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ABSTRACT

The Iterative Markovian Fitting (IMF) procedure based on iterative reciprocal and
Markovian projections has recently been proposed as a powerful method for solv-
ing the Schrodinger Bridge problem. However, it has been observed that for the
practical implementation of this procedure, it is crucial to alternate between fitting
a forward and backward time diffusion at each iteration. Such implementation is
thought to be a practical heuristic, which is required to stabilize training and ob-
tain good results in applications such as unpaired domain translation. In our work,
we show that this heuristic closely connects with the pioneer approaches for the
Schrodinger Bridge based on the Iterative Proportional Fitting (IPF) procedure.
Namely, we find that the practical implementation of IMF is, in fact, a combina-
tion of IMF and IPF procedures, and we call this combination the Iterative Pro-
portional Markovian Fitting (IPMF) procedure. We show both theoretically and
practically that this combined IPMF procedure can converge under more general
settings, thus, showing that the IPMF procedure opens a door towards developing
a unified framework for solving Schrodinger Bridge problems.

1 INTRODUCTION

Diffusion models inspired by the Schrodinger Bridge (SB) theory, which connects stochastic pro-
cesses with the optimal transport theory, have recently emerged as a powerful approach for numer-
ous applications in biology (Tong et al.,[2024; |Bunne et al., 2023)), chemistry (Somnath et al., 2023
Igashov et al.), computer vision (Liu et al., 2023a; [Shi et al., |2023)) and speech processing (Chen
et al., 2023). Most of these applications are dedicated either to supervised translation, e.g., image
super-resolution and inpainting (Liu et al., [2023a) or unpaired domain translation, such as image
style-transfer (Shi et al., [2023)) or single-cell data analysis (Tong et al., [2024)).

In this paper, we focus specifically on unpaired domain translation, where SB-based algorithms are
typically used since they enforce two key properties: the similarity between input and translated
object (referred to as the optimality property) and that the input domain is translated to the target
domain (referred to as the marginal matching property).
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Figure 1: Diagrams of IPF, IMF, and discovered IPMF procedure. All procedures aim to converge
to the Schrédinger Bridge, i.e., the reciprocal and Markovian process with marginals pg and p; .
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Early works (De Bortoli et al.| 2021} [Vargas et al.| 2021} |Chen et al.| |2021)) on using Schrédinger
Bridge for unpaired domain translation employed the well-celebrated Iterative Proportional Fit-
ting (IPF) procedure (Kullback, [1968)), also known as the Sinkhorn algorithm (Cuturi & Doucet,
2014). The IPF procedure is initialized with a simple prior process that satisfies the optimality prop-
erty. It then refines this process iteratively through optimality-preserving transformations until the
marginal matching property is achieved. In each iteration, IPF decreases the forward KL-divergence
KL(g*||q) between the current approximation ¢ and the ground-truth Schrédinger Bridge ¢*. How-
ever, due to approximation errors, in practice, IPF may suffer from the “prior forgetting”, where the
marginal matching property is achieved, but the optimality is lost (Vargas et al.l 2024} 2021)).

Recently, the Iterative Markovian Fitting (IMF) procedure (Shi et al., 2023} |Peluchetti, |2023aj
Gushchin et al., 2024) was introduced as the promising competitor to IPF. Contrary to IPF, the
IMF starts from the stochastic process with the marginal matching property, while the optimality is
achieved during the IMF iterations. Unlike the IPF procedure, the IMF procedure at each iteration
decreases reverse KL-divergence KL(g||q*) between the current approximation ¢ and the ground-
truth Schrodinger Bridge ¢*. This iterative procedure can also be seen as a generalization of rectified
flows (Liu et al.,2022) to stochastic processes, which is used (Liu et al.,2023b; [Yan et al.| [2024) for
the modern foundational generative models such as Stable Diffusion 3 (Esser et al., [2024)). In anal-
ogy to IPF, the IMF procedure may also accumulate errors but in approximating data distributions
due to a imperfect fit at each iteration, leading to losing marginal matching property.

In practice, the IMF is implemented as a bidirectional procedure alternating between learning for-
ward and backward processes either by diffusion-based models in the Diffusion Schrodinger Bridge
Matching (DSBM) algorithm (Shi et al.,2023) or GANs in Adversarial Schrodinger Bridge Match-
ing (ASBM) algorithm (Gushchin et al.| [2024). This heuristic of alternating between learning for-
ward and backward processes helps to stabilize the IMF training and overcome the accumulation of
errors and loss of marginal matching property. In this work, we explore the theoretical aspects of
this heuristic approach and make the following key contributions.

Main contributions: We show that the heuristic bidirectional IMF procedure used in practice
closely relates to IPF. Namely, we discover that it, in fact, secretly utilizes IPF iterations. Due to
this, we propose to call this bidirectional IMF procedure Iterative Proportional Markovian Fitting
(IPMF) and conjecture that it not only converges under more general settings than was previously
thought but opens a promising way of developing a unified framework for solving the SB problem.

1. Theory I. We prove that the IPMF procedure converges for 1-dimensional Gaussian distributions
(§3.2). Even this proof is non-trivial and involves significant complexity, as IPF and IMF mini-
mize different (forward and reverse KL) divergences, leading to interference. We also make and
motivate a conjecture about IPMF convergence for multivariate Gaussians (§3.2)).

2. Practice I. We experimentally support our conjecture for multivariate Gaussians (§4.1)), using
the closed form update formulas that can be derived in discrete time (§4.1).

3. Practice II. We empirically validate through a series of standard experiments, including toy 2D
setups (§4.2)), the Schrédinger Bridge benchmark (§4.3)), colored MNIST images and real-world
image dataset - Celeba (84.4), that IPMF procedure converges.

These contributions show that the IPMF procedure has significant potential to combine many pre-

viously introduced SB methods, including IPF and IMF-based, with both discrete (Gushchin et al.,

2024; De Bortoli et al., |2021)) and continuous time (Shi et al.,[2023; [Peluchettil 2023a; |Vargas et al.}

2021)), together with their online versions (De Bortoli et al., 2024} [Peluchettil |2024; [Karimi et al.,

2024). Moreover, the forward-backward framework of IPMF could enable rectified flows to avoid

error accumulation, making them even more powerful in diffusion-based generative modeling.

Notations. We fix N > 1 intermediate time moments 0 = £y < t; < --- < ty < ty41 =1
together with {9 = 0 and £y+; = 1. We consider discrete stochastic processes with a finite second
moment, entropy, and those time-moments as the elements of the set Py ,.(RP> (N+2)) of probabil-

ity distributions on RP*(N+2)_ For any such ¢ € Py 4o (RP*N+2)) we write q(20, T4, - - -, Tey .y )
to denote its density at a point (g, Ty, , . .., Tty ,21) € RPXVF2) For convenience we also use
the notation xi, = (x¢,, ...,y ) to denote the vector of all intermediate-time variables.

For considering the continuous version of Schrodinger Bridge we denote by P(C([0,1]), R”) the
set of continuous stochastic processes with time ¢ € [0, 1], i.e., the set of distributions on continuous
trajectories f : [0,1] — RP. We use dW; to denote the differential of the standard Wiener process.
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We denote by p” € P(RP*(N+2)) the discrete process which is the finite-dimensional projection
of T to time moments 0 =ty < t; < --- <ty < ty41 = 1. In what follows, KL is a short notation
for the Kullback-Leibler divergence, while H is a short notation for the differential entropy.

2 BACKGROUND

This section recalls the Schrodinger Bridge (SB) problem (82.1). Then, we describe procedures for
solving SB: Iterative Proportional Fitting (IPF, §2.2) and Iterative Markovian Fitting (IMF, §2.3).
We discuss the practical implementation of the IMF procedure called Bidirectional IMF in §2.4]

The Schrodinger Bridge problem can be considered both in discrete and continuous time, which
are equivalent. The discrete-time and continuous-time versions of IPF and IMF procedures are also
similar. In the main text, we operate only with the discrete-time setup to avoid a lot of repetitions,
which will harm the flow of the paper. Also, the discrete-time version provides the explicit formulas
for the projections used in IPF and IMF procedures, which makes it sufficiently easier to explain the
main idea of our paper. We present the analogical facts about the continuous setup in Appendix E}

2.1 SCHRODINGER BRIDGE (SB) PROBLEM

Schrodinger Bridge problem formulation. To formulate the Schrodinger Bridge problem we con-
sider the Wiener process W ¢ with the volatility e > 0 which starts at some distribution py, i.e., the
process given by the stochastic differential equation (SDE): dxy = \/edW4, 29 ~ po. We denote by
le,m », the stochastic process W conditioned on values xo, 1 at times ¢ = 0, 1, respectively. This
process waom is called the Brownian Bridge (Ibe,[2013} Chapter 9). The Schrodinger Bridge prob-
lem (Schrodinger} [193 1) with the Wiener prior between distributions py and p; in the discrete-time
setting (De Bortoli et al.,[2021) formulates as follows:

min  KL(g(z0, in, 21)|[p" (20, Tin, 21)), (D
q€(po,p1)

Here p"V* (g, i, z1) is the time-discretization of W€, which is given by p"V* (zq, Zin, 1) =
po(zo) ny:ll N (2, |2t, _,€(tn —tn_1)Ip). Inturn, I(po, p1) C Paac(RP*(NF2)) is the subset
of discrete-stochastic processes with marginals g(xg) = po(z¢) and ¢(z1) = p1(x1).

Static Schrodinger Bridge problem. One may decompose the objective (1)) as follows:
KL(q(20, zin, 21)||p"" (20, Tin, 1)) =

KL(Q(CUO,M)HPWE(C%,M))+/KL(CI(%J%O,$1)||PW€($in|CU0,901))Q(x075€1)d5€0d9€1~ 2

i.e., KL divergence between g and p"" is a sum of two terms: the 1st represents the similarity of
the processes’ joint, marginal distributions at start and finish times ¢ = 0, 1, while the 2nd term rep-
resents the average similarity of conditional distributions q(in| 2o, z1) and p"V* (xin| 20, 21). Since
conditional distributions q(x,|2zo, 1) can be chosen independently of g(x¢, 1) we can consider
q(zin|zo, 1) = PV (zin|20,21). In this case KL(q(xin|xo, 21)|[p"" (zin|T0, 1)) = 0 for every
Zp, x1 and it leads to the Static Schrodinger Bridge problem:

min KL (q(zo, 1)|[p" (0, 21)), 3
q€I(po,p1)
In turn, the static SB objective can be expanded as (Gushchin et al.|[2023a, Eq. 7):
2
. T, —x
KL(aao o) 0" (o) = [ 252 by, ) - et m) 0 @

which is up to an additive constant is equivalent to the objective of entropic optimal transport (EOT)
problem with the quadratic cost (Cuturi, 2013 [Peyré et al.| 2019; Léonard, |2013; |Genevay, [2019).

2.2 ITERATIVE PROPORTIONAL FITTING (IPF)

Several first works on Schrodinger Bridge (Vargas et al., 2021; [De Bortoli et al.l 2021) propose
methods based on the IPF procedure (Kullback,|1968)). The IPF-based algorithm is started by setting
the process ¢° (o, Tin, 71) = po(20)p" (Tin, 1|70). Then, the algorithm alternates between two
types of IPF projections proj; and proj, which are given by (De Bortoli et al., 2021} Proposition 2):

N N
. def
¢ = projy (¢**(x1) [ [ ¢ (e, |2e,,,) ) = pr(en) [ (e, l2e,,0), (5)
n=0 n=0
q?F (21)q?F (z0,Zin|21) g2k (xo,xin|T1)
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N+1 N+1
def
7% = proig (7 w) [ 4 el 1)) (o) [[ (o,

n=1

Tt,y).  (6)

¢kt (20) g2k T (2in, @1 |w0) g%k + 1 (@i, z1]20)

Thus, these projections replace marginal distributions ¢(x1) and ¢(x) in g(xg, Zin, 1) by p1(x1)
and po(zg) respectively. This sequence ¢* monotonically decreases the forward KL-divergence

KL(q*||¢") at each iteration and converges to the solution of the Schrodinger Bridge ¢*. However,
since the prior process p"* is used only at the initialization, the imperfect fit in practice at some
iteration may lead to deviation from the SB solution. This problem is called “prior forgetting” and
was discussed in (Vargas et al., [2024, Appendix E.3). The continuous analog of the IPF procedure
is considered in (Vargas et al]2021)) and uses inversions of diffusion processes (see Appendix[A.2).

2.3 ITERATIVE MARKOVIAN FITTING (IMF)

The Iterative Markovian Fitting (IMF) procedure (Peluchetti, 2023a; |Shi et al.| [2023)) was recently
proposed as a strong competitor to the IPF, which does not suffer from the ”prior forgetting” problem
of IPF. In turn, the discrete-time analog of IMF (D-IMF) has been recently proposed by (Gushchin
et al., [2024) to accelerate the inference of the process learned by IMF. The procedure is initialized
with any process ¢° € II(po,p1). Then the procedure alternates between reciprocal proj, and
Markovian proj ,, projections:

2k+1 : 2k def 2k we
¢** 1 = projr (¢°*) = ¢** (z0,21)p" (winlzo, 21), (7
N+1 N
2k+2 _ : 2k-+1y def 2k+1 2k+1 2k+1 k:+1 .
q = proj v (¢ ) =4 H q (zt, |1, ) H (@, [Tt,00) (B)
n=1 n=0
forward representation backward representation

Thus, the reciprocal projection projx (¢) creates a new (in general, non-Markovian) process by us-
ing the joint distribution q(zo, 1) and p"" (2|20, z1). The latter is called the discrete Brow-
nian Bridge. In turn, the Markovian projection proj,,(¢) uses the set of transitional densi-
ties {q(wy, |®s,_,)} or {q(z¢, |z,,,)} to create a new Markovian process starting from ¢(z¢)
or q(x1) respectively. Unlike the IPF procedure, this sequence ¢* monotonically decreases the
reverse KL-divergence objective KL(q"||¢*) at each iteration and converges to the solution of the
Schrodinger Bridge ¢*. The continuous time version of the IMF procedure is considered in (Shi
et al.,[2023} [Peluchettil 2023a)) and uses similar Markovian and reciprocal projections (Appendix [A).

2.4 BIDIRECTIONAL IMF

Since the result of the Markovian projection (8) can be represented both by forward and back-
ward representation, in practice, neural networks {gg(x, |z, ,)} (forward parametrization) or
{a¢(x¢,|¢, ., )} (backward parametrization) are used to learn the corresponding transitional den-
sities. In turn, starting distributions are set to be gg(xg) = po(zo) for forward parametrization
and gy (z1) = p1(x1) for the backward parametrization. In practice, the alternation between for-
ward and backward representations of Markovian processes is used in both implementations of
continuous-time IMF by DSBM algorithm (Shi et al.| 2023| Algorithm 1) based on diffusion mod-
els and discrete-time IMF by ASBM algorithm (Gushchin et al., 2024} Algorithm 1) based on the
GAN:S. So, this bidirectional procedure can be described as follows:

N
ak+1 _ Ak we 4k+2 _ 4k+1
q =q "(zo,21)p" (Tin|20,71), ¢ —P(%)H% (@t l2t,), €))
. =0
proj (g4%) -
backward parametrization
N+1
4k+3 _  Ak+2 we X Ak+4 _ 4k+3( X
gt = ¢ (o, w)p" (winlwo, 21), ¢ = p(wo) [] 66" (@rolae, ). (10)
projr (g4k+1) nl
forward parametrization
Thus, only one marginal is perfectly fitted, e.g., go(zg) = po(xo) in the case

of forward representation, while the other marginal is only learned, e.g., gqo(z1) =
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| qo(x0) Hg:ll qo(xt, |2, | )dzodzy - - - dxy = p1(x1). It was observed that such approximation
——

=po (o)
errors do not accumulate in this bidirectional version of IMF (Shi et al.l [2023; Peluchetti, [2023a};
Gushchin et al [2024)), while the usage of only forward or backward parametrization accumulates
errors and lead to divergence (De Bortoli et al.l 2024, Appendix I).

3 ITERATIVE PROPORTIONAL MARKOVIAN FITTING (IPMF)

In this section, we show that the heuristical procedure of bidirectional IMF is, in fact, the
alternating implementation of both IPF and IMF projections and state that this heuristic in fact
defines the new unified Iterative Proportional Markovian Fitting (IPMF) procedure §3.1] Next, in
section §3.2] we provide the theoretical analysis of convergence of this IPMF procedure together
with the determination of the convergence rate in the case of 1-dimensional Gaussian.

3.1 BIDIRECTIONAL IMF 1s IPMF

Here, we analyze theoretically what the heuristical bidirectional IMF does. We recall that the IPF
projections of projo(g) given by (6) and proj; (¢) given by (5) of the Markovian process ¢ is in fact
just change the starting distribution from ¢(z¢) to po(zo) and g(z1) to p1(z1). Now we note that
the process ¢***2 in (9) is obtained by using a combination of Markovian projection proj given
by (8) in forward parametrization and IPF projection proj; given by (3):

N N
g% = p(ar) [ " @ lwe,,) = projy (¢ (1) [ ¢ (@nlznin)) -

n=0 n=0

projy (proj v (q*++1))

In turn, the process ¢***% in (10) is obtained by using a combination of Markovian projection proj
given by (8) in backward parametrization and IPF projection proj, given by (6):

N+1 N+1
g3 = p(ao) [T ¢ (e, |2e,_,) = projo (¢ 3 (o) ] ¢ (@nlzn-1)) .
n=1

n=1

projo (Proj o, (q*+15))
Thus, we can represent the bidirectional procedure IMF given by and (9) as follows:

Iterative Proportional Markovian Fitting (Discrete time setting)

N
gt = q4k($0,I1)PW€ (win|zo, 1),  ¢**F% = p(an) H q4k+1(5€tn71 |¢,,),
proje (a%) n0

projy (proj e (q4+1))
N+1
gt = q4k+2($0,$1)PW (Tin| 2o, 71), gt = p(zo) H q4k+3($tn|$tn_1)-
proj (¢*++1) ot
projo (Proj a (g*+2))

Hence, the Bidirectional IMF procedure, in fact, alternates between the two projections of IMF
(proj o, ) during which the process ”became more optimal” (step towards optimality property) and
two IPF projections (projo and proj;) during which the marginal fitting improves (step towards
marginal matching property). Because of it, we have called this (bidirectional IMF) procedure,
which starts from any starting process ¢°(z, zin, ¥1) as Iterative Proportional Markovian Fitting
(IPMF). We say that one IPMF step consists of these two projections of IMF (proj ,,) and two
projections of IPF. We hypothesize that this combined procedure should converge from any starting
process ¢°(xo, Tin, 71 ), unlike IPF and IMF procedures, which require a specific form of the starting
process. In the same time we want to highlight that IPMF becomes IMF if the initial coupling is in
the reciprocal class and has the correct marginals py and p;. In turn, when the initial coupling is in
the Markovian class, reciprocal, and has the correct initial marginal py or p;, IPMF becomes IPF.
Figure 1 visually illustrates these cases, clarifying the role of the initial coupling and the iterative
steps. The analogical analysis of continuous time IPMF is in Appendix

5
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3.2 THEORETICAL ANALYSIS FOR GAUSSIANS

In this section, we analyze the case when py = N (10, Xo) and p1 = N (1, X1) are D-dimensional
Gaussians and the initial process ¢°(zq, i, z1) has Gaussian ¢°(xo, 1) at times £ = 0,1. We
prove that ¢**(z, 71) converges to the solution ¢* (g, 71) of the static SB problem (3) for D = 1.

We begin with some preparations. We introduce a function = : RP*XP x RPXP x RPXD s RDXD:

=P, (@) tPT(E - PE) P (11)
which is well-defined for ¥ = 0,%’ = 0 and for Ps.t. & — P(X)"1PT = 0.

Lemma 3.1 (Gaussian plans as entropic optimal transport plans). Consider a 2D-dimensional Gaus-
sian distribution q(zo,71)€ Pa2,4c(RP x RP) with marginals p = N (u, %) and p' = N(u', %)
and correlation P between its components:

o= ((2)-(5 1))

Let A=Z=(P, %, %) € RP*P, Then q is the unique minimizer of the following problem:

min { /(—mlTAa:O) - ¢ (w0, 1)dxodry — H(q') }, (12)

q'€ll(p,p’)
where H(q') = — [ ¢'(z0, 1) log ¢ (z0, x1)dxodx, is the differential entropy of a distribution.

Problem is the optimal transport problem with the transport cost —z; Az and entropy reg-
ularization (with weight 1), see (Cuturi, 2013} |Genevayl, [2019). Thus, our lemma states that any
Gaussian distribution is a so-called entropic OT plan between its marginals for certain transport
cost. In fact, for every Gaussian distribution, we can assign a matrix A = Z(P, X, ¥’) explaining
for which cost this distribution solves the entropic transport problem. We call this matrix the opti-
mality matrix. We emphasize that if the optimality matrix is A = ¢~!Ip, then the transport cost
—e7 1 (21, m0) is equivalent to e 71 /2 ||xy — 2o || = 71 /2 ||wo |2 —e7 L (w1, o) +e71/2- |21 )%
and ¢ is the static SB (3) between its marginals for the prior W€, recall ().

Now, we make our convergence conjecture, which we theoretically prove for 1-dimensional
Gaussians (Appendix [B.4) and experimentally justify for higher dimensions (§4.1).

Conjecture 3.2 (Quantitative convergence of IPMF for Gaussians). Let pg = N (o, Xo) and p1 =
N (u1,%1) be D-dimensional Gaussians. Assume that we run IPMF procedure in the continuous
time or in discrete time, starting from some 2D Gaussian distributiorﬂ

" (z0,21) =N ((’?) , <?3§ gg)) € Pa.ac(RP x RP),

and denote the joint distribution obtained after k IPMF steps by

=2 (). (5 5)):

Denote Ay, d:efE(Pk, 30, Sk). Then the following bounds hold true:
_1 _1 _1 _1 _1 _1
15, 2518, 2 — Iplla < @S5 2515 2 — Ipll2, 151 2 (e — pa)ll2 < @¥[I157 2 (w0 — ) 2,
|4k =€ plla < B[40 — ¢ M pll2, (13)

where a, B < 1, and || - ||2 denotes the spectral norm for matrices. The factors «, 3 depend on IPMF
type (discrete or continuous), initial parameters Sy, vy, Py, marginal distributions pg, p1 and €.

Justification details. We find that IPF step keeps the optimality matrix Ay, (Lemma[B.2) while ex-
ponentially improving the marginal matching property of ¢(xo, 1) (Lemma . Next, we analyze
closed formulas for IMF step in Gaussian case from (Peluchetti, [20234}; [Gushchin et al, [2024). In
case D = 1, we show that IMF step makes Ay, closer to i while not affecting the marginals of ¢**
(for continuous IMF and discrete IMF with N = 1). For higher dimensions, we verify exponential
convergence (13) in experiments (§4.1)). As a result, IPMF at each round improves both properties.

"We assume that ¢° (o) = po(xo), i.e., the initial process starts at po at time ¢ = 0. This is reasonable, as
after the first IPMF round the process will satisfy this property thanks to the IPF projections involved.
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Forward KL vs IPMF step (D =128, €=0.3) Reverse KL vs IPMF step (D =128, €=0.3)
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Figure 2: Convergence of IPMF procedure with different starting process ¢°.

4 EXPERIMENTAL ILLUSTRATIONS

In this section, we empirically support that the IPMF procedure converges under a more general set-
ting, specifically for any starting process, unlike IPF and IMF. Thus, our goal is to achieve the same
or similar results for all used starting coupling and for both discrete-time (ASBM) and continuous-
time (DSBM) solvers. We show in §3.1]and Appendix [A] that the bidirectional IMF procedure and
the introduced IPMF procedure differ only in the initial starting process. Since both practical imple-
mentations of continuous-time IMF (Shi et al.| 2023} Algorithm 1) and discrete-time IMF (Gushchin
et al., 2024, Algorithm 1) use the considered bidirectional version, we use practical algorithms in-
troduced in these works, i.e., Diffusion Schrodinger Bridge Matching (DSBM) and Adversarial
Schrodinger Bridge Matching (ASBM) respectively.

Experimental setups. We consider multivariate Gaussian distributions for which we have closed-
form IPMF update formulas §4.1] an illustrative 2D example, the Schrodinger Bridges Benchmark
(Gushchin et al., 2023b)) and real life image data distributions, i.e., the colored MNIST dataset and
the Celeba dataset (Liu et al.|[2015). All technical details can be found in the Appendix

Starting processes. In our experiments, we focus on running the IPMF procedure from different ini-
tializations, which we call starting processes. We construct starting processes by considering differ-
ent couplings ¢°(zo, 21 ) and using the Brownian Bridge process Vszo =, - Thus, for each considered

coupling ¢°(zo, 1) we construct starting process as ¢°(xg, Tin, 71) = ¢° (20, 21)p" (@in|T0, 21)
for the discrete-time case and 7° = [ W&mmldqo(xo,xl) for the continuous-time case (Ap-
pendix [A). For all the experimental setups, we consider the starting processes induced by coupling
q° (70, 1) = po(zo)p1(z1), which represent the IMF starting process (used in IMF procedure) and
by ¢°(20, 1) = po(zo)p"V (x1|z0), which represent IPF starting process (used in the IPF pro-
cedure). We also consider a set of different couplings, which cannot be used either for starting
processes of IMF or IPF procedure specifically for each setup to showcase that the IPMF procedure
converges under more general assumptions. The results of DSBM and ASBM algorithms starting
from different starting processes are denoted as (D/A)SBM-*name of coupling*, e.g., the results for
the DSBM using the IMF starting process would be denoted as DSBM-IMF.

€

4.1 HIGH DIMENSIONAL GAUSSIANS

In this section we experimentally validate the convergence of IPMF in the case of the multivariate
Gaussian distributions stated in Conjecture 3.2 We conduct experiments using analytical formulas
for the Gaussian case for the discrete IMF from (Gushchin et al., 2024, Theorem 3.8). We follow
setup from (Gushchin et al., 2023a, Section 5.2) and consider Schrédinger Bridge problem with the
dimensionality D = 128 and € = 0.3 for centered Gaussians pg = N(0, X¢) and p; = N (0, 3).
To construct ¥y and 37, we sample their eigenvectors from the uniform distribution on the unit
sphere and sample their eigenvalues from the log uniform distribution on [— log 2, log 2].

We run the IPMF procedure for 100 IPMF steps (each IPMF step consists of 2 IPF projections
and two Markovian-Reciprocal projections as stated in §3.I). We use N = 3 intermediate time
points chosen uniformly between ¢ = 0 and ¢ = 1. We present in Figure [2] the forward KL-
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Figure 3: Visualization of learned processes with DSBM and ASBM solvers for Gaussian— Swiss roll
translation using IMF, IPF, Independent po — po starting processes for e = 0.1.

divergence KL(q* (x¢,21)||q* (70, 21)) and reversed KL-divergence KL(q*(z0, x1)||¢** (z0, 1))
between ¢**(z¢, 1) from each IPMF step and the solution of static Schrodinger Bridge ¢* (o, 1 ).
For all couplings we observe the exponential convergence in both forward and reverse KL-

_1 1 1
divergence. We also present the quantities || Ay —e ' Ipl|2, IS, 2215, 2 —Ipll2, |7 2 (ks — 1) |2
and show they also exhibit the expected behaviour stated in Conjecture[3.2] i.e., converge to zero.

4.2 ILLUSTRATIVE 2D EXAMPLE

Here, we consider the SB problem with ¢ = 0.1 with pg as the 2D Gaussian distribution and p; as
the Swiss roll distribution. As previously mentioned, we train DSBM and ASBM algorithms using
IMF and IPF starting processes. Additionally, we consider Independent py — py starting processes
induced by the coupling ¢°(zg, 1) = po(zo)po(w1). We present starting processes and results in
Figure[3] In all the cases, we observe convergence in the target distribution.

4.3 EVALUATION ON THE SB BENCHMARK

We use the SB mixtures benchmark proposed by (Gushchin et al.,[2023b) with ground truth solution
to the Schrodinger Bridge to test ASBM and DSBM with IMF, IPF and Independent pg — py (i.e.,
induced by ¢°(z0, z1) = po(z0)po(x1) coupling), starting processes.

The benchmark provides continuous distribution pairs pg, p; for dimensions D € {2, 16, 64,128}
that have known SB solutions (¢* for discrete setup and 7™ for continuous setup), for volatility
e € {0.1,1,10}. To evaluate the quality of the recovered SB solutions, we use the cBW2-UVP
metric as proposed by (Gushchin et al', 2023b) and provide results in Table[I} In addition we study
how all the approaches learn the target distribution in Appendix

As can be seen, DSBM and ASBM starting from all the processes at € € {1, 10} yield quite similar
results, but on the e = 0.1 DSBM and ASBM with IPF and Independent py — pg starting processes
metric do experience a slight decrease.
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e=0.1 e=1 e=10

AlgorithmType D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best algorithm on benchmark Varies 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27  2.36 1.31
DSBM-IMF 1.21  4.61 9.81 19.8  0.68 0.63 5.8 29.5  0.23 5.45  68.9 362

DSBM-IPF 2.55 17.4 15.85 17.45 0.29 0.76  4.05 29.59 0.35 3.98  83.2 210

DSBM-Ind(pg , po) 2.72  11.7  16.5 17.02  0.41  0.92 3.7 29 0.16  3.91 101 255
ASBM-IMFT IPMF 0.89 8.2 13.5 53.7 0.19 1.6 5.8 10.5 0.13 0.4 1.9 4.7

ASBM-IPF 3.06 14.37 44.35 32,5 0.18 1.68  9.25  20.47 0.13 0.36 2.28 4.97

ASBM-Ind(po, po) 3.99 1573 39.3  40.32 0.18 1.68  6.16 12.8 0.13 0.38 1.36 2.6
SF?M-Sink ' 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819

Table 1: Comparisons of CBW§ -UVP | (%) between the static SB solution ¢* (z¢, 1) and the learned solution on the SB benchmark.
The best metric is bolded. Results marked with 1 are taken from (Gushchin et al.|[2024) and (Gushchin et al.}[2023b). The results of DSBM
and ASBM algorithms starting from different starting processes are denoted as (D/A)SBM-*name of starting process™

4.4 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

To test our approach on real data, we consider two unpaired image-to-image translation setups: col-
orized 3 — colorized 2 digits from the MNIST dataset with 32 x 32 resolution size and male—female
faces from the Celeba dataset with 64 x 64 resolution size.

Colored MNIST. We construct train and test sets by
RGB colorization of MNIST digits from corresponding
train and test sets of classes ”2” and 3. We train ASBM
and DSBM algorithms starting from the IMF process. In
addition, we test starting process induced by the indepen-
dent coupling of the distribution of colored digits of class
”3” (pp) and the distribution of colored digits of class 7"
with inverted RGB channels (p™7(z1)), we call this pro-
cess Inverted 7, i.e., ¢°(xg, 1) = po(wo)p™7(z1). We
visualize the Inverted 7 starting the process in Figure [
Further technical details can be found in the Appendix [D}
We learn DSBM and ASBM on the train set of digits and
visualize the translated zest images in Figure[5}

] Figure 4: Inverted 7 starting process, i.e.,
We observe that both DSBM and ASBM algorithms start-  reciprocal process with marginals po and

ing from both IMF and Inverted 7 starting process fit the p™7, visualization.
target distribution of colored MNIST digits of class ”2” and preserve the color of the input image
during translation. This supports that the IPMF procedure converges to the same solution, which

resembles the solution of the Schrodinger Bridge.

22202222

y G St Kb 5

o Adw Bl Mg A [ Bt 2t Ui L) D M S )

(@ (b) (© (d) ©
T ~ Do DSBM-IMF DSBM-Inverted 7 ASBM-IMF ) ASBM-Inverted 7
Figure 5: Samples from DSBM and ASBM learned with IPMF using IMF and ¢™7 staring processes on
Colored MNIST 3—2 (32 x 32) translation for e = 10.

Celeba. In this setup, we consider the variation of the IMF starting process called IMF-OT, where
the starting process is induced by mini batch optimal transport coupling ¢°T (g, z1) (Tong et al.,
2024), and Independent py — pg starting process. In addition, we test the DSBM algorithm with
starting processes induced by DDPM SDEdit and SD SDEdit couplings, which is the SDEdit method
Meng et al.|(2021) used for male— female translation with 1) DDPM Ho et al.[(2020) model trained
on the female part of Celeba and 2) Stable Diffusion v1.5 [Rombach et al.| (2022)) with designed
text prompt, more details are provided in Appendix including generated examples in Figure
We use approximately the same number of parameters for DSBM and ASBM generator and use
10% of male and female images as the test set for evaluation, for other details see Appendix D] We
provide qualitative results for IMF-OT and Independent py — pg starting processes in Figure|7|and
quantitative analysis through plotting FID as function of number of IPMF iterations in Figure 6]

We see from the qualitative results in Figure [/] that presented models: 1) converge to the target
distribution, 2) keep alignment between the features of the input images and generated images (e.g.,
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L

(e) ASBM-IMF-OT (f) ASBM-Independent po — po
Figure 7: Results of CelebA at 64 x 64 size for male—female translation learned with ASBM and DSBM
using IMF-OT and Independent po — po starting processes for € = 1.
the color of hair, background e.t.c.). It should be noted, however, that the samples generated by
models differ, because different starting processes lead to different neural network optimization
trajectories, and as a result some of the starting processes give a better fit to the target distribution, see
FID plot in Figure[f] and some better preserve the input image features, see MSE plot in Figure [9b].
From the FID plot Figurd6] we see that despite different starting processes and continuous or discrete
time settings of DSBM and ASBM, all the models fit the target distribution quite well.

5 DISCUSSION

Potential impact. The presented Iterative Proportional

Markovian Fitting procedure shows a potential to overcome . T Dcewsn sorce
the error accumulation problem observed in distillation meth- [
ods like rectified flows (Liu et al, 2022} [2023b), which is ° [ rememapo e
used for the acceleration of the foundational image genera- %

D

tion models, e.g. StableDiffusion 3 in (Esser et al 2024). =«
These distillation methods are based on the one-directional
IMF procedure in the limit of Schrodinger Bridge hyperpa-
rameter ¢ = 0. However, the one-directional version is ob-
served to accumulate errors and may even lead to the diver-

0 2 4 6 8 10 12 14 16 18

gence (De Bortoli et al.} 2024} Appendix I). Furthermore, us- e
ing the limiting case of ¢ = 0 makes it impossible to use Figure 6: Convergence of models to target
the IPF procedure to restore marginals. The usage of a bidi- ~ distribution. FID plotted as a function of

rectional version along with e > 0 should both correct the ~[PMF iterations for all the presented setups.
marginals and make trajectories of diffusion more straight to accelerate the inference of diffusion
models. We believe that considering such distillation techniques from the IPMF point of view may
help to overcome the current limitations of these techniques.

Limitations. While we show the proof of exponential convergence of the IPMF procedure for the
1-dimensional Gaussians in the continuous-time IMF and discrete-time IMF (with one inner point
N = 1), and present a wide set of experiments supporting this procedure, the proof of convergence
of IPMF in the general case still remains a promising avenue for future work.

10
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Reproducibility Statement. For all experiments presented, the full set of hyperparameters is shown
either in Section[dor in Appendix D} In addition, the code is submitted as a supplementary material
with guidelines how to run every experiment are included. Derivations supporting theoretical claims
Lemma [3.T]and Conjecture[3.2]in case D = 1 are included in the Appendix [B]
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A  CONTINUOUS-TIME SCHRODINGER BRIDGE SETUP

A.1 SCHRODINGER BRIDGE (SB) PROBLEM IN CONTINUOUS-TIME

This section covers the continuous-time formulation of SB as its IPF and IMF procedures. First,
we introduce several new notations to better align the continuous version with the discrete-time
version considered in the main text. Consider the Markovian process 7" defined by the corresponding
forward or backward (time-reversed) SDEs:

T :dwy = vT (24, t)dt + VedW,", 0 ~ pola0),
T :dxy =v (x4, t)dt + VedW,, x1 ~ pi(z1),

where we additionally denote by W, and W, the Wiener process in forward or backward time. We
say T, and T},, denotes the conditional process of T' fixing the marginals using delta functions,

i.e. setting po(zg) = 0, (x) and p1(z1) = Iz, (2):
Tioy : day = 07 (2, t)dt + VedW,E, 3o ~ 0y (),
Tig, : dxy = v (x4, t)dt + VedW, 21 ~ by, ().

Moreover, we use p(zo)7|,, to denote the stochastic process which starts by sampling x¢ ~ p(zo)
and then moving this 2o according the SDE given by T, , i.e., p(zo)T|,, is short for the process
J T2y p(x0)dxo. Finally, we use the shortened notation of the process Tjo 1 (zo,21) conditioned
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on its values at times 0 and 1, saying p” (zo, z1)Tjo.1 (w0, 21) = [ Tjo1(z0, 21)p” (z0, x1)dzods.
This visually links the following equations with the discrete-time formulation.

Schrodinger Bridge problem. Considering the continuous case, the Schrodinger Bridge problem
is stated using continuous stochastic processes instead of one with predefined timesteps. Thus,
the Schrodinger Bridge problem finds the most likely in the sense of Kullback-Leibler divergence
stochastic process 1" with respect to prior Wiener process W€, i.e.:

min  KL(T||W¢), (14)
TeF(po,p1)

where F(pg,p1) C P(C([0,1]), RP) is the set of all stochastic processes pinned marginal distribu-
tion po and p; at times 0 and 1, respectively. The minimization problem (T4) has a unique solution
T* which can be represented as forward or backward diffusion (Léonard, 2013):

T* : dxy = v*F (24, t)dt + VedW,", 0 ~ po(z0),

T* :dry = 0" (my, t)dt +VedW;,  x1 ~ p1(z1),
where v** and v*~ are the corresponding drift functions.

Static Schrodinger Bridge problem. As in discrete-time, Kullback-Leibler divergence in (I4)
could be decomposed as follows:

KL(T||W*) = KL(p" (z0, 21)|[p" (w0, 21)) +/KL(T\aco,xl||V[/\Zo,zl)dPT($07$1)~ (15)

It has been proved (Léonard, [2013) that for the solution 7™ it’s conditional process is given by
Tiopor = Wing,ay- Thus, we can set Ty, o, = WS, . zeroing the second term in (15) and
minimize over processes with T}, ., = Vszo_zl. This leads to the equivalent Static formulation of
the Schrodinger Bridge problem:

min  KL(q(zo,21)|[p" " (z0,21)), (16)
q€Il(po,p1)

where IT(pg, p1 ) is the set of all joint distributions with marginals py and p;. Whether time is discrete
or continuous, the decomposition of SB leads to the same static formulation, which, is closely related
to Entropic OT as shown in ().

A.2 ITERATIVE PROPORTIONAL FITTING (IPF) FOR CONTINUOUS-TIME

Following the main text, we describe the IPF procedure for continuous-time setup using stochas-
tic processes. Likewise, IPF starts with setting T° = pq (xo)foo and then it alternates between

following projections:

. 2k def
T2 = projy (p (21) 7% ) & pu a0 T2, (a7
. 2kt1 def
T2 = projg (p"™""" (o) T2 ) & i T2 (18)

As in the discrete-time case, these projections replace marginal distributions p” (z) and p” () in
the processes pT(l‘1>T‘zl and pT(mo)T‘w0 by p1(x1) and po(xo) respectively. Similarly to discrete-
time formulation, the sequence of T converges to the solution of the Schrodinger Bridge problem
T* implicitly the reverse Kullback-Leibler divergence KL(T*||T*) between the current process 7%
and the solution to the SB problem T'x. Additionally, it should be mentioned that projections are
conducted by numerical approximation of forward and time-reversed conditional processes, 7|,
and T, , by learning their drifts via one of the methods: score matching (De Bortoli et al., 2021) or
maximum likelihood estimation (Vargas et al., [2021)).

A.3 ITERATIVE MARKOVIAN FITTING (IMF) FOR CONTINUOUS-TIME

IMF introduces new projections that alternate between reciprocal and Markovian processes starting
from any process 7° pinned by pg and p1, i.e. in F(po, p1):

. . def 2k €
T2k+1 _ Proj (T2k) def )T (960,331)W|w0,z17 19)

14
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2k+2 _ s 2k+1Y def 2R+t 2k+1 _ T3P+ 2k+1
T = proj (%) = p (@0) Tz =P (@) Ty, - (20)
forward representation backward representation

where we denote by T, the Markovian projections of the processes 7', which can be represented as
the forward or backward time diffusion as follows (Gushchin et al., 2024, Section 2.1):

.’El—"E;L

1—¢ pT(l'1|1't)dl'1,

Thr - dmt = vM(xt ,t)dt + def, o NpT(LL‘O), vt (mt b)) = /

_ . _ _ To — Ty
T sdey = vy o e+ VedWe s oy~ ), vyl o) = [ 240 ol
This procedure converges to a unique solution, which is the Schrédinger bridge 7™ (Lé&onard, [2013)).
While reciprocal projection can be easily done by combining the joint distribution p* (xq, z1) of the
process T and Brownian bridge W|ac z,» the Markovian projection is much more challenging and

must be fitted via Bridge matching (Sh1 et al.| 2023 |Liu et al.; |Peluchetti, 2023b)).

Since the result of the Markovian projection can be represented (8) both by forward and back-
ward representation, in practice, neural networks ”9 (forward parametrization) or v, (backward
parametrization) are used to learn the corresponding drifts of the Markovian prOJeCthIlS In turn,
starting distributions are set to be pg(x¢) for forward parametrization and p; (z1) for the backward
parametrization. So, this bidirectional procedure can be described as follows:

ak+1 Tk € 4k+2 4k+1
T =p° (xo,a)Wipy o, T = pr(x)Tyy,, 21
proj (T4%) backward parametrization
4k+3 _ TAR+2 € Ak+4 4k+3
T =p (o, 2)Wpo 2y T = po(xO)TMle . (22)
—_—
proj (T4k+2) forward parametrization

A.4 ITERATIVE PROPORTIONAL MARKOVIAN FITTING (IPMF) FOR CONTINUOUS-TIME

Here, we analyze the continuous version of the heuristical bidirectional IMF. First, we recall, that
the IPF projections projo(7") and proj; T ) given by (17) and (18] of the Markovian process T is just
change the starting dlstrlbutlon from p* (x¢) to po(xo) and p* (1) to py(x1).

Now we note that the process 7***2 in (21) is obtained by using a combination of Markovian
projection proj ¢ given by in forward parametrization and IPF projection proj; given by (I8):

. . k41
T2 = pi () Tyt ! = projy (p7 7 (2)Tyft)) -

projy (proj u, (T+F1))

In turn, the process 7414 in (22)) is obtained by using a combination of Markovian projection proj
given by in backward parametrization and IPF projection projo given by (17):

ak+3 _ 4k+3 _ .o TR 4k+3
T = Do ( )TM|350 projg (p ( )T]\/[|L130> .

projo (proj g (T4++3))
Combining these facts we can rewrite bidirectional IMF in the following manner:

Iterative Proportional Markovian Fitting (Conitnious time setting)

T+ = T (2, )Wy THF2 = pl(ml)Tﬁ;} (23)
proj, (T'4#) proj, (proj rq (T4541))

TAk+3 _ pT4k+2 (3307951)foo,x17 k4 _ pO(xO)Twﬁ@f . 24)
proje (T'45+2) i oy (T2))

Thus, we obtain the analog of the discrete-time IPMF procedure, which concludes our description
of the continuous setups.
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B THEORETICAL ANALYSIS FOR GAUSSIANS

Here we study behavior of IPMF with parameter ¢ between D-dimensional Gaussians py =
N (o, Xo) and p; = N(u1,%1). For convenience, we use notation ¢, instead of €. For D = 1,
we prove that the parameters of ¢** with each step exponentially converge to desired values
140, 41, 20, 21, €« Tor continuous and discrete (with N = 1) IMF. The steps are as follows:

1) In Appendix we reveal the connection between 2D-dimensional Gaussian distribution and
solution of entropic OT problem with specific transport cost, i.e., we prove our Lemma [3.1]

2) In Appendix [B.2] we study the effect of IPF steps on the current process. We show that during
these steps, the marginals become close to py and p;, while the optimality matrix does not change.

3) In Appendix B3] we study the effect of IMF step on the current process when D = 1. We show
that after IMF (continuous or discrete with N = 1), marginals remain the same, while the new
correlation becomes close to the correlation of the static €.-EOT solution between marginals.

4) Finally, in Appendix [B:4] we prove our main Conjecture [3.2) for case of continuous or discrete
(with N = 1) in dimension D = 1.

B.1 GAUSSIAN PLANS AS ENTROPIC OPTIMAL TRANSPORT PLANS

Proof of Lemma[3.1] We note that we can add any functions f(x() and g(z1) depending only on
or x1, respectively, to the cost function c(xg, 1) = a:lTAxo, and the OT solution will not change.
This is because the integrals of such functions over any transport plan will be constants as they will
depends only on the marginals (which are given) but not on the plan itself. Thus, forany A € RP*P,
we can rearrange the cost term ¢(zg, 1) so that it becomes lower-bounded:

&(wo, 1) = | Awo|*/2 — 2 Azo + ||21]?/2 = | Ao — 21]?/2 2 0,

where ¢(xo, x1) is a lower bounded function. Following (Gushchin et al.,2023bl Theorem 3.2), the
conditional distribution ¢.(x1|2zo) with the lower bounded cost function ¢ can be expressed as:

ge(xolz1) o exp(—c(xo,x1) + fe(x0)) = exp (xlTAxo + fc(xo)) ,
where function f.(x1) depends only on x1. Moreover, we can simplify this distribution to

qe(xolr1) = ZupgZz, €xp (xIAxo) , (25)

where factors Z,, and Z,, depend only on xg and x;, respectively. Meanwhile, the conditional
distribution of ¢(z¢|z1) has a closed form, namely,

q(xolzr) = N (wolp' + P(X) " (a1 — 1), = P(X)'PT)
= ZyZp exp(z) (- PE) P TIP(E) ).

where factors Z,, and Z,,, depend only on x( and x1, respectively. Equating terms of ¢(zo|z1) and
ge(o|x1) which depend on ¢ and x; simultaneously, we obtain the required function

A=E)'PT(E-PE)IPHT (26)
which concludes that g solves 1-entropic OT with the cost function —z] Az;. O
B.2 IPF STEP ANALYSIS
We use IPMF with parameter ¢, between distributions A (110, Xo) and N (1, X1). We start with the
process N ((/f/o) , (21:30 g)) with correlation P .
Recall that one IPMF step consists of 4 consecutive steps:

1. IMF step refining current optimality value,
2. IPF step changing final prior to A (1, 31),
3. IMF step refining current optimality value,
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4. TPF step changing starting prior to N (po, Xo)-

We use the following notations for the covariance matrices changes during IPMF step:

(B 5) 2 (5 D= (9 5)
wp (S Py e B,

and for the means the changes are:

/ /
()= () = () 2 () = ().
v v M1 M1 v

Lemma B.1 (Improvement after IPF steps). Consider an initial 2D-dimensional Gaussian joint

distribution N ((lio) ; <EO P) > € Pa.uc(RP xRP). We run IPMF step between distributions

pPT S
Lo EO p
N (o, X0) and N (111, 31) and obtain new joint distribution N ((M”) , <(P”)T S”> ) Then,
the distance between ground truth 11, and the new joint distribution parameters decreases as:
1(5")"251(8") 2 = Iplla < Pall3- P13 - 15721872 — Iplla, 27)
IS0 =)l < NP 2 1Pl - 11202 (v = )|z, (28)

where P, = YgY?PS~V2 P, = (§)" PR % B, = (§)°V2P;Y? and P! =
b 1/2 i (8")~1/2 are normalized matrices whose spectral norms are not greater than 1.

Proof. During IPF steps, we keep the conditional distribution and change the marginal. For the first
IPF, we keep the inner part ;9|2 for all z; € RP:

N(if()|/J,0 +pS_1(.’E1 — l/),Z() —PS_1PT> :N($()|V, +P/E;1(ZC1 —Ml),S/ —P'Zfl(P’)T) .

This is equivalent to the system of equations:

Yo —PSTIPT = & - Py7YP)T, (29)
Pyt = PSTh (30)
po—PS™'v = vV —P'Y . 31)
Similarly, after the second IPF step, we have equations:
¥, - PSP = S —(P")Tx P, (32)
(Pt = PT(S), (33)
[y — pT(S/)—ll/ = ' _ (P//)Tzaluo. (34)

Covariance matrices. Combining equations (30), (29) and (33), (32) together, we obtain:

So— 8 = PSTYS—-%)S5'PT, /1 (B3, (35)
Ip—%(8)™" = PSY(Z—8)StPT(8)7L, /1B - (s~ (36)
S -8 = PT(S)'(Ip—%o(S) P, //(0), (37)
-8 = PS)TPSTHES, - 8)STIPT(S) P, //(36) insert to (37)
¥, -8" = (P")Te,'PSTH(%, - 8)S P T P”,  //change using (33)
(S)ES, (") F —Tp = (S")B(P) Sy -5y PPS T (SIS STE —Ip)- SRR, P x, T PSR,

The matrices (29) and (32) must be SPD to be covariance matrices:

Yo — PS™'PT =0 — Ip = 251/2155—1/2 ) 571/2]3TZE1/27

17
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S — (P//)Tzalp// =0 — Ip > 281/2PH(S”)_1/2 . (S”)_l/Q(P”)TZal/Q.

In other words, denoting matrices P, := X5 "/*PS=1/2 and P! := ¥;'/?P"(5")~1/2, we can
bound their spectral norms as || P, ||z < 1 and |P/||2 < 1. We write down the final transaction for
covariance matrices:

(8" 2%,(8")"F —Ip =P - B, - (S72%,872 —Ip)- Pl . P (38)

Hence, the spectral norm of the difference between ground truth X7 and current S” drops exponen-
tially as:
_1 _1 - _1 1
1(S")72%1(S") "2 — Ipll2 < | Pull3 - [1P/N3 - 1S72%187% — Ipa.

Means. Combining equations (31), (30) and (34), (33) together, we obtain:

po—v = PSTWw— Pt =PETN v - m), //, (39)

I/”*,U,l _ (PI/)nglﬂopr(S/)ill//ZPT(S/)il(/Lofyl), //7 (40)

S = PSP (- ), J insert () to @)
S0 ) = S PT(S)TE(S) RS S (- ).

The matrices (29) and (32) must be SPD to be covariance matrices:
S PSP =0 = Ip= (S)TEPST SR (P)T(S) S,
S —PT(S) P00 =  Ip=XVPPT(S)V2 (9 2Pyt
1 . N
Denoting matrices P, := (') 2 P'S, ? and P, := (S')"'/2P¥; /2 we can bound their spectral

norms as || P/, |2 < 1 and ||P,||2 < 1. We use this to estimate the ¢5-norm of the difference between
the ground truth pq and the current mean:

1

S2W —m) =P P, -S (v — ), (@1)

_1 ~ 1
1202 (" = pa)llz < I8 Ml - I1PA Il - 155y 2 (v = ) 2.
O

Lemma B.2 (IPF step does not change optimality matrix A). Consider an initial 2D-
dimensional Gaussian joint distribution N ((/f/O) , (gpr f;)) S PQ,QC(RD X RD). We
run IPF step between distributions N (uo, o) and N (u1,31) and obtain new joint distribution

/ / /
N ((;1) , (}S;, gl) ) Then, IPF step does not change optimality matrix A, i.e.,

A=E(P,%,5) =E(P, 5, %)

Proof. The explicit formulas for Z(P, ¥, S) and Z(P’, 5", %) are
2(P,%0,S) = S7'PT.(%y— PSIPT),
2P, 8 = NPT (S -PEINPH).
The first terms are equal due to equation (30), and the second terms are equal due to (29).

We can prove this lemma in more general way. We derive the formula (26) for A only from the shape
of the conditional distribution g(z¢|z1) . During IPF step, this distribution remains the same by

design, while parameters .S, P change. Hence, IPF step has no effect on the optimality matrix. [
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B.3 IMF STEP ANALYSIS IN 1D

Preliminaries. In case D = 1, we work with scalars g, p1,03,0% instead of matrices
10, 41, X0, 21. The correlation matrix P can be restated as P = pogoy, where p € (—1,1) is
the correlation coefficient. Using these notations, formula for optimality coefficient x € R
(instead of matrix A) can be expressed as

=(p,0,0") & —F
— p,O’,O’ - O'O'/(].—pQ)

The function = is monotonously increasing w.r.t. p € (—1,1) and, thus, invertible, i.e., there exists
a function 271 : (=00, +00) x Ry x Ry — (—1,1) such that

x202(c")?2 +1/4-1/2
xoo! '

= X € (—00, +00). (42)

= (x,0,0") = (43)

The inverse function is calculated via solving quadratic equation w.r.t. p.

In our paper, we consider both discrete and continuous IMF. By construction, IMF step does change
marginals of the process it works with. However, for both continuous and discrete IMF, the new
correlation converges to the correlation of the £,-EOT between marginals.

Lemma B.3 (Correlation improvement after (D)IMF step). Consider a 2-dimensional Gaussian dis-
tribution with marginals p = N (1, 0%) and p’ = N (1, (¢")?) and correlation p € (—1,1) between
its components. After continuous IMF or DIMF with single time point t, we obtain correlation pyeqy-
The distance between py,e,, and EOT correlation p, = Z~'(1/c.,0,0") decreases as:

|Pnew =P < v lp = pul,
where factor +y for continuous and discrete IMF (with N = 1) is, respectively,

o2(c")2 +e2/4—¢,/2
Ye(o,o') = (@) ,/ / ) 44)
oo
1

!
"4(o, 0%, 1) 1 2(1—0)202(0 )2+t (1— ) (12(c/ )2+ (1—1)202)e+ 12 (1—1)2e2
+ (1-t)2((1—t)o2+too’)2+t2(t(c')2+(1—t)oo’)2+t(1—t)((1—t)o+to’)2e.

. (45)

Proof. Continuous case. Following (Peluchetti, 2023a, Eq. 42), we have the formula for py,eq:

tanh ™! (i—;) +tanh™! (Z’—z)

Prew(p) = expl —es > 0, (46)
c3
a = et 2(0')(po? = (0)%),e3 = V/(ex + 2(p + 1)02(0")) (e« +2(p — 1)0%(0")?),
= eo+20%(p(c")? - ?).

The map ppew(p) is contraction over p € [—1,1] with the contraction coefficient 7.(c, o’) &

Y 02(0/)2—;82/4 /2 < 1. The unique fixed point of such map is p. = P(1/e.,00,01), since IMF
does not change ¢.-EOT solution. Hence, we derive a bound

|pnew(p) - p*' = |pnew(p) - pnew(ﬂ*)' < ’VC(Ua 0/)|p - p*"

Discrete case (N = 1). In this case, we use notations from (Gushchin et al., [2024), namely, we

denote covariance matrix Zo P er o? poo’
P 21 - pO'CT/ (0/)2 .

The general formulas of DIMF step are given for time points 0 =g <t} < --- <ty <tnyy1 = 1.
Following (Gushchin et al.,[2024)), we have an explicit formula for reciprocal step. Forany 1 < k <
N, we have joint covariance between time moments

Yoot = (1—t1)*T0 +2t:(1 — tx) P+ 1351 + tx(1 — tg)es,
Stepite = (I—=t6) (1 —tp1) B0 + [(1 = ti)trsr + (L — tep1)te)] P + b1 X1+t (1 — thpn)ex,
Etl,O = (1—t1)20+t1p,
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El»tN = tn21+ (1 - tN)P.

Matrices ¥y, , , ¢, and X, ;, depend on P. For Markovian step, we write down an analytical formula
for the new covariance X,,¢,, between marginals:

N
def —
f(P) = Ppew(P) = H (Etk+1,tk 'Etkl,tk) - Yo,
k=0

The derivative of f'(P) is as follows:

N Ni {[(l—tk)tk;1+tk(1—tk+1)] - 2tk(21:—tk)P} )
=1 tet1,tk tr,tk

N
_ Z [_thrl(l —tht1) + tern (I —te) + (1 —tigr)  te(l —t)
Ztk+1>tk+1 Etk+1,tk Ztlmtk

} F(PYAT)

In the case of single point ¢ = ¢; (N = 1), we prove that the function f(P) is a contraction map. The
sufficient condition for the map to be contraction is to have derivative’s norm bounded by v4 < 1.

Firstly, we can write down the simplified formula p;,c.,(p) in our original notations:

(1 =t)o + tpa')(ta’ + (1 — t)po)

new - . 48
Prew(P) = A 507 1 2t(1 = t)poro’ + B (07 + (1 — D)o (“48)
Next, we simplify derivative (#7):

Zo,t = (1_t)20+tpv

Ygp o= t-X1+(1-t) P

S = (1= Sg+21—t)t-P+t*- S +t(1—t)eg=(1—1t)- S+t Sp1 + (1 —t)e,

1- )%, 1501 51 - (1— )04

) = ! T L,

fP) Yt it Yt Ve

We define new variables iO,t &t (1=t St,l def t¥;1 and €, = t(1 — t)e,. We note that while
Pe [—\/ 2021,V 2021] the value X ; +X; 1 = (1 — t)2 -0+ 2(1 - t)t -P+1t*.%; > 0. Then,
we restate f' as:

) by 2503
o= = 0t 4y oht  _ So0esdr (49)
Yo+ 1+ E Bort+Zii+E (Bor+ X1+ EL)?
(io,t + i1,75)(20,15 + iu +E.) — Qio,til,t
(X0t + 21,0 +64)2

i:(2),15 + i% ¢ T (io,t + il,t)g*

- S0 45 B (50)
(Bo,e + X1t +E4)?
_ S3, 4+ 5%+ (Do + D1p)és .
i(2),t +2%0,51 + i%,t +2(X0.s + B1.4)Ex + 2
1
- : (52)

250,¢51 ¢+ (S0,e+51,¢)Ex+82
Eg,tJrZ%ﬁ(Eo,tJer,t)é*

1+

We note that all terms in (50) are greater than 0:

0< f(P), Pe[-vVEEi, VEZil]. (53)
In negative segment P € [—/3¢X1,0], the derivative f’ is greater than in positive segment

[0,v/3031], and edge value f(—v/XoX1) > —y/2oX;. Thus, in negative segment, the conver-
gence to the fixed point p./>0>1 > 0 is faster, than in positive segment.
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For P € [0,/3¢X1], we can bound the fraction in denominator of (52) by taking its numerator’s
minimum at P = 0 and its denominator’s maximum at P = /Y>>, i.€,

0 < f' <va(Xo, 21,t) <1,

1
~va(Zo, X1,t) = - 2 (1_1)280 %, (1) (25, F(1_1)2%0)e t 2 (1_1)2e2
(1-)2((1—t)Zo+tv/Bo21)2+12 (121 +(1—t) VEX1) 2+ (1-1) (1) VEo +tv/E1) e

We note that v4(X0, X1, t) is increasing function w.r.t. g, X1.

If we put into the function f argument P, = p,+/Y>; corresponding to the ,-EOT correlation,
DIMF does not change it. Hence, P is the fixed point of f(P), and we have

|Pnew - P*| = ‘f(P) - f(P*)| < ’yd(207217t)|2 - Z*‘
Dividing both sides by /X1, we get
|pnew - P*| < 7d<207 Zlvt)|p - P*|~
O

Lemma B.4 (y improvement after (D)IMF step). Consider a 2-dimensional Gaussian distribution
with marginals p = N(u,0?) and p' = N/, (0')?) and correlation p € (—1,1) between its
components. After continuous IMF or DIMF with a single time point t, we obtain new correlation
Prew Such that |prew — pi| < y|p — pi| where p,. = P(V/e.,0,0") and v < 1 is from ({#4) for IMF
and from (#3) for DIMF. We have bound in terms of X = Z(p, 0,0") and Xpew = Z(pnew, 0,0"):

|X’new - 1/5* S Z(P7 ,0*7’}’) : |X - 1/5*‘7 (54)
(1 — max{p., |p|}?)
Wp,pery) = |1—(1— <1
(P xsY) [ (1=7) 1+ max{ s [pI ]2

Proof. Monotone. The function py.,, from {@6) for continuous IMF and from for DIMF is
monotonously increasing on (—1, 1). For continuous IMF, with the growth of p, ¢ grows faster than

1 Or ¢, hence, <, 22 and tanh ™! (<) . tanh™! ( &2 ) decrease. Thus, the power in the exponent
c3’ c3 c3 ) [

of Prew and ppey itself increase. For DIMEF, the derivative of p,,,, greater than zero based on @])

The monotone means that the value p,,.., always remains from the same side from p:

{,0 > pe = Pnew(p) > Px = Prew(ps), (55)

P < pe = Prew(p) < pa,

The same inequalities hold true for x = Z(p, 0, 0"), Xnew = Z(pnew, 7, 0’) and x. = /e, as well:
if x < X« then xnew < X« and vice versa, since Z(p, o, 0’) is monotonously increasing w.r.t. p.

Z Properties. In this proof, we omit arguments o, 0’ of 2~ 1(x, o, 0’) and Z(p, 7, 0’), because they
do not change during IMF step. The second derivative of the function Z(p) is

dzj( )= 2p(3 +p%)

2" g (1= )
Hence, we have %(p) < 0 for p € (—1,0] and %(p) > 0 for p € [0,1). It means that the
function Z(p) is concave on (—1, 0] and convex on [0, 1).

The function Z(p) is monotonously increasing w.r.t. p, thus, decreasing of the radius h & lo — p«l
around p, causes the decreasing of |x — x| around x... We consider two cases: x > Y and x < Xx.

Case x > .. Wehave p = p, + h,x = E(p« + h) = E(p) and Z(ps + Yh) > Xnew- We compare
the difference using convexity on [0, 1):

dE
dp

V

X = Xnew 2= E(ps+h) =E(pe +9h) = (ps +h = (p = h7)) - —(ps + D)

—_

d=
= (1-=9)h- dip(p* +vh).
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Since the derivative of = is always positive, we continue the bound:

E(ps +h) —Z(ps +vh) > min Sy 1-— — Dyl
(ps +h) — E(ps +7h) yefin dp(p)( Yo = pil
Next, we use Lipschitz property of Z, i.e.,
d=
— Y« == —Z(ps)| < max — — Pxls
el = ) - Sl < e [0l o

and combine it with the previous bound

min |2(/)

—_ —_ "E[p«,

X = Xnew 2 E(pe +h) = Epe +9h) 2 e (=) - e
max |7(P)|
p'E[pxsp]

Case x < x«. Wehave p = p, — h,x = E(p« — h) = E(p) and Z(p« — vh) < Xnew. There are
three subcases for x, Xnew positions around O:

1. For positions Y« > Xnew > X = 0, we use convexity of Z on [0, 1) and obtain

_ _ d=
Xnew =X = Z(ps —7h) =E(px —h) = (1 =7)h- dfp(p* —h)

d=
?p(p)

> min (L =lp— p«l-

p'E[px—h,px]

2. For positions X > 0 > Xnew > X, We use concavity of Z on (—1, 0] and obtain
- - d=
Xnew =X = B(px —7h) = E(px —h) = (1 =7)h- dfp(p* —7h)

> min (L=)lp = pal-

p'Elpx—h,p.]

d=
dip(p)

3. For positions X« > Xnew > 0 > X, we use concavity of Z on (—1,0] and convexity of =
on [0, 1) and obtain
—X = Bl —vh) — E(p. — h) = [E(ps — vh) — E(0)] + [E(0) — E(p — h)

XTLCU}
d= d= d=
> « —Yh) - —(0 h—pe) —(0)=(1—-~)h-—(0
> (p ’V)dp()-l-( p)dp() (1—=7) dp()
d=
> min — (| (1 - — Dyl
Z dp(p) (L =)lp = psl
Overall, we make the bound
new Z min j ! 1_ — Px
X X 7 ()] (X =)lp = psl
; = v
min |4
p'E[p;p+] | dp @l
|dj(p,)|(1—v)lx—x*|-
p'Elpipa] PP

For the function Z(p) = m, the centrally symmetrical derivative is

d= 1+ p?
7(/)) = — 9\2°
dp ooo1(1 — p?)

The derivative Z—f has its global minimum at p = 0. It grows as p — %1, hence, the maximum value
is achieved at points which are farthest from 0:

=, ,
di,o (p

d=

dip(p)v

max
p'Epx,p]
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—_
—
—

= d=
max |—(p < max{ %)y = },
e dp(p) < dp(p) dp(lpl)
min d= —(p) ! .
pel=1,+11 | dp 7001

Thus, we prove the bound

(1 — max{p.,[p[}?)? a

IX = Xx| = [Xnew = X« = [Xnew — X| > —MIX = X!
1 4 max{p., [p|}?
(1 — max{p.,[p[}?)?
e — Xo < [1—(1—7) )
1+ max{p., |p[}?

O

B.4 PROOF OF IPMF CONVERGENCE CONJECTURE[3.2]FOR 1-DIMENSIONAL GAUSSIANS

Theorem B.5 (Quantitative convergence of IPMF for 1-dimensional Gaussians). Let py =
N(po,08) and p1 = N (M1,01) be 1-dimensional Gaussians. Assume that we run IPMF proce-
dure in the continuous time or in discrete time with N = 1 intermediate point, starting from some
2-dimensional Gaussian distributio

2
q()(l‘o,Il) :N <<'L:/O> 5 ( 70 p0§880>) with Po S (*1,1),50 > 0
0

P000S0

and denote the joint distribution obtained after k IPMF steps by

2
4k _ Ko o0 PrOOSK
¢ (zo, 1) =N (<Vk> ) <pk(708k 57 )) ’

Denote x}, & E(pk, 00, Sk )- Then the following bounds hold true:

2
52 S 1 1
k 2k 50 k 2k
|5 -l <a™5 -1, |-l <aflvo—ml, k== <B%xo——I
o2 o3 € €x

where factors o, B < 1 depend on IPMF type (discrete or continuous), initial parameters sg, vy, po,
marginal distributions py, p1 and €. In particular, limy_, o px, = p*, where p* is the correlation of

62

the static SB solution q* between pg,p1, namely, p* = (\/ogoi + 5 — 5)/(0001).

Proof. Notations. We denote the variance of the 0-th marginal after the k-th IPMF step as s),. For

the first one, we have formula s, = \/ ol —oipd (1 - —) where py is the correlation after the

first IMF step. More explicitly, pg def Prew(Po)s Where ppeq, is taken from for continuous IMF
and from MD for DIMF. We denote optimality coefficients Xk: = _,(pk, 00, Sk) and X* = 1/8*

Ranges. We note that IMF step keeps s,v, while IPF keeps x. Due to update equa-
tions for x (33) and for s,v (38), the parameters sj,x) remain on the same side from

min

. . def
al,é, respectively.  Namely, we have ranges for the variances s € [o] ar] =

701

[min{oy, so}, 1nnax~{01,so}],s§€ € [ogin,

Xk € ™, X9 € min{x.., [xo|}, max{x.. [xol}]

Update bounds. We use update bounds for x (54) twice, for s @ and for v @) however, we need
to limit above the coefficients |=~1(y, o, 0”)] andl("‘l(x,a o), 2" (X*, 0,0'),7(c,0")) over the

considered ranges of the parameters o 6 [U ,omer] o 6 [0 o] and y € [x™", X
The functions 271, [, y are defined in , (44) (or (45) with fixed t), respectively.

Since the function |=71(x,0,0')| is increasing w.r.t. 0,0’ and x symmetrically

around 0, we take maximal values oF*®",o7"*" and x™". Similarly, the function

max

o] def [min{oy, sj }, max{og, s;}] and parameters

min

>We consider po € (—1, 1) only: if po € {—1, 1}, after the first IMF step, it changes to € (—1,1).
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(27 (x,0,0"), 27 (x«,0,0"),7(0,0")) is increasing w.rt.  all arguments symmetrically
around 0. Hence, we maximize the function |71 | and the function +, which is also increasing w.r.t.
oand o’.

Final bounds. The final bound after k step of IPMF are:
st — 0¥l < osf — o,

vk — | < oFluo — pal,
Ixk — Ye.| < B*|xo — Ve

)

mar gmar)) and o

where 8 = I(E'(X™, 00", 07), BT (Xss 0T, 071, (08
=-1 (x™® g o"*) taking [ from l) ~ from for continuous IMF and from with
fixed ¢ for discrete IMF. O

max

C ADDITIONAL EXPERIMENTS

C.1 SB BENCHMARK

We additionally study how well implementations of IPMF procedure starting from different starting
processes map initial distribution pg into p; by measuring the metric BW3-UVP also proposed by
the authors of the benchmark (Gushchin et al, 2023b). We present the results in Table 2] One can
observe that DSBM initialized from different starting processes has quite close results and so is the
case for ASBM experiments with e € {1, 10}, but with ¢ = 0.1 one can notice that ASBM starting
from IPF and Independent py — pg experience a decline in BW2-UVP metric.

e=0.1 e=1 e =10

Algorithm Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best algorithm on benchmark Varies 0.016  0.05 0.25 0.22  0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23
DSBM-IMF 0.1 0.14 0.44 3.2 0.13 0.1 0.91 6.67 0.1 5.17 66.7 356

DSBM-IPF 0.35 0.6 0.6 1.62 0.01  0.18 0.91 6.64 0.2 3.78 81 206

DSBM-Ind pg — po 0.08  0.38 0.62 1.72 0.13  0.18 0.84 7.45 0.04  3.72 99.3 251
SF2M-Sink IPMF  0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316 812

ASBM-IMF' 0.016 0.1 0.85 11.05 0.02 0.34 1.57 3.8 0.013 0.25 1.7 a.7

ASBM-IPF 0.05  0.73 32.05 10.67 0.02 0.53 4.19 10.11  0.002 0.18 2.2 5.08

ASBM-Ind pg — po 0.36  0.76  16.33  22.63 0.07 0.48 1.93 5.36 0.04  0.23 1.04 2.29

Table 2: Comparisons of BW%»UVP 1 (%) between the ground truth static SB solution pT (xo, z1) and the learned solution on the SB
benchmark.
The best metric over is bolded. Results marked with { are taken from (Gushchin et al.}[2024) or (Gushchin et al.}|2023b).

C.2 CELEBA

SDEdit starting process.

The IPMF framework doesn’t require the starting process to have pg,p; marginals or to be a
Schrodinger bridge. Then one can try other starting processes that would improve the performance of
the IPMF algorithm. Properties of the starting process that would be desirable are 1) ¢(xg) = po(zo)
and ¢(z1) marginal to be close to p1(x1) and 2) g(xo, 1) to be close to a Schrédinger bridge. In
the IMF or IPF we had to choose one of these properties because we can’t satisfy both of them
completely.

We propose to take a basic image-to-image translation method and use it as a coupling to induce a
starting process for the IPMF procedure. Such a coupling would provide 1) ¢(z¢) = po(zo) and
¢(x1) marginal being close to p; and 2) meaningful pairs between x( and x; that would be relatively
close to the Schrodinger Bridge. We use SDEdit[Meng et al| which requires an already trained
diffusion model (SDE prior) and given an input image =, SDEdit first adds noise to the input and then
denoises the resulting image by the SDE prior to make it closer to the target distribution of the SDE
prior. Various models can be used as an SDE prior, we explore two options: trainable and train-free.
As first option we train the DDPM model on the Celeba 64 x64 size female only
part and as a second option we take an already trained Stable Diffusion (SD) V1.5 model [Rombach|
(2022) with text prompts conditioned on which model generates 512x512 images similar to
the CelebA female part. We then apply SDEdit with the Celeba male images as input to produce

24



Under review as a conference paper at ICLR 2025

@z ~po (b) DSBM-SD SDEdit (c) DSBM-DDPM SDEdit
Figure 8: Results of CelebA at 64 x 64 size for male—female translation learned with DSBM using SD
SDEdit and DDPM SDEdit starting processes for € = 1.

similar female images using trainable DDPM and train-free SDv1.5 approaches, we call the starting
processes generated by these SDEdit induced couplings DDPM-SDEdit and SD-SDEdit. SDEdit,
DDPM and SDv1.5 hyperparameters are provided in Appendix [D}

The visualization of the DSBM implementation of the IPMF procedure starting from DDPM-SDEdit
and SD-SDEit processes can be seen in Figure [§] and quantitative evaluation of FID in Figure [6]
evaluation of CMMD in Figure [Da]and evaluation of MSE in Figure [0b]

Additional quantitative study.

In Figure[9] we provide additional quantitative study of IPMF convergence in CMMD
2024) and Mean Squared Error between inputs and outputs of translation by plotting them as
a function of IPMF iteration. Both metrics are calculated on Celeba male—female (64 x 64) test
set. We notice CMMD plot resembles one of FID, see Figure |6} and MSE plot is approximately the
same for the DSBM and ASBM groups.

—— DSBM-IMF —— DSBM-IMF

—— DSBM-SD SDEdit 0.30 1 —— DSBM-SD SDEdit
—— DSBM-DDPM SDEdit —— DSBM-DDPM SDEdit
1.6
—— DSBM-Ind po —po —— DSBMInd po - po
—— ASBM-IMF 0251 — -
1.4 ASBM-IMF
—— ASBM-Ind po— po —— ASBM-Ind po— po

CMMD

005 /

i T T ; T ; T ; T T T ; ; T ; T ; ; T
0o 2 4 6 8 10 12 14 16 18 0o 2 4 6 8 10 12 14 16 18
IPMF IPMF

(a) CMMD (b) MSE(z, 9)

Figure 9: Celeba male—female (64 x 64) test set metrics as a function of IPMF iteration for DSBM-
IMF, DSBM-Ind py — po, DSBM-DDPM SDEdit, DSBM-SD SDEdit, ASBM-IMF, ASBM-Ind
Po — po is generated by model given x as an input.

D EXPERIMENTAL DETAILS

D.1 GENERAL DETAILS

Authors of ASBM (Gushchin et al, 2024) kindly provided us the code for all the experiments. All
the hyperparameters including neural networks architectures were chosen as close as possible to the
ones used by the authors of ASBM in their experimental section. Particularly, as it is described in
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Model Dataset Start process | IPMF iters | IPMF-0 Grad Updates | IPMF-k Grad Updates

ASBM Celeba All 20 200000 20000

DSBM Celeba All 20 100000 20000

ASBM | Swiss Roll All 20 400000 40000

DSBM | Swiss Roll All 20 20000 20000

ASBM | cMNIST All 20 75000 38000

DSBM | cMNIST All 20 100000 20000

ASBM | SB Bench All 20 133000 67000

DSBM | SB Bench All 20 20000 20000
Model Dataset Start process | NFE | EMA decay | Batchsize | D/Goptratio | LrG LrD
ASBM Celeba All 4 0.999 32 1:1 1.6e-4 | 1.25e-4
DSBM Celeba All 100 0.999 64 N/A le-4 N/A
ASBM | Swiss Roll All 4 0.999 512 1:1 le-4 le-4
DSBM | Swiss Roll All 100 N/A 128 N/A le-4 N/A
ASBM | cMNIST All 4 0.999 64 2:1 1.6e-4 | 1.25e-4
DSBM | cMNIST All 30 0.999 128 N/A le-4 N/A
ASBM | SB Bench All 32 0.999 128 3:1 le-4 le-4
DSBM | SB Bench All 100 N/A 128 N/A le-4 N/A

Table 3: Hyperparameters of models from Celeba SwissRoll cMNIST 4.4{and SB Bench
experiments[4.3] In "Start process” column "All” states for all the used options. "N/A” state for either not
used or not applicable corresponding option for the algorithm.

(Gushchin et al., 2024, Appendix D), authors used DD-GAN (Xiao et al.) with Brownian Bridge
posterior sampling instead of DDPM’s one and implementation from:

https://github.com/NVlabs/denoising—diffusion—gan
DSBM (Shi et al., [2023)) implementation is taken from the official code repository:
https://github.com/yuyang-shi/dsbm-pytorch

Sampling on the inference stage is done by Euler Maryama SDE numerical solver (Kloeden, |1992)
with indicated in Table 3| NFE.

Independent py — po starting process in all the experiments was implemented in mini batch manner,
ie., {zon )y ~ po and z1 batch {z1 ,})_; ~ ¢°(-|{@0,}),) is generated by permutation of
{70, }_; mini batch indices.

The Exponential Moving Average (EMA) has been used to enhance generator’s training stability
of both ASBM and DSBM. The parameters of the EMA are provided in Table 3} in case the EMA
decay is set to "N/A” no averaging has been applied.

D.2 ILLUSTRATIVE 2D EXAMPLES

ASBM. For toy experiments the MLP with hidden layers [256, 256, 256] has been chosen for both
discriminator and generator. The generator takes vector of (dim+1+2) length with data, latent vari-
able and embedding (a simple lookup table torch.nn.Embedding) dimensions, respectively.
The networks have torch.nn.LeakyReLU as activation layer with 0.2 angle of negative slope.
The optimization has been conducted using torch.optim.Adam with running averages coef-
ficients 0.5 and 0.9. Additionally, the CosineAnnealingLR scheduler has been used only at
pretraining iteration with minimal learning rate set to le-5 and no restarting. To stabilize GAN
training R1 regularizer with coefficient 0.01 (Mescheder et al., 2018) has been used.

DSBM. MLP with [dim + 12,128,128, 128,128,128,dim] number of hidden neurons,
torch.nn.SiLU activation functions, residual connections between 2nd/4th and 4th/6th layers
and Sinusoidal Positional Embedding has been used.
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D.3 SB BENCHMARK

Scroédinger Bridges/Entropic Optimal Transport Benchmark (Gushchin et al., [2023b) and
cBW3-UVP, BW2-UVP metric implementation was taken from the official code repository:

https://github.com/ngushchin/EntropicOTBenchmark

Conditional plan metric cBW2-UVP, see Table was calculated over predefined test set and condi-
tional expectation per each test set sample estimated via Monte Carlo integration with 1000 samples.
Target distribution fitting metric, BW2-UVP, see Table[2| was estimated using Monte Carlo method
and 10000 samples.

ASBM. The same architecture and optimizer have been used as in toy experiments[D.2] but without
the scheduler.

DSBM. MLP with [dim + 12,128,128,128,128,128,dim] number of hidden neurons,
torch.nn.SiLU activation functions, residual connections between 2nd/4th and 4th/6th layers
and Sinusoidal Positional Embedding has been used.

D.4 CMNIST

Working with MNIST dataset, we use regular train/test split with 60000 images and 10000 images
correspondingly. We RGB color train and test digits of classes ”2” and ”3”. Each sample is resized
to 32 x 32 and normalized by 0.5 mean and 0.5 std.

ASBM. The cMNIST setup mainly differs by the architecture used. The generator model is built
upon the NCSN++ architecture (Song et al.), following the approach in (Xiao et al.) and (Gushchin
et al., 2024). We use 2 residual and attention blocks, 128 base channels, and (1, 2,2, 2) feature
multiplications per corresponding resolution level. The dimension of the latent vector has been set
to 100. Following the best practices of time-dependent neural networks sinusoidal embeddings are
employed to condition on the integer time steps, with a dimensionality equal to 2x the number of
initial channel, resulting in a 256-dimensional embedding. The discriminator adopts ResNet-like
architecture with 4 resolution levels. The same optimizer with the same parameters as in toy
and SB benchmark [D.3] experiments have been used except ones that are presented in Table 3} No
scheduler has been applied. Additionally, R1 regularization is applied to the discriminator with a
coefficient of 0.02, in line with (Xiao et al.) and (Gushchin et al., |[2024)).

DSBM. The model is based on the U-Net architecture (Ronneberger et al., 2015) with attention
blocks, 2 residual blocks per level, 4 attention heads, 128 base channels, (1, 2, 2, 2) feature multipli-
cations per resolution level. Training was held by Adam (Kingma & Bal 2014)) optimizer.

D.5 CELEBA

Test FID, see Figure [0] is calculated using pytorch-fid packagel test CMMD is calculated using
unofficial implementation|in PyTorch. Working with CelabA dataset (Liu et al., 2015), we use all
84434 male and 118165 female samples (90% train, 10% test of each class). Each sample is resized
to 64 x 64 and normalized by 0.5 mean and 0.5 std.

ASBM. As in cMNIST experiments[D.4]the generator model is built upon the NCSN++ architecture
(Song et al.) but with small parameter changes. The number of initial channels has been lowered
to 64, but the number of resolution levels has been increased with the following changes in fea-
ture multiplication, which were set to (1,1,2,2,4). The discriminator also has been upgraded by
growing the number of resolution levels up to 6. No other changes were proposed.

DSBM. Following Colored MNIST translation experiment exactly the same neural network and
optimizer was used.

SDEdit coupling. DDPM |Ho et al.| (2020) was trained on Celeba female train part processed in the
same way as for other Celeba experiments. Number of diffusion steps is equal to 1000 with linear 3;
noise schedule, number of training steps is equal to 1M, UNet/Ronneberger et al|(2015) was used as
neural network with 78M parameters, EMA was used during training with rate 0.9999. The DDPM
code was taken from the official DDIM [Song et al.|(2020) github repository:
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https://github.com/ermongroup/ddim

The SDEdit method Meng et al.[(2021) for DDPM model was used with 400 steps of noising and
400 steps of denoising. The code for SDEdit method was taken from the official github repository:

https://github.com/ermongroup/SDEdit

The Stable Diffusion V1.5 Rombach et al.| (2022) model was taken from the Huggingface [Wol

model hub with the tag ”runwayml/stable-diffusion-vI-5”. The text prompt used is
”A female celebrity from CelebA”. The SDEdit method implementation for the SDv1.5 model was
taken from the Huggingface library Wolf et al|(2020), i.e. "StableDiffusionlmg2ImgPipeline”, with
hyperparameters: strength 0.75, guidance scale 1.5, number of inference steps 50. The output of
SDEdit pipeline has been downscaled from 512x 512 size to 64 x 64 size using bicubic interpolation.

E BROADER IMPACT.

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.
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