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Abstract

A wide body of evidence shows that human001
language processing difficulty is predicted by002
the information-theoretic measure surprisal,003
a word’s negative log probability in context.004
However, it is still unclear how to best estimate005
these probabilities needed for predicting human006
processing difficulty – while a long-standing007
belief held that models with lower perplexity008
would provide more accurate estimates of word009
predictability, and therefore lead to better read-010
ing time predictions, recent work has shown011
that for very large models, psycholinguistic012
predictive power decreases. One reason could013
be that language models might be more confi-014
dent of their predictions than humans, because015
they have had exposure to several magnitudes016
more data. In this paper, we test what effect017
temperature-scaling of large language model018
(LLM) predictions has on surprisal estimates019
and their predictive power of reading times of020
English texts. Firstly, we show that calibration021
of large language models typically improves022
with model size, i.e. poorer calibration cannot023
account for poorer fit to reading times. Sec-024
ondly, we find that temperature-scaling prob-025
abilities lead to a systematically better fit to026
reading times (up to 89% improvement in delta027
log likelihood), across several reading time cor-028
pora. Finally, we show that this improvement in029
fit is chiefly driven by words that are composed030
of multiple subword tokens.1031

1 Introduction032

In psycholinguistics, a key finding is that words033

with higher surprisal (= negative log probability034

of the word in context) require more time for pro-035

cessing (Hale, 2001; Levy, 2008). Numerous stud-036

ies provided experimental evidence supporting this037

theory, demonstrating that surprisal is a powerful038

predictive measure of processing complexity (e.g.,039

Demberg and Keller, 2008; Wilcox et al., 2020,040

2023; Shain et al., 2022), and that the relationship041

1Code in this paper will be released upon paper acceptance.

between surprisal and reading times (RTs) indeed 042

seems to be linear (Smith and Levy, 2013; Wilcox 043

et al., 2020; Shain et al., 2022). 044

However, prior work implicitly made the as- 045

sumption that human predictability estimates 046

would be similar to the actual probability of a word 047

occurring in a given context, and that therefore, sur- 048

prisal values estimated from models that achieve 049

lower perplexities should also approximate human 050

processing difficulty better (Goodkind and Bick- 051

nell, 2018; Merkx and Frank, 2021). 052

Recent research has however found that this is 053

not true – surprisal values from very large LLMs 054

provide in fact a very poor fit to reading times. Oh 055

and Schuler (2023b) hypothesize that this might 056

be due to LLMs being “too confident” in their esti- 057

mates of rare named entities compared to humans, 058

thanks to their manifold larger exposure to data 059

and greater memory capacity compared to humans. 060

Furthermore, work on NLP applications like ques- 061

tion answering has reported that probability esti- 062

mates from pretrained language models are often 063

overconfident, i.e. they are higher than the ground 064

truth probability (Si et al., 2022; Kumar, 2022). 065

These findings hence beg the question whether 066

current LLMs are well-calibrated with respect to 067

“objective” word occurrence probabilities. Relat- 068

edly, we ask whether LLM probability estimates 069

are overconfident compared to human estimates (as 070

observed in reading times). 071

One approach to address calibration problems is 072

to use temperature scaling, as done e.g., in vision 073

tasks (Guo et al., 2017; Hendrycks et al., 2019). 074

Temperature-scaling with a temperature T > 1 075

has the effect that the probability distribution is 076

flattened such that it becomes more similar to a 077

uniform distribution. Temperature-scaling hence 078

incorporates uncertainty into the probability esti- 079

mates from LLMs. 080

We note that the idea to work with flattened dis- 081

tributions instead of the original probability dis- 082
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tributions from LLMs is also related to contex-083

tual Rényi Entropy as discussed by Pimentel et al.084

(2023), as well as the super/sub-linear surprisal ef-085

fect by Shain et al. (2022). However, rather than086

merely adjust the power of surprisal in super/sub-087

logarithmic patterns or the power of probability088

in Rényi entropy, our work represents a distinct089

branch of study (i.e., probability calibration) in ma-090

chine learning: shaping the probability distribution091

itself through shaping the logits before softmax.092

We also discuss the motivation for why a slightly093

flattened distribution may be more suitable, and094

whether this change in distribution is applied when095

calculating surprisal vs. when calculating entropy.096

Our experimental results show that scaling prob-097

abilities can largely improve the fit to reading098

times in all 12 settings (3 corpora × 4 neural099

LMs). Our contributions are summarized as fol-100

lows: (1) We propose temperature-scaled surprisal,101

where surprisal is calculated from temperature-102

scaled probabilities. (2) We demonstrate that103

temperature-scaling with temperature T≈2.5 im-104

proves predictability of human reading times of105

English texts compared to T=1. (3) We identify lin-106

guistic phenomena that correlate with the benefit of107

temperature-scaled surprisal by analyzing residual108

errors from regression models.109

2 Predictive Power for Reading Times110

In psycholinguistics, RTs on a word are believed to111

correlate with its processing difficulty. RTs can be112

gathered using different paradigms, including eye-113

tracking while reading text on a screen (Rayner,114

1998), self-paced reading (Aaronson and Scarbor-115

ough, 1976; Mitchell and Green, 1978) and the116

Maze task (Forster et al., 2009).117

The most common procedure for predicting118

words’ RT is first to select a set of predictor vari-119

ables thought to impact RTs v = [v(1), ..., v(d)]⊤ ∈120

Rd, which include, e.g., the length of a word121

wt, |wt|, the frequency of a word freq(wt). Let122

fϕ : Rd → R be a regression model parametrized123

by ϕ used to fit these predictors for the prediction124

of human RTs rt: rt(wt|w<t) ∼ fϕ(v), given the125

previous context w<t. The performance of fϕ is126

quantified by its log-likelihood, with a higher log-127

likelihood indicating a better psychometric predic-128

tive power for human RTs (Frank and Bod, 2011;129

Fossum and Levy, 2012).130

Besides the word length |wt| and word frequency131

freq(wt), a word’s surprisal (i.e., its negative log-132

probability in context) (Hale, 2001; Levy, 2008) 133

has been shown to be predictive of RTs (Demberg 134

and Keller, 2008; Goodkind and Bicknell, 2018; 135

Wilcox et al., 2020; Shain et al., 2022). 136

3 Methods 137

In this section, we delve into key aspects of 138

information-theoretic measures in language com- 139

prehension. We start with surprisal, a method con- 140

necting processing difficulty to word predictabil- 141

ity. As word predictability is empirically estimated 142

by LLMs, we introduce the notion of calibration 143

errors, metrics quantifying how good the estima- 144

tion of word predictability is. Further, we lay out 145

temperature-scaled surprisal, and the relation be- 146

tween varying temperature vs. varying α in contex- 147

tual Rényi entropy. 148

3.1 Surprisal 149

Starting from Shannon (1948), the information con- 150

veyed by a word wt has been quantified as the 151

negative log probability of the word wt given its 152

previous context w<t. In Surprisal Theory (Hale, 153

2001; Levy, 2008), this quantity is called surprisal 154

s(wt) and proposed to be predictive of the word’s 155

processing difficulty, typically quantified as its RT. 156

Surprisal values are typically estimated from lan- 157

guage models p̂(wt|w<t). 158

s(wt) = −log2 p(wt|w<t), (1) 159

3.2 Calibration error 160

Definitions Let D = {(xi, yi)}Ni be a data set 161

where xi ∈ X is an sample (i.e., context) and 162

yi ∈ K = [K] is a category label. Let gθ and 163

ẑi = gθ(xi) denote a language model parametrized 164

by θ and the output logit vector of sample i, respec- 165

tively. The predicted class label ŷi for sample i is 166

given by ŷi = argmaxk∈K g(xi)k and confidence 167

for sample i is given by p̂i = maxk∈K g(xi)k. A 168

model is perfectly calibrated when the confidence 169

p̂ is equal to the frequency of correctness, i.e., 170

P(ŷi = yi|p̂i = p) = p holding for all p ∈ [0, 1] 171

and any sample i. Any difference between the left 172

and right sides of the above equation indicates there 173

exists a calibration error. 174

Expected calibration error (ECE) (Guo et al., 175

2017) ECE is the most popular calibration met- 176

ric, which empirically approximates the calibration 177

error by discretizing the probability interval into a 178

fixed number of bins (Bm with m ∈ {1, 2, ...,M}), 179
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and measures the gaps of averaged confidence and180

averaged accuracy in each bin Bm.181

ECE =
1

N

M∑
m=1

|
∑
i∈Bm

p̂i−
∑
i∈Bm

1[ŷi = yi]|, (2)182

where 1 is the indicator function. However, it does183

not necessarily measure the actual-word probabil-184

ity, which is the probability required for calculating185

surprisal in Eq. 1. It focuses only on the top-label186

probability for a given sample.187

Classwise-ECE (CECE) (Kumar et al., 2019;188

Kull et al., 2019) In comparison, CECE mea-189

sures probabilities of all classes. For each bin and190

every class k, it assesses the difference between the191

average confidence of samples for class k and the192

actual proportion of class k. If assuming all classes193

weigh equally, we have:194

CECE

=
1

NK

K∑
k=1

M∑
m=1

|
∑
i∈Bm

p̂i,k −
∑
i∈Bm

1[k = yi]|,

(3)

195

where p̂i,k is the predicted probability of sample i196

for class k.197

Human-likeness calibration error (HCE) We198

define the HCE as the Kullback-Leibler divergence199

(KL divergence) between predicted probability p̂200

from a neural LM and actual probability p∗ of hu-201

man language model.202

HCE = DKL(p̂||p∗). (4)203

Empirically, since p∗ is not directly observable, we204

approximate it by the estimates of a temperature-205

scaled model that best fits human reading times206

(as discussed later). We denote the approximated207

HCE using such a method as HCETS.208

3.3 Temperature-scaled surprisal209

Temperature scaling (Guo et al., 2017) is a widely-210

used method to improve model calibration. Given211

the output logit vector ẑi for sample i, a single212

scalar T > 0 is applied to rescale ẑi before the213

softmax activation:214

q̂i = max
k

σSM (
ẑi
T
)(k), (5)215

where q̂i is the calibrated confidence for sample216

i, and σSM is the softmax function. Scaling by217

a scalar T does not alter the ranking; hence, the 218

predicted label ŷi remains unchanged. As T > 1, it 219

“softens” the probability distribution (i.e., makes the 220

distribution more uniform), increasing uncertainty 221

and entropy of the probability distribution, while 222

T < 1 peaks the distribution. The parameter T in 223

research on calibration is optimized by minimizing 224

the negative log-likelihood on the validation set. In 225

our experiments of fit to human RTs, we manually 226

tune this temperature with T > 1. 227

Temperature scaling has been successfully ap- 228

plied in several applications: In knowledge distilla- 229

tion (Hinton et al., 2015), temperature scaling (with 230

T > 1) is used to “soften” the knowledge (i.e., 231

probability distribution) provided by the teacher 232

model; in text generation, temperature is used to 233

shape the probability distribution to ease certain 234

aspects of the problems of top-k sampling (e.g., 235

choosing an appropriate k value across varying 236

contexts) (Ficler and Goldberg, 2017; Fan et al., 237

2018). Temperature tuning inherently shifts the 238

model’s output in the generation’s quality/diversity 239

spectrum (Caccia et al., 2018), with higher tem- 240

perature decreasing the quality of generation while 241

improving its diversity. This also aligns with our 242

consideration of a possibility that human proba- 243

bility distributions might be flatter than the ones 244

learned by language models and thus increasing the 245

predictive diversity of surprisal provided by LLMs 246

could potentially yield more human-like distribu- 247

tions. 248

Given Eq. 5, temperature-scaled surprisal is: 249

sT (wt, T ) = −log2(σSM (ẑwt/T )
(k∗)), (6) 250

where ẑwt and k∗ = ywt denote the logit vector and 251

the actual word wt class, respectively. For given 252

t ∈ (0,∞), we simply denote sT (wt, T = t) as 253

sT |T=t. A temperature T with its best performance 254

of final fit to RTs is denoted as T ∗. 255

The extent to which a word’s surprisal is affected 256

by temperature scaling depends on the distribution 257

and thus correlates with the entropy at word wt. 258

Consider an example of two five-class probability 259

distributions pi = [0.8, 0.05, 0.05, 0.05, 0.05] 260

and pj = [0.8, 0.2, 0, 0, 0], for which the word 261

indicated by the first position in the probabil- 262

ity vector has identical surprisal in both pi 263

and pj . Notably, pi is more uniform and pj 264

is more peaked, resulting in distinct entropy 265

characteristics: H(wi|w<i) > H(wj |w<j), 266

where the entropy defined as the expectation 267
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Figure 1: Temperature-scaled surprisal sT (wt, T )
with corresponding T ∈ [1, 2.5] for two ran-
dom five-class probability distributions: pi =
[0.8, 0.05, 0.05, 0.05, 0.05] and pj = [0.8, 0.2, 0, 0, 0].
Dashed lines show Shannon entropy (H1). Loosely
dashed lines show Rényi entropy with α = 1/2 (H1/2).

of surprisal of current word wt over vocab-268

ulary, H(wt|w<t) = Ew′∼p(·|w<t)
[s(w

′
)] =269

−
∑

w′∈W p(w
′ |w<t) log2 p(w

′ |w<t), where270

W = W ∪ {EOS} denotes the set of vocabulary271

W with EOS token. Fig. 1 illustrates a greater272

increase in surprisal for a word with a more273

uniform distribution than with a more peaked274

distribution.275

This figure also anecdotally shows that the effect276

of applying temperature scaling with T > 1 is277

similar to the effect of setting α < 1 in Rényi278

entropy. We will discuss the relationship between279

these parameters in more detail in Appendix A.280

4 Experimental setup281

4.1 Datasets282

We conduct analyses on two self-paced reading283

corpora, the Natural Stories Corpus (Futrell et al.,284

2018) and the Brown Corpus (Smith and Levy,285

2013), as well as on the Dundee Corpus (Kennedy286

et al., 2003), which contains the eye-movement287

record; our analyses in this paper focus on first-288

pass times2 from the Dundee corpus. We follow289

previous work with respect to the preprocessing290

steps for each corpus (Kuribayashi et al., 2022;291

Shain et al., 2022). Appendix C includes details292

about the preprocessing steps of each corpus.293

4.2 Language Models294

Recent observations showed that surprisal provided295

by LLMs with more parameters and lower perplex-296

2First pass times are calculated as the sum of all fixation
durations from first entering to first leaving the word during
the first pass, i.e., only those cases are counted where no words
further advanced in the text have been fixated.

ity is less predictive of self-paced reading times 297

and eye-gaze durations (Shain et al., 2022; Oh 298

and Schuler, 2023b); across different experiments, 299

GPT-2 (Radford et al., 2019) surprisals were found 300

to predict human RTs the best. Therefore, we take 301

four variants of pretrained GPT-2 (small, medium, 302

large, xl) as our language models in all experiments. 303

Following prior work, we obtain the surprisal for 304

words composed of more than one subword by sum- 305

ming up the surprisal estimates of the subwords. 306

4.3 Metrics and evaluation 307

We measure the predictive power of surprisal es- 308

timates from different language models, which is 309

denoted as the log-likelihood difference between a 310

linear mixed-effects (LME) regression model using 311

lme4 package (Bates et al., 2015) with a predictor 312

of surprisal estimates (target model) and a model 313

without surprisal (base model), following Good- 314

kind and Bicknell (2018); Wilcox et al. (2020). 315

More specifically, the metric of delta log-likelihood 316

is defined as: 317

∆llh = llh(fϕ(v
tgt))− llh(fϕ(v

base)), (7) 318

where vtgt is target predictor variables that in- 319

clude baseline predictor variables as well as pre- 320

dictor variables of our interest, such as surprisal 321

or temperature-scaled surprisal. vbase is base pre- 322

dictor variables only including baseline predictor 323

variables. The greater the value of ∆llh, the more 324

valuable the additional surprisal estimates are for 325

predicting human reading times. 326

For the calibration error evaluation, we set the 327

number of bins M to 15 for both ECE and CECE, 328

aligning with prior literature, such as works by Guo 329

et al. (2017); Kumar et al. (2019); Rahimi et al. 330

(2020b), to ensure consistency in addressing prob- 331

lems where comparable probability ranges are rele- 332

vant. The calibration metrics (ECE and CECE) are 333

evaluated separately on each of the reading time 334

corpus D. For simplicity, our calibration evaluation 335

is conducted at the token level. Given that many 336

words have extremely low probabilities and thus 337

are often grouped into a single bin, we also evalu- 338

ate the calibration error under the log probability 339

binning scheme. For further descriptions regarding 340

the metrics and evaluation, see Appendix D. 341
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5 Results342

5.1 Calibration of LLMs343

Table 1 shows ECE and CECE in log binning344

scheme for GPT-2 models of different sizes. LLMs345

are in general well calibrated on language mod-346

eling. Besides, LLM calibration improves with347

scale. Larger LMs are better calibrated. This348

conclusion is consistent with calibration investiga-349

tion evaluated in BIG-bench multiple-choice tasks350

in Srivastava et al. (2023) as well as in several tasks351

including language modelling in Zhu et al. (2023).352

5.2 Main result: temperature-scaled surprisal353

improves human reading time prediction354

We evaluate the predictive power of temperature-355

scaled surprisal. We scale T in the range of [1, 10]356

and measure ∆llh, see Fig. 2. First, a confirma-357

tory observation regarding the relationship between358

model size and predictive power: At T = 1, GPT-2359

small exhibits the best predictive performance, and360

as the model size increases, ∆llh declines, which is361

consistent with previous studies (Shain et al., 2022;362

Oh et al., 2022; Oh and Schuler, 2023b). Secondly,363

scaling the surprisal with T > 1 can signifi-364

cantly improve the predictive power across all365

corpora and LLMs. With optimal T ∗, on Dundee,366

Natural Stories, and Brown, the ∆llh improvement367

is 23-43%, 60-89%, and 14-24%, respectively. We368

access statistical significance of GPT-2 small in369

Appendix H, where we report a result of p < 0.001370

on three corpora. We also observe a consistent371

pattern: when increasing T , ∆llh first rises then372

declines; the optimal value T ∗ falls within the373

range of (2, 3) (around 2.5) across all models374

and corpora in our setting. At T ∗, even though the375

impact of model size on final performance is not376

fully recovered, the disparity diminishes. Smaller377

models continue to outperform, but the extent of378

model sizes influencing performance is reduced.379

Finally, larger LMs typically have a larger380

human-likeness calibration error, shown in Ta-381

ble 1. Larger LMs also require a higher value of T382

to reach their best performance and have a greater383

increase by temperature-scaled surprisal.384

5.3 Calibration error vs. RT prediction error385

Table 2 shows ECE and CECE in both equally-386

spaced and log binning schemes when T equals 1387

and T ∗ on three corpora. Probability distribution388

shaped by an optimal T ∗ learnt for fit to human389

T ∗ ∆llh+ HCETS ↓ ECElog ↓ CECElog ↓

Dundee

s 2.75 22.5 3.11 1.59 4.07E-03
m 3.0 42.0 3.61 1.74 4.13E-03
l 3.0 39.9 3.82 1.55 3.99E-03
xl 3.25 43.2 4.13 1.29 3.84E-03

NS

s 2.5 60.3 3.31 1.91 1.53E-02
m 2.5 63.0 3.50 1.80 1.50E-02
l 2.5 82.6 3.97 1.70 1.40E-02
xl 2.5 89.0 4.07 1.56 1.35E-02

Brown

s 2.5 13.7 3.10 1.69 1.53E-02
m 2.5 16.2 3.29 2.27 1.51E-02
l 2.75 21.8 4.18 1.58 1.44E-02
xl 2.75 24.4 4.29 1.56 1.38E-02

Table 1: Optimal T ∗, ∆llh improvement (%) (∆llh+ =
(∆llh(T = T ∗) − ∆llh(T = 1))/∆llh(T = 1)), and
calibration errors (HCETS, % ECE and % CECE) for
GPT2s on Dundee, Natural Stories (NS) and Brown.
∆llh values are multiplied by 1000. ECE and CECE are
evaluated on log binning scheme.

RTs drastically hurts the model calibration regard- 390

ing these two metrics. ECE and CECE with T ∗ are 391

more than 10 times worse than values with T = 1. 392

This discrepancy can be attributed to the differ- 393

ent minima of deviations in LM human RT pre- 394

diction and expected calibration error. The former 395

is minimized towards words where LMs surprisal 396

significantly deviates from human processing diffi- 397

culty, while the latter is typically minimized with 398

respect to the negative log-likelihood on a hold-out 399

dataset (Guo et al., 2017; Rahimi et al., 2020a). 400

6 Linguistic analysis 401

Next we want to gain insight into what words ben- 402

efit the most from temperature scaling. To this end, 403

we analyze residuals from fitting LME regression 404

models, identifying data points where scaling the 405

temperature parameter notably enhances the fit of 406

human RTs. Specifically, we quantify the improve- 407

ment in fit by comparing the mean squared error 408

(MSE) before and after adjusting the temperature 409

ECE↓ ECElog ↓ CECE↓ CECElog ↓

Dundee T = 1 1.43 1.59 4.05E-03 4.07E-03
T = T ∗ 28.68 28.68 7.30E-03 9.88E-03

NS T = 1 2.48 1.91 1.83E-02 1.53E-02
T = T ∗ 35.85 35.85 3.16E-02 3.97E-02

Brown T = 1 1.82 1.69 1.67E-02 1.53E-02
T = T ∗ 33.16 33.16 2.75E-02 3.34E-02

Table 2: Expected calibration errors (% ECE and %
CECE) for GPT-2 small on Dundee, Natural Stories
(NS) and Brown. Results are all evaluated on the
equally-spaced binning scheme and log binning scheme.
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Figure 2: Relationship between ∆llh of GPT-2 models and corresponding temperature. T is scaled from 1.0 to 10.

Figure 3: Relationship between ∆MSE and negative log
actual-word probability (surprisal). We take the number
of bins to 20. Black dashed lines denote ∆MSE = 0.
Subsets containing less than 1% of data are ignored for
each corpus.

to its optimal value as follows:410

∆MSE(F ) = MSET=1(xF )−MSET=T ∗(xF ),
(8)

411

where MSET=T ′ (xF ) is the MSE calculated by all412

the data xF under the linguistic factor F . The413

difference ∆MSE(F ) thus quantifies the impact414

of scaling relative to the linguistic factor F . A415

higher ∆MSE(F ) signifies a greater influence of416

temperature-scaled surprisal of factor F . To ensure417

sufficient data in each subset, we only consider sub-418

sets including more than 1% of the data in each419

corpus.420

6.1 Influence of low probability words421

Given that temperature scaling enhances human422

likeness by shaping the probability distribution,423

it is natural to think about investigating whether424

there exists an inherent relationship between the425

distribution of probability and ∆MSE. Specifically,426

one might ask questions like if samples with low427

probability gain more from temperature scaling or428

the other way around. We find that high surprisal429

words benefit more from temperature scaling than430

low surprisal words, across all corpora, see Fig. 3.431

6.2 Influence of word types 432

We investigate the effects of word-level properties, 433

which include: 434

Named entities. Research has substantiated 435

that named entities (NEs) require increased read- 436

ing time for humans since during the processing 437

of such words (Damasio et al., 2004; Wang et al., 438

2013). Oh and Schuler (2023b) showed that NEs 439

are among the top two significant factors contribut- 440

ing to the discrepancies of large and small LMs 441

across all corpus-by-LM combinations. There- 442

fore, we were wondering whether the effect of 443

temperature-scaling might be driven by NE. To test 444

this, we automatically tagged NEs using a BERT 445

base model (Devlin et al., 2019) fined-tuned for 446

NER3. 447

Part-of-speech tags. Similarly, previous re- 448

search has argued that the poor fit of large LMs 449

is primarily due to assigning too low surprisal es- 450

timates to open-class words like nouns and adjec- 451

tives (Oh and Schuler, 2023b). We POS-tagged 452

the corpora using the NLTK toolkit (Bird et al., 453

2009) with the default Penn Treebank Tag set. In 454

the following, we mainly focus on the four classes 455

of open-class tags, as well as a subset of the whole 456

closed-class tags (CC). 457

Named entities POS tags
GPT2 Avg. NE non-NE NN ADJ VERB ADV CC

Dundee

s 26.3 87.0 23.4 33.8 100.5 -2.0 2.6 10.4
m 41.7 152.3 36.4 57.0 123.3 7.8 27.6 16.4
l 40.1 158.2 34.5 56.3 126.5 4.8 19.2 14.0
xl 41.4 168.2 35.4 60.0 125.5 6.9 19.7 13.5

NS

s 105.7 186.8 104.6 148.7 152.5 122.0 49.0 77.1
m 108.5 155.9 107.9 145.3 152.0 130.1 60.8 80.8
l 127.7 151.6 127.3 175.6 158.6 152.9 74.8 94.3
xl 123.3 141.8 123.1 163.6 145.4 161.2 81.5 89.0

Brown

s 37.2 266.0 28.1 54.3 -65.2 138.1 32.1 5.9
m 41.4 257.6 32.8 71.4 -60.6 137.5 38.6 3.5
l 42.6 265.3 51.1 69.9 -110.3 160.8 17.2 24.7
xl 54.8 282.3 45.8 90.5 -90.2 151.3 32.2 20.0

Table 3: ∆MSE measurement on word-level properties
of GPT-2 models on Dundee, Natural Stories (NS) and
Brown. Top-3 on each corpus-by-LM are underlined.

3Link: https://huggingface.co/dslim/bert-base-NER
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Results. The result, as shown in Table 3, shows458

primary factors responsible for the benefit of us-459

ing sT (wt, T ) for each corpus-by-LM combination.460

The top three influential subsets for each corpus461

are underlined. Among all datasets and models,462

named entities perform to be the most benefi-463

cial word-level attribute. In contrast, closed-class464

words profit the least from temperature scaling.465

Performance trends are consistent across different466

model variants on the same corpus.467

We also measured empirically how often tem-468

perature scaling increased vs. decreased the sur-469

prisal estimate of a word. Our results show that for470

ca. 90% of words, surprisal estimates are increased471

through temperature scaling across all word classes.472

For the subset of named entities, a slightly smaller473

percentage exhibits increased surprisal estimates.474

For a full analysis across different corpora and mod-475

els, see Table 5 in Appendix B.476

We further investigate the benefit of temperature-477

scaled surprisal (quantified by ∆MSE) given the478

subset of words whose probability decreases (or479

increases). The results are in Table 4. On Dundee,480

the main gain arises from the reduction of large481

probabilities via temperature scaling. Conversely,482

for Natural Stories, the primary benefit comes more483

strongly from words with originally very low prob-484

ability, which become more probable. For Brown,485

the effects are evenly split. These findings align486

with our theoretical intuition that temperature487

scaling enhances the fit performance by mak-488

ing probabilities more smooth, which means not489

only making high probabilities lower but also mak-490

ing very low probabilities higher and close to 1/K,491

since a very low probability also means the model492

is confident in the incorrectness of certain classes.493

Considering effects on named entities more494

specifically, we find that on Natural Stories and495

Brown, the benefit of temperature scaling can496

mostly be attributed to reducing the probability497

estimates of highly predictable entities, while on498

Dundee the beneficial effect mostly arises from in-499

creasing probabilities of named entities. We spec-500

ulate that this could be due to the types of most501

frequent named entities that occur in the different502

text sorts, and present a more detailed analysis of503

this aspect in Appendix B.504

6.3 Influence of multiple-token words505

A fact that is often ignored (but see Nair and Resnik,506

2023) is that modern LLMs use subword tokeniza-507

Named entities
Avg. NE non-NE

Corpus GPT2 pwt↓ pwt↑ pwt↓ pwt↑∗ pwt↓ pwt↑
s 27.4 18.2 81.3 107.2 25.1 10.1
m 41.9 39.8 139.1 205.6 37.8 23.9
l 41.0 31.3 156.1 166.6 36.2 18.0Dundee

xl 42.5 29.8 170.2 158.8 37.0 16.9
s 94.5 275.6 218.5 3.0 92.9 284.9
m 105.7 158.3 179.3 -34.9 104.7 163.9
l 125.0 166.1 197.5 -224.8 124 175.4NS

xl 121.8 140.7 197.3 -272.6 120.8 149.5
s 37.6 32.6 329.7 -170.6 26.6 45.5
m 39.1 72.3 276.0 143.6 30.5 66.3
l 52.7 28.1 325.8 -205.9 42.5 44.4Brown

xl 50.9 111.5 298.2 168.2 41.7 107.1

Table 4: Given words whose probability decreases
(and increases), the corresponding ∆MSE(pwt

↓) (and
∆MSE(pwt

↑)) measurement for GPT-2 models on
Dundee, Natural Stories (NS) and Brown. A higher
∆MSE is displayed in bold in the average across all
word types (Avg.), named entities (NE), and non-named
entities (non-NE) columns, respectively, for each corpus-
by-LM combination. The column with ∗ indicates in-
sufficient (less than 1%) data.

tion. This means that long words may consist of 508

several tokens. In this case, the probability of the 509

complete word is calculated by multiplying the 510

probabilities of the subword tokens (and the word’s 511

surprisal is correspondingly calculated by adding 512

the surprisals of the subwords). While this may 513

often not matter, whether a word is tokenized into 514

a single subword or several subwords can make a 515

remarkable difference when applying temperature 516

scaling: imagine a long / difficult word which has 517

a low probability (and correspondingly a high sur- 518

prisal). If this word were to be represented as a 519

single subword token, temperature scaling might 520

have the effect that the probability of this word 521

gets increased during temperature scaling, and its 522

surprisal estimate is hence decreased at T > 1. 523

If, on the other hand, the same word were to 524

be composed of two subword tokens, one or both 525

of the subword tokens can be expected to have a 526

higher probability (than a hypothetical single sub- 527

word token), and it is possible that during tempera- 528

ture scaling, the probabilities of the subword tokens 529

would each be decreased at T > 1, such that the 530

sum of the surprisals of the subword tokens would 531

be much higher, compared to the word’s surprisal 532

estimate at T = 1. 533

To summarize, whether the surprisal of a certain 534

word would increase or decrease after temperature 535

scaling could depend on whether that word happens 536

to be included in the subword token vocabulary or 537

7



Figure 4: Relationship between ∆llh of GPT-2 s on
three corpora and corresponding temperature T.

not.4 In order to quantify to what extent subword538

tokenization affects surprisal estimates, we con-539

ducted several analyses.540

Fig. 4 shows ∆llh under various conditions:541

scaling all words (consistent with experiments in542

Section 5.2) vs. taking into the analysis only the543

subset of single-token words and multiple-token544

words. The comparison between the full, dotted,545

and dashed lines highlights that the benefit of546

temperature-scaled surprisal comes primarily547

from the scaling of multiple-token words.548

Next, it is interesting to consider for what549

percentage of multiple-token words temperature-550

scaling increases the surprisal. We find that the sur-551

prisal of more than 90% of multiple-token words in-552

creases, and the ratio is higher than across single-553

token words by ca. 6% on Dundee and Brown, see554

Table 12 in Appendix L for more details.555

7 Discussion556

Our experiments demonstrate that choosing a tem-557

perature around 2.5 improves the fit to human read-558

ing times. Furthermore, we find that this effect is559

chiefly driven by an improved fit for words which560

consist of several subword tokens.5 Named entities561

and other open class words tend to have a larger562

tendency to contain several subword tokens, which563

can explain why temperature scaling is particularly564

effective for these words.565

So what does all of this mean for surprisal esti-566

mates from LLMs and reading time prediction?567

Firstly, following the argumentation of Oh and568

Schuler (2023b), it is possible that indeed the effect569

is driven by humans failing to accurately estimate570

the probability of rare words (rare words being571

the ones that are split up into several subwords),572

because they do not reach sufficient language ex-573

4Distributions of surprisal for single vs. multiple token
words before and after temperature scaling are provided in
Fig. 8 in Appendix L.

5Appendix K shows that subword tokenization has larger
explanatory power than word class.

perience or because human language models do 574

not track these probabilities well. In this case, 575

temperature-scaling rare words to which the LLM 576

assigns a too high probability (and hence a low 577

surprisal) would be a good strategy to counteract 578

the discrepancy between humans and LLMs. From 579

LLMs’ perspective, recalling the observation from 580

Section 5.3 that larger LLMs that yield poorer fits 581

to RTs are actually better calibrated, hence the mas- 582

sive training dataset might be at the cause of driving 583

these models away from the human-like predictive 584

processing, aligning with Oh and Schuler (2023a). 585

Secondly, it is likely that the beneficial effect of 586

temperature scaling is an artifact of subword tok- 587

enization, and that this effect would disappear if 588

all words were composed of only a single subword 589

token (cf. our explanation in Section 6.3). That 590

is, temperature scaling would not be beneficial be- 591

cause of the reasons that motivated this research 592

originally, but only because it is a way of assign- 593

ing higher surprisal to words consisting of several 594

subword tokens. In order to test this hypothesis, 595

one would have to re-train a GPT-2 model using a 596

vocabulary that at least includes all words that are 597

contained in the reading time corpora, and then re- 598

running the analysis to check whether a beneficial 599

effect of temperature scaling can still be found. 600

Finally, it is also possible that the splitting of a 601

word into subwords coincides with the reader fixat- 602

ing a word several times, and that these added fixa- 603

tions lead to an overestimate in RTs compared to 604

the actual surprisal experienced by a human reader. 605

Future work could investigate this hypothesis by 606

analysing RTs on subwords instead of aggregated 607

words (with the caveat that subword tokens may 608

not be cognitively plausible units). 609

8 Conclusion 610

This paper studies the prediction of human RTs 611

from the perspective of probability distribution. We 612

make the following contributions: (1) We demon- 613

strate that the prediction of RTs can be significantly 614

improved via temperature scaling of LLM probabil- 615

ity estimates. (2) We demonstrate that the primary 616

benefit of temperature-scaled surprisal is driven by 617

words composed of several subword tokens. These 618

words also tend to be rarer / long open-class words. 619

Future work should investigate the interaction of 620

subword tokenization and temperature scaling, as 621

well as the issue of tokenization in the analysis of 622

eye-tracking data. 623
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Limitations624

In this work, the identification of the optimal T for625

temperature-scaled surprisal is manually tuned. Fu-626

ture research could develop an automated method627

to determine this optimal value, e.g., from specific628

characteristics of LLMs or corpora. Additionally,629

a question may be asked whether the possible non-630

linear relationship between surprisal and reading631

times (Shain et al., 2022; Hoover et al., 2023) could632

influence the temperature-scaled surprisal’s superi-633

ority over original surprisal. Investigating the effec-634

tiveness of temperature-scaled surprisal using gen-635

eralized additive models, a branch of models that636

assume less about the linearity than linear mixed ef-637

fect models employed here, would be an extension.638

Finally, exploring effects of temperature-scaled sur-639

prisal on different measures of fixation duration640

could be considered in future work.641

Ethical Considerations642

The datasets and packages we used are all publicly643

available and have no privacy issues.644
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A Connection to Contextual Rényi 887

Entropy 888

While a lot of work has investigated the effect of 889

next word entropy on reading times (Hale, 2003, 890

2006; Linzen and Jaeger, 2014; Angele et al., 2015; 891

van Schijndel and Linzen, 2019; Aurnhammer and 892

Frank, 2019; Pimentel et al., 2023), we will here fo- 893

cus on contextual Rényi entropy (the entropy of the 894

probability distribution at the current time stamp, 895

which is parameterized by α), as proposed in Pi- 896

mentel et al. (2023) to represent human anticipatory 897

reading process. Pimentel et al. (2023) find that 898

Rényi entropy with an optimal α∗ in the range of 899

(0, 1) (around 1/2) obtains the best performance 900

in reading time prediction (compared to Shannon 901

Entropy (α = 1) or compared to unscaled surprisal 902

estimates). 903

Mathematically, Contextual Rényi en- 904

tropy (Rényi, 1961) is defined as: 905

Hα(wt | w<t)

= lim
β→α

1

1− β
log2

∑
w∈W

(p(w|w<t))
β.

(9)

906

For given α
′ ∈ (0,∞), we simply denote Hα(wt | 907

w<t)|α=α′ as Hα|α=α′ . 908

Theorem 1 (Monotonicity of sT (wt, T ) and 909

Hα(wt | w<t)). Given any probability distribution 910

p with actual-word probability pwt > 1/K, where 911

K is the number of classes, temperature-scaled sur- 912

prisal sT (wt, T ) is strictly monotonically increas- 913

ing in ∆T ∈ [1,∞], Rényi entropy Hα(wt | w<t) 914

is strictly monotonically decreasing in ∆α ∈ [0, 1], 915

especially, 916

sT |T=1 < sT |T=T ∗ < lim
T→∞

sT (wt, T ) (10) 917

Hα|α=1 < Hα|α=1/2 < Hα|α=0, (11) 918

where T ∗ is the optimal T of fit to RTs in the range 919

of ∆T . 920

Proof. Eq. (10) can be easily verified by con- 921

sidering the monotonicity of temperature-scaled 922

softmax output σSM (ẑwt/T ). The second part of 923

Eq. (11) can be rewritten as: 924

Hα|α=1/2 = 2 log2
∑
w∈W

√
p(w|w<t) (12) 925

< 2 log2

√
K

∑
w∈W

p(w|w<t) (13) 926

= − log2(1/K) = Hα|α=0, (14) 927
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where for the step from Eq. (12) to Eq. (13) we928

use AM-QM inequality and K is the number of929

classes in tokenizer. The first part of Eq. (11) can930

be rewritten as:931

Hα|α=1/2 = 2 log2
∑
w∈W

√
p(w|w<t) (15)932

> 2 log2

√√√√ ∏
w∈W

(
1

p(w|w<t)
)p(w|w<t)

(16)

933

=
∑
w∈W

p(w|w<t) log2 p(w|w<t) = Hα|α=1,

(17)

934

where from Eq. (15) to Eq. (16) we use AM-GM935

inequality.936

Theorem 2 Rényi entropy with α = 0 is equiva-937

lent to temperature-scaled surprisal with T → ∞.938

Hα(wt | w<t)|α=0 = lim
T→∞

sT (wt, T ). (18)939

Proof. By plugging in α = 0, Contextual Rényi940

entropy recovers to be the entropy that readers941

concentrate on the count of potential words with942

nonzero probabilities, which is defined in Eq. (5)943

in Pimentel et al. (2023). As T → ∞, temperature-944

scaled surprisal converges to the surprisal induced945

by random guessing. Given the assumtion that946

p(w|w<t) > 0 for each word w ∈ W , LHS be-947

comes:948

LHS = −log2(1/K), (19)949

where K is the number of classes. As T → ∞,950

RHS becomes:951

RHS = − lim
T→∞

log2
ezwt/T∑

w∈W ezw/T
(20)952

= −log2(1/K) (21)953

Theorem 3 For K ≥ 2, the expectation of the954

L1 norm between Rényi entropy with α = 1 and955

temperature-scaled surprisal with T = 1 has an956

upper bound.957

E[|sT |T=1 −Hα|α=1|] <
√

1

4
log2(K − 1) + 1

(22)

958

Proof. With Jensen’s inequality, we have: 959

E[|sT |T=1 −Hα|α=1|] (23) 960

≤
√
E[(sT |T=1 −Hα|α=1)2] (24) 961

=

√
E[(− log2 pwt −

∑
w∈W

p(w)(− log2 p(w)))
2]

(25)

962

=
√

Var[sT |T=1] (26) 963

<

√
1

4
log2(K − 1) + 1, (27) 964

where Var[·] denotes the variance. The last inequal- 965

ity is shown by Lemma 4, completing the proof of 966

this theorem. 967

Lemma 4 (Maximum variance of the surprisal). 968

(See Theorem 8 and Lemma 15 in (Reeb and Wolf, 969

2015)). Let ρ = diag(p1, p2, ..., pd) be a state on a 970

d-dimensional system. Let − log pi be the surprisal 971

of the output i in this system. Define Nd to be: 972

Nd :=
1

4
log2(d− 1) + 1. (28) 973

For d ≥ 2, the variance of surprisal has a tight 974

upper bound: 975

varρ(− log ρ) < Nd (29) 976

Theorem 2 claims the equivalence of temperature- 977

scaled surprisal sT (wt, T ) and Rényi entropy Hα 978

when T → ∞ and α = 0. Theorem 3, on the 979

other side, gives an upper bound when T = 1 980

and α = 1. Intuitively, when T ∈ (1,∞), sT 981

can be considered as a softened version of sT |T=1. 982

Similarly, when α ∈ (0, 1), Hα can be consid- 983

ered as a softened version of Hα|α=1. Math- 984

ematically, Theorem 1 provides the monotonic- 985

ity of both functions within their respective do- 986

mains. Hypothetically, given the above conditions, 987

when tuning both functions with the aim of a bet- 988

ter fit to RTs, sT |T=T ∗ and Hα|α=1/2 might be 989

close. Empirically, Fig. 5 illustrates the relationship 990

between averaged Rényi entropy Hα|α={0,1/2,1} 991

and sT |T={1,T ∗,∞} on probabilities on three cor- 992

pora. Notably, Hα|α=1/2 and sT |T=T ∗ are closely 993

aligned, especially when compared with other en- 994

tropy and surprisal data points. This empirical ev- 995

idence partly verifies Theorem 2, Theorem 3 and 996

our hypothesis. 997

12



Figure 5: A comparison of averaged temperature-
scaled surprisal sT |T={1,T∗,∞} and Rényi entropy
Hα|α={0,1/2,1}.

B Further analysis in Section 6.2998

We observe that larger LMs exhibit an increased999

∆MSE by utilizing temperature-scaled surprisal,1000

as shown in the average column (Avg.) of Table 3.1001

Specifically, on Dundee, the top 2 models achiev-1002

ing the largest improvement through temperature1003

scaling are GPT-2 medium and xl, while GPT-21004

large and xl have the most benefit on Natural Sto-1005

ries and Brown. This result is consistent with previ-1006

ously observed ∆llh improvement (∆llh+) across1007

the corpus-by-LM reported in Table 1, suggest-1008

ing a correlation between model likelihood and1009

MSEs of the regression models. We do not ob-1010

serve a mismatch between them, as posited by Oh1011

and Schuler (2023b) that LME models achieve sim-1012

ilar MSEs irrespective of obvious differences in1013

model likelihood.1014

Regarding the effect of the change (increase or1015

decrease) of actual-word probability on the final fit1016

to RTs, we first analyzed the ratio of probabilities1017

decreasing (or increasing) for all words, as well1018

as for subsets with specific word-level properties,1019

choosing named entities as the representative, as1020

shown in Table 5. We observed that probabilities1021

of the majority of words (around 80-90%) de-1022

crease by temperature scaling. Compared with1023

the average across all word types (as indicated in1024

the ’Avg.’ column), named entities exhibit a lower1025

ratio of probability reduction. Larger LMs tend to1026

have a higher ratio, especially the ratio for named1027

entities, likely because smaller models may lack1028

the specific knowledge of less common terms, such1029

as named entities.1030

Recalling one of the results in Section 6.2 that1031

the main advantage of temperature-scaled surprisal1032

arises from reduction of large probabilities on1033

Dundee and the amplification of small probabilities1034

on Natural Stories. However, for named entities, 1035

the story is converse on Dundee vs. on Natural Sto- 1036

ries and Brown, where for the latter two corpora, 1037

the advantage is primarily due to reducing the prob- 1038

abilities of highly predictable entities. We shed 1039

light to the possible reason of such a discrepancy in 1040

Fig. 6, which displays the top 15 frequent words for 1041

GPT-2 small on three corpora. Notably, Natural 1042

Stories and Brown show a marked lack of words 1043

with increased probabilities (blue bins) compared 1044

to Dundee. This lack weakens the overall impact 1045

of rising probabilities (quantified by ∆MSE(pwt↑)). 1046

Specifically, on Brown, only 4 out of 15 top fre- 1047

quent words have the part of increased probabilities 1048

(blue bins), correlating with the largest discrep- 1049

ancy in ∆MSE between probabilities that decrease 1050

(329.7) and those that increase (-170.6) in Table 4. 1051

Avg. Named entities
Corpus GPT2 pwt ↓ |res| ↓ pwt ↓ |res| ↓

Dundee

s 88.0 51.8 78.1 52.3
m 89.6 52.5 80.1 54.1
l 90.2 52.3 80.1 53.5
xl 91.4 52.4 82.7 54.3
s 93.8 55.0 85.3 51.8

Natural m 94.7 55.2 89.1 53.2
Stories l 93.5 55.7 89.1 53.4

xl 92.1 55.5 88.2 52.8

Brown

s 91.8 51.5 87.3 50.9
m 93.2 51.5 86.1 50.9
l 93.3 51.8 88.6 52.1
xl 93.5 51.7 87.8 53.3

Table 5: The ratio of probability of predicted word pwt

getting smaller and the absolute value of residuals |res|
getting smaller for GPT-2 models on three corpora.

C Preprocessing steps 1052

On Dundee ET corpus (Kennedy et al., 2003), 1053

we use the first-pass gaze duration. Following 1054

prior work (Kuribayashi et al., 2022), we remove 1055

words containing numbers or punctuation, words 1056

that are either the first or the last one in a line, 1057

as well as words whose previous words contain 1058

numbers or punctuation. On Natural Stories SPR 1059

corpus (Futrell et al., 2018), following Shain et al. 1060

(2022), we remove words if the RT is less than 1061

100ms or greater than 3,000ms, if the words are in 1062

the first or last position of each story, if participants 1063

answered less than 5 out of 8 comprehension ques- 1064

tions correctly, if words contain numbers or punc- 1065

13



Figure 6: Top 15 frequent named entities for GPT-2 small on Dundee, Natural Stories and Brown. ↑ and ↓ denote
probability being higher and smaller, respectively. ⃝ and × denote unbeneficial words (absolute residual error
increases) and beneficial words (absolute residual error decreases) by temperature scaling, respectively.
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tuation, and if words whose previous words con-1066

taining numbers or punctuation. On Brown SPR1067

corpus (Smith and Levy, 2013), following Shain1068

et al. (2022), we remove words if the RT is less1069

than 100ms or greater than 3,000ms and if words1070

contain numbers or punctuation.1071

D Further descriptions on metrics and1072

evaluation1073

We evaluate calibration error (% ECE and %1074

CECE) in both equally-spaced and log binning1075

schemes. In equally-spaced binning scheme,1076

the samples are grouped into M ∈ N equally-1077

spaced interval bins based on their confidences1078

p̂i. Conversely, the log binning scheme operates1079

under an empirical upper limit for − log2 p̂i, de-1080

noted as max(− log2 p̂). Table 6 shows ranges1081

of p̂ and − log2 p̂ for GPT2s on three corpora.1082

For this scheme, we establish M ∈ N log-1083

equally-spaced interval bins within the range of1084

(0, max(− log2 p̂)].1085

We investigate scaling T ∈ [1, 10], considering1086

both densely and sparsely distributed points. The1087

values examined are detailed as follows: [1.0, 1.1,1088

..., 1.9] for dense intervals, [2.0, 2.25, ..., 3.25] for1089

moderately spaced intervals, and [3.5, 4.0, ..., 10.0]1090

for sparse intervals.1091

Following Kuribayashi et al. (2022), reading1092

times of a base model are modelled by the fol-1093

lowing formula:1094

rt ∼ freq ∗ length + freq_prev_1 ∗ length_prev_1

+ (1|article) + (1|subj_id)
(30)

1095

A target model additionally includes surprisal esti-1096

mates of current words and previous words:1097

rt ∼ surprisal + surprisal_prev_1 + surprisal_prev_2

+ freq ∗ length + freq_prev_1 ∗ length_prev_1

+ (1|article) + (1|subj_id).
(31)

1098

On Dundee corpus, both models also include fea-1099

tures of [screenN, lineN, segmentN]. We also per-1100

form experiments with both models without inter-1101

actions among predictors in Appendix I.1102

E Exploring further effectiveness of1103

temperature-scaled surprisal over basic1104

predictors1105

In this section, we explore the question of whether1106

the benefit of temperature-scaled surprisal holds1107

only for regression models already containing other 1108

predictors such as length and frequency. We con- 1109

duct experiments similar to those detailed in Sec- 1110

tion 5.2 while setting base predictor variables vbase 1111

to 0 and target predictor variables vtgt to only 1112

temperature-scaled surprisal sT (wt, T ) in Eq. 7. 1113

Fig. 7 shows that excluding base predictors de- 1114

crease but not totally impact the effectiveness of 1115

temperature-scaled surprisal. 1116

F Calibration error for single-token and 1117

multiple-token words 1118

In Table 7, we demonstrate the calibration error 1119

(%ECE) for single-token and multiple-token words 1120

for GPT-2 small. Calibration evaluation is con- 1121

ducted at the token level as before. Results indicate 1122

that multiple-token words show larger calibra- 1123

tion errors than single-token words. 1124

G Probability distribution before and 1125

after temperature scaling 1126

Fig. 8 shows actual-word probability distribution 1127

before and after temperature scaling for GPT-2 1128

small on three corpora. Multiple-token words 1129

tend to have smaller probabilities than single- 1130

token words, both before and after temperature 1131

scaling. 1132

H Significant test of temperature-scaled 1133

surprisal 1134

We report the statistical significance based on se- 1135

lecting the most representative model, GPT2s, on 1136

three corpora in Table 8. Models with temperature- 1137

scaled surprisal lead to statistically significant posi- 1138

tive ∆llh (p < 0.001). 1139

I Analysis on correlations among 1140

predictors 1141

We investigate the question of whether the benefit 1142

of temperature-scaled surprisal is primarily due to 1143

the interactions and correlations among predictors. 1144

We first run experiments with the original target 1145

LME model as in Eq. 31 (denoted as model 1), a 1146

model that has no interactions between frequency 1147

and length as in Eq. 32 (denoted as model 2) and a 1148

third model that has no interactions and addition- 1149

ally includes random slopes for subject as in Eq. 33 1150

(denoted as model 3). 1151
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p̂ − log2 p̂

Dundee [4.99e-03, 1) (0, 7.65]
Natural Stories [8.567e-03, 1) (0, 6.87]

Brown [8.15e-03, 1) (0, 6.94]

Table 6: Ranges of p̂ and − log2 p̂ for GPT2s on Dundee, Natural Stories and Brown.

Figure 7: Relationship between ∆llh of GPT-2 small and corresponding temperature. T is scaled from 1.0 to 10.
Base predictor variables vbase and target predictor variables are 0 and temperature-scaled surprisal sT (wt, T ),
respectively.

ECEsingle ECEmultiple

Dundee
T = 1 1.98 2.05
T = T∗ 25.58 36.10

Natural Stories
T = 1 2.20 3.78
T = T∗ 32.38 47.02

Brown
T = 1 1.69 3.86
T = T∗ 28.70 42.99

Table 7: Expected calibration errors of tokens in single-token (% ECEsingle) and multiple-token words (%
ECEmultiple) before and after temperature scaling for GPT-2 small on Dundee, Natural Stories and Brown. Results
are all evaluated on the equally-spaced binning scheme.

Corpora Models p
Dundee target vs. base <0.001
NS target vs. base <0.001
Brown target vs. base <0.001

Table 8: Significance of temperature-scaled surprisal for GPT2 small on three corpora with T = T ∗.
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Figure 8: Distribution of negative log actual-word probability (surprisal) before (left side of figure) and after (right
side of figure) temperature scaling for single-token and multiple-token words for GPT-2 small on three corpora.
Values of surprisal with probability of 0.1, 0.01 and 1/K (random guessing) are displayed using dash lines.
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rt ∼ surprisal + surprisal_prev_1 + surprisal_prev_2

+ freq + length + freq_prev_1 + length_prev_1

+ (1|article) + (1|subj_id).
(32)

1152

rt ∼ surprisal + surprisal_prev_1 + surprisal_prev_2

+ freq + length + freq_prev_1 + length_prev_1

+ (1|article) + (surprisal|subj_id).
(33)

1153

The results are in Table 9. Removing the in-1154

teractions among predictors or additionally in-1155

cluding random slopes does not influence the1156

effectiveness of temperature-scaled surprisal.1157

Furthermore, we also investigated the correla-1158

tions among predictors by examining the correla-1159

tion matrix for GPT2 small on three corpora (model1160

1). Table 9, 10 and 11 indicate that temperature-1161

scaled surprisal does not exhibit a stronger cor-1162

relation with the other predictors in comparison1163

to the original surprisal, as shown in the surprisal1164

column (’surp’), which excludes the concern that1165

the primary benefits are simply due to correlations1166

between the baseline predictor and temperature-1167

scaled surprisal.1168

J Influence of multiple-token words1169

vs. model size1170

Table 10 shows the increase of ∆llh of temperature-1171

scaled surprisal by only taking into the analysis1172

the subset of multiple-token words. The benefit of1173

temperature-scaled surprisal being primarily from1174

the scaling of multiple-token words still holds for1175

larger LLMs. For larger LLMs, the influence of1176

multiple-token words is also larger.1177

K Influence of word-level attributes1178

vs. influence of multiple-token words1179

We explore which of these two factors has a1180

stronger effect on the benefit of temperature-scaled1181

surprisal, word-level attributes in Section 6.2 or1182

multiple-token words in Section 6.3. For word1183

types, we select named entities as the representa-1184

tive attribute since they perform to be the most1185

beneficial ones as discussed in Section 6.2. For1186

multiple-token words, we select all multiple-token1187

words with more-than-one tokens. In order to fairly1188

compare the influence, we normalize ∆MSE of1189

each category under the linguistic factor F with 1190

the ratio of that category words among the total 1191

words: ∆̄MSE(F ) = ∆MSE(F ) ·ratio(F ). Table 11 1192

shows that multiple-token words drive the much 1193

stronger averaged benefit of temperature-scaled 1194

surprisal, compared with the averaged benefit of 1195

named entities. 1196

L Other results in Section 6 1197
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Corpora Models T ∗ ∆llh(T = 1) ∆llh(T = T ∗) ∆llh+

Dundee model1 2.75 6.90 8.45 22.5
Dundee model2 2.75 6.79 8.12 19.6
Dundee model3 2.75 7.81 9.12 16.8
Natural Stories model1 2.5 4.36 6.99 60.3
Natural Stories model2 2.5 4.35 6.99 60.7
Natural Stories model3 * * * *
Brown model1 2.5 6.62 7.53 13.7
Brown model2 2.25 6.62 7.30 10.3
Brown model3 * * * *

Table 9: Optimal T ∗, ∆llh(T = 1), ∆llh(T = T ∗), and ∆llh+ for three models for GPT2 small on three corpora. ∗
indicates regression models not converged.

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.004
surp_1 0.000 -0.147
surp_2 -0.001 -0.057 -0.101
log_frq 0.0200 0.238 0.002 -0.03
length 0.019 -0.272 0.027 0.04 0.602
log_frq_1 0.022 -0.085 0.332 -0.048 0.034 -0.021
length_1 0.028 0.034 -0.200 0.031 0.003 -0.025 0.650
log_frq_2 0.032 -0.081 0.002 0.000 0.374 0.626 -0.009 0.014
length_2 0.038 -0.013 -0.033 0.003 -0.003 0.043 0.509 0.578 0.014

(a) T = 1

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.006
surp_1 0.005 -0.145
surp_2 -0.003 -0.074 -0.154
log_frq 0.020 -0.055 0.050 -0.013
length 0.017 -0.395 0.042 0.044 0.676
log_frq_1 0.024 -0.058 0.063 0.011 0.051 -0.018
length_1 0.025 0.060 -0.353 0.075 -0.016 -0.035 0.702
log_frq_2 0.031 -0.156 0.004 0.004 0.409 0.634 -0.005 0.011
length_2 0.037 0.001 -0.088 -0.006 -0.003 0.038 0.542 0.574 0.014

(b) T = T ∗

Figure 9: Correlation matrix for GPT2s on Dundee with (a) T = 1 and (b) T = T ∗.
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(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.002
surp_1 0.002 -0.009
surp_2 0.001 0.003 -0.019
log_frq 0.017 0.237 0.013 -0.016
length 0.022 -0.181 0.018 0.011 0.692
log_frq_1 0.018 0.019 0.238 -0.051 0.067 -0.015
length_1 0.022 0.013 -0.183 0.029 -0.01 0.011 0.672
log_frq_2 0.030 0.005 0.030 0.010 0.472 0.586 0.008 0.017
length_2 0.030 0.010 0.011 0.018 -0.005 0.02 0.468 0.589 0.023

(a) T = 1

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.013
surp_1 0.011 -0.108
surp_2 -0.002 -0.034 -0.080
log_frq 0.020 0.200 0.009 -0.021
length 0.020 -0.194 0.014 0.010 0.700
log_frq_1 0.019 -0.09 0.231 -0.026 0.048 0.001
length_1 0.020 0.016 -0.203 0.045 -0.013 0.014 0.667
log_frq_2 0.031 0.035 0.004 -0.007 0.482 0.578 0.000 0.020
length_2 0.031 0.015 0.038 -0.036 -0.003 0.019 0.474 0.579 0.023

(b) T = T ∗

Figure 10: Correlation matrix for GPT2s on Natural Stories with (a) T = 1 and (b) T = T ∗.

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.003
surp_1 -0.003 -0.058
surp_2 -0.001 -0.021 -0.039
log_frq 0.032 0.269 0.007 -0.053
length 0.036 -0.206 0.005 -0.007 0.691
log_frq_1 0.007 -0.068 0.212 -0.044 0.084 0.021
length_1 0.012 -0.018 -0.379 0.036 0.022 0.060 0.484
log_frq_2 0.045 -0.003 0.000 -0.009 0.539 0.593 -0.013 0.016
length_2 0.028 -0.019 -0.09 0.018 0.020 0.054 0.247 0.347 -0.012

(a) T = 1

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.019
surp_1 -0.010 -0.114
surp_2 -0.002 -0.046 -0.096
log_frq 0.035 0.165 0.010 -0.049
length 0.032 -0.241 0.027 -0.010 0.719
log_frq_1 0.008 -0.103 -0.124 0.011 0.078 0.034
length_1 0.015 0.019 -0.572 0.079 0.018 0.043 0.580
log_frq_2 0.045 0.015 -0.024 -0.023 0.554 0.584 -0.012 0.026
length_2 0.029 0.009 -0.263 0.008 0.022 0.046 0.295 0.418 -0.005

(b) T = T ∗

Figure 11: Correlation matrix for GPT2s on Brown with (a) T = 1 and (b) T = T ∗.
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GPT2 ∆llh + (multiple)

Dundee

s 23.6
m 36.4
l 38.0
xl 42.9

NS

s 45.2
m 50.1
l 62.0
xl 67.8

Brown

s 9.2
m 13.4
l 17.9
xl 5.49

Table 10: ∆llh improvement by only scaling tokens
in multiple-token words (%) (∆llh + (multiple) =
(∆llh(T = T ∗,multiple) − ∆llh(T = 1))/∆llh(T =
1)) for GPT2s on Dundee, Natural Stories (NS) and
Brown.

GPT2 NE #>1

Dundee

s 3.9 17.0
m 6.9 26.7
l 7.2 27.0
xl 7.6 27.9

NS

s 2.6 35.9
m 2.2 38.4
l 2.1 43.3
xl 2.0 40.6

Brown

s 10.2 27.0
m 9.8 28.9
l 10.1 30.7
xl 10.8 36.0

Table 11: ∆̄MSE measurement on named entites (NE)
and multiple-token words (#>1) for GPT-2 models on
Dundee, Natural Stories (NS) and Brown.
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ratio of pwt↓ ratio of named entities
#=1 #>1 #=2 #=3 #=1 #>1 #=2 #=3

Dundee 87.6 93.7 90.6 98.3 3.7 16.3 16.6 17.4
Natural Stories 92.1 93.0 92.2 97.2* 1.3 3.5 3.3 4.7*
Brown 93.0 98.1 97.6 35.2* 3.3 12.3 10.9 17.0*

Table 12: This table displays the ratio of words with decreasing probability (pwt
↓) and the ratio of named entities

on subsets for both single-token words (#=1) and multiple-token words (#>1) for GPT-2 small on three corpora.
Numbers marked with ∗ indicate subsets with insufficient (less than 1%) data.

#=1 #>1 #=2 #=3
pwt↓ pwt↑ pwt↓ pwt↑ pwt↓ pwt↑ pwt↓ pwt↑

Dundee 8.0 19.6 269.5 -20.3* 50.5 26.6* 497.4 125.4**
NS 117.3 142.3 242.5 93.0* 312.6 95.8* -123.9* 50.6**
Brown 35.2 -61.0 327.3 5290.2** 17.3 5290.2** 655.0* 0.0**

Table 13: Given words with decreasing (and increasing) probability, the corresponding ∆MSE(pwt
↓) (and

∆MSE(pwt↑)) measurement for both single-token words (#=1) and multiple-token words (#>1) for GPT-2 small on
three corpora. Numbers marked with ∗ indicate subsets with insufficient (less than 1%) data. Numbers marked with
∗∗ indicate subsets with super insufficient (around or less than 0.1%) data.
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