
Cost-Aware Counterfactuals for Black Box
Explanations

Natalia Martinez Gil
IBM Research

Yorktown Heights, NY, USA
natalia.martinez.gil@ibm.com

Kanthi Sarpatwar
IBM Research

Yorktown Heights, NY, USA
sarpatwa@ibm.com

Sumanta Mukherjee
IBM Research

Yorktown Heights, NY, USA
sumanm03@ibm.com

Roman Vaculin
IBM Research

Yorktown Heights, NY, USA
vaculin@ibm.com

Abstract

Counterfactual explanations provide actionable insights into the minimal change
in a system that would lead to a more desirable prediction from a black box
model. We address the challenges of finding valid and low cost counterfactuals
in the setting where there is a different cost or preference for perturbing each
feature. We propose a multiplicative weight approach that is applied on the
perturbation, and show that this simple approach can be easily adapted to
obtain multiple diverse counterfactuals, as well as to integrate the importance
features obtained by other state of the art explainers to provide counterfactual
examples. Additionally, we discuss the computation of valid counterfactuals
with numerical gradient-based methods when the black box model presents flat
regions with no reliable gradient. In this scenario, sampling approaches, as well
as those that rely on available data, sometimes provide counterfactuals that
may not be close to the decision boundary. We show that a simple long-range
guidance approach, which consist of sampling from a larger radius sphere in
search of a direction of change for the black box predictor when no gradient
is available, improves the quality of the counterfactual explanation. In this
work we discuss existing approaches, and show how our proposed alternatives
compares favourably on different datasets and metrics.

1 Introduction

Complex machine learning models such as deep neural networks (DNNs) or large ensembles of
models have become increasingly popular due to their state of the art performance across multiple
prediction tasks. However, their inference process is hard to interpret, and turns them, in practice,
into black-box models. On the other hand, less accurate but more interpretable models such as
generalized linear models or decision trees are easier to trust in high-risk domains such as finance
or health care. Explainability in Artificial Intelligence (XAI) [1, 2, 3, 4, 5] has gained popularity
on the promise of bridging the gap between these two seemingly conflicting goals. Combining
the accuracy of complex machine learning models with the interpretability of simpler models.
An exciting direction that has emerged recently is that of Counterfactual explanations [6]. Here,
one tries to explain a model outcome in terms of the minimal perturbation needed to change the
model outcome (potentially to a more desirable one) for a given instance or input. In certain
cases, this can also be viewed as an actionable insight providing recourse [7] to a user that can

XAI in Action: Past, Present, and Future Applications @ NeurIPS 2023.

now understand what could be changed in the current state of a system in order to reach a
more favourable prediction. This is different to attribution based explanations such as LIME [8]
and SHAP [9, 10] which generate an importance vector indicating which features are the most
relevant for the model’s current prediction, but may not indicate a direction of recourse. Moreover,
counterfactuals are locally exact explanations, in the sense that they have been evaluated on the
predictive model and therefore have no uncertainty in the outcome they would produce.
Finding counterfactuals requires navigating the input space in search of the decision boundary
of a predictive model. Here, we focus on post-hoc black box counterfactual methods which
only have access to the model’s inference function. This is in contrast to recent in-training
counterfactual approaches such as [11, 12], where the counterfactual generation model is trained
jointly with the predictive model. In the post-hoc black box setting finding a valid counterfactual
with numerical gradient based methods becomes challenging with the existence of flat regions
in the model’s output, where the gradient vanishes entirely. This uncertainty in explanation
generation is unacceptable in practice, especially given the knowledge that there is always a valid
counterfactual for any given instance.
In this work we consider the problem of finding counterfactuals when there is a different cost for
perturbing each feature, denoted as “cost-aware counterfactuals". These costs can be associated
to a specific user preference, e.g., a user must provide recourse but wants to take into account
that changing some features would be more feasible than others. Moreover, features costs can
be informed by other XAI importance feature methods as a way to simplify the search for CF
or evaluate consistency across explainers [13, 14]. Cost-aware counterfactuals can be directly
applied to generate diverse counterfactuals for a given instance, which compose a set of valid
counterfactuals for the same base instance that perturb different combinations of input features.
Main contributions:

1. We consider the problem of “cost-aware counterfactuals", where there is a preference over
which features should be perturbed. We describe a natural formulation of this problem
that can be used with any standard counterfactual algorithm, and empirically demonstrate
that the formulation effectively finds counterfactuals in the promoted directions. We
leverage this approach to sequentially generate a set of diverse counterfactuals for a given
instance. We compare the diversity and quality of the generated solutions against three
black box approaches based on DiCE [15]. We show how “cost-aware counterfactuals"
can be used to analyze existing importance feature based explainers such as SHAP [9, 10]
and LIME [8].

2. We review and compare the performance of different state of the art counterfactual
generation algorithms for black box models. We report that, while gradient estimation
approaches typically yield best results, these approaches do not always guarantee the
recovery of a counterfactual. Sampling based methods or proto-guided approaches
addresses the problem of finding valid counterfactuals effectively, but they do so at the
expense of the quality of the solution. We address this trade-off by using a hybridized
approach, called gradsearch, which effectively combines the advantages of both
methodologies.

2 Background

We consider the machine learning classification setting, where a model f : Rd → ∆Y outputs
a vector in the simplex of probabilities over |Y| from an input X ∈ X , where X ⊆ Rd. Given
an instance x0 ∈ X , and a distance function d : Rd × Rd → R+ in the input space, the
counterfactual objective is to find the closest sample to instance x0 that changes the outcome of
the classification model. This is formalized as follows,

xcf = arg min
x∈X

d(x, x0) s.t. arg max
i∈Y

fi(x0) ̸= arg max
j∈Y

fj(x), 1. (1)

A common choice is to define xcf as the original instance plus an additive perturbation, xcf =
x0 + δcf . Moreover, d(x, x0) can be expressed as a regularization function on the additive

1Additionally, we can ask for a counterfactual of a particular class, arg maxj∈Y fj(xcf) = ycf , as in
[6]

2

perturbation, R(δ) = d(x, x0), where R(δ) has a unique minimum on the null perturbation
arg minδ R(δ) = 0⃗, e.g., elastic norm ||δ||22 + β||δ||1. In this scenario, the objective presented in
Eq. 1 becomes

δcf = arg min
δ:δ+x0∈X

R(δ) s.t. arg max
i∈Y

fi(x0) ̸= arg max
j∈Y

fj(x0 + δ). (2)

Let us denote the predicted class for the given instance x0 to be ŷ0 = arg maxi∈Y fi(x0). Then,
the constrained problem in Eq. 2 can be formulated as the following optimization problem

min
δ:δ+x0∈X

max
λ

R(δ) + λCf,x0(δ),
Cf,x0 (δ) =

[
fŷ0 (x0 + δ) − max

i∈Y\ŷ0
fi(x0 + δ)

]
+

.
(3)

Here Cf,x0(δ) measures how much more likely label ŷ0 (the class predicted for x0) is under the
perturbed instance x0 + δ than any other label; [·]+ denotes the ReLU operator. Cf,x0(δ) is
a penalty function that enforces the counterfactual condition (i.e., change in the classification
decision).

3 Cost-aware Counterfactuals

We consider the setting in which there is a preference over which features should be perturbed
when searching for counterfactuals. Formally, we are given a vector of non-negative feature
weights (or costs) w ∈ Rd

+ with larger values on features that, ideally, should remain invariant.
We then modify the regularization term with R(δw), were δw = w ⊙ δ denotes the element-wise
product between each feature weight and its corresponding perturbation. We assume R(·) to be
a convex regularization function with a minimum in 0⃗. In this setting, the optimization objective
in Eq. 3 becomes

min
δ:δ+x0∈X

max
λ

R(w ⊙ δ) + λ
[
fŷ0 (x0 + δ) − max

i∈Y\ŷ0
fi(x0 + δ)

]
+

. (4)

We denote the above objective as wCF(δ; w). Here w directly affects the partial derivatives
of R(·) w.r.t. each feature perturbation δi, i = 1, ..., d. Features with larger weights are
proportionally penalized for having large perturbations, and increasing the cost of a single feature
can only maintain or decrease the module of the perturbation of that feature. This is proved and
discussed in propositions A.1 and A.2 in Supplementary Material A.2. The cost, or weight vector
w can be obtained by either a cost preference or its converse, an importance feature vector, to
provide some guidance where larger values means smaller cost.

3.1 Generating Diverse Counterfactuals

We propose a sequential approach to generate multiple, diverse counterfactuals by leveraging
the weighting vector introduced in wCF. Here the core idea is to iteratively recover cost-aware
counterfactuals, and use the sequence of previous counterfactuals to update the current weighting
vector w. This promotes the generation of counterfactuals that do not modify features that
were previously perturbed unless it is necessary. Starting with the uniform weight w0 = 1d, we
propose the following sequential update

δcf,t = arg min
δ:δ+x0∈X

wCF(δ; wt),
wt+1 =

∏
∆d−1 [wt + γ|δcf,t|].

(5)

Here |δcf,t| indicates the element-wise absolute value of the perturbations of the t-th counter-
factual. γ > 1 is a factor that scales the aggregation of the previously perturbed features, and∏

∆d−1 [.] denotes the euclidean projection operator into the simplex ∆d−1. Note that, as the
iterations increases, features that have not been perturbed see their corresponding weight decay
to zero, which encourages these features to be perturbed for the subsequent counterfactual
perturbation.
The update proposed in Eq 5 can be interpreted as a no-regret algorithm [16] where the adversary
is trying to maximize the perturbation cost maxw∈∆d−1 wT |δcf |, and a player is trying to
minimize the objective from Eq 4. As t increases, the above process converges to a weighting
vector wT that presents a ranking of the most relevant features to flip the decision of the classifier,
and it can be interpreted as an importance feature vector.

3

4 Finding valid counterfactuals

The goal of the objective presented in Eq. 3 and Eq.4 is to find a proximal counterfactual (i.e.,
closest to the boundary decision of f), and involves a maximization step on the penalty coefficient
λ, needed to achieve a feasible solution, and a minimization step on the perturbation δ. In
Appendix A.1 we show an implementation of a standard gradient-based approach to achieve Eq.
3 objective. Here the minimization step on δ requires the gradient estimation of Cf,x0(δ) and
consequently of f .
We are interested in finding counterfactual examples for black box classifiers. Meaning that we
only have access to the probability score predictions. Therefore, we need to estimate the gradient
of Cf,x0(δ) numerically, or find an update direction when we reach a flat region, ∇fi(x) ≃ 0⃗ for
i ∈ Y , and we are not feasible, Cf,x0(δ) > 0. Flat regions occur in common model architectures,
such as NN classifiers with softmax output layers for inputs that are well into the saturated
(i.e., high confidence) region, and on tree-based classification models such as random forests.
Recovering update directions in flat regions of the model is a necessary step in finding valid
counterfactual examples.

Algorithm 1 gradsearch update direction
Input: Cf,x0 function, x0 instance, δt previous
perturbation
Parameter:µ radius scalar, c > 1 scaling factor, n
samples
Output: vt update direction.

1: if Cf,x0 (δt) = 0 → return 0d

2: {uj ∼ U(Sd−1)}n
j=1, x = x0 + δt,vt = 0d

3: µj = µ for j = 1, ..., n
4: while ||vt|| = 0 do
5: µj =

∏
x+µj uj ∈X [µj], j = 1, ..., n

6: vt = d
∑n

j=1
Cf,x0 (δt+µj uj)−Cf,x0 (δt)

nµj
uj ,

7: µj = µj × c for j = 1, ..., n,
8: end while
9: return vt

We propose gradsearch, an approach that
combines numerical gradient estimation, with
exploration within flat regions. Whenever our
candidate counterfactual is in an infeasible re-
gion (i.e., Cf,x0(δt) > 0), we try to estimate
the numerical gradient, ∇Cf,x0(δ). However,
for flat regions, this estimation can be arbitrar-
ily close to 0, indicating a lack of local update
direction. We circumvent this limitation by in-
creasing the search radius of the sampling ball
(which no longer represents a local gradient)
until we find a feasible search direction.
The gradsearch counterfactual perturba-
tion update is described in Algorithm 1. Here,
given Cf,x0 , we estimate an update direction
(see line 6) using a formulation equivalent to
the two-point gradient estimator based on ran-
dom directions uniformly sampled from the
sphere, Sd−1 in line 2. If µ is sufficiently small
this update is equivalent to the numerical gra-

dient estimation used in [17]. If this direction is the null vector we increase the radius by a factor
c as shown in line 7 inside the while loop from line 4 to 7. Line 5 is a projection to keep each
perturbation inside the feasible ranges for each feature (i.e., remain inside the input space X).
The provided update replaces line 5 in the penalty approach in Algorithm 2 from Appendix A.1.
In our experiments, gradsearch proves to be better than the alternatives since it does not
suffer from the limitations of numerical gradients and does not require a dataset.

5 Related Work

Counterfactual explanations [6, 18, 15, 19, 20, 21], sometimes referred to (with minor differences
in definitions) as pertinent negative contrastive explanations [22, 17], are an active area of
research. The work in [6] proposed finding counterfactual examples by optimizing for the
minimum necessary perturbation for a given instance that modifies the model’s prediction. Some
of the commonly desired properties of a counterfactual method are validity (i.e., its success rate
in providing counterfactuals for a given model), proximity of the provided solutions to the original
instance, sparsity across the feature changes, and in-distribution or in-manifold solutions, among
other properties [6, 23]. Here we focus on post-hoc black box counterfactual methods which only
have access to the model’s inference function. Finding valid counterfactuals for a given instance
poses a challenge since it involves exploring the input space in search of a sample that changes

4

the model prediction while still being as close as possible to the original instance (based on some
proximity/sparsity criteria).
Numerical gradients (numgrad), as in [17], rely on sampling directions from a uniform distribution
over the unit sphere to estimate ∇Cf,x0(δ) and obtain an update for δ. As mentioned in Section
4, if we are in an infeasible flat region, the numerical gradient is 0 and we do not have a way
to move towards a feasible region. To overcome this issue, prototype guided methods (proto)
[21] rely on a given counterfactual data sample, xproto, to include in Eq.3 a term that minimizes
the distance between the xproto and the counterfactual x0 + δ. Moreover, if the initialization is
set to be xproto we start from a feasible region. However, the final solution may not have best
quality in terms of R.

Method Validity 1
d ||δ||1 1

d ||δ||2 1
d ||δ||0

UCI Adult - 8 features
NUMGRAD 0.74 .058±.068 .051±.067 .088±.069
RANDOM 1.00 .087±.042 .083±.045 .102±.034
KDTREE 1.00 .138±.061 .138±.061 .144±.068
PROTO 1.00 .061±.061 .057±.061 .084±.06
GRADSEARCH 1.00 .04±.038 .034±.038 .067±.034

German credit - 20 features
NUMGRAD 0.55 .01±.008 .003±.004 .042±.026
RANDOM 1.00 .055±.028 .051±.029 .065±.024
KDTREE 1.00 .171±.052 .149±.052 .243±.058
PROTO 1.00 .051±.041 .044±.038 .074±.054
GRADSEARCH 1.00 .02±.018 .012±.017 .053±.031

Lending Club - 43 features
NUMGRAD 0.43 .002±.008 .001±.006 .019±.012
RANDOM 1.00 .019±.024 .013±.017 .44±.025
KDTREE 1.00 .467±.121 .291±.152 1.0±0.0
PROTO 1.00 .05±.043 .033±.032 .109±.078
GRADSEARCH 1.00 .003±.01 .001±.005 .027±.033

Table 1: Validity (success rate) and counterfactual
quality in terms of perturbation norm (L1-Proximity
1
d ||δ||1, L2-Proximity 1

d ||δ||2 and Sparsity 1
d ||δ||0) for

the approaches discussed in Section 5 and extended in
Appendix A.1. All methods use the softmax output of
the FCNN. We present in bold the best results. Note
that the quality of the numgrad perturbations is
measured over the set of perturbations of valid coun-
terfactuals, which is a considerably smaller set than
the other approaches. The proposed gradsearch
always succeeded in finding valid counterfactuals, had
similar quality to numgrad but with considerably
higher success rate (validity).

Purely random sampling methods
(random), generate independent
instances in the input space, and select
the sample with the smallest perturba-
tion (according to R) amongst valid
counterfactuals. If a dataset containing
counterfactuals is available, one can
simply output the instance with the
smallest R [24]. An implementation of
this approach using kdtree, as well
as the random method (see Eq 8) is
available in the library provided by [15].
The proposed gradsearch can be seen
as a variation of the Growing Spheres
approach proposed in [25] since it also
relies on sampling form the unit sphere.
However, gradsearch approach starts
with a small radius sphere µ and is
equivalent to an unbiased estimator of
the numerical gradient for an L-smooth
function [26]. A detailed explanation
of the above mentioned methods is
available in Appendix A.1.
The problem of computing diverse coun-
terfactuals systematically on linear mod-
els was proposed in [18] as an integer
optimization problem. [15, 27, 28] con-
sidered the problem of computing di-
verse counterfactual explanations on a
black box model and proposed several ap-
proaches to generate multiple counterfac-
tuals by penalizing their pairwise distance
in order to promote diversity. Our cost-
aware counterfactual formulation can be seen as a generalization of the weighted counterfactual
strategy proposed by [13] that applies a per feature penalty in an ℓ1 perturbation. It also satisfies
the general definition of the cost functions studied by [7] in the context of recourse for linear
models.

6 Experiments

We compare the efficacy of the approaches presented in Section 4 to discover proximal coun-
terfactuals for black box models. We evaluate how these approaches perform even on regions
where the black box model has no reliable numerical gradient (i.e., flat regions). We then show
how our proposed approach to find cost-aware counterfactuals (presented in Section 3) is able
to recover diverse counterfactuals that are proximal to the instance. We also compare to the

5

available implementations of DiCE [15],2, which provides multiple counterfactuals. We show that
our approach compares favorably, and in most cases outperforms DiCE. In Appendix A.4 we show
how cost-aware counterfactuals can incorporate existing feature importance methods such as
SHAP and LIME to find counterfactuals.
We experiment on three popular binary classification tabular datasets. These are UCI-Adult for
income classification, German-Credit [29] for credit score prediction, and LendingClub, 3, for loan
charged-off prediction. We provide a detailed description in Appendix A.3. In all cases, we use
the softmax output of a FCNN as the black box model; the FCNN used in these experiments has
two hidden layers with 64 neurons each, and uses ReLU activations. For each dataset we train
the FCNN model to minimize cross entropy loss using the ADAM optimizer with learning rate
0.01, and batch size 64; we use 80% of the dataset samples for training. Numerical and ordinal
features were normalized to the [0, 1] interval, categorical features were converted to their one-hot
encoding representation. We consider an elastic norm regularization R(δ) = ||δ||2 + β||δ||1, with
β = 0.9. All experiments are reported over 100 random test instances.

6.1 Finding valid counterfactuals

We compare how the counterfactuals obtain for a black box model with the proposed hybrid
approach, gradsearch, compares against the existing methods that were discussed in Section
4: numgrad, proto, kdtree and random. Here, we only have access to an evaluation
function that provides the softmax output of a FCNN. Implementation details are provided in
Appendix A.3.
Table 1 show the validity (success rate) and counterfactual quality in terms of the norms of the
counterfactual perturbation,4 (L1-Proximity, L2-Proximity and Sparsity). We can observe that,
if we only rely on numerical gradients, the success rate (validity) in finding counterfactuals is
considerably lower than other approaches. However, in the cases where numgrad succeeds,
the quality of the found counterfactuals is high (low perturbation norm, counterfactuals are
closer to decision boundary). On the other hand, random, kdtree and proto always succeed
(although random needs to be given enough samples), but produce lower-quality counterfactuals
(i.e., they are not minimal in terms of perturbation norm). Our proposed gradsearch, always
succeeds, and produces samples of comparable quality to numgrad as expected.

2 counterfactuals 5 counterfactuals 10 counterfactuals
Method DivCount CosDissim 1-IOU DivCount CosDissim 1-IOU DivCount CosDissim 1-IOU

UCI Adult - 8 features
DiCEgen 0.61±0.2 0.45±0.24 0.58±0.21 0.62±0.2 0.44±0.25 0.58±0.23 0.65±0.2 0.48±0.25 0.6±0.23
DiCEktree 0.62±0.28 0.49±0.3 0.61±0.29 0.61±0.27 0.48±0.29 0.6±0.28 0.62±0.24 0.47±0.26 0.61±0.25
DiCErand 0.87±0.19 0.71±0.33 0.77±0.27 0.86±0.2 0.72±0.34 0.77±0.29 0.88±0.19 0.74±0.32 0.78±0.27
wCF (ours) 1.0±0.0 0.94±0.23 0.92±0.21 0.97±0.08 0.88±0.26 0.87±0.24 0.94±0.13 0.83±0.29 0.83±0.27

German credit - 20 features
DiCEgen 0.71±0.19 0.5±0.24 0.52±0.19 0.76±0.15 0.55±0.22 0.57±0.15 0.78±0.13 0.58±0.21 0.59±0.13
DiCEktree 0.76±0.13 0.56±0.21 0.63±0.14 0.76±0.13 0.56±0.21 0.62±0.14 0.76±0.13 0.55±0.2 0.62±0.14
DiCErand 0.91±0.16 0.81±0.29 0.88±0.18 0.92±0.16 0.83±0.29 0.88±0.2 0.92±0.16 0.83±0.28 0.88±0.19
wCF (ours) 1.0±0.0 1.0±0.0 0.94±0.11 0.97±0.07 0.98±0.1 0.94±0.13 0.97±0.07 0.95±0.16 0.92±0.15

Lending Club - 43 features
DiCEgen 0.84±0.15 0.55±0.22 0.23±0.09 0.87±0.12 0.58±0.22 0.25±0.08 0.88±0.1 0.59±0.22 0.25±0.08
DiCErand 0.12±0.06 0.83±0.3 0.04±0.03 0.12±0.06 0.83±0.32 0.04±0.04 0.12±0.08 0.84±0.31 0.04±0.04
wCF (ours) 0.97±0.09 0.93±0.26 0.88±0.27 0.98±0.07 0.86±0.34 0.83±0.33 0.98±0.07 0.85±0.34 0.83±0.33

Table 2: The above table shows the average and standard deviation of the different metrics
used to quantify the diversity between the counterfactuals obtained with the different methods.
We report diversity count (DivCount), cosine dissimilarity (CosDissim), and difference over
union (1-iou), as previously defined in Eq.17. Larger values indicates high diversity on all
metrics. In all scenarios, the proposed sequentially-weighted approach, wCF, achieves the best
performance. We omit reporting results for DiCEktree on the Lending Club dataset since the
available implementation did not converge in a reasonable time.

2https://github.com/interpretml/DiCE
3https://www.kaggle.com/datasets/janiobachmann/lending-club-first-dataset
4δcf = xcf − x0

6

6.2 Multiple Weighted Counterfactuals

We compare the wCF approach, described in Eq.5, to the publicly-available model-agnostic
variants of DiCE [15] (DiCErand, DiCEktree and DiCEgen) on the task of generating multiple,
diverse counterfactual examples. We report the norms of the counterfactual perturbations to
measure proximity of the obtained counterfactuals to the original instance. To quantify diversity,
we consider pairwise comparisons and report the average of diversity count (DivCount), cosine
dissimilarity (CosDissim), and difference over union (1-IOU). These quantities are described in
Appendix A.3, larger values implies more diversity. Additional details about implementation are
available in Appendix A.3.
Table 2 compares the diversity of the counterfactuals obtained by the DiCE approaches and
wCF using the metrics defined in Eq. 17. In general, wCF is able to provide more diverse
counterfactuals. Our weight-based method generates counterfactuals that perturb different set of
features as captured in the 1-IOU metric. Table 3 in Appendix A.4 shows the proximity of the
generated counterfactuals. We observe that wCF and DiCErand provide counterfactuals closer
to the original instance. For the Lending Club dataset, which has considerably more features,
the DiCErand counterfactual tend to modify multiple features as shown in the ℓ0 norm. From
Table 2 and Table 3 we can conclude that wCF with the proposed gradsearch approach tend
to produce valid counterfactuals that are more diverse and have a better quality. Additional
results are available in Appendix A.4, in particular we provide an analysis of how effective are the
importance feature weights of LIME and SHAP methods to generate counterfactuals.

7 Conclusion

In this work we discussed the practical challenges of finding counterfactuals for black box
models, especially when numerical gradients of the model are unreliable or near 0, a core
practical consideration. We review existing approaches, and propose a novel method that
combines numerical gradients and exploration within flat regions without requiring access to a
counterfactual dataset. We show that our approach always succeeds, and produces better quality
counterfactuals than alternatives.
We additionally analyzed the problem of finding cost-aware counterfactuals, where we have a
preference over which features should be perturbed. In this setting we propose a cost-aware
counterfactual approach that applies a feature-based penalization on the regularization term.
We show that this method can be leveraged to obtain multiple, diverse counterfactuals. Our
alternative favorably compares against state of the art alternatives such as DiCE.

References
[1] David Gunning. Explainable artificial intelligence (xai). Defense advanced research projects

agency (DARPA), nd Web, 2(2):1, 2017.

[2] Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr).
A Practical Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555,
2017.

[3] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert
Müller. Explainable AI: interpreting, explaining and visualizing deep learning, volume 11700.
Springer Nature, 2019.

[4] Feiyu Xu, Hans Uszkoreit, Yangzhou Du, Wei Fan, Dongyan Zhao, and Jun Zhu. Explainable
ai: A brief survey on history, research areas, approaches and challenges. In CCF international
conference on natural language processing and Chinese computing, pages 563–574. Springer,
2019.

[5] Kush R Varshney. Trustworthy machine learning. Chappaqua, NY, USA: Independently
Published, 2022.

[6] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

7

[7] Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification.
In Proceedings of the conference on fairness, accountability, and transparency, pages 10–19,
2019.

[8] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?":
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, August 13-17, 2016, pages 1135–1144, 2016.

[9] Lloyd S Shapley. A value for n-person games. In Contributions to the Theory of Games
(AM-28), Volume II, pages 307–318. Princeton University Press, 2016.

[10] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[11] Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, and Alexandre Termier.
Vcnet: A self-explaining model for realistic counterfactual generation. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 437–453.
Springer, 2022.

[12] Hangzhi Guo, Thanh H Nguyen, and Amulya Yadav. Counternet: End-to-end training of
prediction aware counterfactual explanations. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 577–589, 2023.

[13] Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao
Shen, and Freddy Lecue. Interpretable credit application predictions with counterfactual
explanations. arXiv preprint arXiv:1811.05245, 2018.

[14] Ramaravind Kommiya Mothilal, Divyat Mahajan, Chenhao Tan, and Amit Sharma. Towards
unifying feature attribution and counterfactual explanations: Different means to the same
end. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pages
652–663, 2021.

[15] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning
classifiers through diverse counterfactual explanations. In Proceedings of the 2020 conference
on fairness, accountability, and transparency, pages 607–617, 2020.

[16] Yoav Freund and Robert E Schapire. Game theory, on-line prediction and boosting. In
Proceedings of the ninth annual conference on Computational learning theory, pages 325–332,
1996.

[17] Amit Dhurandhar, Tejaswini Pedapati, Avinash Balakrishnan, Pin-Yu Chen, Karthikeyan
Shanmugam, and Ruchir Puri. Model agnostic contrastive explanations for structured data.
arXiv preprint arXiv:1906.00117, 2019.

[18] Chris Russell. Efficient search for diverse coherent explanations. In Proceedings of the
Conference on Fairness, Accountability, and Transparency, pages 20–28, 2019.

[19] Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. Multi-objective
counterfactual explanations. In International Conference on Parallel Problem Solving from
Nature, pages 448–469. Springer, 2020.

[20] Dylan Slack, Anna Hilgard, Himabindu Lakkaraju, and Sameer Singh. Counterfactual
explanations can be manipulated. Advances in Neural Information Processing Systems,
34:62–75, 2021.

[21] Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by
prototypes. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 650–665. Springer, 2021.

[22] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan
Shanmugam, and Payel Das. Explanations based on the missing: Towards contrastive
explanations with pertinent negatives. Advances in neural information processing systems,
31, 2018.

8

[23] Sahil Verma, Varich Boonsanong, Minh Hoang, Keegan E Hines, John P Dickerson, and
Chirag Shah. Counterfactual explanations and algorithmic recourses for machine learning: A
review. arXiv preprint arXiv:2010.10596, 2020.

[24] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viégas,
and Jimbo Wilson. The what-if tool: Interactive probing of machine learning models. IEEE
transactions on visualization and computer graphics, 26(1):56–65, 2019.

[25] Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin
Detyniecki. Inverse classification for comparison-based interpretability in machine learning.
arXiv preprint arXiv:1712.08443, 2017.

[26] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini.
Zeroth-order stochastic variance reduction for nonconvex optimization. Advances in Neural
Information Processing Systems, 31, 2018.

[27] Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic counter-
factual explanations for consequential decisions. In International Conference on Artificial
Intelligence and Statistics, pages 895–905. PMLR, 2020.

[28] Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face:
feasible and actionable counterfactual explanations. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pages 344–350, 2020.

[29] Dheeru Dua, Casey Graff, et al. Uci machine learning repository. 2017.

9

A Supplementary Material

A.1 Finding Counterfactuals Extension

Algorithm 2 presents a gradient-based approach to achieve Eq. 3 objective. In each iteration we
alternate between a gradient descent step in δ, and an increase in λ if the perturbation does
not satisfy the counterfactual constraint, and has made no progress in improving our penalty
loss, Cf,x0(δt+1) ≥ Cf,x0(δt). Line 5 requires the gradient estimation of f whenever Cf,x0(δ) is
active;

∏
δ+x0∈X denotes the projection into the feasible input space, 5.

Algorithm 2 Counterfactual Optimization
Input: f model, R regularization, x0 instance
Parameter:λ initial penalty, T iterations, sc scale factor
Output:xcf counterfactual
1: ŷ0 = arg maxi∈Y fi(x0)
2: δ0 = 0d, δcf = 0d,
3: for t = 1, ..., T do
4: it = arg maxi∈Y\ŷ0 fi(x0 + δt)
5: vt = ∇Cf,x0(δt) = 1[Cf,x0 (δt)>0]

(
∇fŷ0(x0 + δt) − ∇fit

(x0 + δt)
)
,

6: δt+1 =
∏

δ+x0∈X

[
δt − lr

(
∇R(δt) − λvt

)]
7: if Cf,x0(δt+1) = 0 and R(δt+1) < R(δcf) then
8: δcf = δt+1
9: end if

10: if Cf,x0(δt+1) ≥ Cf,x0(δt) and Cf,x0(δt) > 0 then
11: λ = λ × sc
12: end if
13: end for
14: return δcf + x0

For black box classifiers, Algorithm 2 requires the numerical estimation of ∇fi(x) w.r.t. a
particular output label i ∈ Y. One option is to do a numerical estimation (numgrad) as
described next.

Numerical gradients

We consider the approach taken in [17, 26] where the ∇fi(x) is estimated with the empirical
approximation of the following expectation

∇̂fi(x) = Eu∼U(Sd−1)
[
d fi(x0+δt+µu)−fi(x0+δt)

µ u
]
. (6)

Note that the directions u are sampled from a uniform distribution over the unit sphere, U(Sd−1).
We use numgrad to denote a black box counterfactual explanation approach that uses an
empirical estimation of Eq. 6 on Algorithm 2.

Prototype guidance

In situations where no gradient information is available (i.e., flat regions) one can rely on a dataset
containing counterfactual examples to provide some guidance by augmenting the loss in Eq.3 with
a prototype loss. Given access to Dcf = {xs}n

s=1 with arg maxi∈Y fi(xs) ̸= arg maxj∈Y fj(x0)
one can generate a counterfactual prototype [21], xproto = q(Dcf) (e.g.,xproto = arg min

x∈Dcf

R(x−

x0)), and augment the objective in Eq. 3 as follows
min

δ:δ+x0∈X
max

λ
R(δ) + λCf,x0(δ) + βd(xproto, x0 + δ). (7)

Here d(xproto, x0 + δ) is the distance between the prototype and the objective. If the initial
perturbation is set to be δ0 = xproto − x0, then the method starts from a feasible solution, and

5 ∏
δ+x0∈X

[δ] := arg min
δ∗:δ∗+x0∈X

dδ(δ, δ∗) for some distance function dδ

10

R(δ) is the term that pushes for the counterfactual to be closer to the original instance. This
approach is able to provide valid counterfactuals even without gradients for f . However, the final
solutions may not have the best quality in terms of R. We denote this approach as proto.

Random Search

Instead of optimizing a counterfactual objective, one can naively explore the input space in
search of counterfactuals by random sampling (random). Given a distribution whose support is
X , denoted as PX , one can sample independent instances xs, and select the sample with the
smallest perturbation amongst valid counterfactuals. This is summarized as follows, 6

xcf = arg min
x∈{xs∼PX :f(xs) ̸=f(x0)}n

s=1

R(x − x0) (8)

In our experiments, we consider PX to be the uniform distribution on the feasible range of values.
This corresponds to the least informative prior over the dataset.

Dataset Guidance

In cases where a dataset containing counterfactual samples is available, Dcf = {xs}n
s=1 with

f(xs) ̸= f(x0) for all s = 1, ..., n. One can simply output the instance in the counterfactuals
dataset that is closer in terms of R,

xcf = arg min
x∈Dcf

R(x − x0). (9)

This is equivalent to the random search approach, where the counterfactual dataset is provided,
rather than sampled. An implementation of the above approach using kdtree, as well as the
random method (see Eq 8) is available in the library provided by [15].

A.2 Additional Analysis on cost-aware Counterfactuals

Proposition A.1 shows that, for Eq. 4, features with larger weights are proportionally penalized
for having larger perturbations. Proposition A.2 shows that increasing the weight of a single
feature can only maintain or decrease the module of the perturbation of that feature. Proposition
A.3 shows as an example how in the binary linear classification setting, and if we consider the l2
regularization, the perturbation for each feature is inversely proportional to the weight/cost of
the feature.
Proposition A.1. Consider R : Rd → R+ a convex function with a minimum in 0d that, for any
δ ∈ Rd and any coordinate pair i, j ∈ {1, ..., d} such that |δi| ≥ |δj | satisfies | ∂R(δ)

∂δi
| ≥ | ∂R(δ)

∂δj
|,

with equality only if |δi| = |δj |. Then, given a weight vector w : wi > wj > 0 and δ′ ∈ Rd such
that δ′

i = δ′
j we have that | ∂R(w⊙δ′)

∂δ′
i

| > | ∂R(w⊙δ′)
∂δ′

j
| if δ′

j ̸= 0.

Proof. | ∂R(w⊙δ′)
∂δ′

i
| = |wi

∂R(w⊙δ′)
∂wiδ′

i
| > |wj

∂R(w⊙δ′)
∂wjδ′

j
| = | ∂R(w⊙δ′)

∂δ′
j

| since |wiδ
′
i| = |wjδ′

i| and
wi > wj > 0.

Proposition A.2. Consider R : Rd → R+ a convex function with a minimum in 0d that can be
expressed as R(δ) =

∑d
k=1 r(δk) where r : R → R+ is a real function that satisfies r(δ1) > r(δ2)

if |δ1| > |δ2|. Given w, w′ ∈ Rd
+ such that w′

i > wi and w′
j = wj for all j ̸= i, the solutions

δw = arg min
δ

wCF (δ; w) and δw′
= arg min

δ
wCF (δ; w′) (solutions to Eq. 4) satisfy that

|δw′

i | ≤ |δw
i |.

Proof. Given the above assumptions we can write the following
R(w′ ⊙ δw′

) = R(w ⊙ δw′
) − r(wi × δw′

i) + r(w′
i × δw′

i)
≥ R(w ⊙ δw) − r(wi × δw′

i) + r(w′
i × δw′

i)
≥ R(w′ ⊙ δw) − r(w′

i × δw
i) + r(w′

i × δw′
i).

(10)

6Here we abuse notation and f(x) indicates the decision instead of the probability score

11

If |δw′

i | > |δw
i | then we would have that r(w′

i × δw′

i) > r(w′
i × δw

i) leading to the contradiction
of R(w′ ⊙ δw′

) > R(w′ ⊙ δw) where δw′
could not be the minimizer for wCF (δ, w′).

Proposition A.3. We consider Eq.4 in a binary linear classification setting where f(x) = 1
1+e−h(x)

and h(x) = vT x + b. Without loss of generality we consider f(x0) > 0.5, then Eq.4 can be
expressed as

min
δ

max
λ≥0

L(δ, λ)

L(δ, λ) = R(w ⊙ δ) + λ
(

1
1+e−h(x0+δ) − 1

1+eh(x0+δ)

) (11)

and the solution with R(w ⊙ δ) = ||w ⊙ δ||22 + β||w ⊙ δ||1 is

δ∗ = {−(vT x0 + b)
|| v

2w ||22
vi

4w2
i

}d
i=1

Proof. Lets consider the KKT conditions.

∂L
∂λ = 1

1+e−h(x0+δ∗) − 1
1+eh(x0+δ∗) = 0

then h(x0 + δ∗) = 0 → vT δ∗ = −(vT x0 + b).
(12)

With the above result we can compute
∂L
∂δi

= 2w2
i δ∗

i + λ 1
2 vi = 0 → δi = − λvi

4w2
i
,

vT δ∗ = −
∑d

i=1
λv2

i

4w2
i

= −(vT x0 + b),

λ = (vT x0+b)∑d

i=1

v2
i

4w2
i

≥ 0.
(13)

Then δ∗
i = (vT x0+b)

|| v
2w ||2

2

vi

4w2
i

for i = 1, ..., d

A.3 Experimental Details

UCI-Adult This is a binary classification tabular dataset, available in [29]. It contains census
information for more than 26k individuals. The goal is to predict whether or not the annual
income of a person is above 50k. We followed the same pre-processing described in [15], where 8
features (2 numerical and 6 categorical) are considered for the income prediction. The trained
FCNN classifier achieved and accuracy of 85.4% and 83.1% on the train and test partitions
respectively.

German-Credit This is a tabular dataset, available in [29], that contains personal information
from a set of 1k individuals that took on a bank loan. The goal is to predict, for each individual,
a binary variable corresponding to the credit score (good or bad). We utilized all 20 features,
12 numerical or ordinal, and 8 strictly categorical. The trained FCNN classifier achieved and
accuracy of 100% and 71.5% on the train and test partitions respectively.

LendingClub This tabular dataset,7 contains pertinent information from individuals that
requested a loan in the years between 2007 and 2015. The goal is to predict a binary variable
indicating whether the loan was fully paid or charged off. We utilized 43 features, 38 corresponding
to numerical or ordinal variables, and 5 to categorical ones. The dataset has nearly 40k samples
after data cleaning. The trained FCNN classifier achieved an accuracy of 99.5% and 99.6% on
the train and test partitions respectively.

7https://www.kaggle.com/datasets/janiobachmann/lending-club-first-dataset

12

Counterfactual Methods

numgrad: Uses Algorithm 2 with λ = 0.01, T = 2000, sc = 1.25, and lr = 0.1 with a
polinomial decay,8 of power 0.5 and end learning rate of 1e-7. The numerical gradient of ∇fi(x)
in step 5 from Algorithm 2 is computed with the following empirical approximation of Eq. 6

∇̂fi(x) = d
nµ

∑n
j=1

(
fi(x + µuj) − fi(x)

)
uj , ∀i ∈ Y

uj = ûj

||ûj ||2
, ûj ∼ N (0, I), j = 1, ..., n.

(14)

We used µ = 0.005 and n = 50 samples. d are the dimensions of the input features and is data
dependent. The regularization loss we are using is R(δ) = ||δ||22 + 0.9||δ||1, and we incorporate
the projected FISTA from [22]. Therefore, we consider the slack variable zt such that z0 = δ0
and line 6 in Algorithm 2 becomes

δt+1 =
∏

δ+x0∈X

[
Sβ

(
zt − lr

(
2zt − λvt

))]
,

zt+1 = δt+1 + t
t+3 (δt+1 − δt).

(15)

Where Sβ : Rd → Rd is an element-wise shrinkage-thresholding function
Sβ(δ)i = (δi − β)1[δi>β] + (δi + β)1[δi<−β] + 01[|δi|<β] (16)

where i = 1, ..., d.

proto: Same as numgrad except for the following points. The loss is augmented to include a
proto distance term as shown in Eq. 7. We set xproto to be the closest sample in the training
dataset to x0 in terms of R(xproto − x0) = ||xproto − x0||22 + 0.9||xproto − x0||1. Moreover,
the prototype distance loss is d(xproto, x) = ||xproto − x||22, and β was initialized in 0.1 and
increased under the same conditions as λ in line 11 from Algorithm 2. We start with a feasible
solution by setting δ0 = xproto − x0 = δcf in step 2 from Algorithm 2 .

gradsearch: Same as numgrad but we use Algorithm 1 to get the direction update of line 5
in Algorithm 2. In Algorithm 1 initial radius is µ = 0.005, n = 50 and c = 2.

kdtree and random: We use the implementation available in the DiCE library [15] ,9.

DiCErand, DiCEktree and DiCEgen : DiCE provides three model agnostic implementations
to find counterfactuals. One is random sampling of the input space (DiCErand), to find
counterfactuals and then choose those that satisfy a proximity condition. The second approach is a
k-NN implementation (DiCEktree) that requires access to a dataset with valid counterfactuals, and
outputs those that are closer to a given instance. Finally, they provide a genetic algorithm approach
(DiCEgen) whose goal is to find a compromise between proximal and diverse counterfactuals.
Diversity is encouraged by penalizing pairwise distance between counterfactuals. We used the
suggested parameters for all three approaches and increased either the number of samples or
iterations in cases where the original setting was insufficient. For DiCEgen, we sweep the
coefficient that promotes diversity and report the results with best diversity. We set the maximum
number of iterations to 10K and run for diversity weight equal to 5, 10, 50 and 100. However,
we did not see a major improvement in terms of diversity, in all cases we reported the one that
achieved the best performance. In all three cases we use the implementation available in the
DiCE library [15].

wCF: Given a feature weight vector w (see Eq. 4) we used gradsearch to find the counter-
factual. For multiple counterfactuals we tried γ ∈ {10, 50, 100} (see Eq.5) and reported the one
with best performance in terms of diversity. Reported results for UCI Adult and German credit
use γ=50, and γ=100 for Lending Club.

8https://keras.io/api/optimizers/learning_rate_schedules
9https://github.com/interpretml/DiCE

13

Quantify counterfactuals diversity

To quantify diversity, we consider pairwise comparisons and report the average of diversity count
(DivCount), cosine dissimilarity (CosDissim), and difference over union (1-IOU). Given k
counterfactuals, these metrics are

DivCount: 1
C2

k

∑
i=1...,k

j=i+1,...,k

||δcf,i−δcf,j ||0∑d

l=1
(δl

cf,i
̸=0)∨(δl

cf,j
̸=0)

,

CosDissim: 1 − 1
C2

k

∑
i=1...,k

j=i+1,...,k

<δcf,i,δcf,j >

||δcf,i||||δcf,j || ,

1-IOU: 1 − 1
C2

k

∑
i=1...,k

j=i+1,...,k

∑d

l=1
(δl

cf,i
̸=0)∧(δl

cf,j
̸=0)∑d

l=1
(δl

cf,i
̸=0)∨(δl

cf,j
̸=0)

.

(17)

Here C2
k represents the total combinations of k choose 2 elements, and ∧ and ∨ represent the

‘and’ and ‘or’ operators.

A.4 Additional Results

2 counterfactuals 5 counterfactuals 10 counterfactuals

Method 1
d

||δ||1 1
d

||δ||2 1
d

||δ||0 1
d

||δ||1 1
d

||δ||2 1
d

||δ||0 1
d

||δ||1 1
d

||δ||2 1
d

||δ||0
UCI Adult - 8 features

DiCEgen .171±.067 .171±.067 .183±.067 .171±.064 .17±.064 .188±.062 .169±.064 .168±.065 .189±.062
DiCEktree .147±.065 .147±.065 .154±.071 .16±.072 .16±.072 .167±.077 .17±.072 .169±.072 .178±.077
DiCErand .086±.04 .081±.042 .102±.032 .091±.043 .086±.046 .105±.035 .092±.043 .087±.046 .107±.036
wCF(ours) .059±.053 .055±.054 .078±.047 .089±.073 .085±.073 .106±.071 .093±.07 .088±.07 .11±.069

German credit- 20 features
DiCEgen .176±.054 .156±.054 .268±.054 .174±.049 .153±.05 .267±.05 .173±.051 .152±.052 .265±.051
DiCEktree .182±.054 .158±.054 .256±.058 .183±.053 .159±.054 .259±.057 .186±.053 .162±.053 .264±.056
DiCErand .055±.026 .051±.028 .065±.022 .057±.026 .053±.028 .066±.022 .057±.027 .053±.029 .068±.023
wCF(ours) .028±.029 .02±.028 .057±.036 .042±.042 .036±.041 .065±.047 .048±.04 .042±.038 .071±.046

Lending Club- 43 features
DiCEgen .122±.039 .077±.035 .485±.038 .124±.038 .077±.034 .48±.035 .126±.039 .079±.035 .481±.033
DiCErand .018±.02 .012±.015 .441±.023 .017±.019 .011±.015 .441±.024 .018±.023 .012±.017 .442±.025
wCF (ours) .005±.02 .003±.014 .029±.045 .014±.043 .009±.033 .047±.081 .019±.05 .013±.039 .054±.089

Table 3: Average and standard deviation of the three different norms used to quantify the
magnitude of the counterfactuals’ perturbation for the different methods. Here, a smaller value
indicates that the counterfactual is closer to the instance. We do not report DiCEktree for
Lending Club since the available implementation did not converge in a reasonable time.

Analysis of multi counterfactual updates

We analyze how the multi counterfactual updates in Eq.5 behave as we increase the number of
counterfactual examples. Figure 1 shows how the cosine similarity between consecutive weight
updates, cossim(wcf , wcf−1), evolves across iterations for different γ parameters. We observe
that, as the number of counterfactuals increases, the consecutive weights become more similar.
This is evident on the UCI Adult and German datasets at 10 counterfactuals, and is an expected
behavior, since increasing the number of diverse counterfactuals will eventually perturb most of
the features that are able to flip the model’s decision. We also show how the similarity between a
perturbation and its corresponding weight evolves through subsequent iterations by measuring the
ration between cosine similarities cossim(wcf ,δcf)

cossim(wcf ,δcf−1) . This quantity is expected to be lower than 1,
as shown in Figure 1, since wcf takes higher values on features that should not be perturbed
considering δcf−1.

Analysis of importance features explainers

The proposed wCF approach can be used to evaluate the effectiveness at generating counterfactuals
of importance feature weights provided by other explanation methods such as SHAP or LIME.
To evaluate this, we assume that we are given a vector of non-negative feature importance
weights IF ∈ Rd

+, and define a weight vector wF that assigns a lower cost on features with

14

Adult German LendingClub

Figure 1: First row shows cosine similarity between consecutive weight updates for the proposed
wCF approach (Eq.5). Second row shows the ratio of cosine similarity between the current weight
and the recovered perturbation and cosine similarity between the current weight and the previous
perturbation. For cosine similarity, lower values are preferred, while for the ratio metric, higher
values are better.

higher importance. To build this weight vector, we first negate IF and define the cost-aware
counterfactual weights wF as follows

wF = nIF

||nIF ||1
γ + 1,

with nIF = −IF + max(IF). (18)

We utilize this weight vector wF in wCF to generate counterfactuals that directly relate to the
IF produced by other explainers.
We evaluate how the quality/cost of the counterfactuals change if we consider the importance
feature vector (IF) provided by local and global SHAP (LSHAP-wCF and GSHAP-wCF), as
well as LIME (LLIME-wCF and GLIME-wCF) in our cost-aware counterfactual formulation. We
compare the cost-aware counterfactuals obtained when using IF to generate weights against
a uniform weighting w = 1d (uCF) where no feature preference is provided. The quantitative
comparison is done using the metrics described below.

cossim(IF , |δ|): Cosine Similarity between the importance feature vector IF and the absolute
feature-wise perturbation associated to the obtained counterfactual |δ| .

cossim(IF , |δ|) = < IF , |δ| >

||IF ||2||δ||2
. (19)

The higher cossim(IF , |δ|) is the more aligned the perturbation of the recovered counterfactual
is with the importance features provided. We expect cossim(IF , |δ|) to be larger when the IF

is provided as a weight in our cost-aware formulation (LSHAP-wCF, GSHAP-wCF,LLIME-wCF,
GLIME-wCF) in comparison to providing uniform preference (uniform cost weights, uCF). If the
counterfactual perturbation obtained with uniform preference (uCF) aligns with IF it means that
the low cost counterfactuals are naturally found in a direction closer to the IF provided by the
importance feature explainer.

rankIF
: Smallest index of the descending sorted ordering of IF that covers all perturbed features

from δ. Given πi with i = 1, ..., F a descending sorting of the importance feature vector IF ,

15

IF,πi ≥ IF,πi+1 , rankIF
is defined as follows

k = min
i=1,...,F

i s.t., |δπj | = 0, ∀πj > πi

rankIF
= 100 ∗ k/F

(20)

This evaluation metric indicates that the set of perturbed features in the obtained counterfactual
are in the top-rankIF

of the IF vector. If this metric is small, the most important features in
IF tend to be sufficient to produce a valid counterfactual.

cossim(IF , Icf): Cosine similarity between a global importance feature vector based on the
counterfactual perturbations, Icf and the corresponding IF obtained with SHAP or LIME. We
consider Icf as a global importance feature vector based on the counterfactual perturbations on
N random instances on the dataset, Icf = 1

N

∑N
n=1 |δn|.

cossim(IF , Icf) = < IF , Icf >

||IF ||2||Icf ||2
. (21)

The higher cossim(IF , Icf) is, the more aligned the features perturbed by the counterfactual
explanation are with the importance features vector obtained with the other explainers.

Proximity and Sparsity: 1
d ||δ||1 is the L1-Proximity, 1

d ||δ||2 the L2-Proximity and 1
d ||δ||0 the

Sparsity of the obtained counterfactuals. As presented before, δ is the feature-wise difference
vector between the counterfactual and the original instance δ = xcf − X0.
Table 4 show a comparison of the global and local SHAP- and LIME-derived counterfactuals,
as well as the uniform-weighted counterfactual (uCF). We observe that, as a general rule, the
uCF counterfactuals, tend to align better with SHAP IF than with LIME, in terms of both rank
and cossim. This is more prominent when we compare the cossim between the SHAP IF , and
those derived from our counterfactuals Icf . When we impose a weight that is consistent with IF

(wCF) the similarity between the obtained counterfactuals and IF increases, and the perturbation
norm is relatively low. Still, directions provided by SHAP tend to produce counterfactuals that
are better aligned with their IF than LIME. However, note that LIME and SHAP importance
features do not perfectly align with the generated counterfactuals, even when we promote their
correlation through the cost-aware formulation. This is consistent with the analysis done by [14],
where they mask out features based on the ranking of the importance features provided by SHAP
and LIME.

16

method cossimIF ,|δ| rankIF
(%) 1

d ||δ||1 1
d ||δ||2 1

d ||δ||0 cossimIF ,Icf

UCI Adult - 8 features
LSHAP - wCF .49±.19 42.6±32.3 .076±.042 .057±.047 .051±.048 .886
LSHAP - uCF .34±.21 47.1±30.9 .067±.034 .041±.039 .035±.04 .777
GSHAP- wCF .42±.11 31.0±25.4 .077±.052 .05±.055 .042±.054 .841
GSHAP - uCF .33±.11 42.6±30.3 .067±.034 .041±.039 .035±.04 .771
LLIME - wCF .38±.14 35.9±25.0 .078±.05 .054±.052 .047±.052 .839
LLIME - uCF .27±.14 47.9±29.8 .067±.034 .041±.039 .035±.04 .754
GLIME - wCF .36±.1 31.7±14.1 .073±.045 .05±.048 .043±.047 .806
GLIME - uCF .31±.09 36.9±19.7 .067±.034 .041±.039 .035±.04 .755

German credit- 20 features
LSHAP - wCF .51±.17 18.8±23.3 .042±.022 .024±.019 .018±.019 .849
LSHAP - uCF .36±.22 34.2±27.2 .053±.031 .02±.018 .012±.017 .789
GSHAP - wCF .5±.09 10.8±12.8 .046±.023 .02±.02 .013±.018 .711
GSHAP - uCF .36±.15 29.0±22.9 .053±.031 .02±.018 .012±.017 .786
LLIME - wCF .28±.14 33.1±24.3 .043±.02 .024±.019 .018±.019 .544
LLIME - uCF .12±.14 57.1±26.7 .053±.031 .02±.018 .012±.017 .352
GLIME - wCF .27±.13 32.5±19.3 .046±.025 .024±.021 .017±.021 .521
GLIME - uCF .13±.11 47.4±18.1 .053±.031 .02±.018 .012±.017 .352

Lending Club - 43 features
LSHAP - wCF .19±.26 16.0±11.1 .02±.011 .002±.005 .001±.003 .808
LSHAP - uCF .13±.19 22.5±19.6 .027±.033 .003±.01 .001±.005 .83
GSHAP - wCF .23±.2 12.9±3.1 .019±.009 .002±.004 .001±.003 .689
GSHAP - uCF .18±.15 19.2±19.0 .027±.033 .003±.01 .001±.005 .837
LLIME - wCF .55±.11 3.2±5.4 .022±.015 .002±.005 .001±.003 .664
LLIME - uCF .52±.15 10.0±22.5 .027±.033 .003±.01 .001±.005 .67
GLIME - wCF .6±.08 4.0±10.7 .022±.014 .002±.005 .001±.003 .595
GLIME - uCF .59±.12 9.3±22.9 .026±.03 .003±.009 .001±.005 .683

Table 4: We compare global and local, SHAP- and LIME-derived counterfactuals (denoted with
the wCF postfix) against the uniform-weighted counterfactual (uCF). All weighted counterfactuals
use a scaling factor γ = 100, as described in Section A.4.

17

	Introduction
	Background
	Cost-aware Counterfactuals
	Generating Diverse Counterfactuals

	Finding valid counterfactuals
	Related Work
	Experiments
	Finding valid counterfactuals
	Multiple Weighted Counterfactuals

	Conclusion
	Supplementary Material
	Finding Counterfactuals Extension
	Additional Analysis on cost-aware Counterfactuals
	Experimental Details
	Additional Results

