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Abstract

Network models for exchangeable arrays, including most stochastic block models,
generate dense graphs with a limited ability to capture many characteristics of
real-world social and biological networks. A class of models based on completely
random measures like the generalized gamma process (GGP) have recently ad-
dressed some of these limitations. We propose a framework for thinning edges
from realizations of GGP random graphs that models observed links via nodes’
overall propensity to interact, as well as the similarity of node memberships within
a large set of latent communities. Our formulation allows us to learn the number
of communities from data, and enables efficient Monte Carlo methods that scale
linearly with the number of observed edges, and thus (unlike dense block models)
sub-quadratically with the number of entities or nodes. We compare to alternative
models for both dense and sparse networks, and demonstrate effective recovery of
latent community structure for real-world networks with thousands of nodes.

1 Introduction

Given observations of (often binary) relationships Yij between pairs of nodes or entities (i, j),
many relational models [1] seek to uncover an underlying set of communities. Classic stochastic
blockmodels [2] generalize mixture models for clustering non-relational data by assigning each entity
to one of K communities (clusters). The infinite relational model (IRM) [3] instead uses a Dirichlet
process prior [4] to partition entities into single communities. While the IRM allows the number
of communities to be inferred from data, later work has shown that real-world social networks are
better captured by models which allow nodes to participate in multiple communities [5], including
applications of the hierarchical Dirichlet process (HDP) [6] to relational data [7]. Node relationships
may also be modeled by shared features [8, 9] learned via the Indian Buffet Process [10], by a
combination of node and interaction factors [11], or by proximity in a latent space [12, 13].

There is an extensive literature on descriptive statistics of biological and social networks [14, 15]
including degree distributions, path distances and “small world” phenomena [16], community struc-
tures and modularity, and notions of centrality and causality. In particular, sparsity is a ubiquitous
phenomenon in real-world networks [14, 15]: as network size grows, the number of edges grows
more slowly than the quadratic number of node pairs. However, the IRM and HDP relational models
(and a large literature of related models [1]) generate dense graphs where the number of edges scales
quadratically with the number of nodes. In fact, a classic representation theorem [17, 18] shows
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that any generative model that regards graphs as exchangeable adjacency matrices, meaning arrays
whose distribution is invariant to permutations of node indices, generates dense graphs. Most existing
probabilistic network models, which generate an adjacency matrix by sampling edges from inde-
pendent Bernoulli distributions given latent node-specific parameters, have this limitation. Another
important property of many real-world networks is assortative mixing [19, 20, 21], that is the presence
of more popular or sociable nodes to which other nodes are more likely to connect. Models with
degree-correction mechanisms [22, 23, 24] account for this phenomenon.

By representing graphs as a latent process (a completely random measure), Caron and Fox [25]
showed that it is possible to formulate generative models that capture the sparsity of real-world
networks as well as assortative mixing. Related models, including certain infinite limits of graphs
called graphons, have been studied by several authors [26, 27]. However, these models mostly
produce homogeneous graphs with sparsity and heavy-tailed degree distributions, but lacking the
community structure of real networks. Two notable exceptions are work by Herlau et al. [28] and
Todeschini et al. [29] that augment random-measure models [25] with latent community structure.
Alternative approaches to sparse networks regard edges, rather than nodes, as the core of the generative
process [30, 31, 32]. Another approach to simultaneously capture local density and global sparsity
models graphs as a collection of cliques [33].

In this paper, we propose a novel random graph model that efficiently thins edges from sparse
homogeneous graphs to reveal community structure while maintaining sparsity. Unlike [28], we allow
entities to have membership in multiple communities. Unlike [29], we allow completely flexible
specification of the hierarchical Bayesian prior on latent community memberships; importantly, this
enables the network-specific learning of the appropriate number of latent communities. We further
develop an efficient Monte Carlo inference algorithm that, unlike nearly all dense block models,
scales linearly with the number of observed edges and thus sub-quadratically with the number of
entities. Experiments show recovery of communities for networks with thousands of nodes.

2 Background: Stochastic Blockmodels for Dense and Sparse Networks

An undirected binary network with N nodes and E edges may be represented by a symmetric N ×N
adjacency matrix Y . If there is an edge (link) between nodes i ̸= j then Yij = 1 , otherwise Yij = 0.

2.1 Mixed Membership Stochastic Blockmodels

Stochastic blockmodels (SBMs) [2] assume that each node belongs to one of K latent communities,
and that the probability of an edge depends on how strongly their communities are connected. The
community ci ∈ {1, . . . ,K} of node i follows a categorical distribution ci

ind∼ Cat(β), where β =
(β1, . . . , βK) so that βk controls the relative size of community k. Edges are sampled independently as
Yij

ind∼ Bernoulli(ηcicj ), where ηkℓ = ηℓk is the probability of an edge between nodes in communities

k and ℓ. These interaction probabilities are often assigned conjugate beta priors, ηkℓ
ind∼ Beta(τa, τb).

Mixed membership stochastic blockmodels (MMSBs) [5] extend SBMs to allow nodes to be members
of multiple communities. Let πi = (πi1, . . . , πiK) denote a K-dimensional probability vector
representing the strength of affiliation of node i to each of K communities. For every pair of nodes
(i, j), the communities governing their interaction are sampled as cij

ind∼ Cat(πi), cji
ind∼ Cat(πj).

Then, like standard SBMs, edges are sampled independently as Yij
ind∼ Bernoulli(ηcijcji). Community

memberships are typically assigned a hierarchical prior, such as

πi | β
ind∼ Dirichlet(ζβ1, . . . , ζβK), β ∼ Dirichlet

( γ
K
, . . . ,

γ

K

)
. (1)

The concentration parameter ζ controls the polarization of πi and its variation around β, with smaller
values of ζ inducing more polarized community memberships that place significant probability on
only a few communities, and larger values of ζ inducing community memberships that differ very
little from β. When fitting this model to data, we can treat K as an upper bound to the number
of communities (that is, larger than the maximum number of communities that we expect to be
necessary to model the network), fix γ ≪ K and let ζ be small. In this way, the hierarchical Dirichlet
formulation allows network-specific learning of the number of communities by favoring sparse
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Figure 1: Generation of an adjacency matrix from the GGP model of Caron and Fox [25] (top) and via thinning
via our proposed model with K = 3 communities (bottom). Rows and columns correspond to nodes in all
plots, ordered by decreasing sociability wi. Left: Latent directed multigraphs underlying the observed graphs
on the right. Darker cells correspond to higher Poisson rates: wiwj for the GGP, and wiwj

∑K
k=1 πikπjk for

the thinned GGP. Red zeros indicate thinned edges. Right: Binary adjacency matrix of the observed graph for
the GGP (top) and thinned GGP (bottom) models. For the thinned GGP, edges are colored according to the
community that generated them. Gray cells mark nodes whose edges in the latent multigraph were all thinned,
and are thus observed under the GGP but unobserved under the thinned GGP. GGP hyperparameters were set as
σ = 0.1, τ = 1, α = 10, and community memberships were sampled given β = (1/3, 1/3, 1/3), ζ = 1.

community frequency vectors β = (β1, . . . , βK) with some elements βh ≈ 0, h ∈ {1, . . . ,K} [34].
The hierarchical Dirichlet process [6, 7] is the limit of this prior as K approaches infinity [35].

2.2 Sparse Network Models via Completely Random Measures

For any fixed community frequencies β and interaction probabilities η, the SBM and MMSB may
only generate dense graphs where the number of edges scales quadratically with the number of
nodes [18]. In contrast, many real-world networks appear to be sparse [15]. Heuristics are often used
to fit (mixed membership) SBMs to large but sparse networks, such as fixing (rather than learning)
ηkℓ = ε ≈ 0 for k ̸= ℓ; for example Kim et al. [7] fix ε = e−30. We seek to build models that can
capture mixed memberships and sparsity simultaneously without needing to rely on such heuristics.

Completely Random Measures. By representing the graph as a point process on the plane, Caron
and Fox [25] showed that it is possible to generate sparse graphs by appropriately choosing the mean
measure of the point process. According to their model, for i ̸= j,

Yij | wi, wj
ind∼ Bernoulli (1− exp {−2wiwj}) , (2)

where wi > 0 represents the sociability of node i: nodes with higher wi have higher probability
to interact with other nodes, and hence greater expected degree. Differently from the (mixed
membership) SBMs, where all parameters governing nodes’ interactions are sampled independently,
here nodes’ sociabilities are generated altogether using the jumps of a completely random measure
(CRM) [36]. Each node is also independently associated to a real-valued location ℓi uniformly

3



distributed on the real line, and then a set of potential nodes is defined by restricting to sociabilities
with a sampled location in the interval [0, α],

Wα = {wi : ℓi ∈ [0, α]}. (3)

Here α > 0 controls the (random) number of nodes Nα in the network by determining the size of
the interval in which jumps are included. Depending on the distribution of the jumps, the model can
capture both sparse and dense graphs. Intuitively, as detailed in Sec. 5.1 of [25], for sparse networks
the distribution of the jumps needs to place almost all of its mass near zero.

This model requires CRMs for which the sum W̄α =
∑

i:ℓi∈[0,α] wi of the jumps in [0, α] is finite.
A simple undirected network is then generated via a binary projection of an underlying directed
multigraph, where the total number of edges nij from node i to node j is independently distributed as

nij | wi, wj
ind∼ Poisson(wiwj). (4)

An edge is present in the undirected network if there is at least one directed edge in the latent directed
multigraph, that is Yij = 1 (nij + nji ≥ 1) for nodes i ̸= j. Because the sum of independent Poisson
random variables is Poisson, Eq. (4) implies P (nij +nji = 0) = exp{−2wiwj}, from which Eq. (2)
follows. The number N of nodes in the observed network then equals the number Nα of nodes that
have at least one edge in the underlying multigraph. This construction of the binary matrix from a
multigraph [25] is visualized in Fig. 1(top).

The sum-property of the Poisson distribution also implies that, given W̄α, the total number of edges
Dα in the multigraph has a Poisson(W̄ 2

α) distribution. Since nij has a high probability of being 0 for
most node pairs (i, j), it is more efficient to first sample Dα and then independently assign each edge
to a pair of nodes based on their sociabilities. In more detail, Eq. (4) is equivalent to

Dα | W̄α ∼ Poisson(W̄ 2
α), P (xev = i |Wα) =

wi

W̄α
, nij =

Dα∑
e=1

1(xe1 = i)1(xe2 = j), (5)

where xev ∈ {1, 2, . . . } for v = 1, 2 indicates the nodes sampled for edges e ∈ {1, . . . , Dα}.
Caron and Fox [25] propose the generalized gamma process (GGP) [37, 38, 39] as a flexible but
tractable CRM for Wα, with parameters τ ∈ (0,∞), and σ ∈ (−∞, 0] for dense graphs or σ ∈ (0, 1)
for sparse graphs. Fig. 2 (black component) provides a visual summary of the generative process
underlying the construction of a GGP random graph, using a directed graphical model that highlights
the conditional dependencies (and independencies) between its variables. Fig. 3a shows a network
sampled from the GGP model by means of a node-edge diagram.

Sparse Block Models. A limitation of the framework described above is that it does not model the
community (block) structure of the network – a well-recognized feature of complex networks. Herlau
et al. [28] generalized the approach in [25] to accommodate networks with community structure.
Specifically, they introduce a latent discrete variable ci ∈ {1, . . . ,K} to indicate the assignment
of node i to one of K communities, like in the SBMs. A bivariate CRM incorporates both the
sociability weights and a set of parameters, denoted by ηcicj , capturing the interaction strength
between two communities ci and cj in the underlying multigraph. For their formulation, the total

number of edges nij from node i to node j are independently distributed as nij |ci, cj , wi, wj
ind∼

Poisson(ηcicj wi wj), and the likelihood from Eq. (2) of the observed nodes is modified as Yij |
ci, cj , wi, wj

ind∼ Bernoulli(1−e−2ηcicj
wiwj ). We refer to this approach as the stochastic block model

generalized gamma process (SBM-GGP).

Sparse Mixed Membership. The SBM-GGP models sparse and dense networks with community
structure, but does not capture overlapping community structures; it induces networks whose nodes
are partitioned into disjoint communities. In follow-up work, Todeschini et al. [29] extended the
CRM-based framework discussed above by associating a vector (wi1, . . . , wiK) of sociabilities to
each node i, to represent different levels of affiliation of nodes to the K latent communities. A node
may have high levels of affiliation to more than a community, leading to the formation of edges across
multiple communities. The vectors of node sociabilities are distributed according to a compound
CRM [40]; specifically, their implementation uses a compound generalized gamma process (CGGP).
The likelihood function is modified accordingly, by independently sampling undirected edges as
Yij | wi, wj

ind∼ Bernoulli(1− exp{−2
∑K

k=1 wikwjk}). The latent community weights are modeled
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Figure 2: Directed graphical model representing the GGP random graphs of Caron and Fox [25] (black), and
the additional variables (blue) in our thinned GGP. For GGP hyperparameters that induce sparse graphs (σ > 0)
there is an infinite number of potential nodes, with sociabilities wi and community memberships πi.

as wik = wi0ψik, where wi0 are sampled from a GGP as in Eq. (3), and ψik are gamma-distributed
random variables ψik

ind∼ Gamma(ak, bk) whose shape ak and rate bk may be inferred from data.

As [29] point out, the CGGP model exploits an (unconstrained) non-negative matrix factorization
to define the Bernoulli probability link. Our results in Sec. 5.1 suggest that this lack of constraints
affects the ability of the CGGP model to recover the true community structure of the network. Better
regularized approaches to non-negative matrix factorization, like the one we propose, may improve
the identifiability of latent community structures and network parameters [41].

3 The Thinned GGP Network Model

We now add overlapping community memberships to the GGP network model [25] via vectors of
probabilities sampled from a hierarchical Dirichlet distribution. Unlike the formulation of Todeschini
et al. [29], our model enables learning the number of communities from data (see Secs. 2.1 and 4).
By using probability vectors rather than unconstrained non-negative values to model community
memberships, our model provides a regularized approach to inference in the GGP model, which in
simulations (Sec. 5.1) provides a substantial increase in community detection accuracy.

Let each node i have both a sociability parameter wi from the GGP as in (3), and a vector of
probabilities πi = (πi1, . . . , πiK) drawn from a hierarchical Dirichlet distribution as in (1). Moreover,
let the number of potential edges between nodes i and j in the latent multigraph depend only on their
sociabilities, as in (4). For each of the nij potential edges, node i independently samples a community
from Cat(πi), and node j samples a community from Cat(πj). If these community assignments
match, the edge is retained; otherwise, it is thinned (i.e., discarded). See Figs. 1 and 3 for examples.
More formally, let ṅij be the number of multigraph edges between a pair of nodes i, j that is retained
(not thinned). Edges e ∈ {1, . . . , Dα} in the GGP multigraph are stochastically thinned as follows:

ce1 | xe1, (π1, π2, . . . )
ind∼ Cat(πxe1), ce2 | xe2, (π1, π2, . . . )

ind∼ Cat(πxe2), (6)

ṅij =

Dα∑
e=1

1(xe1 = i, xe2 = j, ce1 = ce2), Yij = 1 (ṅij + ṅji ≥ 1) . (7)

Here xev ∈ {1, 2, . . . } for v = 1, 2 indicate the nodes associated with edge e as in Eq. (5). An
edge Yij is then present in the undirected graph if and only if at least one multigraph edge is not
thinned. Equivalently, Eq. (7) implies that the observed undirected graph is a binary projection of the
multigraph edges that are retained after the thinning process.

To determine the distribution of Yij , note that the probability that nodes i and j are assigned to the
same community (marginalizing across communities) equals P (cei = cej) =

∑K
k=1 πikπjk. There-

fore, marginalizing over the latent multigraph, ṅij | wi, wj , πi, πj
ind∼ Poisson(wiwj

∑K
k=1 πikπjk).

The likelihood of the observed network thus equals

Yij | wi, wj
ind∼ Bernoulli

(
1− exp

{
−2wiwj

K∑
k=1

πikπjk

})
. (8)

Unlike the MMSB and GGP models, our thinned generalized gamma process (TGGP) model favors
edges between nodes that have both large sociabilities and similar community memberships. The
TGGP model is summarized graphically in Fig. 2 and illustrated in Figs. 1 and 3.
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(a) Potential edges (b) Unthinned edges (c) Thinned edges

Figure 3: Visualization of networks simulated via a (thinned) GGP with α = 15, σ = 0.2, τ = 1. (a) Before
thinning, potential edges are proposed according to nodes’ sociabilities as in [25]. (b) After thinning, unthinned
edges have colors (blue/red) corresponding to their assignment to K = 2 communities. (c) The thinned edges
(gray) are those for which the connected nodes were assigned to different communities. In both (b) and (c), node
colors represent their true community memberships, where lighter colors indicate more balanced memberships.
Node sizes are proportional to betweenness centrality, and layout is determined by Gephi’s Force Atlas 2 [42].

4 Monte Carlo Posterior Inference

In our TGGP model, the latent (unthinned) multigraph has a distribution (Eq. (5)) that depends only
on the node sociability parameters wi. The thinning process (Eqs. (6) and (7)) then depends only on
the community membership vectors πi. As can be deduced from the Markov properties of the directed
graphical model in Fig. 2, given these latent multigraphs, the posterior distributions of (w1, w2, . . . )
and (π1, π2, . . . ) are conditionally independent. This design simplifies posterior inference, and in
particular allows us to apply Theorem 6 of [25] to derive the posterior of nodes’ sociabilities, provided
we condition on the (latent) multigraph. We thus implement a Gibbs sampling strategy for posterior
inference where we sample both thinned and retained edges in the latent multigraph, as well as their
community assignments, to allow for efficient updates of other variables1.

Some steps in the sampler are straightforwardly derived, considering that we can rely on the approach
described in [25] to update node sociabilities and GGP hyperparameters (see the Appendix for a
detailed outline). However, the implementation of the sampler requires some additional careful
development – which we detail below – to sample the latent multigraph, due to the unobserved
thinning process. Multigraph sampling is made more computationally efficient via model properties
that are unique to sparse, as opposed to dense, stochastic block models. Letting (filled dot) ṅij denote
the number of unthinned multigraph edges as in (7), and (empty dot) n̊ij = nij − ṅij denote the
number of thinned multigraph edges, we sample the latent multigraph as follows.
Sampling of ṅij: From Eq. (7), there exists an edge in the observed graph if and only if there is at
least one unthinned edge between nodes i and j in the latent multigraph. Thus rather than considering
each pair i, j, we only need to sample ṅij when Yij = 1, an operation with cost linear in the number
of observed (undirected) edges. Conversely, Yij = 0 implies ṅij = ṅji = 0. Since there must be at
least one unthinned edge when Yij = 1, the posterior follows a zero-truncated Poisson distribution:

(ṅij + ṅji) | Yij = 1, wi, wj , πi, πj ∼ Zero-Trunc-Poisson

(
2wiwk

K∑
k=1

πikπjk

)
.

For each unthinned edge we sample a single community assignment, since by definition these are the
edges whose nodes have been assigned to the same communities. We can sample the community
assignment of an unthinned edge between i and j easily as a draw from Cat(πi1πj1, . . . , πiKπjK).
Sampling of n̊ij: By construction, since thinned edges are unobserved, all pairs of nodes (i, j) may
have edges that are thinned. These edges are auxiliary variables necessary to obtain the full conditional
posterior distribution of Wα. Also, to update community memberships and global frequencies, it is
necessary to assign every thinned edge to a pair of discordant (non-matching) communities. Thanks

1Code can be found on the first author’s website https://federicazoe.github.io/
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Figure 4: Validation of the MCMC sampler on a graph with K = 15 communities, and N = 386 observed
nodes, simulated from the TGGP. Top: Traceplots of Nα, α, σ, and τ . Red, blue, and green indicate three distinct
MCMC chains. Black horizontal lines mark the true values for the simulated graph. Bottom: True simulated
values (red) and 95% credible intervals for the sociability parameters wi of 40 randomly selected nodes.

to the properties of Poisson processes, we do not need to sample n̊ij for all node pairs; we can
develop a more efficient sampler that exploits the thinned model construction. We first sample a
proposed total number of thinned edges D̊P ∼ Poisson

(
2
∑N

i,j=1 wiwj

)
. We then assign each of

these independently to a pair of nodes according to their sociabilities as in Eq. (5), and subsequently
to a pair of commmunities given the memberships of the assigned nodes as in Eq. (6). Finally, we
determine n̊ij from the number of edges that were assigned to discordant communities.
Sampling unobserved nodes: As illustrated in Figs. 1 and 3, the total number of nodes Nα with at
least one edge in the unthinned multigraph is likely to be different from the total number of nodes
with at least one edge after thinning and – as a consequence – from the total number of nodesN in the
observed binary graph Y . There is thus some latent number Nα −N ≥ 0 of nodes whose edges with
the observed nodes have all been thinned. In order to learn this number, our MCMC sampler includes
an approximate update of Nα according to the mean ratio Nα/N from graphs simulated from the
GGP prior given the latest samples of the hyperparameters α, σ, τ . We found that this approximate
method leads to convergence of the empirical MCMC-based estimate of Nα across all simulated and
real data that we considered (see Fig. 4). Sampling of the thinned edges from these unobserved nodes
introduces some additional complications that we efficiently resolve as detailed in the Appendix.
Sampling community memberships πi and global frequencies β: From the conjugacy of Dirich-
let priors to categorical likelihoods, node community memberships πi have closed-form Dirichlet
posteriors πi |Mi, β

ind∼ Dirichlet(ζβ1 +Mi1, . . . , ζβK +MiK), where Mik equals the number of
edges that node i participated in while being assigned to community k. Given community assignments
of nodes in the latent multigraph, the global community frequencies β may be efficiently resampled
using auxiliary-variable methods developed for the hierarchical Dirichlet process [6] (see Appendix).
By learning β, node community memberships πi become sparse, placing significant probability mass
only on a data-dependent subset of the full set of K communities allocated in Eq. (1).
Computational complexity: For a K-community TGGP model of a graph with E observed edges,
resampling the latent multigraph requires O(EK) operations. (The thinned multigraph has fewer
edges, and thus its resampling increases costs by a small constant.) Closed-form resampling of
community memberships is faster, requiring only O(NK) operations for an N -node graph. The
CGGP model [29] uses Hamiltonian Monte Carlo proposals with similar cost, but empirically the
CGGP sampler mixes slower and has inferior performance (see experiments). By exploiting sparse
matrices and parallelization, both samplers may be scaled to networks with tens of thousands of
nodes; very-large networks may require alternative approximate inference algorithms.
MCMC sampler validation: We evaluate the proposed posterior inference method on a graph
with 15 communities simulated from the TGGP model. The simulated graph had 1571 undirected,
unthinned edges,N = 386 observed nodes (i.e., with at least one unthinned edge), andNα−N = 192
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Figure 5: Results on two simulation experiments: a graph generated with the CGGP [29] (top) and a graph
simulated with the proposed TGGP (bottom). Column (a) shows the true adjacency matrices, sorting nodes
into blocks according to the strongest community membership; (b) shows the relative edge density in the true
blocks, sorting blocks by intensity. Columns (c) and (d) show the blocks estimated, respectively, with the TGGP
and the CGGP. In both simulations, we generate data setting α = 250, σ = 0.1, τ = 1, and K = 15. For
the CGGP we set ak = 1/K and bk = 1; for the TGGP we set β = (1/K, ..., 1/K) and ζ = 1. Inference
uses the true number of communities for the CGGP, while our TGGP is given a loose upper bound of K = 50,
γ = 10, ζ = 0.2. The TGGP closely approximates the true community structure, while the CGGP consistently
underestimates the true number of communities.

unobserved nodes (i.e., with only thinned or self edges). Fig. 4 (top) shows traceplots from three
separate MCMC chains, each of which was run for 20,000 iterations. The traceplot of the total number
of nodes (observed + unobserved) Nα shows all values sampled since initialization to demonstrate
that even very different initializations led the three MCMC chains to quickly concentrate around the
same (true) value of Nα. The traceplots of the GGP hyperparameters α, σ, and τ show samples after
convergence (which took roughly 1000 iterations) and demonstrate that the posterior distribution
effectively concentrated around the true values of these hyperparameters. Fig. 4 (bottom) shows
summaries of the posterior distributions of nodes’ sociabilities for 40 randomly selected nodes
spanning from low to relatively large sociability, suggesting that the TGGP model also effectively
recovers nodes’ sociability parameters.

5 Experimental Results

5.1 Simulation

We discuss a simulation study where we investigated the performance of our proposed TGGP model,
and the CGGP model of [29], based on simulated data generated from either model.

First, we present the results from a sparse graph with 15 communities, simulated from our TGGP
model by setting α = 250, σ = 0.1, τ = 1 for the distribution of node sociabilities and γ = 10,
ζ = 0.2 for the distribution of node community memberships. The adjacency matrix of the resulting
undirected graph is shown in Figure 5(a, bottom). Figure 5(b, bottom) sorts the simulated nodes into
blocks according to their main membership and plots the density of edges in each block, demonstrating
that the simulated graph has a clear block structure. We then run our MCMC sampler for 50,000
iterations, discarding the first 40,000 samples as burn-in. For our model fitting, we let 50 be the
upper bound to the number of communities and we set γ = 10 and ζ = 0.5 to allow for learning the
number of communities. From a qualitative comparison of the (b) and (c) bottom panes in Figure 5,
we see that the community memberships recovered from our model are close to the underlying truth.
In contrast, the CGGP model [29] struggles to recover the true community structure of the network
(Fig. 5(d bottom)), despite being fitted with the number of communities K = 15 set to match the
truth. We also simulated a graph from the CGGP model of [29] with parameters ak = 1/K, bk = 1
chosen to induce a community membership prior similar to our TGGP. We fit both the CGGP model
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and the TGGP model to the generated data. When fitting with the CGGP we still set the number
of communities equal to the truth (K = 15). The results plotted in Fig. 5(d) indicate that the block
structures learned by our (misspecified) TGGP model are nevertheless closer to truth than those
recovered by the CGGP. Additional results (shown in Appendix B) suggest that the parameters that
represent the relative size of communities across the network are also more difficult to identify in the
CGGP than in our TGGP formulation.

Figure 6: Plot of similarity between true and inferred
community memberships for networks simulated (data)
and fitted (model) with the TGGP and CGGP [29]. Our
TGGP model uniformly achieves higher similarities.

To quantify the superior community recovery
of our TGGP model, recall that for each ob-
served node the CGGP estimates a K-dim. pos-
itive real vector of community-specific sociabil-
ities (wi1, . . . , wiK), while our TGGP infers a
K-dim. probability vector of community mem-
berships (πi1, . . . , πiK). For quantitative com-
parison, we standardize true and inferred so-
ciability vectors by dividing each wik by the
sum

∑K
h=1 wih. Also, since the TGGP model

was fitted with K set to an upper-bound of 50
rather than to the true number of communities,
when analyzing TGGP results we pad the true
vectors of community memberships (for TGGP-
simulated data) and sociabilities (for CGGP-
simulated data) with zeros. For estimated param-
eters, community indices are then permuted to
maximize similarity with true parameters. Let-
ting ψi and ψ̂i be, respectively, true and inferred
community memberships/sociabilities, we de-
fine similarity as 1 − 1

N

∑N
i=1 d(ψi, ψ̂i) where the distance is the L1 total variation d(ψi, ψ̂i) =

1
2

∑K
k=1 |ψik − ψ̂ik|. Fig. 6 confirms that the TGGP more accurately recovers community member-

ships for both networks, and for nodes of both high and low degree.

5.2 Real network data

We compare the performance of our TGGP framework for adding overlapping communities to
the GGP model with the approaches detailed in Sec. 2.2 and 2.1: the CGGP (sparse with mixed
memberships) [29], the SBM-GGP model (sparse with single memberships) [28], and the more
classical SBM (dense with single membership) [2] and MMSB (dense with mixed memberships) [5].
We run 50,000 iterations of the five models’ MCMC on four real-world networks; see Appendix for
data sources and pre-processing. Each model was fit to fully observed data to learn node-specific
parameters (e.g., sociabilities and community memberships) and community-interaction probabilities,
using the values from the last MCMC iteration. Two different measures of posterior predictive
accuracy [43] were then used to assess the goodness of model fit.

For the first evaluation measure, we randomly selected 5% of the entries equal to 1 in the adjacency
matrix and set them to 0. We then compute the probability of being 1 of all entries that are equal to
0 in the modified adjacency matrix to assess how well each model can distinguish the entries that
should in fact be 1. This edge-retrieval measure is motivated by common applications of network
analysis to recommendation tasks (suggesting which edges that are not observed should be present).
Fig. 7 (top) plots recall (proportion of ones recovered) on the horizontal axis, and F-score (geometric
mean of recall and precision, which is the proportion of ones correctly predicted among all entries
predicted as ones) on the vertical axis. This retrieval task is very challenging because, for sparse
networks, the missing edges are a tiny proportion of all zero entries in the modified adjacency matrix.

For the second evaluation measure, we randomly obscure 5% of all entries in the adjacency matrix
to assess how well each model can recover whether an entry is equal to 0 or to 1. Fig. 7 (bottom)
plots the receiver operating characteristic (ROC) curves, where false positive rate (number of zeros
predicted as ones divided by the number of zeros) is on the horizontal axis, and true positive rate
(proportion of ones correctly predicted as ones divided by the number of ones) is on the vertical axis.
This second task has been used in many prior papers but is not as hard as the first one, because for a
model to score well it suffices to learn small interaction probabilities, since almost all of the randomly
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Figure 7: F-score versus recall for retrieval of missing edges (top), and ROC curves (bottom) for prediction
of missing adjacency matrix entries, for four real-world networks of varying sparsity. Our TGGP uniformly
outperforms the CGGP [29], SBM-GGP [28], MMSB [5], and SBM [2].

selected entries are 0. Fig. 7 shows that our TGGP model does consistently better than all baseline
methods for all networks considered, according to both evaluation measures.

6 Discussion

We have proposed a framework for the analysis of binary network data that extends the GGP-based
model of Caron and Fox [25] by allowing for overlapping community structures, depending both
on the overall sociability of the nodes and the similarity of their community memberships. Our
generative model uses a novel latent multi-graph framework where nodes can connect within the
same or across different communities, but the edges formed across different communities are hidden
(thinned) in the projection giving rise to the observed network. In contrast with alternative extensions
of the original GGP network model [28, 29], our thinned generalized gamma process (TGGP) enables
mixed memberships and facilitates regularization of the community distributions for each node,
resulting in improved inference and reconstruction of the latent community structures. Also, our
model allows for learning the number of communities directly from the data, by encouraging recovery
of a set of non-empty communities smaller than a specified upper bound.

Monte Carlo inference for the TGGP scales linearly with the number of observed edges, and thus sub-
quadratically with the number of nodes in sparse graphs. This leads to strong edge prediction
performance for social and biological networks of moderate size. However, further inference
innovations may be needed to scale to very-large networks with hundreds of thousands of nodes.

The proposed TGGP model is amenable to further extensions. As the adopted mixed membership
framework relies on the well-studied Dirichlet-multinomial specification, the vast literature on
hierarchical Dirichlet mixtures can be leveraged to capture more complex networks. It is possible
to include additional node covariates or metadata to guide the allocation of nodes to communities.
Finally, distributional and asymptotic properties of our model can be investigated by exploiting results
related to finite mixtures and mixtures of finite mixtures [see, e.g., 34, 44, 45, 35].
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