
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING PROTOTYPE-BASED FEDERATED LEARN-
ING WITH STRUCTURED SPARSE PROTOTYPES

Anonymous authors
Paper under double-blind review

ABSTRACT

Prototype-Based Federated Learning (PBFL) has gained attention for its com-
munication efficiency, privacy preservation, and personalization capabilities in
resource-constrained environments. Despite these advantages, PBFL methods
face challenges, including high communication costs for high-dimensional pro-
totypes and numerous classes, privacy concerns during aggregation, and uniform
knowledge distillation in heterogeneous data settings. To address these issues, we
introduce three novel methods, each targeting a specific PBFL stage: 1) Class-
wise Prototype Sparsification (CPS) reduces communication costs by creating
structured sparse prototypes, where each prototype utilizes only a subset of repre-
sentation layer dimensions. 2) Privacy-Preserving Prototype Aggregation (PPA)
enhances privacy by eliminating the transmission of client class distribution infor-
mation when aggregating local prototypes. 3) Class-Proportional Knowledge Dis-
tillation (CPKD) improves personalization by modulating the distillation strength
for each class based on clients’ local data distributions. We integrate these three
methods into two foundational PBFL approaches and conduct experimental eval-
uations. The results demonstrate that this integration achieves up to 10× and 4×
reductions in communication costs while outperforming the original and most
communication-efficient approaches evaluated, respectively.

1 INTRODUCTION

Federated Learning (FL) has emerged as an innovative paradigm in distributed machine learning,
enabling collaborative model training across decentralized devices while preserving data privacy
(McMahan et al., 2017). However, FL faces significant challenges, primarily due to heterogeneous
data distributions (Zhao et al., 2018; Li et al., 2022) and diverse model architectures across clients (Li
& Wang, 2019; Lin et al., 2020), which often lead to performance degradation. Researchers have
proposed various personalized and heterogeneous federated learning approaches to address these
challenges. For data heterogeneity, approaches include model interpolation (Li et al., 2021; Deng
et al., 2020; Lee & Choi, 2024), clustering (Sattler et al., 2020; Ghosh et al., 2020; Briggs et al.,
2020; Duan et al., 2021), and multi-task learning (Mills et al., 2021; Hanzely & Richtárik, 2020;
Huang et al., 2021). To tackle model heterogeneity, researchers have developed strategies such as
logit or representation exchange on public datasets (Li & Wang, 2019; Lin et al., 2020; Zhang et al.,
2021c) and partial model (Liang et al., 2020; Zhu et al., 2021) or auxiliary model sharing (Wu et al.,
2022; Zhang et al., 2022).

Despite the progress made by these approaches, many existing methods are not communication-
efficient, as they involve sharing large amounts of model parameters or logits on a public dataset.
This makes them unsuitable for resource-constrained devices, especially those with limited band-
width. In response to these limitations, Prototype-Based Federated Learning (PBFL) has emerged as
a promising alternative (Tan et al., 2022a). PBFL significantly reduces communication overhead by
transmitting only prototypes between the server and clients, with the communicated data size limited
to the prototype dimension multiplied by the number of classes. Moreover, PBFL enhances privacy
protection by design because prototypes represent averages of local models’ representations. Fur-
thermore, PBFL naturally facilitates personalization by allowing local models to distill knowledge
exclusively from global prototypes corresponding to classes in their local datasets.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite these advantages, PBFL still needs to overcome several challenges that limit its effective-
ness in specific scenarios. While generally more communication-efficient than other approaches,
PBFL can still incur high communication costs when the dimension of the prototype is very high
or the number of classes is vast. Additionally, some existing PBFL methods, such as (Tan et al.,
2022a), often require the server to know each client’s class distribution when aggregating local pro-
totypes, potentially compromising privacy (Zhang et al., 2024). Another challenge is that the uni-
form knowledge distillation of global prototypes without considering data heterogeneity can hinder
effective personalization, potentially leading to suboptimal performance.

To address these challenges and fully realize PBFL’s potential in resource-constrained environments,
we propose three novel methods that can be applied to existing PBFL frameworks. Class-wise Pro-
totype Sparsification (CPS) enforces structured sparse prototypes per class by assigning specific
representation dimensions to each prototype, zeroing out others. By transmitting only non-zero
dimensions, CPS significantly reduces communication costs. Privacy-Preserving Prototype Aggre-
gation (PPA) performs weighted averaging of local prototypes without requiring the server to know
clients’ class distributions, thereby enhancing privacy. Finally, Class-Proportional Knowledge Dis-
tillation (CPKD) distills knowledge from global prototypes by weighting the distillation process
based on local class distributions. This approach facilitates effective adaptation to each client’s
unique data characteristics, thus improving personalization.

Our three methods have been evaluated using heterogeneous lightweight models. Experimental
results demonstrate that when applied to two established PBFL approaches (FedProto and FedTGP),
our methods significantly reduce communication costs while outperforming the original and several
data-free FL approaches.

2 RELATED WORK

2.1 HETEROGENEOUS FEDERATED LEARNING

Heterogeneous Federated Learning (HtFL) has emerged as a response to the challenge of hetero-
geneity in real-world federated settings. HtFL strategies can be broadly classified into two cate-
gories: those dependent on public data and those that operate without such reliance. Public data-
dependent approaches leverage shared or globally accessible datasets to facilitate knowledge transfer
across heterogeneous clients. Knowledge Distillation (KD) based methods are notable examples in
this category (Li & Wang, 2019; Zhang et al., 2021b; Yu et al., 2022). Data-free approaches can
be categorized based on what is shared among the server and clients: partial model parameters,
auxiliary model parameters, or prototypes. Partial model sharing strategies, such as LG-FedAvg
(Liang et al., 2020) and FedGen (Zhu et al., 2021), partition client model architectures. By shar-
ing only upper layers while allowing lower layers to vary, these approaches aim to balance model
customization with knowledge sharing. Alternatively, auxiliary model-based techniques like FML
(Shen et al., 2020) and FedKD (Wu et al., 2022) train and share a compact auxiliary model through
mutual distillation. An auspicious direction in data-free HtFL is the use of prototype-based methods
that share condensed class representations (Jeong et al., 2018; Tan et al., 2022a;b; Huang et al., 2023;
Zhang et al., 2024). By focusing on essential class-level information, prototype-based methods aim
to strike a delicate balance between effective knowledge sharing and privacy preservation.

2.2 PROTOTYPE-BASED FEDERATED LEARNING

(Jeong et al., 2018) employs class-wise averaged logits for knowledge transfer, which can pose
privacy risks by exposing the number of classes and each class’s logit distribution. To address
this, FedProto (Tan et al., 2022a) introduced a more privacy-safe approach by exchanging local
prototypes of the decision layer instead of logits. Building upon these foundations, several works
have further refined PBFL techniques. FedTGP (Zhang et al., 2024) enhances performance through
Adaptive-margin-enhanced Contrastive Learning (ACL), which refines global prototypes. To im-
prove efficiency, FedPCL (Tan et al., 2022b) leverages both class prototypes and pre-trained models,
effectively reducing computational and communication costs. Addressing the challenge of domain
shift in federated learning, Federated Prototypes Learning (FPL) (Huang et al., 2023) develops clus-
ter and unbiased prototypes, offering rich domain insights and a balanced convergence objective.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our work builds upon these foundations, introducing novel techniques to enhance PBFL’s capabili-
ties in addressing these challenges.

3 PROBLEM FORMULATION

We consider a system comprising M clients and a server. The clients interact with the server to
jointly develop personalized models without sharing their private data directly. Each client i in
this HPFL setup has its data distribution Pi with K classes. These distributions can differ between
clients, reflecting the typical scenario in HPFL. We define a loss function ℓ that evaluates the perfor-
mance of each client’s local model wi on data points from their respective distributions. The aim of
HPFL can be described as minimizing the mean expected loss across all clients:

min
W

{
F (W) :=

1

M

M∑
i=1

E(x,y)∼Pi
[ℓ(wi;x, y)]

}
, (1)

where W = [w1,w2, ...,wM] represents a matrix containing all individual client models. Given
that we only have a limited set of data points, we estimate this expected loss using the empirical
risk calculated on each client’s local training dataset Di = (x

(l)
i , y

(l)
i)

ni

l=1, with its corresponding
empirical distribution P̂i. Thus, the training objective becomes finding the optimal set of local
models that minimizes the average empirical risk across all clients:

W∗ = argmin
W

1

M

M∑
i=1

Li(wi) (2)

Here, Li(wi) =
1
ni

∑ni

l=1 ℓ(wi;x
(l)
i , y

(l)
i) represents the average loss for each client, calculated over

their private training data.

In this work, we split the deep neural network wi of client i into two parts: the representation layers
(feature extractor) and the decision layer (classifier). The i-th client’s feature extractor, denoted as
fi and governed by parameters θi, transforms data from the original input domain RD into a feature
space Rd. Its classifier, represented by gi with parameters ϕi, then maps these features to the final
output space RK .

Local Prototype The local prototype of class j on client i, denoted by c̄Li,j , is defined as the mean
of the feature embedding vectors of samples from class j in client i’s local dataset. Formally,

c̄Li,j =
1

ni,j

∑
(x,y)∈Di,j

fi(θi;x), (3)

where ni,j = |Di,j | is the number of samples from class j on client i, Di,j ⊆ Di is the subset of
client i’s local dataset containing samples from class j.

Global Prototype The global prototype of class j can be defined as an average of the local
prototypes. A simple averaging method without weighting is given by:

c̄Gj =
1

|Nj |
∑
i∈Nj

c̄Li,j , (4)

where Nj represents the set of clients with samples from class j.

Training Objective of PBFL PBFL optimizes a combined loss function comprising a supervised
learning loss and a regularization term that minimizes the distance between local and global proto-
types. The total loss for client i is defined as:

L̃i(wi) = Li(wi) + λΩi, (5)

where Ωi is the regularization term and λ is a hyperparameter controlling regularization strength.
The term Ωi is formulated as:

Ωi =
∑
j

ρ(c̄Li,j , c̄
G
j), (6)

where the function ρ(·, ·) computes the Euclidean distance between the two prototypes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Prototypes of class #2 without CPS (b) Prototypes of class #2 with CPS

(c) Global prototypes without CPS (d) Global prototypes with CPS

Figure 1: Prototype comparison of FedProto with and without CPS for the CIFAR-10 dataset. Each
row in the heatmaps represents a prototype, and a colored cell indicates a non-zero value. The
dimension s is 50. More examples are provided in the appendix.

4 METHODS

This section provides a comprehensive overview of our three proposed methods.

4.1 ADAPTATION OF PROTOTYPES WITH STRUCTURED SPARSITY

Representation layers often exhibit sparsity when using the ReLU (Rectified Linear Unit) activation
function, which can lead to ‘dead’ hidden units. A dead unit is defined as a hidden unit that outputs
zero for all input patterns in the training set (Lu et al., 2019), effectively not contributing to learning
or inference. Our observations reveal that in the decision layer of a deep network, nearly half of
the hidden units can be dead per class. Figure 1a illustrates this phenomenon, displaying a heatmap
of 500-dimensional local prototypes for 20 clients (L0-L19) and the global prototype for class #2
of the CIFAR-10 dataset after completing FL with FedProto. In this visualization, colored features
indicate non-zero values, while blank areas represent zeros (dead units). Notably, some clients show
zero prototype vectors, indicating the absence of class #2 in their local dataset. Several clients (L1,
L3, L4) utilize only partial feature dimensions.

Intriguingly, despite these sparse representations, deep networks maintain high performance. This
resilience can be attributed to the networks’ substantial capacity and robust generalization capabil-
ities (Arpit et al., 2017; Zhang et al., 2021a; Kawaguchi et al., 2022). Given these observations,
one might hypothesize that the sparsity in a decision layer (prototype, feature embedding) could be
advantageous, potentially reducing communication requirements between the server and clients if
the sparse locations were consistent across clients. However, in PBFL scenarios, the locations of
dead units typically vary among clients, as evident in Figure 1a due to the heterogeneity of models
and data across clients.

Class-wise Prototype Sparsification (CPS) To leverage sparsity benefits in PBFL, we propose
Class-wise Prototype Sparsification (CPS). This method imposes structured sparsity per class, ensur-
ing consistency in zero locations across clients. CPS implementation is straightforward, involving
sharing predetermined sparse locations in prototypes. We introduce class-specific binary masking
vectors mj ∈ {0, 1}d, which determine which prototype vector elements are set to zero, creating
a ‘structured sparse prototype.’ We omit superscripts and subscripts for simplicity, representing a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

masking vector as m and a prototype as c̄. Let m = (m1,m2, . . . ,md) ∈ {0, 1}d be a masking
vector and c̄ = (c̄1, c̄2, . . . , c̄d) ∈ Rd be a prototype. With m and c̄, we define the structured sparse
prototype for updating local models and the compressed prototype for communicating prototypes.
Definition 1 (Structured Sparse Prototype). The structured sparse prototype c̃ ∈ Rd is defined as:

c̃ = m⊙ c̄, (7)

where ⊙ denotes the Hadamard product.
Definition 2 (Compressed Prototype). The compressed prototype ĉ ∈ Rs is defined as:

ĉ = (c̄i : mi = 1), (8)

where s =
∑d

i=1 mi is the number of non-zero elements in m.

Sharing m between the server and clients allows for efficient communication. Instead of transmit-
ting the complete prototype c̄, only the compressed prototype ĉ needs to be communicated. This
ĉ contains only the non-zero elements specified by m, as illustrated by the colored dimensions in
Figures 1b and 1d.

To reduce the communication cost of sending m, the d-dimensional m can be mapped to a K-
dimensional vector, where each element represents d

K consecutive dimensions of m for each class.
For instance, with K = 10 and d = 500, each prototype is allocated a block of 50 consecutive
dimensions (Figure 1d). We typically maximize pairwise Hamming distances between the K vectors
to ensure inter-class distinctiveness.

4.2 AGGREGATION OF LOCAL PROTOTYPES WITHOUT USING LOCAL DATA DISTRIBUTION

One commonly used aggregation method, as described in (Tan et al., 2022a; Zhang et al., 2024),
computes the global prototype for class j using a weighted average of the local prototypes:

c̄Gj =
1

|Nj |
∑
i∈Nj

ni,j∑M
i=1 ni,j

c̄Li,j , (9)

where
∑M

i=1 ni,j denotes the number of class j-th samples across all clients. The weighting factor
ni,j∑M
i=1 ni,j

ensures that each local prototype’s contribution to the global prototype is proportional to
the number of samples from class j on the corresponding client among all samples from class j. The
normalization factor 1

|Nj | ensures scaling of the global prototype. However, this aggregation method
can potentially violate privacy in some applications due to the requirement for the server to receive
information about clients’ local data distribution. Specifically, the server needs to know the number
of samples from class j on client i, which can pose privacy risks in many FL applications.”

Privacy-preserving Prototype Aggregation (PPA) To address the privacy concerns inherent in
the aggregation method (Eq. (9)), we propose Privacy-preserving Prototype Aggregation (PPA).
This method enhances data protection by modifying the aggregation technique as follows:

c̄Gj = K
∑
i∈Nj

ni

n

ni,j

ni
c̄Li,j (10)

=
K

n

∑
i∈Nj

ni,j c̄
L
i,j , (11)

where ni

n represents the proportion of samples on client i relative to the total samples across all
clients, ni,j

ni
denotes the proportion of samples from class j on client i relative to the total samples

on that client, and K is a normalization factor ensuring proper scaling of c̄Gj . These ratios effec-
tively capture the overall contribution of client i to the system and the prevalence of class j within
that client’s dataset. The PPA method offers enhanced privacy protection compared to Eq. (9). In
Eq. (11), only K and n are known to the server and remain constant across all clients. This design
allows each client to transmit only the product ni,j c̄

L
i,j , with the server performing the final scaling

by K
n . By construction, c̄Gj and c̄Li,j can be replaced with compressed prototypes ĉGj and ĉLi,j .

Notably, under certain conditions, PPA exhibits close relationships with other methods.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Remark 1. Consider a scenario where all clients have samples from all classes, with an equal
number of samples across clients and a uniform class distribution. Under these conditions, two
relationships emerge. First, the PPA method, as defined in Eq. (11), is equivalent to the simple av-
eraging method in Eq. (4). Second, the PPA method becomes equivalent to the weighted-averaging
method in Eq. (9), scaled by a factor of 1

|Nj | .

Detailed explanations and derivations for these relationships are provided in the appendix.

4.3 DISTILLATION FROM GLOBAL PROTOTYPES WITH LOCAL DATA DISTRIBUTION

In PBFL, personalization is achieved by allowing local models to learn exclusively from global
prototypes corresponding to classes in their local datasets. The strength of this knowledge distillation
is regulated by a single hyperparameter λ. However, this approach can still distill from undistillable
classes (Zhu et al., 2022), which means that it may not adequately prioritize learning from global
prototypes of classes that are more prevalent in the client’s local dataset while potentially over-
emphasizing less common classes.

Class-Proportional Knowledge Distillation (CPKD) To enhance the utilization of class-specific
global prototypes, we propose a weighted distillation approach that accounts for the class distribu-
tion in each client’s local dataset. The Class-Proportional Knowledge Distillation (CPKD) method
introduces a weight term β to adjust the distillation strength for each global prototype. Specifically,
we modify Ωi as follows:

Ωi =
∑
j

βi,jρ(c̄
L
i,j , c̄

G
j), (12)

where βi,j =
pi,j

maxk(pi,k)
represents a class-specific weight for client i and class j. In this for-

mulation, pi,j denotes the proportion of samples from class j in client i’s dataset, calculated as
pi,j =

ni,j

ni
. By defining βi,j in this manner, we ensure that the weight is proportional to the empiri-

cal class distribution of the local dataset. When combining CPS with CPKD, we replace c̄Gj and c̄Li,j
with their structured sparse counterparts c̃Gj and c̃Li,j , respectively.

4.4 INTEGRATION OF PROPOSED METHODS INTO PBFL

The proposed methods’ strength lies in their seamless integration into existing PBFL algorithms.
When incorporating CPS into vanilla PBFL (FedProto), we need to make modifications such as
creating and sharing masking vectors and sparsifying and reconstructing prototypes using these
vectors. Similarly, PPA and CPKD can be applied to FedProto by replacing its aggregation and
distillation parts. These components can be integrated into other PBFL algorithms, such as FedTGP.
A detailed algorithm is provided in the appendix.

5 EXPERIMENTS

In this section, we evaluate the performance and communication efficiency of our proposed methods
and analyze the impact of incorporating CPS and CPKD techniques into PBFL approaches.

5.1 EXPERIMENTAL SETUP

We utilize three datasets to evaluate federated learning algorithms: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and TinyImageNet (Le & Yang, 2015). Each dataset is partitioned into
training (75%) and test (25%) sets. We simulate real-world federated learning scenarios by cre-
ating heterogeneous data distributions across clients using a Dirichlet distribution (Dir(α)) with α
set to 0.1 by default (Lin et al., 2020). For our experiments, we employ four lightweight models
suitable for resource-constrained devices: ResNet8 (Zhong et al., 2017), EfficientNet (Tan, 2019),
ShuffleNetV2 (Ma et al., 2018), and MobileNetV2 (Sandler et al., 2018). Each model incorporates
a global average pooling layer (Szegedy et al., 2015), setting the prototype dimension d = 500.

Our federated learning environment comprises 20 clients, all actively participating in each of the
300 communication rounds. The client-side configuration includes a learning rate of 0.01, a batch

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Classification accuracy (Acc.) and communication cost (Comm.) across datasets. The CPS
column shows compressed prototype dimension s. The mark ✓indicates the method used. Comm.
is measured by the number of parameters shared per FL round. ‘M’ is short for million.

Algorithm
Our method CIFAR-10 CIFAR-100 TinyImageNet

CPS PPA CPKD Acc. (%) Comm. Acc. (%) Comm. Acc. (%) Comm.

LG-FedAvg 86.91 ± 0.14 0.20M 38.54 ± 0.21 2.00M 22.30 ± 0.37 4.00M
FML 86.59 ± 0.15 34.32M 37.83 ± 0.03 36.12M 22.03 ± 0.12 38.12M
FedKD 87.10 ± 0.02 30.66M 39.74 ± 0.42 32.26M 23.08 ± 0.17 34.05M
FedDistill 86.93 ± 0.12 <0.01M 39.52 ± 0.33 0.29M 22.98 ± 0.15 1.17M

FedProto 82.90 ± 0.46 0.15M 29.97 ± 0.18 1.46M 13.30 ± 0.06 2.93M
FedProto 50 84.18 ± 0.71 0.02M 29.27 ± 0.28 0.15M 10.02 ± 0.24 0.29M
FedProto 250 84.30 ± 0.16 0.08M 33.00 ± 0.28 0.73M 15.70 ± 0.47 1.46M
FedProto ✓ 84.89 ± 0.29 0.15M 34.63 ± 0.10 1.46M 19.19 ± 0.09 2.93M
FedProto ✓ 85.18 ± 0.09 0.15M 33.03 ± 0.49 1.46M 11.43 ± 0.22 2.93M
FedProto 50 ✓ ✓ 85.54 ± 0.54 0.02M 34.76 ± 0.22 0.15M 18.49 ± 0.11 0.29M
FedProto 250 ✓ ✓ 85.23 ± 0.51 0.08M 37.82 ± 0.25 0.73M 21.41 ± 0.22 1.46M

FedTGP 86.32 ± 0.49 0.15M 36.92 ± 0.16 1.46M 19.44 ± 0.12 2.93M
FedTGP 50 85.72 ± 0.37 0.02M 34.72 ± 0.85 0.15M 16.35 ± 0.46 0.29M
FedTGP 250 85.84 ± 0.13 0.08M 34.27 ± 0.60 0.73M 17.30 ± 0.35 1.46M
FedTGP ✓ 87.65 ± 0.34 0.15M 45.84 ± 0.65 1.46M 26.90 ± 0.28 2.93M
FedTGP ✓ 87.18 ± 0.14 0.15M 39.10 ± 0.11 1.46M 22.31 ± 0.13 2.93M
FedTGP 50 ✓ ✓ 87.11 ± 0.08 0.02M 43.64 ± 0.29 0.15M 27.82 ± 0.23 0.29M
FedTGP 250 ✓ ✓ 87.20 ± 0.21 0.08M 43.21 ± 0.59 0.73M 25.92 ± 0.39 1.46M

size of 32, and 1 local training epoch per round. We evaluate our proposed methods, integrated with
FedProto and FedTGP, against four data-free federated learning algorithms: LG-FedAVG (Liang
et al., 2020), FML (Shen et al., 2020), FedKD (Zhu et al., 2021), and FedDistill (Jeong et al., 2018).
For FedProto and FedTGP, we calculate accuracy based on the L2 distance between each sample’s
representational vector f(θ;x) and the global class prototypes c̄Gj , as described in (Tan et al., 2022a).
We set the hyperparameters for these methods according to their original papers: λ = 0.1 (prototype
loss regularizer), τ = 100 (margin threshold), and S = 100 (prototype training epoch).

Our primary evaluation metric is the highest mean test accuracy achieved by each algorithm across
all communication rounds, a widely adopted measure in federated learning literature (McMahan
et al., 2017). We report the average results from three independent experiments conducted with
different random seeds to ensure statistical robustness. For fairness, we apply no hyperparameter
schedulers during training. Detailed information regarding the experimental setup and additional
configurations is provided in the appendix to ensure reproducibility.

5.2 COMPARISON OF PERFORMANCE AND COMMUNICATION COST

Performance Improvement Table 1 demonstrates the efficacy of our proposed methods when
integrated with FedProto and FedTGP. Notably, FedTGP combined with our approaches consis-
tently outperforms various algorithms across different settings, as highlighted in bold. In particular,
FedTGP paired with PPA alone exhibits significant performance gains. This improvement likely
stems from the approach’s ability to effectively incorporate the relative importance of each client’s
local prototype during the contrastive learning process in the server.

Communication Cost Reduction To investigate communication cost, we experimented with
varying the dimensions of the compressed prototype s. FedTGP with the three methods at s = 50
surpasses all baseline algorithms in performance (underlined). This configuration achieves up to
a 4x reduction in communication costs compared to FedDistill, the most communication-efficient
approach among the baselines. While FedDistill demonstrates the lowest communication cost for
CIFAR-10 due to the smaller number of classes relative to prototype dimensions, it is important to
note that transmitting averaged logits can pose higher privacy risks than transmitting prototypes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) FedProto (b) FedTGP

Figure 2: Cosine similarity comparison of global prototypes with and without CPS. The dimension
of compressed prototype s is set to 50 or 250.

Table 2: Classification accuracy for different dimensions of feature space and compressed proto-
types. ‘Feature control’ refers to controlling the number of neurons d in the decision layer. ‘CPS’
indicates that CPS is applied with the dimension of the compressed prototype s.

Dimension
CIFAR-10 CIFAR-100

CPS (s) Feature control (d) CPS (s) Feature control (d)

50 84.18 ± 0.71 79.05 ± 0.56 29.27 ± 0.18 24.94 ± 0.55
150 84.25 ± 0.23 80.58 ± 1.30 32.43 ± 0.52 29.82 ± 0.43
250 84.30 ± 0.16 82.27 ± 1.09 33.00 ± 0.28 30.41 ± 0.28
350 84.07 ± 0.50 82.46 ± 1.38 32.86 ± 0.34 30.84 ± 0.15
450 83.32 ± 0.18 82.98 ± 0.91 31.58 ± 0.42 31.31 ± 0.22

Ablation Test Our ablation studies demonstrate that combining FedProto or FedTGP with any in-
dividual proposed method generally yields performance improvements over the original approaches.
However, we observe an exception in the case of FedTGP combined with CPS alone, which fails
to show enhancement. Notably, no individual method consistently excels in all scenarios, and we
verified that no combination of two methods outperforms the integration of all three. These find-
ings imply that the best combination of methods might depend on the specific characteristics of the
considered federated learning environment.

5.3 ANALYSIS ON EFFECT OF CPS AND CPKD

Distance between Global Prototypes We analyze the pair-wise cosine similarities of global pro-
totypes under the application of CPS, as illustrated in Figure 2. Cosine similarity is our chosen
distance metric for global prototypes due to its invariance to vector scaling. The line plots in Figure
2 depict the average cosine similarity between each global prototype and all others, with the shaded
regions indicating the range between maximum and minimum similarities. As compression levels
increase (s decreases), cosine similarity values decrease as expected. FedTGP consistently shows
lower cosine similarity than FedProto across all compression levels. This finding aligns with Zhang
et al. (2024)’s suggestion that higher prototype distinctiveness contributes to improved performance.

To investigate the effectiveness of the CPS method, we conducted experiments varying the dimen-
sion of the compressed prototype s for FedProto. Table 2 presents the performance changes corre-
sponding to different compressed prototype dimensions. Our results reveal a clear trade-off between
dimensionality (affecting communication cost) and classification accuracy. Notably, a dimension-
ality of 250 achieved the optimal balance, demonstrating the best overall performance. To provide
context for these results, we compared CPS with an alternative approach that reduced the number of
hidden neurons d in the decision layer—this alternative method aimed to achieve the same commu-
nication cost as CPS. The comparison shows that CPS consistently outperforms the reduced hidden
neuron approach. This superiority stems from CPS’s ability to fully utilize a larger decision layer
dimension during model training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Data distribution (b) FedProto w/o CPKD (c) FedProto w/ CPKD (d) Diff. btw. (b) and (c)

Figure 3: Heatmaps depicting the data distribution and L2-norms of class-specific weight vectors
for CIFAR-10. (a) Each cell represents the normalized number of data samples belonging to class j
for client i. (b)-(d) Each cell shows normalized ∥ϕi,j∥2 of models.

Personalization by CPKD We have previously confirmed the enhanced personalization through
improved accuracies, as shown in Table 1. To further validate this finding, we now employ a vi-
sualization method proposed by Lee & Choi (2024). This method infers the degree of personal-
ization by comparing the local data’s class distribution with the weight distribution of a deep net-
work. We denote the set of weights connecting the decision layer to the output layer for client i
as ϕi = (ϕi,1,ϕi,2, ...,ϕi,K). Here, each ϕi,j represents the weight vector linking the decision
layer’s hidden units to the output unit corresponding to class j. The method is based on the observed
correlation between the L2-norm distribution of these ϕi,j vectors and the client’s local class distri-

bution. The authors propose an approximate relationship E∥ϕi,j∥2
2

E∥ϕi,k∥2
2

≈ n2
i,j

n2
i,k

. This relationship draws
its foundation from the work of (Anand et al., 1993), which established a correlation between the
gradient of ϕi,j and local dataset class distributions.

To demonstrate how CPKD enhances personalization, we visualize heatmaps in Figure 3. These
heatmaps depict normalized values of the data distribution across clients and the L2-norms of weight
vectors (∥ϕi,j∥2) for local models. We normalized the values from 0 to 1 using column-wise min-
max normalization for the heatmaps. Examination of the heatmaps for FedProto, both with and
without CPKD (Figures 3b and 3c), reveals patterns similar to the data distribution heatmap (Figure
3a), indicating effective personalization. However, a closer inspection reveals subtle differences
between these FedProto heatmaps (Figure 3d). We calculate the Frobenius norm of the difference
between the data distribution heatmap and each FedProto heatmap to quantify these differences. This
calculation yields a value of 2.14 for FedProto without CPKD and 1.73 for FedProto with CPKD.
The lower Frobenius norm for FedProto with CPKD indicates that its heatmap more closely aligns
with the data distribution than FedProto without CPKD. This result suggests that CPKD indeed
enhances the personalization of local models. We corroborate this finding with similar results from
our analysis of the CIFAR-100 dataset, as presented in the appendix.

6 DISCUSSION AND CONCLUSION

Our study presents quantitative evidence on the effects of three methods on FedProto and FedTGP.
However, the mechanisms by which these methods operate remain partially unclear. For instance,
while applying CPS alone to FedProto generally improves accuracy, it does not yield similar ben-
efits for FedTGP (Table 1). We investigated the effect of sparsity proportion but did not observe a
consistent relationship between the cosine similarities of global prototypes and performance (Figure
2, Tables 1 and 2). This lack of consistency suggests a trade-off between prototype distances and
deep network capacity for efficient training on different sizes of decision layers.

Our evaluation results indicate that while PBFL approaches offer advantages regarding communi-
cation cost, privacy, and personalization, they tend to underperform compared to several existing
data-free FL approaches when used alone. However, by incorporating our methods, which can be
easily integrated into each stage of PBFL, we have enhanced the original PBFL approaches. In
resource-constrained environments, these enhanced PBFL approaches may prove more practical.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Rangachari Anand, Kishan G Mehrotra, Chilukuri K Mohan, and Sanjay Ranka. An improved
algorithm for neural network classification of imbalanced training sets. IEEE transactions on
neural networks, 4(6):962–969, 1993.

Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
look at memorization in deep networks. In International conference on machine learning, pp.
233–242. PMLR, 2017.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. In 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–9. IEEE, 2020.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang Liang, Xianzhang Chen, and Yujuan
Tan. Fedgroup: Efficient federated learning via decomposed similarity-based clustering. In
2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social Computing & Network-
ing (ISPA/BDCloud/SocialCom/SustainCom), pp. 228–237. IEEE, 2021.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–
19597, 2020.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

Wenke Huang, Mang Ye, Zekun Shi, He Li, and Bo Du. Rethinking federated learning with do-
main shift: A prototype view. In 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 16312–16322. IEEE, 2023.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang.
Personalized cross-silo federated learning on non-iid data. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 7865–7873, 2021.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-efficient on-device machine learning: Federated distillation and augmentation
under non-iid private data. arXiv preprint arXiv:1811.11479, 2018.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
In Mathematical Aspects of Deep Learning. Cambridge University Press, 2022. doi: 10.1017/
9781009025096.003.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Gyuejeong Lee and Daeyoung Choi. Regularizing and aggregating clients with class distribution for
personalized federated learning. arXiv preprint arXiv:2406.07800, 2024.

Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos:
An experimental study. In 2022 IEEE 38th international conference on data engineering (ICDE),
pp. 965–978. IEEE, 2022.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International conference on machine learning, pp. 6357–
6368. PMLR, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in neural information processing systems, 33:2351–2363,
2020.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization:
Theory and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Jed Mills, Jia Hu, and Geyong Min. Multi-task federated learning for personalised deep neural
networks in edge computing. IEEE Transactions on Parallel and Distributed Systems, 33(3):
630–641, 2021.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 32(8):3710–3722, 2020.

Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang Huang, Pan Zhou, Kun Kuang, Fei Wu, and
Chao Wu. Federated mutual learning. arXiv preprint arXiv:2006.16765, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Mingxing Tan. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fed-
proto: Federated prototype learning across heterogeneous clients. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8432–8440, 2022a.

Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Federated learning from
pre-trained models: A contrastive learning approach. Advances in neural information processing
systems, 35:19332–19344, 2022b.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Communication-
efficient federated learning via knowledge distillation. Nature communications, 13(1):2032, 2022.

Qiying Yu, Yang Liu, Yimu Wang, Ke Xu, and Jingjing Liu. Multimodal federated learning via
contrastive representation ensemble. In ICLR, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021a.

Jianqing Zhang, Yang Liu, Yang Hua, and Jian Cao. Fedtgp: Trainable global prototypes with
adaptive-margin-enhanced contrastive learning for data and model heterogeneity in federated
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 16768–
16776, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wencao Xu, and Feijie Wu. Parameterized
knowledge transfer for personalized federated learning, 2021b. URL https://arxiv.org/
abs/2111.02862.

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameterized
knowledge transfer for personalized federated learning. Advances in Neural Information Process-
ing Systems, 34:10092–10104, 2021c.

Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global model via
data-free knowledge distillation for non-iid federated learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10174–10183, 2022.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Zilong Zhong, Jonathan Li, Lingfei Ma, Han Jiang, and He Zhao. Deep residual networks for
hyperspectral image classification. In 2017 IEEE international geoscience and remote sensing
symposium (IGARSS), pp. 1824–1827. IEEE, 2017.

Yichen Zhu, Ning Liu, Zhiyuan Xu, Xin Liu, Weibin Meng, Louis Wang, Zhicai Ou, and Jian Tang.
Teach less, learn more: On the undistillable classes in knowledge distillation. Advances in Neural
Information Processing Systems, 35:32011–32024, 2022.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-Free Knowledge Distillation for Heteroge-
neous Federated Learning. In ICML, 2021.

12

https://arxiv.org/abs/2111.02862
https://arxiv.org/abs/2111.02862

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A VISUALIZATION OF STRUCTURED SPARSE PROTOTYPES

In this section, we provide visualizations of structured sparse prototypes in both their original and bi-
nary forms for structured sparse prototype dimension sparsity levels (s) and datasets. The heatmaps
are presented in pairs: those on the left depict the original values of the prototypes, while those on
the right show the same prototypes with values converted to 1 when larger than 0, and 0 otherwise.

(a) Prototypes of class #2 (original) (b) Prototypes of class #2 (binary)

(c) Prototypes of class #4 (original) (d) Prototypes of class #4 (binary)

(e) Prototypes of client #10 (original) (f) Prototypes of client #10 (binary)

(g) Global prototypes (original) (h) Global prototypes (binary)

Figure 4: Prototype comparison of FedProto without Class-wise Prototype Sparsification (CPS) for
the CIFAR-10 dataset.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(a) Prototypes of class #2 (original) (b) Prototypes of class #2 (binary)

(c) Prototypes of class #4 (original) (d) Prototypes of class #4 (binary)

(e) Prototypes of client #10 (original) (f) Prototypes of client #10 (binary)

(g) Global prototypes (original) (h) Global prototypes (binary)

Figure 5: Prototype comparison of FedProto with Class-wise Prototype Sparsification (CPS) for the
CIFAR-10 dataset. The dimension s is 50 for CPS.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Prototypes of class #2 (original) (b) Prototypes of class #2 (binary)

(c) Prototypes of class #4 (original) (d) Prototypes of class #4 (binary)

(e) Prototypes of client #10 (original) (f) Prototypes of client #10 (binary)

(g) Global prototypes (original) (h) Global prototypes (binary)

Figure 6: Prototype comparison of FedProto with Class-wise Prototype Sparsification (CPS) for the
CIFAR-10 dataset. The dimension s is 250 for CPS.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Prototypes of class #22 (original) (b) Prototypes of class #22 (binary)

(c) Prototypes of client #8 (original) (d) Prototypes of client #8 (binary)

(e) Global prototypes (original) (f) Global prototypes (binary)

Figure 7: Prototype comparison of FedProto without Class-wise Prototype Sparsification (CPS) for
the CIFAR-100 dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Prototypes of class #22 (original) (b) Prototypes of class #22 (binary)

(c) Prototypes of client #8 (original) (d) Prototypes of client #8 (binary)

(e) Global prototypes (original) (f) Global prototypes (binary)

Figure 8: Prototype comparison of FedProto with Class-wise Prototype Sparsification (CPS) for the
CIFAR-100 dataset. The dimension s is 50 for CPS.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Prototypes of class #22 (original) (b) Prototypes of class #22 (binary)

(c) Prototypes of client #8 (original) (d) Prototypes of client #8 (binary)

(e) Global prototypes (original) (f) Global prototypes (binary)

Figure 9: Prototype comparison of FedProto with Class-wise Prototype Sparsification (CPS) for the
CIFAR-100 dataset. The dimension s is 250 for CPS.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B DETAILED EXPLANATION FOR REMARK 1

In this section, we elucidate the relationships described in Remark 1. Specifically, we demonstrate
how the Privacy-Preserving Prototype Aggregation (PPA) method, as defined in Eq. (11), relates
to two other aggregation methods: the simple aggregation method presented in Eq. (4) and the
weighted-averaging method shown in Eq. (9). These relationships emerge under specific conditions
and provide insights into the behavior of the PPA method.

B.1 RELATIONSHIP BETWEEN PPA AND THE SIMPLE AVERAGING METHOD

As noted in Remark 1, under specific conditions, the PPA method (Eq. (11)) becomes identical to
the simple averaging method (Eq. (4)). We can demonstrate this equivalence through the following
derivation:

c̄Gj =
K

n

∑
i∈Nj

ni,j c̄
L
i,j (13)

= K
∑
i∈Nj

ni

n

ni,j

ni
c̄Li,j (14)

= K
∑
i∈Nj

1

M

1

K
c̄Li,j (15)

=
1

M

∑
i∈Nj

c̄Li,j (16)

=
1

|Nj |
∑
i∈Nj

c̄Li,j . (17)

Eq. (15) holds when two conditions are met: (1) ni

n = 1
M , which occurs when all clients have the

same number of samples, and (2) ni,j

ni
= 1

K , which is true when the local class distribution of each
client is uniform. Eq. (17) follows from the condition that |Nj | = M , meaning all clients have
samples from all classes.

B.2 RELATIONSHIP BETWEEN PPA AND THE WEIGHTED-AVERAGING METHOD

Remark 1 also indicates that, under certain circumstances, the PPA method is equivalent to a scaled
version of the weighted-averaging method described in Eq. (9), with a scaling factor of 1

|Nj | . We
can establish this relationship through the following derivation:

c̄Gj =
1

|Nj |
∑
i∈Nj

ni,j∑M
i=1 ni,j

c̄Li,j , (18)

=
1

|Nj |
∑
i∈Nj

ni

n

ni,j

ni∑M
i=1

ni

n

ni,j

ni

c̄Li,j (19)

=
1

|Nj |
∑
i∈Nj

ni

n

ni,j

ni∑M
i=1

1

M

1

K

c̄Li,j (20)

=
K

|Nj |
∑
i∈Nj

ni

n

ni,j

ni
c̄Li,j (21)

=
1

|Nj |
K

n

∑
i∈Nj

ni,j c̄
L
i,j . (22)

Eq. (20) holds when two conditions are met: (1) ni

n = 1
M , which occurs when all clients have the

same number of samples, and (2) ni,j

ni
= 1

K , which is true when the local class distribution of each
client is uniform.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C ALGORITHM OF FEDPROTO WITH CPS, PPA, AND CPKD

Our proposed components are designed for seamless integration into existing PBFL algorithms. To
demonstrate this, we will outline the key modifications needed to incorporate these components into
vanilla PBFL (FedProto). The first major change involves the server generating masking vectors
and distributing them to clients, as shown in Line 1 and 8 of Algorithm 1. The second modification
utilizes these vectors for exchanging compressed prototypes between the server and clients (Lines 5
and 11), followed by their reconstruction into structured sparse prototypes (Line 9). PPA and CPKD
can be directly applied to FedProto by replacing its aggregation and distillation components. This
integration process is similarly adaptable to other PBFL algorithms, such as FedTGP, showcasing
the versatility of our methods across various PBFL frameworks.

When integrating PPA with FedTGP, careful attention to prototype scaling is crucial. FedTGP em-
ploys local prototypes to train a trainable prototype prior to aggregation. Applying PPA to FedTGP
scales each local prototype by ni,j , as shown in Eq. (11), which can lead to training loss divergence.
To address this, we introduce a compensatory scaling factor. Specifically, we re-scale each local
prototype by K

n · |Nj |, where Nj denotes the set of clients possessing samples from class j. This
adjustment ensures stable training while preserving the benefits of both PPA and FedTGP.

Algorithm 1 FedProto with CPS, PPA, and CPKD

Input: Number of client M , total communication rounds T , learning rate η, hyper-parameter λ
Output: Trained local models

1: Initialize masking vector set {mj} and compressed prototype set
{
ĉGj

}
for all classes.

2: Initialize set S0 = {} for clients selected up to the current iteration
3: for iteration t = 1, . . . , T do
4: Server randomly samples a client subset Ct

5: Server sends ĉGj to Ct

6: for Client i ∈ Ct in parallel do
7: if i /∈ St−1 then
8: Server sends mj to client i
9: Client i reconstructs c̃Gj from ĉGj and updates its model with Eq. (5) and Eq. (12)

10: Client i computes c̄Li,j by Eq. (3) and convert it to ĉLi,j
11: Client i sends ni,j ĉ

L
i,j to the server

12: Server updates ĉGj with Eq. (11)
13: Server updates St = St−1 ∪ Ct

14: return Client models

D EXPERIMENTAL DETAILS

D.1 HYPERPARAMETERS

For baseline algorithms, we adopt algorithm-specific hyperparameters as recommended in Zhang
et al. (2024). Table 3 provides a comprehensive overview of these hyperparameter settings. It is
important to note that the hyperparameter notations used in Table 3 are specific to each baseline
method and may differ from notations used elsewhere in our paper.

Table 3: Hyperparameter settings for the compared methods.

Method Hyperparameter settings

LG-FedAvg No additional hyperparameters
FML α (KD weight for local model) = 0.5, β (KD weight for meme model) = 0.5
FedKD Tstart (energy threshold) = 0.95, Tend (energy threshold) = 0.98
FedDistill γ (weight of logit regularizer) = 1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 CALCULATING COMMUNICATION COST

Table 4 presents formulations to calculate the communication cost per iteration shown in Table 1.
θaux and ϕaux indicate the auxiliary feature extractor and classifier parameters, respectively.

Table 4: Formulation to calculate communication cost of algorithms.

Algorithm Communication cost Algorithm Communication cost

LG-FedAvg
∑M

i=1 |ϕi| × 2 FedProto
∑M

i=1 d× (Ki +K)

FML M × (|θaux|+ |ϕaux|)× 2 FedProto+CPS
∑M

i=1 s× (Ki +K)

FedKD M × (|θaux|+ |ϕaux|)× 2× r FedTGP
∑M

i=1 d× (Ki +K)

FedDistill
∑M

i=1 K × (Ki +K) FedTGP+CPS
∑M

i=1 s× (Ki +K)

D.3 EXPERIMENTAL ENVIRONMENT

To ensure reproducibility and provide a clear understanding of our experimental environment, we
detail our setup below. Our experiments were designed to rigorously test the proposed methods
under controlled conditions. The following list outlines the key components of our experimental
setup:

• Framework: PyTorch 2.4
• Hardware:

– CPUs: 2 Intel Xeon Gold 6240R (96 cores total)
– Memory: 256GB
– GPUs: Two NVIDIA RTX A6000

• Operating System: Ubuntu 22.04 LTS

This configuration allowed us to conduct our experiments efficiently and consistently, ensuring that
our results are both reliable and reproducible. The code is provided in the supplementary materials.

E VISUALIZATION OF PERSONALIZATION BY CPKD FOR CIFAR-100

We compute the Frobenius norm of the discrepancy between the data distribution heatmap and
each FedProto heatmap. This computation results in a value of 6.44 for the standard FedProto
implementation, while FedProto augmented with CPKD yields a lower value of 5.59.

(a) Data distribution (b) FedProto w/o CPKD (c) FedProto w/ CPKD (d) Diff. btw (b) and (c)

Figure 10: Heatmaps depicting the data distribution and L2-norms of class-specific weight vectors
for the CIFAR-100 dataset.

21

	Introduction
	Related Work
	Heterogeneous Federated Learning
	Prototype-Based Federated Learning

	Problem Formulation
	Methods
	Adaptation of Prototypes with Structured Sparsity
	Aggregation of Local Prototypes without Using Local Data Distribution
	Distillation from Global Prototypes with Local Data Distribution
	Integration of Proposed Methods into PBFL

	Experiments
	Experimental Setup
	Comparison of Performance and Communication Cost
	Analysis on Effect of CPS and CPKD

	Discussion and Conclusion
	Visualization of Structured Sparse Prototypes
	Detailed Explanation for Remark 1
	Relationship between PPA and the Simple Averaging Method
	Relationship between PPA and the Weighted-Averaging Method

	Algorithm of FedProto with CPS, PPA, and CPKD
	Experimental Details
	Hyperparameters
	Calculating Communication Cost
	Experimental Environment

	Visualization of Personalization by CPKD for CIFAR-100

