Blocks, Bots, and Bottlenecks: Studying Real-time and
Adaptive Multi-Agent LLM Collaboration

Isadora White'*, Kolby Nottingham?* Ayush Maniar!, Max Robinson?,
Hansen Lillemark', Mehul Maheshwari', Lianhui Qin', Prithviraj Ammanabrolu’
* equal contribution
!University of California, San Diego
2Latitude Games 3Emergent Garden

Abstract

Collaboration lies at the heart of human intelligence—whether brainstorming
ideas, dividing responsibilities, or planning complex tasks together. Can large
language models (LLMs) do the same? We introduce MINDcraft, a dynamic
platform that pushes the limits of Al collaboration by combining real-time, adaptive
communication with 47 powerful in-game tools that let agents act in the rich,
open world of Minecraft. Alongside it, we present MINECOLLAB, a benchmark
for evaluating how well agents coordinate, plan, and execute tasks together. Our
experiments reveal a striking result: LLM agents falter when collaboration demands
clear and detailed communication—showing up to a 15% performance drop when
they must articulate step-by-step plans. These findings highlight that while today’s
agents can act, true collaboration still hinges on mastering language as a medium
for shared understanding and joint reasoning. Video demonstrations illustrating
the capabilities and failure modes of our agents can be found here: https://
mindcraft-minecollab.github.io/index.html

1 Introduction

Imagine Al agents that can communicate in real-time, adapt to their roles and collaborators dynam-
ically, while coordinating with each other on complex multi-step tasks in rich 3D environments.
Despite LLM-based agents winning math OLYMPIAD gold [1]], relatively little progress has been
made towards this vision. Al Agents still struggle with the essential challenges of (1) collaborating
with other agents [2] (2) long horizon planning [3]] and (3) manipulation of an embodied environment
[4]. This raises a provocative question: can Al agents learn to collaborate as fluidly as humans, or are
there fundamental barriers in our current approaches?

Current multi-agent tasks and frameworks often focus on a hierarchical structure of agents (e.g. with
leader and follower agents) and a strict turn-based communication structure - preventing agents from
executing multiple actions in a row, interrupting their actions, or communicating while executing
actions. Moreover, many existing platforms do not focus on the combination of collaborative
reasoning, long horizon planning, and manipulation of an embodied environment through complex
tool calls, as is the subject of this paper. While we believe that more localized studies are valuable,
realistic communication often occurs in real-time and adaptively over long horizons and in complex
environments. For example, when two researchers co-author a paper, they exchange messages
asynchronously, interrupt each other, and make collective decisions regardless of hierarchy. In fact,
when humans collaborate they frequently interrupt each other and take multiple turns at a time. [5]]

*These authors contributed equally to this work.

Preprint. Under review.

https://mindcraft-minecollab.github.io/index.html
https://mindcraft-minecollab.github.io/index.html

Crafting Cooking Construction

Goal: Build a pyramid
of quartz and gold.

Goal: Craft a fishing rod.

task planning . | - = . resource sharing

W "V e
LUt

Andy makes bread while
N 1L 5 Mandy bakes cake.
Joon SFALy e
e LY e (e] Goal: Bake bread and
el A A, Y
OO TN b cake together. . £
Mandy collects wheat while Mandy shares some cake
Andy collects other items. with Andy.

Figure 1: Task suites and challenges. In this figure, we see the collaborative and embodied reasoning
challenges displayed. In the cooking and crafting tasks, the agents need to delegate tasks, share
resources and use embodied planning to manipulate the world of Minecraft. In the construction tasks,
the agents need to navigate and coordinate in the space to ensure they consistently build towards
their objective without undoing any progress the other agents have made. All together these tasks
comprehensively test collaborative and embodied reasoning.

To fill this gap, we introduce MINDcraft, an agentic framework in Minecraft that supports real-time,
hierarchy-free, adaptive communication. Further, we build 47 custom tools for MINDcraft, the
most extensive API for controlling Minecraft to our knowledge. These tools enable us to fully
unlock Minecraft’s potential as a complex, open-ended testbed for embodied Al collaboration. To
enable increased agent performance over longer horizons, we introduce a summarization-based
memory structure and RAG over relevant few-shot examples. To quantify the effectiveness of
our agents, we unveil the MINECOLLABsuite of tasks that tests the combined challenges of long
horizon collaborative reasoning in an embodied environment with real-time adaptive communication.
In designing MINECOLLABwe think strategically about designing tasks where collaboration and
communication are critical for task success. We introduce three tasks: cooking, which involves
preparing a meal while coordinating ingredient collection; crafting, where agents assemble tools
(for example a bookshelf) from available materials; and construction, where agents must build
procedurally generated blueprints from blueprints as can be seen in Figure[T]

We systematically evaluate LLM agents on these three task suites, testing their communication and
collaboration capabilities in a complex environment. First, we demonstrate that for our MINECOL-
LABtasks, communication and collaboration is critical to task success - with performance dropping
dramatically with only one agent or without communication. However, we find that task success
is highly sensitive to communication quality, with performance dropping by 15% when agents
must explicitly communicate detailed plans. On our collaborative task suite, human collaboration
remains more flexible and efficient than collaboration demonstrated by LLM agents significantly
outperforming Al agents.

Our contributions are threefold: (1) MINDcraft — the first framework for adaptive, real-time collabora-
tion in Minecraft, (2) MINECOLLAB— a benchmark suite that evaluates collaborative reasoning and
adaptive real-time communication, (3) a comprehensive evaluation of LLM agents on MINECOLLAB,

Table 1: Comparison to Other Multi-Agent Platforms, we illustrate the difference between our
benchmark and other popular platforms for studying multi-agent coordination or embodied agents.
Long horizon refers to the complex sequence of actions (on average over 20 steps) that need to
be taken in order to accomplish our task objectives. Embodied refers to the ability of Al agents
to manipulate the physical world - or a complex simulation thereof. Flexible Roles refers to a
peer-to-peer communication structure where agents can take on any role regardless of the situation.
Real-time refers to the ability of the agents to take actions asynchronously and simultaneously, not
relying on a fixed turn-based structure.

Platform Human-AI Long Horizon Embodied Flexible Roles Tools Real-time
Overcooked [6]] v v v
LLM-Coord [7]] v

PARTNR [8] v v

Habitat AI [9] v v v

CerealBar [[10]] v v v v
Generative Agents [[11] v v v

MineLand [[12] v v

CoELA [13] v v v v

Odyssey [14] v v v v v
MINDcraft (ours) v v v v v v

revealing the benefits of flexible communication and tool calling, and highlighting the bottlenecks in
collaboration and communication.

2 Related Work

Minecraft as a Tool for AI Research. Minecraft is a vast open-ended embodied world with complex
dynamics and sparse rewards. For these reasons, it has been a popular tool for researchers for
studying world models [[15]], planning [[16, 17,18, [19], theory of mind and structured collaboration
[20, 12] 1211 221 1231 241 125] 26]] or in adversarial tower defense scenarios [27]. We chose Minecraft
for similar reasons, the expressivity of the simulator allows for a large range of tasks to be designed.

Platforms for Multi-Agent and Human-AI Collaboration. Overcooked Al [6] is a popular
framework for studying the capabilities of Al agents to collaborate with one another. Similarly,
CerealBar [[10] and GovSim [28] test collaborative abilities of LLM agents but through a different
lens. Other works such as [29, 30, 31]], study fine-grained collaboration between people. We use
these simulators as inspiration and build on them in the following ways: 1) in addition to cooking
themed tasks, we include a greater variety of tasks such as crafting and construction tasks, 2) create
an environment that is controllable in language, 3) study both the peer-to-peer and leader/follower
interactions of our agents. Table[I]outlines the differences between our platform and others.

Embodied AI and Robotics for Collaboration. Embodied scenarios in indoor home environments
are the most common type of task previously studied [4}[32]19,|33]]. Habitat Al and the corresponding
dataset of instructions PARTNR [8] creates a large dataset of human-AlI collaborative tasks. Similarly,
[34] studies how agents can collaborate in a kitchen.

Aligning Text and Visual Worlds: ALFWorld [35] is another simulator that has dual modes for
perceiving the world in a text-only world in an embodied visual environment. Works such as
ALFWorld have been used to improve performance of vision-based agents by aligning them better
with the text-based policy [36] . MINDcraft’s simultaneous support for vision and textual inputs could
similarly allow for improved embodied agents by distilling from a text-based policy

Multi-agent Methods for LLMs. Frameworks like Teach [37], Optima [38] and others [39} 40]
add dimensions of parallelized execution and optimized efficiency in multi-agent systems. In [|34]]
and [12], the authors focus on creating a modular and iterative prompting method. Alternatively,
[41] and [42] propose new finetuning approaches for improving multi-agent interaction in language
models. One objective of MINDcraft is to promote research into these methods by providing complex
embodied environments to study multi-agent communication.

ﬁayer or Task Okay! I'll build a \
Config: Execution Protocols

cobblestone house.

Build a house i
out of nearby Agent Runtime ———— History and
< I—»| Command Lib

materials. < Model

Request Chat and
| Message Command MHAAA

2] Handler
—){ Mineflayer Code
Commands
' \ J Execution Logs

K MINDCraft Workflow J

Figure 2: Overview of the MINDcraft workflow. A user or task configuration (left) provides instruc-
tions (e.g., “Build a house out of nearby materials”). The Agent (center) takes these instructions,
consults an LLM (via a model request) and invokes high-level commands/tools. These commands
are then executed in the Minecraft environment (right), with the agent receiving feedback through
execution logs. The extensive command library in MINDcraft enables flexible, plug-and-play experi-
mentation with collaborative and embodied LLM agents in a partially observable Minecraft world.

3 MINDcraft

MINDcraft is a robust and adaptable platform designed for running experiments in the grounded
environment of Minecraft. The platform introduces 47 custom-made tools that unlock the full power
of Minecraft as a virtual world for agents. The full list of tools can be found in Section[I5] Moreover,
MINDcraft’s communication structure is peer-to-peer and asynchronous in contrast with much of
the previous literature that focuses on hierarchical structures and synchronous communication. This
allows agents in MINDcraft to develop roles interactively and adaptively and asynchronously execute
actions while in conversation with other agents.

3.1 State and Action Spaces

State Space. The prompt given to MINDcraft agents can be found in section[T0] This prompt includes
information about the agents current location, inventory, and health stats as well as the surrounding
blocks. To get access to visual inputs, the agent can call the ! look tool to get a screenshot of the
current state. We show in an empirical study that the inclusion or exclusion of the look tool does not
change performance much for gpt-40-mini on 2 agent tasks in Section

Action Space(s). There are several previously used levels of abstraction for action spaces in Minecraft.
The lowest level of actions such as the MineRL competition action space [43]], which Al research
in Minecraft has historically depended on, are actions such as "jump," "look up," or "use". While
such actions are closer to how a human player interacts with Minecraft through mouse-and-keyboard
inputs, these low-level interactions required extensive bespoke training of Al agents through RL
and computer vision architectures [44]. The Mineflayer API [45] introduces a set of higher-level
commands and abstractions in Javascript, such as the pathFinder module, which enables a bot
to navigate from its current location to another player or specific coordinates (X, y, z). This API
allows Al systems to interact with Minecraft using high-level code, offering a more abstract and
programmatic approach to controlling gameplay and bot behavior but does not reflect how the average
human player interacts with this environment [[16].

Our contribution, MINDcraft enhances these abilities further and bridges the gap between human-like
actions and ease of programmatic Al interactions with the Minecraft environment by building a set of
47 parameterized tools that can be directly invoked by LLMs. For example, instead of generating
Mineflayer code to 1) find the nearest player named "randy," 2) travel to its location, 3) identify
oak_logs in the bot’s inventory, and 4) drop four oak_logs for randy to pick up, the LLM can simply
output !givePlayer ("randy", "oak log", 4). This abstraction empowers LLMs to reason
over a higher-level sequential action space, enhancing their ability to perform complex tasks within

Minecraft. When necessary, MINDcraft supports a tool that permits the LLM agent to output custom
Mineflayer code in Javascript to perform custom actions or build buildings. The list of 47 high level
actions we designed can be found in Appendix [I5]

3.2 Agent Architecture

The MINDcraft architecture includes 4 main components (1) a library of 47 high-level action com-
mands and observation queries, (2) an asynchronous communication structure for multi-agent dialogue
(3) a server for launching and managing agents, (4) the main agent loop for handling messages from
players and other agents, (5) a layer for prompting and calling arbitrary language models with support
for 13 different APIs including vllm, ollama, openAl, anthropic among others (6) a module for
guiding custom code generation and (7) guided self-prompting for the agents for self-guided play.

To further enhance the abilities of our agents, we enable the ability of our agents to retrieve and
prompt with few-shot examples showing usage of our tools via embedding similarity to the current
conversation—essential for enhancing the abilities of LLMs via an embodied Retrieval Augmented
Generation (RAG) system [46]. To prevent the context of the model from growing too long during
the course of our very long trajectories lasting over 75 messages on average as shown in Table [2]
we introduce a memory framework. Once the length of the message stream - including messages
from other bots and system responses to code reaches a length of over 15, we prompt the LLM to
summarize the first five utterances and the previous memory into a 500 word summary. When an
agent wishes to execute an action that exceeds the parameters of our existing tools (e.g. for building
large free-form buildings), they can use the !newAction command which comes with it’s own library
of few-shot examples that we use retrieval for as well. The prompts for coding, memory, as well as
the few-shot examples can be found in section[I0} The robust agent architecture of MINDcraft allows
us to evaluate LLMs of varying quality while focusing on our collaborative benchmark MineCollab.

3.3 Multi-agent Collaboration

Unlike previous multi-agent systems that rely on highly structured, synchronous communication
protocols with centralized control (cite), our framework adopts a peer-to-peer, asynchronous commu-
nication model. We argue this design is essential for realistic collaboration in dynamic environments
such as MINDcraft, where agents must interleave planning, action execution, and dialogue in real
time.

In our system, conversations are managed by a lightweight conversation manager. Agents can initiate
or end dialogues at will using the ! startConversation and !endConversation commands. At
any point, an agent receiving a message may respond immediately, delay a response, ignore it, or
initiate a separate conversation with another agent. This flexibility enables communication to overlap
naturally with ongoing actions rather than forcing agents into rigid turn-taking.

Although only two agents can be engaged in an active conversation at once, our pairwise protocol
scales seamlessly to multi-agent settings by allowing agents to transition between conversations as
tasks evolve. Importantly, action and communication proceed concurrently: while one agent executes
an action, the other may send a message, which is delivered once both agents are able to process
it. If both are acting simultaneously (e.g., placing blocks), the conversation is paused until actions
complete, after which dialogue resumes.

This asynchronous design provides two key advantages. First, it avoids bottlenecks that would
arise under synchronous communication, where ongoing actions would stall progress for all agents.
Second, it mirrors natural human collaboration, where partners communicate opportunistically while
continuing with their work. Rather than enforcing rigid interaction protocols, our framework supports
open-ended, real-time coordination, which we view as a critical step toward scalable and ecologically
valid studies of LLM-based collaboration.

4 MineCollab - Collaborative Embodied Task Suite

We introduce MineCollab, an example of a benchmark that can be built in MINDcraft. The MineCollab
benchmark involves three practical domains specially designed to require collaboration: cooking,
which involves preparing a meal while coordinating ingredient collection; crafting, where agents

Table 2: Summary of our train and test tasks sets. Train and test denotes the number of unique
train and test tasks used for generating data and evaluating performance. Trials denotes the number
of times we ran the train tasks using our oracle agent (Ilama3.3-70b-instruct). Success denotes
the number of these trials that were successful, examples is the number of transitions in those
successful trials, and Avg. Traj. Len is the average number of steps per episode across successful
and unsuccessful collected tasks. Since the dataset and tasks are procedurally generated, we can
generate more data by sampling using a more powerful model and then filtering based on success.

Task Train Test Trials Success Examples Avg Traj. Len.
Cooking 350 54 1942 349 59444 74.5
Crafting 1,200 100 2176 366 19229 394

Construction 2,000 30 211 52 9228 111.5

Total 3,550 184 4329 767 87901 75.1

assemble furniture and tools from mined materials; and construction, which requires building
structures from detailed blueprints. These domains reflect real-world scenarios and pose substantial
challenges, requiring agents to execute long-horizon action sequences (on average over 20 steps),
interact effectively with their environment, and communicate and coordinate with other agents under
resource and time constraints. We test agents on multiple individual tasks within each domain that
are procedurally generated along a carefully crafted set of dimensions designed to elicit and evaluate
embodied reasoning and collaboration abilities.

Cooking Tasks. At the beginning of a cooking task episode, the agents are initialized with a goal
to make a meal, e.g. they need to make cake and bread. The agents then need to coordinate the
collection of ingredients through natural language communication (e.g. Andy collects wheat for the
bread while Jill makes the cake) and combine them in a multi-step plan. To assist them in collecting
resources, agents are placed in a "cooking world" that includes everything from livestock, to crops, to
a smoker, furnace, and crafting table. Additional items that are not present in the "cooking world" but
are necessary for the task at hand are split between their inventories to ensure collaboration necessity.
For example, if they need to make cake one agent will have access to an egg, the other three milk
buckets. Following a popular test of collaboration in humans, we further introduce a “Hell’s Kitchen”
variant of the cooking tasks where each agent is given the recipes for a small subset of the items they
need to cook and must communicate the instructions with the other teammates. For example, if the
task is to make a baked potato and a cake, one agent is given recipe for baked potato, but is required
to bake the cake to complete the task, forcing them to ask their teammate for help in baking the cake.
Agents are evaluated on whether are successfully able to complete the set requirements to make the
recipes. The environment and objectives of the tasks are randomized every episode.

Crafting Tasks. Crafting has long been the subject of Minecraft agent research [43]—our crafting
tasks encompass the entire breadth of items that are craftable in Minecraft including clothing, furniture,
and tools. At the beginning of each episode, the agents are initialized with a goal (e.g. make a
bookshelf), different sets of resources (e.g. books and planks), and access to a crafting recipe, that
is occasionally blocked. To complete the task, the agents must: (1) communicate with each other
what items are in their inventory; (2) share with each other the crafting recipe if necessary; and (3)
give each other resources to successfully craft the item. To make the crafting tasks more challenging,
agents are given longer crafting objectives (e.g. crafting a crossbow, which requires agents to first
make a tripwire hook, and sticks then combine with string and iron to make the crossbow). Once
again, each of these components can be controlled to procedurally generate tasks.

Construction Tasks In the construction tasks, agents are directed to build structures from procedurally
generated blueprints. Blueprints can also be downloaded from the internet and read into our blueprint
format - enabling agents to build anything from pyramids to the Eiffel Tower. We choose evaluate
primarily on our generated blueprints as they provide fine-grained control over task complexity,
allowing us to systematically vary the depth of collaboration required—e.g. number of rooms in the
interior of palace, or the amount and types of materials required for each room. At the beginning of
each episode, agents are initialized with the blueprint, materials (e.g. stone, wood, doors, carpets)
in such a way that no agent has the full resources or the expertise in terms of the types of tools
that can be used to process the resources and complete the entire blueprint. For example, if the

blueprint required a stone base and a wooden roof, one agent would be given access and the ability
to manipulate stone, the other to wood. Agents are evaluated via an edit distance based metric that
judges how close their constructed building is to the blueprint and the metric reported in ?? is the
average of those edit distance scores.

Train and Test Splits. To ensure experimental reproducibility, for each of our domains, we create
and split the possible tasks into train and test tasks, taking special care to ensure that each subset are
significantly different to avoid dataset pollution. For our construction tasks, we procedurally generate
the blueprints for train and test tasks with different seeds, ensuring no two blueprints are identical.
For the cooking and crafting tasks, we ensure that the train and test tasks involve different recipes and
procuring different ingredients. This ensures that the same plan for making an item such as baking a
cake is not present in both splits. Item division for cooking tasks can be found in the Appendix [[4.2]

5 Methods

SFT Dataset Creation. We also provide users with tools to generate behavior cloning (or Super-
vised Fine Tuning, SFT) data that can be used to train LLMs further. The generating oracle agent
is run on the train tasks, and then the data is filtered based on whether the run has been successful.
Then, we use each transition in the trajectory as a data point. We chose to generate data from
llama3.3-70b-instruct, because of its reasonable performance on the benchmarks (Figure [3]and its
open-weight nature ensuring a higher standard of reproducibility for our benchmark)—but note that
such an oracle agent can be any other LLM or even a human player. For crafting and cooking tasks
where final scores are binary 1 or 0, we only take successful runs, and for construction tasks where
there is a continuous edit-distance based score, we take trials that score within the top 25% of all
runs. Dataset examples can be found in Appendix [I2]and statistics can be found in Table 2] Training
llama3-8b-instruct on each of these task-specific datasets for one epoch with a learning rate of 1e — 05
improves performance over the base model by over 5% on the cooking task, matches performance on
the construction task with the 70b model, and outperforms gpt-4o and llama3.3-70b-instruct on the
crafting tasks by over 5%. By increasing the performance of less compute intensive models we hope
to improve the accessibility of our benchmark and further research into small open source models.

Human Studies Using a group of 17 non-expert humans and 4 human co-authors with expert
knowledge in Minecraft, we study how well they can collaborate with each other and with our agents.
We find that in all task categories that the humans working with other humans and humans working
in tandem with 1 to 3 Al agents are more successful than the Al agents working with other Al agents,
getting 100% success in crafting tasks and 75% in cooking tasks and outperform the top performing
model by 20% on construction tasks. This illustrates the power of expert human collaboration in
comparison to LLMs.

Compute Resources Required. Our SFT training occurred on a node of 8 80GB H100s, and
inference for open weights model was run on a node of 8 40GB A100s. To run our tasks on a large
open weights model such as DeepSeek R1, one would require a multi-node cluster of at least 4 nodes
of 8 H100s. The closed source models cost between one to two dollars per agent per task on the
cooking and crafting tasks. Because of the large number of tokens needed to describe the blueprints
and generate code to build buildings, the construction tasks generally cost between 2 and 3 dollars
per task per agent on the closed source models gpt-4o and claude-3-5-sonnet.

6 Experiments

We compare the performance of current state-of-the-art open and closed weights LLMs on MineCollab.
Namely, gpt-4o, claude-3-5-sonnet, llama3.3-70b-instruct, llama3-8b-instruct [47]] and an open
weights reasoning model r1-distill-llama [48]]. Our study design and analysis rely on the modular
design of MineCollab to vary task complexity along two dimensions: embodied reasoning, and
collaborative communication.

How does human-AlI collaboration compare to AI-AI performance on our tasks? As shown
in fig. |3} human collaborators substantially outperform AI-AI pairs across all task categories. Both
expert and non-expert participants achieve markedly higher success rates when paired with an Al
partner or another human, demonstrating that humans can effectively guide and compensate for model

Il Crafting W Cooking Il Construction

Models Human
1.0 A
0.8 A
[
o
C
g 06
S
o 0.4
e 0.4
0.2
0.0 -
pO & S @ S N &
& <€ N & & & s oL
S 2 € N RS oy S & &
o & & & & F N ©»
\3&’-" ‘b’l\ \\,6 0(-5 N ANV \(\\) ((\'b‘\
& \'a&'z;b‘ o o~
N

Figure 3: Full results on our MINECOLLABTask Suite. This table illustrates the performance
of various models across three realistic collaborative task suites requiring between 2-5 agents each:
crafting, making a bookshelf out of available materials; cooking, making a meal while coordinating
resource collection; and construction, building a structure from a blueprint. We show that non-expert
and expert humans perform significantly better.

Table 3: Communication is critical for task success. Ablations performed on 2 agent tasks using
llama3.3-70b-instruct. On construction tasks, since the agents have access to different resources, the
agents can perhaps complete the first level without communication, but can not achieve as much
as when they can communicate (e.g. if it is a church with a stone floor and wooden benches, the
agent with stone can complete the first level without communication but not the benches). Without
communication the agents drop in performance by 17% on cooking and in the crafting tasks the tasks
are impossible for llama3.3-70b-instruct without communication.

Communication No Communication

Crafting 0.31 +0.08 0.0 £0.0
Cooking 0.27 £0.05 0.10 £0.03
Construction 0.19 +0.03 0.12 +0.03

limitations. Our human—AlI collaboration study includes 4 expert participants and 17 non-expert
participants working with a lightweight baseline model (gpt-40-mini). We deliberately selected this
model to ensure the study remained logistically and financially feasible, while still capturing realistic
human—AI interaction dynamics. Although gpt-4o-mini is weaker than frontier models, it serves as a
meaningful proxy for understanding collaboration behaviors—our focus is on relative interaction
quality rather than absolute task performance. Future work will extend these studies to stronger
models to further validate these trends.

Is collaboration and communication necessary for task completion? In Figure [#aand Figure b}
we can see that for cooking and crafting, the tasks are much more difficult without collaboration - for
single agent tasks, the agents have near-zero performance, because it is impossible to complete these
tasks without collaboration. Similarly, on construction tasks, performance drops 15% without collab-
oration for gpt-4o. In Table[3] we see that without communication performance drops dramatically
across all task types. These results indicate that unlike in other popular multi-agent works such as
Overcooked [6] or Minecraft frameworks such as MineLand [12] or Odyssey [[14]], collaboration and
communication are both provable necessary for our tasks.

How does the complexity of collaborating affect task performance? Tasks are parallelizable—
meaning that more agents should in theory be able to achieve higher success rates with lower
exploration costs per agent as the number of agents increases. Figure faland Figure @b|shows the
opposite of this for all the LLMs we test across both cooking and crafting tasks—performance drops

0.5 0.8
g 04 206
& s
5 03 p
2 ¢ 04
002 S
a a
0.1 02
0.0 0.0
2 3 4 2 3 4 5
Number of Agents Number of Agents
(a) Cooking number of agents ablation. (b) Crafting number of agents ablation.
0.4
3 8 0.75
. &
% 02 % 0.50
é § 0.25
0.0 0.00
Full Plan Hell's Kitchen Full Plan Partial Plan
Plan Visibility Plan Visibility
(c) Hidden plan ablation for cooking (d) Hidden plan ablation for crafting
0.4
j [
§ 0.3 E
g 02 202
iv] o
5 0.1 5
() w0
0.0 0.0
3 5
Materials Rooms
(e) Number of unique materials. (f) Number of rooms construction ablation.
I gpt-4o0 I llama3.3-70b-instruct M llama-rl-distill
[claude-3-5-sonnet [llama3-8b-sft I lama3-8b-instruct

Figure 4: Task complexity ablations. In the first row, we ablate different numbers of agents in the
crafting and cooking tasks. Construction tasks can also be run with 3+ agent tasks, but are outside of
our budget for closed source APIs. In the second row, we ablate access to hidden plan information
like the recipe for a cake (cooking) or the steps to make a bookshelf (crafting) find that models drop
by over 15% when forced to communicate these plans. In the third row, we ablate the complexity of
the blueprints by increasing the number of rooms and unique materials - testing different levels of

sfgf)tig 4le gg ss %lrlénc%‘ltlcal for task success. With gpt-4o, we test disabling and enabling the tools and
find that performance drops by over 20% across all tasks when tools are disabled.

Tools No Tools
Crafting 0.32 0.07
Cooking 0.63 0.00

Construction 0.31 £0.03 0.00

dramatically from upto 90% down to less than 30% moving between the two to five agent settings.
While the number of actions each individual agent must take will stay the same or reduce as the total
number of agents goes up, the coordination load increases dramatically. For example, if the task is to
make a baked potato and a cake, the team of four agents needs to make sure that they are not doing
redundant work (e.g. Andy and Jill both make baked potato) and that they coordinate ingredient
collection (e.g. there is only enough milk for one cake) and stove usage (e.g. they can’t all use the
furnace at the same time). We find that effectively communicating inventories and existing progress
account for many of the bottlenecks in performance. Examples of successful (Section [I2.2) and
unsuccessful (Section[I3.2)) collaboration efforts are in the Appendix.

We further find that enforcing a need to communicate a complex step by step plan (e.g. how to make
a bookshelf) on all models decreases task performance for all models on both crafting and cooking
tasks, as can be seen in Figure[dc|and Figure[4d] This is enforced by requiring agents to communicate
a complicated step by step plan in the crafting task by blocking access to the gold truth crafting plan
for any given agent. A similar effect is observed in cooking in the Hell’s Kitchen variant(Section [4))
which also requires agents to communicate action plans. Examples of agents failing to ask for the
plan or execute on the plan that was communicated to them can be found in Section[13.3]

Are tools necessary for task success? As shown in Table 4] agents achieve little to no progress
without access to in-game tools. When limited to low-level !'newAction commands, the agents
fail to consistently execute coordinated behaviors such as block placement or item exchange in a
manner that allows them to make progress. This is largely because of (1) the long time required to
write code from scratch for every episode as proposed previously [[16} 21, [12] and (2) there are many
bugs in the mineflayer [45]] pathﬁnderﬁ By writing our comprehensive tool suite we can smooth out
issues that previous Minecraft agents have struggled with. When we provide structured primitives
(e.g., 'placeBlock, !givePlayer), this enables efficient collaboration and sustained progress on
long-horizon tasks, underscoring the necessity of tool support for successful multi-agent interaction.

How does embodied task complexity affect agent performance? We use our construction task
suite as a case study and vary the blueprint complexity by changing the either number of unique
materials required to construct a building or the number of rooms in the building. For example, if
one blueprint requires four unique materials for building the majority of the building, the agent must
be careful to place the blocks of the right material in the right place, whereas if a blueprint consists
only of stone, the agent can simply place blocks in the correct shapes. Similarly, with an increasing
number of rooms—if agents fail to build a proper staircase to the upper levels, they will be severely
limited in their ability to complete the blueprint. Increasing either of these results in longer horizon,
more complex tasks.

In general, most models follow the trend of having reduced performance as the horizon length
and effective state-action space increases, see Figure [e] and Figure [df] The exception to this is
claude-3.5-sonnet which performs similarly though with still a relatively low success rate of less than
0.4. On closer qualitative analysis of agent behaviors, we see that they often undo work that has been
done before, especially as the number of things an agent needs to remember due to longer horizons
increases. For example, we often see agents do things such as place a layer of stone blocks only to
have other agents completely destroy it (Appendix [I3.T).

7 Conclusions

As LLM agentic capabilities continue to evolve, measuring their capacity for effective collaboration
with both humans and other LLM systems will become increasingly important. We created MINDcraft,
a versatile framework that enables LLM agents to interact with humans and other agents in real-
time, execute code, utilize tools, and engage in multi-turn dialogue. Further, we developed the
MINECoOLLABbenchmark, which tests increasingly complex crafting, cooking and construction
tasks requiring collaboration, long context reasoning, and embodied planning. Our experimental
results highlight the necessity of a realistic communication protocol, while illustrating the current
bottlenecks in multi-agent collaboration. Together MINDcraft and MINECOLLABrepresent progress
toward developing LLM agents that can communicate and coordinate actions through time while
operating in complex embodied spaces.

8 Acknowledgements

We would like to thank Latitude Games for the support in providing API credits and Mosaic ML for
providing the compute. We would like to thank Yi Qu, Hunter Power, Ismail Saymaz, and Vineeth
Muktineni and other members of the Head Development team of MINDcraft who contributed to the
open source repository associated with our paper.

9 Response to NeurIPS LAW Reviewers and Summary of Improvements

To improve the quality of our submission, we have expanded the user study to 17 non-expert users
(addressing the concerns of Reviewer NV2Y). We have included a citation to the papers mentioned
by reviewer uQf6 and explained the differences in asynchronous communication set up and long
context reasoning thoroughly in Section[2] Finally, we analyze other aspects of task difficulty and
perform more ablations in Section [6]addressing the concern of reviewer YyYz.

“https://github.com/PrismarineJS/mineflayer/issues

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

https://www.nytimes.com/by/cade metz. Google A.l. System Wins Gold Medal in International
Math Olympiad — nytimes.com. https://www.nytimes.com/2025/07/21/technology/
google-ai-international-mathematics-olympiad.html. [Accessed 17-09-2025].

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-
agent llm systems fail? arXiv preprint arXiv:2503.13657, 2025.

Bosung Kim and Prithviraj Ammanabrolu. Beyond needle (s) in the embodied haystack:
Environment, architecture, and training considerations for long context reasoning. arXiv
preprint arXiv:2505.16928, 2025.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem
Gokmen, Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking
Ilms for embodied decision making. Advances in Neural Information Processing Systems,
37:100428-100534, 2024.

Liu Yang. What if i interrupt you. In Proceedings of the 2021 International Conference on
Multimodal Interaction, pages 827-831, 2021.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Saaket Agashe, Yue Fan, Anthony Reyna, and Xin Eric Wang. LIm-coordination: evaluating
and analyzing multi-agent coordination abilities in large language models. arXiv preprint
arXiv:2310.03903, 2023.

Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta Desali,
Michal Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, et al.
Partnr: A benchmark for planning and reasoning in embodied multi-agent tasks. arXiv preprint
arXiv:2411.00081, 2024.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9339-9347, 2019.

Alane Suhr, Claudia Yan, Jack Schluger, Stanley Yu, Hadi Khader, Marwa Mouallem, Iris
Zhang, and Yoav Artzi. Executing instructions in situated collaborative interactions. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 2119-2130, Hong Kong, China,
November 2019. Association for Computational Linguistics.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceed-
ings of the 36th annual acm symposium on user interface software and technology, pages 1-22,
2023.

Xianhao Yu, Jiaqi Fu, Renjia Deng, and Wenjuan Han. Mineland: Simulating large-scale multi-
agent interactions with limited multimodal senses and physical needs. CoRR, abs/2403.19267,
2024.

Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu Li, Zhen Wang, and Xuelong Li. Towards ef-
ficient Ilm grounding for embodied multi-agent collaboration. arXiv preprint arXiv:2405.14314,
2024.

Yaoru Li, Shunyu Liu, Tongya Zheng, and Mingli Song. Parallelized planning-acting for
efficient llm-based multi-agent systems. arXiv preprint arXiv:2503.03505, 2025.

11

https://www.nytimes.com/2025/07/21/technology/google-ai-international-mathematics-olympiad.html
https://www.nytimes.com/2025/07/21/technology/google-ai-international-mathematics-olympiad.html

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control
tasks through world models. Nature, pages 1-7, 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2023.

Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi,
Sameer Singh, and Roy Fox. Do embodied agents dream of pixelated sheep: Embodied decision
making using language guided world modelling. In International Conference on Machine
Learning, pages 26311-26325. PMLR, 2023.

Shu Yu and Chaochao Lu. Adam: An embodied causal agent in open-world environments.
arXiv preprint arXiv:2410.22194, 2024.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen, Dongmei Jiang, and Ligiang Nie. Optimus-1:
Hybrid multimodal memory empowered agents excel in long-horizon tasks. Advances in neural
information processing systems, 37:49881-49913, 2024.

Cristian-Paul Bara, Sky CH-Wang, and Joyce Chai. MindCraft: Theory of mind modeling for
situated dialogue in collaborative tasks. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 1112—1125, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics.

Mircea Licd, Ojas Shirekar, Baptiste Colle, and Chirag Raman. Mindforge: Empowering
embodied agents with theory of mind for lifelong collaborative learning. arXiv preprint
arXiv:2411.12977, 2024.

Yingchen He, Christian D Weilbach, Martyna E Wojciechowska, Yuxuan Zhang, and Frank
Wood. Plaicraft: Large-scale time-aligned vision-speech-action dataset for embodied ai. arXiv
preprint arXiv:2505.12707, 2025.

Yubo Dong, Xukun Zhu, Zhengzhe Pan, Linchao Zhu, and Yi Yang. Villageragent: A graph-
based multi-agent framework for coordinating complex task dependencies in minecraft. arXiv
preprint arXiv:2406.05720, 2024.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng,
Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. Mindagent: Emergent gaming interac-
tion. arXiv preprint arXiv:2309.09971, 2023.

Qi Chai, Zhang Zheng, Junlong Ren, Deheng Ye, Zichuan Lin, and Hao Wang.
Causalmace: Causality empowered multi-agents in minecraft cooperative tasks. arXiv preprint
arXiv:2508.18797, 2025.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
Wang, Cheng Qian, Xiangru Tang, Heng Ji, et al. Multiagentbench: Evaluating the collaboration
and competition of 1lm agents. arXiv preprint arXiv:2503.01935, 2025.

Matthew M Willett, Myke C Cohen, Lixiao Huang, Aaron Teo, Zachary Klinefelter, Peter
Bautista, Rijvi Rajib, Jonathan Reynolds, Adam Fouse, and Nancy J Cooke. Building an
IIm-based teammate in minecraft: A testbed for human-ai collaboration. In Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, page 10711813251374162. SAGE
Publications Sage CA: Los Angeles, CA, 2025.

Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Scholkopf, Mrinmaya Sachan, and
Rada Mihalcea. Cooperate or collapse: Emergence of sustainable cooperation in a society of
Ilm agents. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

Dan Bohus, Sean Andrist, Yuwei Bao, Eric Horvitz, and Ann Paradiso. " is this it?": Towards
ecologically valid benchmarks for situated collaboration. In Companion Proceedings of the
26th International Conference on Multimodal Interaction, pages 41-45, 2024.

12

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Yanming Wan, Yue Wu, Yiping Wang, Jiayuan Mao, and Natasha Jaques. Infer human’s
intentions before following natural language instructions. arXiv preprint arXiv:2409.18073,
2024.

Nikita Haduong, Irene Wang, Bo-Ru Lu, Prithviraj Ammanabrolu, and Noah A Smith. Cps-
taskforge: Generating collaborative problem solving environments for diverse communication
tasks. arXiv preprint arXiv:2408.08853, 2024.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador,
Winson Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale
embodied ai using procedural generation. Advances in Neural Information Processing Systems,
35:5982-5994, 2022.

Lizheng Zu, Lin Lin, Song Fu, Na Zhao, and Pan Zhou. Collaborative tree search for enhancing
embodied multi-agent collaboration. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pages 29513-29522, 2025.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum,
Tianmin Shu, and Chuang Gan. Building cooperative embodied agents modularly with large
language models. In The Twelfth International Conference on Learning Representations, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Co6té, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. Alfworld: Aligning text and embodied environments for interactive
learning. arXiv preprint arXiv:2010.03768, 2020.

Yijun Yang, Tianyi Zhou, Kanxue Li, Dapeng Tao, Lusong Li, Li Shen, Xiaodong He, Jing
Jiang, and Yuhui Shi. Embodied multi-modal agent trained by an llm from a parallel textworld.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
26275-26285, 2024.

Aishwarya Padmakumar, Jesse Thomason, Ayush Shrivastava, Patrick Lange, Anjali Narayan-
Chen, Spandana Gella, Robinson Piramuthu, Gokhan Tur, and Dilek Hakkani-Tur. Teach:
Task-driven embodied agents that chat. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 2017-2025, 2022.

Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Optima:
Optimizing effectiveness and efficiency for llm-based multi-agent system. arXiv preprint
arXiv:2410.08115, 2024.

Yingxuan Yang, Huacan Chai, Shuai Shao, Yuanyi Song, Siyuan Qi, Renting Rui, and Weinan
Zhang. Agentnet: Decentralized evolutionary coordination for llm-based multi-agent systems.
arXiv preprint arXiv:2504.00587, 2025.

Junwei Yu, Yepeng Ding, and Hiroyuki Sato. Dyntaskmas: A dynamic task graph-driven
framework for asynchronous and parallel 1lm-based multi-agent systems. arXiv preprint
arXiv:2503.07675, 2025.

Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov, Ivan Laptev,
Philip HS Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder de Witt. Malt: Improving
reasoning with multi-agent llm training. arXiv preprint arXiv:2412.01928, 2024.

Justin Chih-Yao Chen, Swarnadeep Saha, Elias Stengel-Eskin, and Mohit Bansal. Magdi:
structured distillation of multi-agent interaction graphs improves reasoning in smaller language

models. In Proceedings of the 41st International Conference on Machine Learning, pages
7220-7235, 2024.

Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay Topin, Zichuan Lin, Jun-
you Li, Jianing Shi, Deheng Ye, Qiang Fu, Wei Yang, et al. Minerl diamond 2021 competition:
Overview, results, and lessons learned. NeurIPS 2021 Competitions and Demonstrations Track,
pages 13-28, 2022.

13

[44] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639-24654,
2022.

[45] Prismarine]S. Mineflayer. MIT License.

[46] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented

generation for knowledge-intensive nlp tasks. Advances in neural information processing
systems, 33:9459-9474, 2020.

[47] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[48] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

14

10 Prompts

General conversing prompt

You are a task-focused Minecraft bot named $NAME. Your
current task is: $TASK_GOAL

$TASK_INVENTORY

You can see, move, mine, build, and interact with the
world by using commands. Act focused on completing
your assigned task while being human-like. Be brief in

responses, don’t apologize constantly, don’t give
instructions or make lists unless asked, and don’t
refuse requests. Don’t pretend to act, use commands
immediately when requested. Do NOT say this: ’Sure, I’
ve stopped.’, instead say this: ’Sure, I’1l1 stop. !
stop’. Do NOT say this: ’0On my way! Give me a moment
.?, instead say this: ’0n my way! !goToPlayer (’
playername’, 3)’. Focus on completing the assigned
task efficiently.

Summarized memory:’$MEMORY ’
$STATS

$INVENTORY

$COMMAND _DOCS

$EXAMPLES

Conversation Begin:

Few-shot example for cooking

User Input: "bobby: cook some chicken"

Your Output: "¢‘‘!smeltItem(bot, ’chicken’, 8);\n‘‘¢‘"},

System Output: "Successfully smelted 8 chicken into 8
cooked_chicken.",

Your output: "I have cooked 8 chicken."}

Few-shot example for crafting

User input: philips: (FROM OTHER BOT) Hey! let’s
collaborate to build a stone pickaxe!

Your output:

Cool, let me check what is in my inventory !inventory

I have 10 oak logs. What do you have?

User input: philips: (FROM OTHER BOT) Let me check !
inventory

I have 10 stones.

Your output:

Let me give you the stones and you can craft the pickaxe.

!givePlayer ("playername", "stone", 10)

User input: philips: (FROM OTHER BOT) Thanks for the
stones! Now I can craft the pickaxe. !craftItem("
stone_pickaxe", 1)

Few-shot example for construction

Your output:

Alright I have the necessary materials to build, what
needs to be done for the first level of the blueprint?

!checkBlueprintLevel (0)
System output: Level O requires the following fixes:
Place oak_door at X: 144, Y: -60, Z: -179

Your output:

I’11 start by placing the oak_door at the specified
coordinates. !mewAction("Place oak_door at X: 144, Y:
-60, Z: -179")

Your output:

I’ve placed the oak_door. What’s next? !
checkBlueprintLevel (0)

System output: Level O is complete

10.1 Memory Prompt

Every 5 steps, the agent summarizes the most recent 5 steps and the previous memory into a 500
character summary that reflects the current goal most accurately.

Memory Prompt

You are a minecraft bot named Jill_O that has been talking
and playing minecraft by using commands. Update your
memory by summarizing the following conversation and
your old memory in your next response. Prioritize
preserving important facts, things you’ve learned,
useful tips, and long term reminders. Do Not record
stats, inventory, or docs! Only save transient
information from your chat history. YOUR CURRENT
ASSIGNED GOAL: "Collaborate with agents around you to
make 1 golden_apple, 1 bread. Recipe for golden_apple:

[’Step 1: Get 1 apple and 8 gold ingots from your

inventory or other bots.’, ’Step 2: Go to the crafting
table and surround the apple with the gold ingots to
create a golden apple.’]Recipe for bread:

[’Step 1: Go to the farm and collect 3 wheat.’, ’Step 2:
Go to the crafting table and use the wheat to craft
bread.’]

In the end, all the food items should be given to one
single bot whose name starts with andy or Andy. Make
sure to talk to all the agents using startConversation

command to coordinate the task instead of talking to
just one agent. You can even end current conversation
with any agent using endConversation command and then
talk to a new agent using startConversation command.
You have to collaborate with other agents/bots, namely
Andy_0, Bob_0 to complete the task as soon as
possible by dividing the work among yourselves.'

Make sure to include information relevant to the goal and

inventory you have collected. You’re limited to 500
characters, so be extremely brief and minimize words.
Compress useful information.

16

01d Memory: ’Goal: Make 1 golden_apple, 1 bread with
Andy_0, Bob_0. I have 8 gold ingots, can make
golden_apple. Gave golden_apple to Andy_O, Andy_O has
bread, Bob_0 has potatoes.’

Recent conversation:

System output: Action output:

You have reached Andy_O.

-60

You do not have any golden_apple to discard.

Failed to give golden_apple to Andy_O, it was never
received.

Your output:

!'startConversation("Andy_0", "I have the golden apple and
the bread is ready, let’s meet at the crafting table")

User input: Andy_O: (FROM OTHER BOT)I’m here, can you give
me the golden apple and the bread?

Your output:

!givePlayer ("Andy_0", "golden_apple", 1)

System output: Action output:

You have reached Andy_O.

-60

You do not have any golden_apple to discard.

Failed to give golden_apple to Andy_0, it was never
received.

Your output:

!'startConversation("Andy_O", "I actually have the
ingredients for the golden apple, let me craft it
first")

Summarize your old memory and recent conversation into a
new memory, and respond only with the unwrapped memory
text:

Coding Prompt

You are an intelligent mineflayer bot $NAME focused on
completing the task: $TASK_GOAL

You have been provided with: $TASK_INVENTORY

Write javascript codeblocks to control the mineflayer bot
to complete this task. Given the conversation between
you and the user, use the provided skills and world
functions to write a js codeblock that controls the
bot ¢‘‘ using this syntax ‘‘‘. The code will be
executed and you will receive its output. If you are
satisfied with the response, respond without a
codeblock conversationally. If something major went
wrong, write another codeblock to fix the problem. Be
maximally efficient and task-focused. Do not use
commands !likeThis, only use codeblocks. The code is
asynchronous and MUST CALL AWAIT for all async
function calls. DO NOT write an immediately-invoked
function expression without using ‘await ‘!! DO NOT

17

WRITE LIKE THIS: ¢‘‘(async () = {console.log(’not
properly awaited’)})();“‘¢ Don’t write long paragraphs
and lists in your responses unless explicitly asked!

Only summarize the code you write with a sentence or
two when done. This is extremely important to me,
think step-by-step, take a deep breath and good luck!

$SELF_PROMPT

Summarized memory:’$MEMORY’

$STATS

$INVENTORY

$CODE_DOCS

$EXAMPLES

Conversation:

10.1.1 Initial message

This is what the bot is given as a prompt upon joining the world

"Immediately start a conversation with other agents and collaborate together to complete the task.
Share resources and skill sets."

11 Construction Tasks

Our system employs a configurable task generation framework for the construction
tasks. While predefined test and train sets are available, researchers can run the
generate_multiagent_construction page to create new tasks according to specific complexity
requirements.

11.1 Configuration Parameters

Task complexity is defined through a standardized naming convention:
materials_{m}_rooms_{r}_window_{w}_carpet_{c}_variant_{v}

Where:

» Each complexity parameter (m, r, w, c) accepts values from 0-2, representing increasing
levels of complexity

* variant (v) denotes the specific instance within a complexity definition
Important Note: Complexity levels (0-2) represent relative difficulty gradations rather than abso-

lute quantities. For example, setting rooms=1 selects the intermediate complexity level for room
generation, not a specific room count.

11.2 Default Configuration
The predefined task sets are configured with the following parameters:

* Number of agents: 2
* 10 minute timeout, with 5 additional minutes per room complexity

* Building assistance (“‘cheats”): disabled

11.3 Customization Options

Researchers can modify the default settings through:

18

1. Toggling the building assistance feature by setting the cheat variable to true in the
task_construction profile

2. Accessing the generateConstructionTasks function in
generate_multiagent_construction_tasks.js to implement custom complex-
ity levels beyond the predefined parameters. The following can be changed here:

(a) Room size, window / carpet style
(b) Number of variants
(¢) Timeout duration

The generation code includes comprehensive documentation to facilitate customization efforts.

12 Dataset examples

In the following sections are some transition samples from each of the dataset partitions. Everything
before "Response:" is treated as context. <Prompt> includes the sections in the General prompt
outline in Appendix section ??, including the instructions, the consolidated memory, the agent’s stats,
the command docs, and in-context examples:

12.1 Cooking example

Example of 2 agents collaborating to make a meal of cooked mutton and beetroot soup:

Goal and Memory for Cooking Example

YOUR CURRENT ASSIGNED GOAL: "Collaborate with agents
around you to make 1 cooked_mutton, 1 beetroot_soup.
Recipe for cooked_mutton:

[’Step 1: Kill a sheep and pick up 1 mutton that is
dropped.’, ’Step 2: Get coal from your inventory or
other agents.’, ’Step 3: Put coal in the furmnace’, ’
Step 4: Go to furnace and use it to cook the mutton.’]
Recipe for beetroot_soup:

[’Step 1: Go to the farm and collect 6 beetroot.’, ’Step
2: From your inventory or other agents get a bowl.’, ’
Step 3: Go to the crafting table and combine the 6
beetroot and 1 bowl to make beetroot soup.’]

In the end, all the food items should be given to one
single bot.You have to collaborate with other agents/
bots, namely Jill_0 to complete the task as soon as
possible by dividing the work among yourselves.'

Act human-like as if you were a typical Minecraft player,
rather than an AI. Be very brief in your responses,
don’t apologize constantly, don’t give instructions
or make lists unless asked, and don’t refuse requests
Don’t pretend to act, use commands immediately when
requested. Do NOT say this: ’Sure, I’ve stopped.’,
instead say this: ’Sure, I’1l1 stop. !stop’. Do NOT
say this: ’0On my way! Give me a moment.’, instead say
this: ’0n my way! !goToPlayer ("playername", 3)°.
Respond only as Andy_O, never output ’(FROM OTHER BOT
)? or pretend to be someone else. If you have nothin
to say or do, respond with an just a tab °’ Y
Share resources and information with other bots!
This is extremely important to me, take a deep breath
and have fun :)

19

Conversation Section for Cooking Example

L
{

"role": "system",

"content": "Action output:\nFound crafting_table at
(36, -54, -438). Navigating...\nYou have reached
at 36, -54, -438.\n"

},
{

"role": "assistant",

"content": "Now that I’m at the crafting table, I see
we need to make cooked_mutton and beetroot_soup. I

have coal in my inventory, but I don’t see any
mutton or beetroot. !searchForEntity (\"sheep\",
64)"
}’
{

"role": "system",

"content": "Action output:\nFound sheep
16.582813213087615 blocks away.\nYou have reached
at 51.160888671875, -55, -424.7900390625.\n"

}’
{
"role": "assistant",
"content": "t!attack (\"sheep\")"
},
{

"role": "system",

"content": "Action output:\nSuccessfully killed sheep
.\nPicked up O items.\n"

}’
{
"role": "assistant",
"content": "!inventory"
}3
{

"role": "user",

"content": "Jill_O0: (FROM OTHER BOT)I’1ll get the
beetroot, you get the mutton. Meet back at the
crafting table!searchForBlock (\"beetroot\", 64)!
searchForBlock (\"beetroots\", 64)"

}’
{

"role": "assistant",

"content": "!startConversation(\"Jill_O\", \"I’ve got
the mutton, I’11 meet you back at the crafting
table and start cooking it\")"

},
{

"role": "system",

"content": "You are already in conversation with
Jill_O0. Don’t use this command to talk to them."

}’
{
"role": "user",

20

.

lanRaad

"content": "Jill_O0: (FROM OTHER BOT)'collectBlocks (\"
beetroots\", 6)"

"role": "assistant",

"content": "!startConversation(\"Jill_O\", \"I’m going
to put the coal in the furmace, you bring the
beetroot and bowl to the crafting table\")"

"role": "user",
"content": "Jill_O: (FROM OTHER BOT)!goToCoordinates
(36, -54, -438, 1)"

12.1.1 Crafting example

Example of 2 agents collaborating to craft a carrot on a stick:

Conversation Section for Crafting Example

L

{

~

-~

-~

-~

lanRaad

<Prompt >

Conversation:

"role": "system",

"content": "Respond with hello world and your name"
"role": "assistant",

"content": "Hello world, I’m Jill_O"

"role": "user",

"content": "Andy_0: (FROM OTHER BOT)Let’s work

together to craft an carrot_on_a_stick."

"role": "assistant",

"content": "I have a fishing_rod and some carrots in
my inventory, but I need a carrot and a fishing
rod to craft it, let me check what I actually have

!inventory"

"role": "system",
"content": "\nINVENTORY\n- oak_planks: 1\n- string: 1\
nWEARING: Nothing\n"

"role": "assistant",
"content": "I have oak_planks and string, but I don’t
have carrots or a fishing rod, can you help me get
those 7"

21

-~

-~

"role": "user",

"content": "Andy_O: (FROM OTHER BOT)I have a carrot in
my inventory, and I also have some string and
oak_planks. Let me give you the carrot !givePlayer
(\"Jill1_o\", \"carrot\", 1)"

"role": "assistant",

"content": "Thanks for the carrot, now I have a carrot
, oak_planks, and string, but I still need a
fishing rod, can you help me craft one or do you
have one to spare 7 !inventory"

"role": "system",
"content": "\nINVENTORY\n- oak_planks: 1\n- string: 1\
nWEARING: Nothing\n"

"role": "assistant",

"content": "I still have oak_planks and string, and
now I also have a carrot, I can try to craft a
fishing rod using the oak_planks and string !
craftRecipe (\"fishing_rod\", 1)"

"role": "user",

"content": "Andy_0O: (FROM OTHER BOT)Now that you have
the carrot, we still need a fishing rod to craft
the carrot_on_a_stick. I have string and
oak_planks, which are the ingredients to craft a
fishing rod. Let me craft omne !craftRecipe (\"
fishing _rod\", 1)I don’t have enough resources to
craft a fishing rod. I need more sticks. Let me
collect some sticks !collectBlocks (\"stick\", 3)1I
need to craft sticks first. Let me craft some
sticks !craftRecipe(\"stick\", 3)Now that I have
enough sticks, let me craft a fishing rod !
craftRecipe (\"fishing_rod\", 1)I’ve crafted the
fishing rod. Now we can craft the
carrot_on_a_stick. Let me give you the fishing rod

'givePlayer (\"Jill_O\", \"fishing_rod\", 1)"

"role": "assistant",

"content": "Thanks for the fishing rod, now I have
everything I need to craft the carrot_on_a_stick,
let me craft it !craftRecipe(\"carrot_on_a_stick

\ll’ 1)"

"role": "system",

"content": "Code output:\nYou do not have the
resources to craft a carrot_on_a_stick. It
requires: fishing_ rod: 1, carrot: 1.\n"

22

-~

"role": "user",

"content": "Andy_O: (FROM OTHER BOT)Now that you have
the carrot and the fishing rod, can you craft the
carrot_on_a_stick 7"

T,
{
"role": "assistant",
"content": "I have the carrot and the fishing rod now,
let me check my inventory to make sure !inventory
n
¥,
{
"role": "system",
"content": "\nINVENTORY\n- oak_planks: 1\n- string: 1\
n- carrot: 1\n- fishing_rod: 1\nWEARING: Nothing\n
n
X
]
Response:

Yes, I have the carrot and the fishing rod, I can craft
the carrot_on_a_stick now !craftRecipe ("
carrot_on_a_stick", 1)

12.1.2 Construction example

Conversation Section for Construction Example

<Prompt >

Conversation:

L
{
"role": "system",
"content": "Code output:\nPlaced terracotta at (150,
-59, -167) .\n"
+,
{
"role": "assistant",
"content": "Let’s check the blueprint level again to
see what’s left !checkBlueprintLevel(1)"
},
{
"role": "system",
"content": "\nLevel 1 requires the following fixes:\

nPlace terracotta at coordinates X: 155, Y: -59, Z
-168\nPlace stone at coordinates X: 156, Y: -59,
Z: -168\nPlace stone at coordinates X: 157, Y:
-59, Z: -168\nPlace stone at coordinates X: 158, Y
-59, Z: -168\nPlace stone at coordinates X: 159,
Y: -59, Z: -168\nPlace stone at coordinates X:
160, Y: -59, Z: -168\nPlace stone at coordinates X
156, Y: -59, Z: -167\nPlace light_blue_carpet at

23

-~

-~

coordinates X: 157, Y: -59, Z: -167\nPlace
cyan_carpet at coordinates X: 158, Y: -59, Z:
-167\nPlace light_blue_carpet at coordinates X:
159, Y: -59, Z: -167\nPlace stone at coordinates X
160, Y: -59, Z: -167\nPlace dark_oak_door at
coordinates X: 150, Y: -59, Z: -166\nRemove the
terracotta at coordinates X: 155, Y: -59, Z: -166\
nPlace dark_oak_door at coordinates X: 156, Y:
-59, Z: -166\nPlace light_blue_carpet at
coordinates X: 157, Y: -59, Z: -166\nPlace
lime_carpet at coordinates X: 158, Y: -59, Z:
-166\nPlace lime_carpet at coordinates X: 159, Y:
-59, Z: -166\nPlace glass at coordinates X: 160, Y
: -59, Z: -166\nPlace terracotta at coordinates X:
150, Y: -59, Z: -165\nPlace stone at coordinates
X: 156, Y: -59, Z: -165\nPlace stone at
coordinates X: 160, Y: -59, Z: -165\nPlace
terracotta at coordinates X: 150, Y: -59, Z: -164\
nPlace terracotta at coordinates X: 151, Y: -59, Z
-164\nPlace terracotta at coordinates X: 152, Y:
-59, Z: -164\nPlace dark_oak_door at coordinates
X: 153, Y: -59, Z: -164\nPlace terracotta at
coordinates X: 154, Y: -59, Z: -164\nPlace
terracotta at coordinates X: 155, Y: -59, Z: -164\
nPlace stone at coordinates X: 156, Y: -59, Z:
-164\nPlace stone at coordinates X: 157, Y: -59, Z
-164\nPlace stone at coordinates X: 158, Y: -59,
Z: -164\nPlace stone at coordinates X: 159, Y:
-59, Z: -164\nPlace stone at coordinates X: 160, Y
-59, Z: -164\n\n"

"role": "assistant",

"content": "It looks like there’s still a lot to do,
’11 place the terracotta block at the next
location !goToCoordinates (155, -59, -168, 0.5)"

"role": "system",
"content": "Code output:\nYou have reached at 155,
-59, -168.\n"

"role": "assistant",
"content": "Now I’1ll place the terracotta block here
placeHere (\"terracotta\")"

"role": "system",
"content": "Code output:\nPlaced terracotta at (155,
-59, -168) .\n"

"role": "assistant",
"content": "Let me check what Andy_0O is up to, maybe
we can work together !startConversation(\"Andy_O

24

I

\", \"Hey, how’s it going? Need any help with the
house?\") "

}’
{

"role": "system",

"content": "You are already in conversation with
Andy_O. Don’t use this command to talk to them."

})
{

"role": "user",

"content": "Andy_O: (FROM OTHER BOT)What’s in your
inventory?"

},
{

"role": "assistant",

"content": "I have lime_carpet, glass, blue_carpet,
dirt, diamond_pickaxe, cobblestone, stone,
terracotta, dark_oak_door, light_blue_carpet, and
cyan_carpet. What about you, do you have any stone

or terracotta left? !inventory"
})
{

"role": "system",

"content": "\nINVENTORY\n- lime_carpet: 2\n- glass:
19\n- blue_carpet: 1\n- dirt: 128\n-
diamond_pickaxe: 1\n- cobblestone: 1\n- stone: 49\
n- terracotta: 18\n- dark_oak_door: 8\n-
light_blue_carpet: 4\n- cyan_carpet: 1\nWEARING:
Nothing\n"

})
{

"role": "user",

"content": "Andy_O0: (FROM OTHER BOT)What’s in your
inventory?"

}
]
Response:

I have lime_carpet, glass, blue_carpet, dirt,
diamond_pickaxe, cobblestone, stone, terracotta,
dark_oak_door , light_blue_carpet, and cyan_carpet. !
givePlayer ("Andy_0", "stone", 10)

25

12.2 4 agent Cooking Example

This scenario showcases how multiple agents collaborate efficiently to complete a shared task. Jill_0,
Bob_0, and Sally_0 coordinate their efforts to craft and deliver food items to Andy_0.

The process begins with Bob_0 informing Jill_0 that he has successfully crafted the rabbit stew and is
monitoring Sally’s progress on the golden apple. Jill_0, having completed her task of crafting bread,
initiates communication with Sally_0 using !startConversation to verify the golden apple’s
status. Sally_0 confirms that both the golden apple and rabbit stew are ready and asks if Jill_0 has
completed her part. Jill_0 responds that the bread is also finished, ensuring that all required items are
accounted for.

With all items ready, the agents shift to the delivery phase. Sally_0 navigates to Andy_0 using the
'goToPlayer ("Andy_0", 3) command, ensuring all agents are in position for the handoff. Jill_0
follows, transferring the bread using !givePlayer("Andy_O", "bread", 1).

This conversation serves as an ideal case study of extensive collaboration, as Jill_0 successfully
interacts with all relevant agents (Bob_0, Sally_0, and Andy_0) to ensure a smooth and cooperative
workflow. The structured approach to communication and task delegation showcases the potential of
multi-agent systems in complex problem-solving scenarios.

Conversation Section for 4 agent Cooking Example

"memory": "Collaborate with Andy_O, Bob_0O, and Sally_O

to craft 1 golden apple, 1 rabbit stew, and 1 bread.
Sally_O0 is handling the golden apple, Bob_0 is to

assist with the rabbit stew. Jill_0 has crafted the
bread and communicated this to Bob_0O for next steps
in rabbit stew. Deliver all items to a bot named
Andy or andy. Use startConversation and
endConversation to coordinate effectively among all

agents.",
"turns": [
{
"role": "user",
"content": "Bob_O: (FROM OTHER BOT)Hi Jill! I’ve

crafted the rabbit stew. Do you need any help,
or do you have any updates on your tasks?"

-~

"role": "assistant",

"content": "I’ve crafted the bread and collected it.
Let’s gather everything and give it to Andy.
Sally is handling the golden apple, so I believe
we’ll be ready soon! Let’s finalize it."

"role": "user",

"content": "Bob_O: (FROM OTHER BOT)That sounds great
, Jill! I°11 hold onto the rabbit stew and let’s
wait for Sally to finish the golden apple. 0Once
she’s done, we can gather everything and give
it to Andy. Thanks for the update! I’1l1l keep an
eye on Sally’s progress."

"role": "assistant",

26

"content": "Sounds good, Bob! I’1l1 check in with
Sally to see how she’s progressing with the
golden apple. Let’s make sure everything is

ready ."
}:
{
"role": "user",
"content": "Bob_0: (FROM OTHER BOT)Great! Meanwhile,
I’11 be ready to pass the rabbit stew to Andy
once Sally finishes the golden apple. Let me
know if there’s anything else I can assist with
n
})
{

"role": "assistant",

"content": "!startConversation(\"Sally_O\", \"Hey
Sally, how’s it going with the golden apple? Let

us know when you’re ready, so we can deliver
everything to Andy.\")"

})

{

"role": "user",

"content": "Sally_O: (FROM OTHER BOT)The golden
apple and rabbit stew are ready. Do you have any

updates on the bread?"
})
{

"role": "assistant",

"content": "Yes, I’ve crafted the bread! We’re all
set to deliver everything to Andy. Let’s gather
and hand it over to him!"

}’
{

"role": "user",

"content": "Sally_O: (FROM OTHER BOT)Perfect! I’1ll
meet you at Andy’s location. !goToPlayer (\"
Andy_O\", 3)I’m here with Andy! Let’s give him
the items. You can go ahead and hand over the
bread first."

}5
{
"role": "assistant",
"content": "!givePlayer (\"Andy_O\", \"bread\", 1)"
X
]’
"self _prompting_state": 2,
"self _prompt": "Collaborate with agents around you to

make 1 golden_apple, 1 rabbit_stew, 1 bread. \n\
nRecipe for golden_apple:\nStep 1: Go to the chest
and collect 1 apple and 8 gold ingots.\nStep 2: Go
to the crafting table and surround the apple with
the gold ingots to create a golden apple.\n\nRecipe
for rabbit_stew:\nStep 1: Go to the farm and collect
1 carrot, 1 potato, and 1 brown mushroom (search
for ’potatoes’ (not ’potato’).\nStep 2: Go to the
furnace and bake the potato.\nStep 3: Go to the
chest and grab a bowl\nStep 5: Kill a rabbit and

27

pick up 1 raw rabbit that is dropped.\nStep 6: Go to
the furnace and cook the raw rabbit.\nStep 7: Go to
the crafting table and combine the cooked rabbit,
baked potato, carrot, brown mushroom, and bowl to
make rabbit stew.\n\nRecipe for bread:\nStep 1: Go
to the farm and collect 3 wheat.\nStep 2: Go to the
crafting table and use the wheat to craft bread.\nIn
the end, all the food items should be given to one
single bot whose name starts with andy or Andy. Make
sure to talk to all the agents using
startConversation command to coordinate the task
instead of talking to just one agent. You can even
end current conversation with any agent using
endConversation command and then talk to a new agent
using startConversation command.You have to
collaborate with other agents/bots, namely Andy_O,
Bob_0, Sally_O to complete the task as soon as
possible by dividing the work among yourselves.",
"taskStart": 1743132353095,
"last_sender": "Sally_O"
}

12.3 Three Agent Successful Cooking Example

Three Agent Successful Cooking Example

{
"memory": "Collaborating with Jill_0, Bob_0 for bread,
baked_potato, cooked_beef. Jill_O gave baked_potato,
has cooked_beef. Bob_0O has bread. Waiting for
cooked_beef from Jill_O0.",

"turns": [
{
"role": "system",
"content": "Recent behaviors log: \n\n"
}’
{
"role": "user",
"content": "Jill_0O: (FROM OTHER BOT)Did you get the
bread from Bob_07"
})
{
"role": "assistant",
"content": "!inventory"
}’
{
"role": "system",
"content": "\nINVENTORY\n- wheat: 3\n- wheat_seeds:
6\n- baked_potato: 1\n- cooked_beef: 1\nWEARING:
Nothing\n"
}’
{
"role": "assistant",

28

"content": "!startConversation(\"Bob_O\", \"Hey, can
you make me some bread?\")"
}’
{
"role": "user",
"content": "Bob_0: (FROM OTHER BOT)!craftRecipe (\"
bread\", 1)"
}’
{
"role": "assistant",
"content": "!startConversation(\"Bob_O0O\", \"Great,
now give me the bread\")"
})
{
"role": "system",
"content": "You are already in conversation with
Bob_O0. Don’t use this command to talk to them."
}5
{
"role": "system",
"content": "Task ended with score : 1"
})
{
"role": "user",
"content": "Bob_0: (FROM OTHER BOT)!givePlayer (\"
Andy_O\", \"bread\", 1)"
}
],

13 Failure Modes

13.1 Construction Task Fail

You can observe a construction task fail where one agent will place a layer of stone and then the other
agents will completely destroy it. The youtube video can be found here: https://www.youtube|
com/watch?v=UkrTrOsGBEo&t=11s&ab_channel=mindcraft

13.2 Cooking Task Fail - Coordination on Resources

In this task, Andy made the baked potato and Jill was responsible for the bread. Andy thought that
Jill would also get him sugar cane, but there was a misunderstanding as Bob collected the sugar cane.
Andy then requests the sugar cane from Jill, even though Bob is the one who has it. Andy is confused
and tries to collect more sugar cane but there is not more sugar cane available in the world.

Cooking Task Fail - Coordination on Resources

"memory": "Goal: Get 1 bread, 1 baked_potato, 1 cake.
Collaborate with Jill_0, Bob_O. Bob_0O: bread done,
working on baked potato. Have milk buckets, need
sugar cane, egg from Jill_O for cake.",

"turns": [

{

"role": "user",

29

https://www.youtube.com/watch?v=UkrTrOsGBEo&t=11s&ab_channel=mindcraft
https://www.youtube.com/watch?v=UkrTrOsGBEo&t=11s&ab_channel=mindcraft

-~

-~

-~

-~

"content": "Bob_0O: (FROM OTHER BOT) '!smeltItem (\"
potato\", 1)"

"role": "assistant",

"content": "!startConversation(\"Jill_O\", \"Jill_oO,
I need the sugar cane and egg to craft the cake
, can you please help me out?\")"

"role": "system",

"content": "Conversation with Bob_0 ended with
message: \"(FROM OTHER BOT)!startConversation (\"
Jill_Oo\", \"Jill_0, can you please give Andy_O
the sugar cane and egg, and also give me a
potato so I can bake it\")!endConversation (\"
Andy_O\") \n n

"role": "assistant",

"content": "!startConversation(\"Bob_0O\", \"Bob_O,
you already baked the potato, now give it to me
\Il) n

"role": "user",

"content": "Jill_0: (FROM OTHER BOT)I don’t have
sugar cane, you have it, can you give it to me
first"

"role": "user",

"content": "Bob_O: (FROM OTHER BOT)"

"role": "assistant",

"content": "!startConversation(\"Jill_O\", \"I don’t

have sugar cane, I thought you were collecting
it, can you please go find some?\")"

"role": "system",

"content": "You are already in conversation with
Jill_O0. Don’t use this command to talk to them."

"role": "assistant",

"content": "!searchForBlock (\"sugar_cane\", 64)"

"role": "system",

"content": "Code output:\nCould not find any
sugar_cane in 64 blocks.\n"

"role": "system",

"content": "Task ended with score : 0"

30

}’
{
"role": "assistant",
"content": "!searchForBlock (\"sugar_cane\", 128)"
}:
{
"role": "system",
"content": "Task ended with score : 0"
}
])

13.3 Partial Plan Crafting Failure Modes

Crafting a campfire In this example with llama3.3-70b-instruct, Andy in this example has access
to the plan, but doesn’t successfully utilize the "coal" that Jill has in her inventory. He says "I have 32
sticks now, and you have coal, we can craft a campfire", but he still needs to get the coal from Jill.
Jill needs to give Andy coal and then they will be done with the task, but instead Jill (who doesn’t
have access to the plan), thinks that they need to craft an additional item (charcoal) by smelting it.

If Andy had asked for Jill’s coal, the problem would have been avoided. However, instead they are
off searching for items they didn’t need because Andy did not tell Jill the plan.

Crafting a campfire

{ "role": "user",
"content": "Andy_O: (FROM OTHER BOT)I have oak logs,
let me check how many !inventoryIl have 8 oak logs,
we can use those to craft sticks, then craft a
campfire !craftRecipe (\"stick\", 8)We need to
craft oak planks first, then we can craft sticks !
craftRecipe (\"oak_planks\", 4)Now that we have oak
planks, let’s craft sticks !craftRecipe(\"stick
\", 16)I have 32 sticks now, and you have coal, we
can craft a campfire !craftRecipe(\"campfire\",
1)We still need dark_oak_log, let me search for it
!'searchForBlock (\"dark_oak_log\", 10)!
searchForBlock (\"dark_oak_log\", 32)"

"role": "assistant",

"content": "You have sticks and I have coal, but we
still need tinder , which is usually made from
charcoal or coal doesn’t work, let me smelt coal
to get charcoal !smeltItem(\"coall", 1)"

Crafting a compass In this example with llama3.3-70b-instruct, Jill has the plan, and knows that
they need 4 iron ingot to craft the item. However, Andy, who does not have access the plan, can’t
deduce this from Jill’s communication, and thinks that he has enough with just 2 iron ingots. He fails
to craft the compass.

31

Crafting a compass

¢ "role": "user",

"content": "Jill_O: (FROM OTHER BOT)I have !inventoryl
have iron_ingot and redstone, what do you have to
craft a compass? !entitiesHey Andy_O, do you have
any redstone or iron ingots to craft a compass? !

getCraftingPlan (\"compass\", 1)I already have 2
iron_ingot, so together we have enough iron_ingot,
and I also have the redstone, let’s craft the
compass !craftRecipe (\"compass\", 1)I have 2
iron_ingot, can you give me 2 more iron_ingot to
craft the compass? !givePlayer (\"Andy_O\", \"
iron_ingot\", 2)"
}’
{
"role": "assistant",
"content": "I have !inventory"
}’
{

"role": "system",

"content": "\nINVENTORY\n- iron_ingot: 2\nWEARING:
Nothing\n"

},
{

"role": "assistant",

"content": "I already have 2 iron_ingot, you don’t
need to give me any, let’s craft the compass !
craftRecipe (\"compass\", 1)"

X

Hell’s Kitchen Failure Mode In this scenario, the agents are collaborating to make cake and bread.
Jill is making cake - from the recipe that Andy has and Andy is making bread based on the recipe that
Jill has. Jill seems to initially find success - looking for an egg which is critical for the cake recipe,
but then gives it to Andy which is counterproductive to their mission because they can only succeed
if Jill makes the cake and Andy makes the bread. This is because Jill has forgotten the plan (how to
make cake though she has asked for it earlier in the episode and did not store it in her memory when
she had the chance) and needs to constantly retrieve it from Andy.

Hell’s Kitchen Failure Mode

L
{
"role": "system",
"content": "You are already in conversation with
Jill_0. Don’t use this command to talk to them."
}7
{
"role": "user",
"content": "Jill_0: (FROM OTHER BOT)!goToPlayer (\"
Andy_O\", 3)"
},
{

32

"role": "assistant",

"content": "!searchForEntity (\"chicken\", 64)"
},
{

"role": "system",

"content": "Action output:\nFound chicken
20.565944118542863 blocks away.\nYou have reached
at 441.1656921958741, -60, -899.8453577088293.\n"

}’
{

"role": "user",

"content": "Jill_O: (FROM OTHER BOT)!searchForEntity
(\"cow\", 5)!searchForBlock (\"sugar_cane\", 64)"

},
{
"role": "assistant",
"content": "!givePlayer (\"Jill_O\", \"egg\", 1)"
}’
{

"role": "system",

"content": "Action output:\nYou have reached Jill_0.\n
-60\nYou do not have any egg to discard.\nFailed
to give egg to Jill_O0, it was never received.\n"

}’
{

"role": "assistant",

"content": "!startConversation(\"Jill_O\", \"I don’t
have an egg, let me find one\")"

}’
{

"role": "system",

"content": "You are already in conversation with
Jill_O0. Don’t use this command to talk to them."

},
{

"role": "user",

"content": "Jill_0: (FROM OTHER BOT)I have an egg, I’
11 give it to you, now can you please share the
cake recipe"

}’
]
Response:
!'startConversation("Jill_0", "To make cake, we need 3
wheat, 2 sugar cane, 3 milk buckets, and 1 egg. I’1l1
search for wheat, you search for sugar cane")

13.4 Crafting Task Failure Mode

Misinterpretation of the Plan and not sharing resources In this example with llama3.3-70b-
instruct, the plan is to make a bookshelf, but the bots do not understand completely that (a) they can
share resources to complete the bookshelf and (b) how to properly complete the plan returned by the
!getCraftingPlan tool.

33

Misinterpretation of the Plan

{

"role": "user",

"content": "Jill_O: (FROM OTHER BOT)I’ve got a book
and some oak_planks, what do you have? !inventory"

},
{

"role": "assistant",

"content": "I’ve got oak_planks and some books too,
let’s see... !inventory"

})
{
"role": "system",
"content": "\nINVENTORY\n- oak_planks: 4\n- book: 2\n-
dirt: 1\nWEARING: Nothing\n"
},
{

"role": "user",

"content": "Jill_O0: (FROM OTHER BOT)!getCraftingPlan
(\"bookshelf\", 1)"

}’
{
"role": "assistant",
"content": "!getCraftingPlan(\"bookshelf\", 1)"
},
{

"role": "system",

"content": "\nYou are missing the following items:\n-
1 oak_log\n- 3 sugar_cane\n- 4 rabbit_hide\n\nOnce

you have these items, here’s your crafting plan:\
n\nCraft 1 oak_log -> 4 oak_planks\nCraft 3
sugar_cane -> 3 paper\nCraft 4 rabbit_hide -> 1
leather\nCraft 3 paper + 1 leather -> 1 book\
nCraft 6 oak_planks + 3 book -> 1 bookshelf\n"
},
{

"role": "assistant",

"content": "We have some oak_planks and books, but we’
re missing a few things, let’s focus on getting
the rest of the oak_planks and the books we need,
!searchForBlock (\"oak_log\", 10)"

})
{

"role": "user",

"content": "Jill_0: (FROM OTHER BOT)We both have some
oak_planks and books, but we’re missing a few
things, let’s focus on getting 6 more oak_planks
and 3 more books, !searchForBlock(\"oak_log\", 10)
!'searchForBlock (\"oak_log\", 32)!collectBlocks (\"
oak_log\", 6)"

},
{
"role": "assistant",

34

"content": "I’11 collect the oak logs and craft the
oak planks, you start searching for sugar cane, !
collectBlocks (\"oak_log\", 6)"

"role": "system",
"content": "Code output:\nCollected 6 oak_log.\n"

Sharing resources, but not goal-oriented In this example with llama3.3-70b-instruct, the agents

are trying to craft a golden carrot. Andy gives Jill gold nuggets to help her with crafting the golden
carrot, but then Jill gives them right back.

Sharing resources

{

"role": "assistant",

"content": "!givePlayer (\"Jill_O\", \"gold_nugget\",
1)||

}’
{

"role": "system",

"content": "Code output:\nYou have reached Jill_0.\n75
\nDiscarded 1 gold_nugget.\nJill_0 received
gold_nugget .\n"

};
{

"role": "assistant",

"content": "Now that we have 9 gold_nugget, let’s
craft the gold_ingot !craftRecipe(\"gold_ingot\",
1)"

T,
{

"role": "user",

"content": "Jill_0: (FROM OTHER BOT)Thanks for the
gold_nugget , now I have 6, let me give you 3 back
so we both have some, !givePlayer (\"Andy_O\", \"
gold_nugget\", 3)"

In this second example, the same thing happens, Andy gives Jill books, but then requests them back.

Sharing resources

"role": "user",
"content": "Jill_0: (FROM OTHER BOT)I have oak_planks
and a book, what do you have to craft a bookshelf?
!inventoryTo craft a bookshelf we need 6 oak
planks and 3 books, I have 2 oak planks and 1 book
Can you help me gather the rest? !
getCraftingPlan (\"bookshelf\",1)We actually need 6

35

oak planks and 3 books to craft a bookshelf, not
those other items. I have 2 oak planks and 1 book,

can you bring 4 more oak planks and 2 books? !
entitiesI see you’re nearby, can you come closer
so we can work together? !goToPlayer (\"Andy_O\",
3)Now that we’re together, let’s see what you have

in your inventory, maybe we can craft a bookshelf

!givePlayer (\"oak_planks\", 2, \"Andy_O\")!

givePlayer (\"Andy_O\", \"oak_planks\", 4)Let me
check what I have now, !inventoryl still need more
oak planks and books, can you check your
inventory to see if you have any?"

}’
{

"role": "assistant",

"content": "I have 6 oak planks and 2 books, let me
give you 4 oak planks and 2 books !givePlayer (\"
Jill_0\", \"oak_planks\", 4)"

})
{

"role": "system",

"content": "Code output:\nYou have reached Jill_0.\n66
\nDiscarded 4 oak_planks.\nFailed to give
oak_planks to Jill_O0, it was never received.\n"

}’
{
"role": "assistant",
"content": "!givePlayer (\"Jill_O\", \"book\", 2)"
}’
{

"role": "system",

"content": "Code output:\nYou have reached Jill_0.\n66
\nDiscarded 2 book.\nJill_O0 received book.\n"

},
{
"role": "assistant",
"content": "!craftRecipe (\"bookshelf\", 1)"
},
{

"role": "system",

"content": "Code output:\nYou do not have the
resources to craft a bookshelf. It requires:
oak_planks: 6, book: 3.\n"

}3
{
"role": "assistant",
"content": "!inventory"
},
{

"role": "system",

"content": "\nINVENTORY\n- oak_planks: 6\nWEARING:
Nothing\n"

}
]
Response:

36

I have the oak planks, but I don’t have the books, Jill_O
has them, let me ask her to give me 3 books !
givePlayer ("Andy_0", "book", 3)

14 MineCollab Task Implementation Details

14.1 Example Task

Here is an example of how multi-agent collaborative tasks are specified. Users of our framework can
specify new tasks easily by simply adding another task of this format to the yaml file.

» Task Name: multiagent_techtree_1_stone_pickaxe
* Goal: Collaborate with other agents to build a stone pickaxe
* Agent Names:

— andy
— randy

Number of Agents: 2
¢ Initial Inventory:

— andy: 1 wooden pickaxe
— randy: 1 wooden axe

* Target: stone_pickaxe
* Number of Target: 1
* Task Type: techtree

* Timeout: 300 seconds

14.2 Item Divide in Train vs Test Tasks

To ensure no overlap between training and testing tasks, goal items are split between the two
categories. This prevents agents from memorizing crafting plans or recipes, ensuring the test accuracy
depends on reasoning and coordination.

Train Items

e cooked_mutton

* cooked_porkchop Test Items

¢ cooked_chicken ¢ cooked_beef

¢ cooked_rabbit * baked_potato
* beetroot_soup e cake

e mushroom_stew * golden_carrot
* suspicious_stew ¢ rabbit_stew

* cookie * bread

* pumpkin_pie
* golden_apple

14.3 Task validation.

To check for task completion we place a check in the agent.js file that checks every round whether
the task has been completed. To validate completeness for each of the task we do (1) for cooking
and crafting we check whether the item is present in the agents inventory (2) for construction
we check how many blocks have been successfully completed in the blueprint. The cooking and
crafting objective thus have a 0/1 reward whereas the construction tasks have a floating point reward

37

corresponding to the percentage of blocks that have been filled in. Once the tasks is complete, the
bots are kicked from the world.

Hell’s Kitchen Task Implementation Details To ensure that each agent is evaluated according
to the specific item in their inventory we implement two changes to the main evalaution process
for cooking tasks (1) we change the target item set to be a list and not a dictionary and (2) create
a progress manager across the two agents. The first change is necessary as it is ordered whereas a
dictionary is not. The second change is necessary each agent is it’s own process in the implementation
and does not have access to information about the other bots. To resolve this we write partial progress
to a file in between and then use this information to resolve completion.

14.4 Task resetting

To reset the world for each of the tasks we at minimum (1) clear the inventory for the agents (2)
teleport them to a new random location for the world. For the crafting task, we place the agent
randomly in a "Forest" biome in Minecraft with all the necessary materials they would need to
complete the task in place. For the cooking tasks, we randomly generate a cooking world that
includes livestock, crops, a furnace, smoker, and a chest filled with things that are more difficult to
procure (such as milk). The construction task is in a Superflat biome with Y set to -60. For both
cooking and construction task the world is reset such that the agents can not progress

15 Mindcraft Commands

16 Human Studies Details

The user study was done using 17 non-expert users and four co-authors of the paper, expert in
Minecraft and with some knowledge of the tasks. The humans were told to only communicate using
the in game chat, and the goal for the task was also provided in chat. For the construction blueprint,
the users were provided with a pdf detailing the blueprint. The pdf of this blueprint is in the code
base titled tasks/construction_tasks/church_three_agents.pdf The numbers in ?? show
only 2 agent results for the non-expert human-ai experiments, below we provide a table comparing
across all of the LLM agents, but with the 2 agent scores only:

17 Vision Experiments

We ablate using vision via the ! 1ook command with gpt-40-mini on two agent tasks and find that the
inclusion or exclusion of the visual component made little difference in the overall results.

18 Limitations

Our user study consists of only four users who are on the author list, and leave a larger user study to
future work. However, we hypothesize that expert users will demonstrate similar performance to our
current user study as the tasks.

19 Broader Impacts

We envision a future where Al can work well with humans and other Als. This paper brings us one
step closer to creating agents that are truly optimized to collaborate rather than be sycophantic. As
we consider primarily a true collaborative setting with no possibility for deception, we do not see any
direct applications of our research which would have negative societal consequences.

38

Command

Description

Istats Get your bot’s location, health, hunger, and time of day.
linventory Get your bot’s inventory.
InearbyBlocks Get the blocks near the bot.
Icraftable Get the craftable items with the bot’s inventory.
lentities Get the nearby players and entities.
!modes Get all available modes and their docs and see which are on/off.
IsavedPlaces List all saved locations.
1getCraftingPlan Provides a comprehensive crafting plan for a specified item. This includes
a breakdown of required ingredients, the exact quantities needed, and an
analysis of missing ingredients or extra items needed based on the bot’s
current inventory.
Params:
targetltem: (string) The item that we are trying to craft
quantity: (number) The quantity of the item that we are trying to craft
thelp Lists all available commands and their descriptions.
InewAction Perform new and unknown custom behaviors that are not available as a
command.
Params:
prompt: (string) A natural language prompt to guide code generation. Make
a detailed step-by-step plan.
Istop Force stop all actions and commands that are currently executing.
Istfu Stop all chatting and self prompting, but continue current action.
Irestart Restart the agent process.
IclearChat Clear the chat history.
!goToPlayer Go to the given player.
Params:
player_name: (string) The name of the player to go to.
closeness: (number) How close to get to the player.
!followPlayer Endlessly follow the given player.
Params:
player_name: (string) name of the player to follow.
follow_dist: (number) The distance to follow from.
!goToCoordinates Go to the given x, y, z location.
Params:
x: (number) The x coordinate.
y: (number) The y coordinate.
z: (number) The z coordinate.
closeness: (number) How close to get to the location.
IsearchForBlock Find and go to the nearest block of a given type in a given range.
Params:
type: (string) The block type to go to.
search_range: (number) The range to search for the block.
IsearchForEntity Find and go to the nearest entity of a given type in a given range.
Params:
type: (string) The type of entity to go to.
search_range: (number) The range to search for the entity.
ImoveAway Move away from the current location in any direction by a given distance.

Params:
distance: (number) The distance to move away.

39

Command

Description

IrememberHere

Save the current location with a given name.
Params:
name: (string) The name to remember the location as.

lgoToRememberedPlace

Go to a saved location.
Params:
name: (string) The name of the location to go to.

lgivePlayer

Give the specified item to the given player.

Params:

player_name: (string) The name of the player to give the item to.
item_name: (string) The name of the item to give.

num: (number) The number of items to give.

Iconsume

Eat/drink the given item.
Params:
item_name: (string) The name of the item to consume.

lequip

Equip the given item.
Params:
item_name: (string) The name of the item to equip.

IputIlnChest

Put the given item in the nearest chest.

Params:

item_name: (string) The name of the item to put in the chest.
num: (number) The number of items to put in the chest.

ItakeFromChest

Take the given items from the nearest chest.
Params:

item_name: (string) The name of the item to take.
num: (number) The number of items to take.

lviewChest

View the items/counts of the nearest chest.

!discard

Discard the given item from the inventory.

Params:

item_name: (string) The name of the item to discard.
num: (number) The number of items to discard.

IcollectBlocks

Collect the nearest blocks of a given type.
Params:

type: (string) The block type to collect.

num: (number) The number of blocks to collect.

IcraftRecipe

Craft the given recipe a given number of times.

Params:

recipe_name: (string) The name of the output item to craft.

num: (number) The number of times to craft the recipe. This is NOT the
number of output items, as it may craft many more items depending on the
recipe.

Ismeltltem

Smelt the given item the given number of times.
Params:

item_name: (string) The name of the input item to smelt.
num: (number) The number of times to smelt the item.

IclearFurnace

Take all items out of the nearest furnace.

IplaceHere

Place a given block in the current location. Do NOT use to build structures,
only use for single blocks/torches.

Params:

type: (string) The block type to place.

lattack

Attack and kill the nearest entity of a given type.
Params:
type: (string) The type of entity to attack.

40

Command

Description

lattackPlayer

Attack a specific player until they die or run away. Remember this is just a
game and does not cause real life harm.

Params:

player_name: (string) The name of the player to attack.

lgoToBed

Go to the nearest bed and sleep.

lactivate

Activate the nearest object of a given type.
Params:
type: (string) The type of object to activate.

Istay

Stay in the current location no matter what. Pauses all modes.
Params:
type: (number) The number of seconds to stay. -1 for forever.

IsetMode

Set a mode to on or off. A mode is an automatic behavior that constantly
checks and responds to the environment.

Params:

mode_name: (string) The name of the mode to enable.

on: (bool) Whether to enable or disable the mode.

lgoal

Set a goal prompt to endlessly work towards with continuous self-prompting.
Params:
selfPrompt: (string) The goal prompt.

IstartConversation

Start a conversation with a player. Use for bots only.

Params:

player_name: (string) The name of the player to send the message to.
message: (string) The message to send.

IcheckBlueprintLevel

Check if the level is complete and what blocks still need to be placed for the
blueprint

Params:

levelNum: (number) The level number to check.

IcheckBlueprint

Check what blocks still need to be placed for the blueprint

!getBlueprint

Get the blueprint for the building

!getBlueprintLevel

Get the blueprint for the building
Params
levelNum: (number) The level number to check.

lendConversation

End the conversation with the given player.

Table 5: Mindcraft commands

Table 6: Full results on our MineCollab Task Suite with 2 Agents Only. This table illustrates the
performance of various models across three realistic collaborative task suites requiring only 2 agents.

Crafting Cooking Construction

gpt-4o 0.32 0.17 0.31
claude-3.5-sonnet 0.80 0.42 0.36
llama3.3-70b-instruct 0.30 0.27 0.19
rl-distill-llama 0.31 0.00 0.04
llama3-8b-instruct 0.00 0.00 0.00
llama3-8b-sft 0.41 0.17 0.20
non-expert human-ai 0.76 0.43 0.18
expert human-ai 1.00 1.00 0.54
expert human-human 1.00 1.00 0.68
Crafting Cooking Construction
Without Vision 0.058 With Vision 0.058

Table 7: Caption

41

	Introduction
	Related Work
	mindcraft
	State and Action Spaces
	Agent Architecture
	Multi-agent Collaboration

	MineCollab - Collaborative Embodied Task Suite
	Methods
	Experiments
	Conclusions
	Acknowledgements
	Response to NeurIPS LAW Reviewers and Summary of Improvements
	Prompts
	Memory Prompt
	Initial message

	Construction Tasks
	Configuration Parameters
	Default Configuration
	Customization Options

	Dataset examples
	Cooking example
	Crafting example
	Construction example

	4 agent Cooking Example
	Three Agent Successful Cooking Example

	Failure Modes
	Construction Task Fail
	Cooking Task Fail - Coordination on Resources
	Partial Plan Crafting Failure Modes
	Crafting Task Failure Mode

	MineCollab Task Implementation Details
	Example Task
	Item Divide in Train vs Test Tasks
	Task validation.
	Task resetting

	Mindcraft Commands
	Human Studies Details
	Vision Experiments
	Limitations
	Broader Impacts

