of all blocks which preserves the continuity of the large-scale scene. This method con-
trasts with previous models, which failed to directly reconstruct large scenes and compromised on
reconstruction quality by randomly selecting a subset of images for training.

4.4 ABLATION STUDY

4.4.1 PATCH ATTENTION ENHANCEMENT

We examined the impact of omitting the Patch Attention strategy from our model. As shown in
Fig. 7, removing this strategy leads to noticeable degradation in rendering quality, especially in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Ablation of Gaussian Sphere Constraints Strategy. We present an ablation study of our
model trained on the Villa scene, comparing results at 5k iterations with and without the application
of the Gaussian Sphere Constraints Strategy. This strategy reduces the “air walls” problem.

Villa Garden
SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

None 0.855 25.30 0.202 0.832 26.81 0.171
w/ Gaussian Constraints 0.892 25.97 0.125 0.877 27.75 0.102
w/ Patch Attention 0.889 26.31 0.138 0.874 27.69 0.105
Full model 0.893 26.43 0.121 0.887 27.76 0.100

Table 4: Ablation Study: Patch Attention Enhancement and Gaussian Sphere Constraints. We
present quantitative results for the Villa and Garden scenes (Barron et al., 2022), trained for 30,000
iterations. Both scenes were downsampled by a factor of four and rendered at the same resolution.

image details. Without Patch Attention, images exhibit blur effects due to high-frequency dilation
issues. To quantitatively evaluate this impact, we referred to Table. 4, which compares performance
metrics with and without this enhancement. The results clearly indicate improvements across all
metrics when the Patch Attention strategy is employed, significantly enhancing the model’s ability
to produce detailed and sharp renderings by focusing on edge information.

4.4.2 GAUSSIAN SPHERE CONSTRAINTS

We assessed the importance of Gaussian Sphere Constraints by removing them from our model.
As shown in Fig. 8, models rendered without these constraints exhibit oversized Gaussian spheres,
which result in information loss and reduce the overall quality of the renderings. In 3D scenes, these
oversized spheres often create “air walls” in detail-heavy areas. Implementing Gaussian Sphere
Constraints allows us to effectively control the growth and size of these spheres, enhancing de-
tailed depiction within the scene. The comparative images in Fig. 8, especially in the lower two
layers, clearly demonstrate the loss of detail in models rendered without this strategy. These im-
ages highlight how the constrained Gaussian spheres maintain finer details, leading to more precise
and realistic renderings. Additionally, as indicated in Table. 4, the inclusion of Gaussian Sphere
Constraints significantly improves performance metrics.

5 CONCLUSION

In this paper, we present GaussianFocus, an enhanced model derived from traditional 3D Gaussian
Splatting. It features three key innovations: Patch Attention Enhancement, Gaussian Constraints
Strategy and the subdivision of large-scale scenes into manageable blocks for individual training.
These innovations aim to refine detail representation, enhance reconstruction quality and reduce
the “air walls” problem. The approach of subdividing large scenes into manageable blocks over-
comes the limitations inherent in traditional 3DGS-based methods, which struggle with extensive
scenes. Experimental results demonstrate that GaussianFocus competes well with state-of-the-art
methods at a single scale and excels across multiple scales, providing superior detail accuracy and
reconstruction quality.
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REPRODUCIBILITY STATEMENT

All the results reported in the paper are reproducible. We submit the code and include all the imple-
mentation details in the Abstract and Appendix A.
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APPENDIX

A RELATED WORK

Volumetric Rendering methods Volumetric approaches utilize structures such as multiplane
images, voxel grids or neural network models to depict scenes as continuous functions that de-
fine their volume, density, and colour characteristics. The introduction of Neural Radiance Fields
(NeRF) (Mildenhall et al., 2021) marked a significant advancement in scene representation technol-
ogy. This method employs a multilayer perceptron (MLP) to parameterize a continuous volumetric
function. This parameterization facilitates the creation of photorealistic images that exhibit pre-
cise details. These details and effects are dependent on the viewer’s perspective, achieved through
volumetric ray tracing. Nevertheless, the application of the vanilla NeRF model is hindered by its
high demand for computational power and memory. To overcome these challenges, subsequent re-
search has sought to refine NeRF’s efficiency and extend its scalability. Such improvements have
been achieved through the implementation of discretized or sparse volumetric frameworks, such as
voxel grids and hash tables. These frameworks (Chen et al., 2022; Karnewar et al., 2022; Sun et al.,
2022; Müller et al., 2022; Fridovich-Keil et al., 2022) are crucial as they hold learnable features that
act as positional encodings for 3D coordinates. Additionally, these methods employ hierarchical
sampling techniques (Barron et al., 2022; Reiser et al., 2021; Yu et al., 2021) and utilize low-rank
approximations (Chen et al., 2022). Despite these enhancements, the dependence on volumetric ray
marching continues, which leads to compatibility challenges with traditional graphics equipment
and systems primarily engineered for polygonal rendering. Additionally, recent innovations have
adjusted NeRF’s approach to geometry and light emission representation, improving the rendering
of reflective surfaces (Verbin et al., 2022) and enabling more effective scene relighting by separately
addressing material and lighting attributes (Kuang et al., 2022; Srinivasan et al., 2021; Zhang et al.,
2021).

Point-based Rendering methods Point-based rendering methods leverage point clouds as fun-
damental geometric units for the visualization of scenes. The typical methods (Botsch et al., 2005;
Sainz & Pajarola, 2004) involve using graphical APIs and GPU-specific modules to rasterize these
unstructured point sets at a constant size. Despite the rapid rendering and flexibility in managing
changes in topology, this method is prone to forming holes and outliers, which frequently result
in rendering artifacts. To address these gaps, research on differentiable point-based rendering has
become prevalent, aiming to precisely model the geometry of objects (Insafutdinov & Dosovitskiy,
2018; Gross & Pfister, 2011; Yifan et al., 2019; Lin et al., 2018; Wiles et al., 2020). Research has
examined the use of differentiable surface splatting in studies like (Yifan et al., 2019; Wiles et al.,
2020), in which points are interpreted as larger-than-one-pixel geometric objects such as surfels,
elliptic shapes, or spheres. Methods (Aliev et al., 2020; Kopanas et al., 2021) have enriched point
features with neural network capabilities and processed them through 2D CNNs for visualization.
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In contrast, Point-NeRF (Xu et al., 2022) has demonstrated superior capabilities in synthesizing new
views of high quality using volume rendering, incorporating strategies like region growth and point
reduction during its optimization phase. However, this technique is limited by its dependence on
volumetric ray-marching, impacting its display speed. Remarkably, the 3DGS (Kerbl et al., 2023)
framework employs directionally dependent 3D Gaussians for three-dimensional scene depiction.
This method utilizes structure from motion (SfM) (Snavely et al., 2006) to initialize 3D Gaussians
and optimizes a 3D Gaussian as a volumetric model. Subsequently, it projects this model onto 2D
surfaces to facilitate rasterization. 3D-GS uses an α-blender to merge pixel colours effectively. This
technique results in high-fidelity outputs with detailed resolution, enabling rendering at real-time
speeds.

Large-scale Scene Reconstruction In the past several decades, remarkable advancements have
been made in the domain of image-based reconstruction of extensive scenes. Numerous research
efforts (Pollefeys et al., 2008; Schonberger & Frahm, 2016; Zhu et al., 2018; Snavely et al., 2006)
have leveraged the structure-from-motion (SfM) (Snavely et al., 2006) method to derive camera
orientations and generate sparse point clouds. Following these initiatives, additional studies (Fu-
rukawa et al., 2010; Goesele et al., 2007) have succeeded in producing dense point clouds or tri-
angular meshes via multi-view stereo (MVS) processes. Concurrently, as Neural Radiance Fields
(NeRF) (Mildenhall et al., 2021) gain prominence for generating photorealistic perspectives in con-
temporary visual synthesis, a plethora of adaptations have surfaced. These aim to increase recon-
struction quality (Barron et al., 2021; 2022; 2023; Wang et al., 2021; 2023; Yariv et al., 2021),
accelerate rendering (Chen et al., 2022; Fridovich-Keil et al., 2022; Müller et al., 2022; Reiser et al.,
2021; Yu et al., 2021), and extend capabilities to dynamic scenarios (Cao & Johnson, 2023; Gao
et al., 2022; Weng et al., 2022; Huang et al., 2024). Among these, several methods (Tancik et al.,
2022; Turki et al., 2022; Xu et al., 2023; Zhenxing & Xu, 2022) have scaled NeRF to accommo-
date expansive scenes. Specifically, Block-NeRF (Tancik et al., 2022) segments urban landscapes
into several blocks, assigning view-specific training based on geographic location. Alternatively,
Mega-NeRF (Turki et al., 2022) introduces a grid-oriented partitioning technique, linking each im-
age pixel to various grids intersected by its corresponding ray. Different from heuristic partitioning
methods, Switch-NeRF (Zhenxing & Xu, 2022) has pioneered a mixture-of-experts NeRF frame-
work to master scene segmentation. Conversely, Grid-NeRF (Xu et al., 2023) synergizes NeRF-
based and grid-based strategies without segmenting the scene. Despite these improvements signif-
icantly elevating rendering precision over conventional methods, they often render slowly and lack
finer details. In a recent development, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has been
introduced. It provides an explicit, high-definition 3D representation that supports real-time ren-
dering. However, these traditional 3DGS methods (Kerbl et al., 2023; Yu et al., 2024; Lu et al.,
2024; Guédon & Lepetit, 2024) have been shown to consume significant resources when applied
to extensive scenes, such as urban environments or scenic landscapes. This is primarily due to the
considerable memory and graphics memory demands necessary for initial scene processing and the
creation of Gaussian spheres. Previous methodologies (Kerbl et al., 2023; Yu et al., 2024; Lu et al.,
2024) for reconstructing large scenes typically relied on selecting a subset of images for training
and then regenerating point clouds and viewpoints using COLMAP (Schonberger & Frahm, 2016),
which employs Structure-from-Motion (SfM) and Multi-View Stereo (MVS) techniques to derive
camera positions and 3D structures from images. However, this approach proved to be inherently
non-generalizable. The primary issue was the lack of effective scene segmentation, which led to
random retention of images. Consequently, this resulted in fragmented reconstruction outcomes.
Moreover, these approaches lead to disparate Gaussian outcomes, which could not be merged ef-
fectively. Each batch of partial images remained with isolated training results that lacked collective
significance. Additionally, the use of incomplete image sets in training often resulted in inadequate
COLMAP (Schonberger & Frahm, 2016) results due to the failure to accurately select all required
viewpoints for a comprehensive scene reconstruction. Our GaussianFocus successfully overcomes
the limitations of the 3DGS-based methods (Kerbl et al., 2023; Yu et al., 2024; Lu et al., 2024) in
training large-scale scenes through the introduction of innovative designs that efficiently subdivide,
optimize, and integrate these scenes.
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Figure 9: Limitation: The result of the recombined scene will contain the boundary artifacts of the
result of the previous small block.

B IMPLEMENTATION

Our approach is developed on the foundation of the open-source 3DGS code (Kerbl et al., 2023).
Adhering to the protocol established in (Kerbl et al., 2023), we train our models and baselines
for 30,000 iterations over all scenes, utilizing the same Gaussian density control strategy, training
pipelines and hyperparameters. Furthermore, patch attention is utilized to enhance reconstruction
quality every 50 iterations. We also inspect and constrain the scale matrix S of Gaussian spheres
every 1,000 iterations, up to the first 10,000 iterations. We set the kernel size as 0.05 and the loss
weight λ = 0.2.

C LIMITATION

Our model integrates the Patch Attention Enhancement feature, which substantially improves the
quality of rendered images by meticulously calculating attention values. While this method enhances
detail recognition and overall image fidelity, it also significantly increases the memory demands of
the model. This elevated memory consumption has the potential to trigger out-of-memory errors
during the training phase, particularly with complex or large-scale scenes. To address this limitation,
future versions of the model could explore alternative computational methods or more efficient data
structures, which might reduce the memory requirements while maintaining or even enhancing the
model’s performance. Another challenge arises in the reconstruction of large scenes where the final
assembly of individual blocks can lead to complications. Specifically, the boundaries of each block
may overlap, causing visible disruptions in the continuity of the scene. These overlaps often manifest
as clusters of disorganized Gaussian spheres at the edges, which are evident in the reconstructed
images shown in Fig. 9. This not only affects the aesthetic quality of the renders but also detracts
from the model’s utility in practical applications. In the future, it may be beneficial to design an
algorithm that removes Gaussian spheres at the boundaries of each block. This would enhance
the quality of the final assembled large scene and ensure a more natural and seamless appearance.
Currently, our model is implemented using the Pytorch framework. While Pytorch provides a robust
platform for developing deep learning models, it may not offer the most efficient management of
large-scale data and complex computations involved in our model. Transitioning our model to a
CUDA-based implementation could significantly improve efficiency.
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