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Abstract: Offline Reinforcement Learning (RL) enables policy learning without
active interactions, making it especially appealing for self-driving tasks. Recent
successes of Transformers inspire casting offline RL as sequence modeling, which,
however, fails in stochastic environments with incorrect assumptions that identical
actions can consistently achieve the same goal. In this paper, we introduce an
UNcertainty-awaRE deciSion Transformer (UNREST) for planning in stochastic
driving environments without introducing additional transition or complex genera-
tive models. Specifically, UNREST estimates uncertainties by conditional mutual
information between transitions and returns. Discovering ‘uncertainty accumula-
tion’ and ‘temporal locality’ properties of driving environments, we replace the
global returns in decision transformers with truncated returns less affected by
environments to learn from actual outcomes of actions rather than environment
transitions. We also dynamically evaluate uncertainty at inference for cautious
planning. Extensive experiments demonstrate UNREST’s superior performance in
various driving scenarios and the power of our uncertainty estimation strategy.

Keywords: Self-Driving, Decision Transformer, Uncertainty-Aware Planning.

1 Introduction
Safe and efficient motion planning has been recognized as a crucial component and the bottleneck
in self-driving systems [1]. Nowadays, learning-based planning algorithms like imitation learning
(IL) [2] and reinforcement learning (RL) [3] have gained prominence with the advent of intelligent
simulators [4] and large-scale datasets [5]. Building on these, offline RL [6, 7] becomes a promising
framework for safety-critical driving tasks to learn policies from offline data while retaining the ability
to leverage and improve over data of various quality [8, 9]. Nevertheless, the application of offline
RL approaches still faces practical challenges: (1) The driving task requires conducting long-horizon
planning to avoid shortsighted erroneous decisions [10]; (2) The stochasticity of environment objects
during driving also demands real-time responses to their actions [6, 11].

Recent works propose to leverage the capability of Transformers[12, 13] by reformulating offline RL
as a sequence modeling problem [14], which naturally considers outcomes of multi-step decision-
making and has demonstrated efficacy in long-term credit assignment [14, 15]. Typically, they train
models to predict an action based on the current state and an outcome in hindsight such as a desired
future return (i.e., reward-to-go). However, existing works [16, 17, 18] have pointed out that these
decision transformers (DTs) tend to be overly optimistic in stochastic environments because they
incorrectly assume that actions, which successfully achieve a goal once, can consistently do so in
subsequent attempts. This assumption is easily broken in stochastic environments, as the goal can
be achieved by accidental environment transitions. In Fig. 1(a), identical turning actions may yield
entirely different outcomes w.r.t. the aggressive or cautious behavior of the surrounding blue vehicle.

The key to overcoming the problem is distinguishing between outcomes of decisions and environment
transitions, and training models to pursue goals not affected by environmental stochasticity. To the
best of our knowledge, only limited works [11, 17, 18] attempt to solve the problem. Generally, they fit
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Figure 1: Motivations of UNREST. (a): Example driving scenario where the variance of return
increases when accounting for multiple tasks. (b): Calibration results of return distribution over
future 1,000 steps are more uncertain than 100 steps. (c): Rollout returns/distances of sequences
maximizing the return of future 100, 500, and 1,000 steps in the dataset are close to each other.

a state transition model, either for sampling pessimistic actions [11] from VAEs [19], or to disentangle
conditioning goals from environmental stochasticity [17, 18] by adversarial training [20]. Besides
adding complexity, these methods are only applicable when transition functions and generative models
can be learned adequately. This is often not the case for driving because of the uncertainty brought by
complex interactions and partial observability [21, 22]. Furthermore, driving trajectories encompass
stochasticity over an excessive number of timesteps, challenging VAE/adversarial training [23], and
diluting the information in hindsight regarding current step decision-making.

In this paper, we initially customize DTs for stochastic driving environments without generative
training. Specifically, our insight comes from Fig. 1(a): When going straight, the cumulative rewards
from Task I & II (termed as the global return) contain too much stochastic influence to provide
effective supervision. In contrast, a viable strategy involves conditioning solely on the truncated
return from Task I to mitigate the impact of environmental stochasticity (less stochastic timesteps,
lower return variance), which still preserves rewards over sufficient timesteps for action optimization.
Experiments validate the point, and we summarize the following properties of driving environments:
Property 1 (Uncertainty Accumulation) The impact of environmental stochasticity on the return
distribution accumulates while considering more timesteps, as validated in Fig. 1(b).
Property 2 (Temporal Locality) Driving can be divided into independent tasks, where we only need
to focus on the current task without considering those much later. Hence, optimizing future returns
over a sufficiently long horizon approximates global return optimization, as shown in Fig. 1(c).
The remaining problem is to specify the span of truncated returns. Specifically, our proposed
UNcertainty-awaRE deciSion Transformer (UNREST) quantifies the impacts of uncertainties by
the conditional mutual information between transitions and returns, which bypasses the complexity
associated with generative modeling. Sequences are then segmented into certain and uncertain parts
accordingly. In ‘certain parts’ with minimal impact of uncertainty, we set the conditioning goal as
the cumulative rewards to the segmented position (with the number of timesteps), which reflects
the actual outcomes of decisions and can be generalized to attain higher rewards. In contrast, in
‘uncertain parts’ where the environment is highly stochastic, we disregard the erroneous information
from returns (with dummy tokens as conditions) and let UNREST imitate expert actions. Dynamic
uncertainty evaluation is integrated during inference for cautious planning. Key contributions are:
• We present UNREST, an uncertainty-aware decision transformer to apply offline RL in stochastic

driving environments. Codes are public at https://github.com/Emiyalzn/CoRL24-UNREST.
• Recognizing properties of driving environments, we propose a model-free uncertainty measurement

and segment sequences accordingly. Based on these, UNREST replaces global returns in DTs with
truncated returns less affected by environments to learn from the actual outcomes of agent actions.

• We extensively evaluate UNREST on CARLA [4], where it consistently outperforms strong
baselines (5.2% and 6.5% absolute driving score improvement in seen and unseen scenarios).
Additional experiments also prove the efficacy of our uncertainty estimation strategy.

2 Related Works
Offline RL as Sequence Modeling: A recent line of works exploits Transformer’s capability
into RL by viewing offline RL as a sequence modeling problem. Typically, Decision Transformer
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(DT) [14] predicts actions conditioned on target returns and history sequences. DTs naturally
consider outcomes of multi-step decision-making and have demonstrated efficacy in long-term credit
assignment [14]. Building on this, Trajectory Transformer (TT) [15] further exploits the capacity of
Transformers through jointly predicting states, actions, and rewards and planning by beam searching.
Generalized DT [24] reveals the theoretical basis of these models: they are trained conditioned on
hindsight (e.g., future returns) to match the output trajectories with future information statistics.

However, in stochastic environments like autonomous driving, certain outcomes can be achieved by
accidental environment transitions and, thus, cannot provide effective supervision for actions. Notably,
this is in fact a more general problem to do with all goal-conditioned learning algorithms [25, 26].
To tackle this issue, ACT [27] and CGDT [28] approximate value functions as conditions without
explicitly eliminating environmental stochasticity. ESPER [17] adopts adversarial training [20]
to learn returns disentangled from environmental stochasticity as a condition. DoC [18] utilizes
variational inference [19] to learn a latent trajectory representation, a new condition that minimizes
the mutual information (so disentangled) with environment transitions. Besides, SPLT [11] leverages
a conditional VAE [19] to model the stochastic environment transitions. As the driving environment
contains various interactions that are difficult to model [21], our study proposes a novel uncertainty
estimation strategy to customize DTs without transition or generative models. Besides, different
from EDT [29] that dynamically adjusts history length during inference, we focus on segmenting
sequences and replacing training conditions to address the overly optimistic problem.

Uncertainty Estimation: One typical method for uncertainty estimation is probabilistic bayesian
approximation, either through dropout [30] or VAEs [31], which computes the posterior distribution
of model parameters. Besides, the deep deterministic methods propose to estimate uncertainty by
exploiting the implicit feature density [32]. In this work, we adopt the ensemble approach [33]
widely used in the literature of RL [34], to jointly train 𝐾 variance networks [35] for estimating the
uncertainty of returns. Related works about vehicle planning are discussed in App. A.1.
3 Preliminary
Keeping notations concise, we use subscripts 𝑡 or numbers for variables at specific timesteps, Greek
letter subscripts for parameterized variables, and bold symbols for those spanning multiple timesteps.
3.1 Online and Offline RL
We consider learning in a Markov decision process (MDP) [36] denoted by the tuple M =

(S,A, 𝑃, 𝑟, 𝛾), where S and A are the state space and the action space, respectively. Given states
𝑠, 𝑠′ ∈ S and action 𝑎 ∈ A, 𝑃(𝑠′ |𝑠, 𝑎) : S × A × S → [0, 1] is the state transition function
and 𝑟 (𝑠, 𝑎) : S × A → R defines the reward function. Besides, 𝛾 ∈ (0, 1] is the discount factor.
The agent takes action 𝑎 at state 𝑠 according to its policy 𝜋(𝑎 |𝑠) : S × A → [0, 1]. At timestep
𝑡 ∈ [1, 𝑇], the accumulative discounted reward in the future, named return (i.e., reward-to-go), is
𝑅𝑡 =

∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟𝑡 ′ . The goal of online RL is to find a policy 𝜋 that maximizes the total expected
return: 𝐽 = E𝑎𝑡∼𝜋 ( · |𝑠𝑡 ) ,𝑠𝑡+1∼𝑃 ( · |𝑠𝑡 ,𝑎𝑡 )

[ ∑𝑇
𝑡=1 𝛾

𝑡−1𝑟 (𝑠𝑡 , 𝑎𝑡 )
]

by learning from the transitions (𝑠, 𝑎, 𝑟, 𝑠′)
through interacting with the real environment. In contrast, Offline RL makes use of a static dataset
with 𝑁 trajectories D = {𝝉𝑖}𝑁𝑖=1 collected by certain behavior policy 𝜋𝑏 to learn a policy 𝜋 that

maximizes 𝐽, thereby avoiding safety issues during online interaction. Here 𝝉 =
{
(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠′𝑡 )

}𝑇
𝑡=1

is a collected interaction trajectory composed of transitions with horizon 𝑇 .
3.2 Offline RL as Sequence Modeling
Following DTs [14], we pose offline RL as a sequence modeling problem where we model the
probability of the sequence token 𝑥𝑡 conditioned on all tokens prior to it: 𝑝𝜃 (𝑥𝑡 |𝒙<𝑡 ), where 𝒙<𝑡
denotes tokens from step 1 to (𝑡 − 1). DTs learn policy under a return-conditioned setting where the
agent at step 𝑡 receives an environment state 𝑠𝑡 , and chooses an action 𝑎𝑡 conditioned on the future
return 𝑅𝑡 =

∑𝑇
𝑡 ′=𝑡 𝑟𝑡 ′ . This leads to the following trajectory representation:

𝝉 = (𝑅1, 𝑠1, 𝑎1, 𝑅2, 𝑠2, 𝑎2, ..., 𝑅𝑇 , 𝑠𝑇 , 𝑎𝑇 ), (1)

with the objective to minimize the action prediction loss, i.e. maximize the action log-likelihood:

LDT (𝜃) = E𝝉∼D
[
−∑𝑇𝑡=1 log 𝑝𝜃 (𝑎𝑡 |𝝉<𝑡 , 𝑅𝑡 , 𝑠𝑡 )

]
. (2)

This objective is the cause for DTs’ limitations in stochastic environments, as it over-optimistically
assumes actions in the sequence can consistently achieve the corresponding returns. At inference
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Figure 2: Overview of UNREST. Lower: Two return prediction transformers are trained for uncer-
tainty estimation. The sequence is then segmented into certain (no background) and uncertain (orange
background) parts w.r.t. estimated uncertainties, with ‘certain parts’ conditioned on returns to the
next segmentation positions, and dummy tokens in ‘uncertain parts’. Upper: The same architecture
as DTs is used for action prediction, except that we add a return-span embedding to the truncated
return embedding, and concatenate the global return embedding to the transformer output.

time, given a prescribed high target return, DTs generate actions autoregressively while receiving
new states and rewards to update the history trajectory.

4 Approach: UNREST
4.1 Model Overview
An overview of the proposed approach UNREST is illustrated in Fig. 2. To address the overly
optimistic issue, our key idea is to quantify the impact of environmental uncertainty, and learn to
perform aggressively or cautiously according to different levels of environmental stochasticity.

To achieve this, we train two return transformers with different trajectory inputs to identify the impact
of environmental uncertainty, obviating the need for complex transition and generative training. The
expert sequences are then segmented into certain and uncertain parts w.r.t. estimated uncertainties,
each with relabeled conditioning goals to facilitate the decision transformer to learn from outcomes
of decisions rather than environment transitions. At test time, an uncertainty predictor is involved for
cautious decision-making at different states. In the following, we introduce each module with details.
4.2 Transformers for Uncertainty Estimation
Instead of conventional uncertainties that reflect variances of distributions [34], in this paper we
estimate the impact of environmental stochasticity, what really matters for policy learning, as an
indirect measure of environmental uncertainty. In particular, we propose to model the impact of the
transition (𝑠𝑡−1, 𝑎𝑡−1 → 𝑠𝑡 ) on return 𝑅𝑡 through their conditional mutual information [37].

Specifically, two ‘return transformers’ are trained to approximate return distributions. Initially, states
and actions are embedded by linear layers 𝑓 𝑠𝜑 (·) and 𝑓 𝑎𝜑 (·). The obtained embeddings are then
sequentially processed by two transformers T𝜑𝑠 (·) and T𝜑𝑎 (·) separately for return prediction:

𝑥𝑠𝑡 = 𝑓 𝑠𝜑 (𝑠𝑡 ), 𝑥𝑎𝑡 = 𝑓 𝑎𝜑 (𝑎𝑡 ),
𝑥𝑠𝑡 ∼ T𝜑𝑠 (..., 𝑥𝑎𝑡−1 , 𝑥𝑠𝑡 ), 𝑥𝑎𝑡 ∼ T𝜑𝑎 (..., 𝑥𝑎𝑡−1 ,𝑥𝑠𝑡 , 𝑥𝑎𝑡 ).

(3)

Denoting 𝝉ret
<𝑡 = {(𝑠𝑖 , 𝑎𝑖)}𝑡−1

𝑖=1 , two models feed their respective outputs into variance networks [35] to
predict Gaussian distributions N(·) of returns, which are optimized by maximizing log-likelihoods:

𝑝𝜑𝑎 (𝑅𝑡 |𝝉ret
<𝑡 ) = N

(
𝜇𝜑𝑎 (𝑥𝑎𝑡−1 ), 𝜎𝜑𝑎 (𝑥𝑎𝑡−1 )

)
, Lreturn (𝜑𝑎) = E𝝉∼D

[
−∑𝑇𝑡=1 log 𝑝𝜑𝑎 (𝑅𝑡 |𝝉ret

<𝑡 )
]
,

𝑝𝜑𝑠 (𝑅𝑡 |𝝉ret
<𝑡 , 𝑠𝑡 ) = N

(
𝜇𝜑𝑠 (𝑥𝑠𝑡 ), 𝜎𝜑𝑠 (𝑥𝑠𝑡 )

)
, Lreturn (𝜑𝑠) = E𝝉∼D

[
−∑𝑇𝑡=1 log 𝑝𝜑𝑠 (𝑅𝑡 |𝝉ret

<𝑡 , 𝑠𝑡 )
]
.

(4)

Practically, the networks are implemented as ensembles, which together form Gaussian Mixture
Models (GMM) [38] to better capture the return distributions as in App. A.2. Compared to challenging
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high-dimensional transition function learning and complex generative training, the return distributions
can be better learned with fewer resources. Finally, the impact of the environmental stochasticity, i.e.
the conditional mutual information 𝐻 (𝑅𝑡 |𝝉ret

<𝑡 ) − 𝐻 (𝑅𝑡 |𝝉ret
<𝑡 , 𝑠𝑡 ) is estimated by the KL divergence

between these two distributions, as a means to measure the environmental uncertainty at timestep 𝑡:

𝑢𝑡 = 𝐷KL
(
𝑝𝜑𝑠 (𝑅𝑡 |𝝉ret

<𝑡 , 𝑠𝑡 ), 𝑝𝜑𝑎 (𝑅𝑡 |𝝉ret
<𝑡 )

)
. (5)

A larger divergence implies more information brought by 𝑠𝑡 for predicting 𝑅𝑡 condition on the history,
i.e. more influence on the return from the stochastic transition (𝑠𝑡−1, 𝑎𝑡−1 → 𝑠𝑡 ).
4.3 Transformer for Sequential Decision-Making
In this section, we step to aid DT training in stochastic driving environments. As discussed in Sec. 4.1,
we expect UNREST to segment sequences into certain and uncertain parts according to uncertainty
estimations and learn to perform aggressively or cautiously within them, respectively. To achieve this,
we propose to replace the conditioning global returns with truncated returns in ‘certain parts’, which
are less affected by the environment due to uncertainty accumulation (Prop. 1), thus reliably helping
the planner generalize to higher returns after training. In contrast, in ‘uncertain parts’, the seemingly
high return actions may cause safety issues due to environmental uncertainty. Therefore, we ignore
the stochastic returns, setting conditions as dummy tokens for behavior cloning.

Segmentation strategy is thus a crucial point to reinvent DTs. To distinguish between different
levels of environmental stochasticity, we define an uncertainty threshold 𝜖 . Next, we estimate
uncertainties 𝑢𝑡 by Eq. 5 for each timestep and record those larger than 𝜖 as uncertain. The sequence
is then divided into certain and uncertain parts according to these marked uncertain timesteps.

An intuitive example of our segmentation strategy is illustrated in the lower part of Fig. 2. Specifically,
the ‘certain part’ begins at a timestep with uncertainty below the threshold 𝜖 and persists until
segmentation occurs at an uncertain timestep. Subsequently, the ‘uncertain part’ commences with the
newly encountered uncertain timestep and encompasses subsequent ones until the final 𝑐−1 timesteps
are all identified as certain. Since uncertain timesteps may occur intensively and intermittently over
a particular driving duration (e.g., at an intersection), the hyperparameter 𝑐 is introduced to avoid
frequent switching between certain and uncertain parts, and ensure a minimum length of segmented
sequences. Finally, we represent the segmented sequence as follows:

𝝉seg = (ℎ1, 𝑅
ℎ
1 , 𝑠1, 𝑎1, ℎ2, 𝑅

ℎ
2 , 𝑠2, 𝑎2, ..., ℎ𝑇 , 𝑅

ℎ
𝑇 , 𝑠𝑇 , 𝑎𝑇 ), (6)

where the conditioning return is modified as 𝑅ℎ𝑡 =
∑ℎ𝑡−1
𝑘=0 𝑟𝑡+𝑘 , which only involves rewards in the

next ℎ𝑡 steps (called the return-span). In ‘uncertain parts’, ℎ is always set as zero (i.e., the dummy
tokens). In this way, UNREST will learn to ignore the trivial conditioning targets and directly imitate
expert actions instead of being misguided by the uncertain return information. In ‘certain parts’, the
return-span ℎ is set to the number of timesteps from the current to the next segmentation step, so
the conditioning return 𝑅ℎ incorporates the maximum duration that does not include any uncertain
timesteps. With this segmentation and condition design, we derive the following proposition:

Proposition 1 (UNREST Alignment Bound) Assuming that the rewards obtained are determined
by transitions (𝑠, 𝑎 → 𝑠′) at each timestep and UNREST is perfectly trained to fit the expert
demonstrations, then the discrepancy between target truncated returns and URNEST’s rollout returns
is bounded by a factor of environmental stochasticity and data coverage.

It reveals that UNREST can generalize to achieve high returns with bounded error under natural
assumptions in driving environments. The formal statement and proof are left to App. B.

Notably, due to sequence segmentation, the truncated returns no longer encompass all timesteps from
the present to the end of the sequence, which necessitates the return-span as an additional condition to
provide information about the count of timesteps involved in returns. This enables UNREST to learn
to get return 𝑅ℎ𝑡 over future ℎ𝑡 timesteps. Otherwise, the model may be confused by the substantial
differences in the magnitude of return conditions with varying timesteps [39].

Policy formulation: Unlike return transformers, DT takes the segmented sequence 𝝉seg as input:
𝑥𝑠𝑡 ∼ T𝜃 (..., 𝑥𝑅ℎ

𝑡
, 𝑥𝑠𝑡 , 𝑥𝑎𝑡 ), where

𝑥𝑅ℎ
𝑡
= 𝑓 𝑅

ℎ

𝜃 (𝑅ℎ𝑡 ) + 𝑓 ℎ𝜃 (ℎ𝑡 ), 𝑥𝑠𝑡 = 𝑓 𝑠𝜃 (𝑠𝑡 ), 𝑥𝑎𝑡 = 𝑓 𝑎𝜃 (𝑎𝑡 ).
(7)
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Here we use similar notations as return transformers in Sec. 4.2 except that models are parameterized
by 𝜃. In the above formulation, a return-span embedding 𝑓 ℎ

𝜃
(ℎ𝑡 ) is added to the return embedding,

which bears the semantic meaning of how many timesteps are involved in the target return. Besides,
to get the action distribution, the non-truncated global-return embedding 𝑓 𝑅

𝜃
(𝑅𝑡 ) is optionally added

to the output 𝑥𝑠𝑡 to provide additional longer horizon guidance for planning. Using [· | | ·] to denote
the concatenation of two vectors along the last dimension, the final predicted action distribution is:

𝜋𝜃 (𝑎𝑡 |𝝉seg
<𝑡 , ..., 𝑠𝑡 ) = N

(
𝜇𝜃 ( [𝑥𝑠𝑡 | | 𝑓 𝑅𝜃 (𝑅𝑡 )]), 𝜎𝜃 ( [𝑥𝑠𝑡 | | 𝑓 𝑅𝜃 (𝑅𝑡 )])

)
. (8)

The learning objective is modified from Eq. 2 of DT, with detailed training process in App. C:

LUNREST (𝜃) = E𝝉seg∼D
[
−∑𝑇𝑡=1 log 𝜋𝜃 (𝑎𝑡 |𝝉seg

<𝑡 , ..., 𝑠𝑡 )
]
. (9)

4.4 Uncertainty-guided Planning
Algorithm 1: Uncertainty-guided planning

Input: History 𝝉, return horizon 𝐻, state 𝑠𝑡 ,
policy 𝜋𝜃 , uncertainty model 𝑢𝜓 , return
model 𝑅ℎ𝜑 , return percentile 𝜂.

1 # First, update target returns.
2 Update target global return 𝑅𝑡 ← 𝑅𝑡−1 − 𝑟𝑡−1;
3 if ℎ𝑡−1 == 1 or 𝑢𝜓 (𝑠𝑡−1) is True then
4 Reset return span to return horizon ℎ𝑡 ← 𝐻;
5 Predict target return 𝑅ℎ𝑡 ← 𝑅ℎ𝜑 (𝝉, ℎ𝑡 , 𝑠𝑡 , 𝜂);
6 else
7 Update return span ℎ𝑡 ← ℎ𝑡−1 − 1;
8 Update target return 𝑅ℎ𝑡 ← 𝑅ℎ

𝑡−1 − 𝑟𝑡−1;

9 # Second, evaluate new state is uncertain or not.
10 if 𝑢𝜓 (𝑠𝑡 ) is True then
11 Reset conditioning target (ℎ𝑡 , 𝑅ℎ𝑡 ) ← ø;
12 # Finally, select action using trained policies.
13 Sample and take action 𝑎𝑡 ∼ 𝜋𝜃 (𝑎𝑡 |𝝉, ..., 𝑠𝑡 );
14 Update history 𝝉 ← 𝝉 ∪ (ℎ𝑡 , 𝑅𝑡 , 𝑅ℎ𝑡 , 𝑠𝑡 , 𝑎𝑡 ).

Output: Action 𝑎𝑡 and history 𝝉.

During inference, we also differentiate be-
tween certain and uncertain states to ac-
count for environmental stochasticity. To
enable real-time uncertainty evaluation,
we introduce a lightweight uncertainty
prediction model 𝑢𝜓 (·). We dynamically
query the predictor at each timestep to ob-
tain the uncertainty measure. If the current
state transition is highly uncertain, we set
the conditioning target to a dummy token
to facilitate cautious planning, consistent
with training. Conversely, the planner acts
aggressively at states with certain transi-
tions to attain high target returns. Neural
networks or heuristics can be used to im-
plement the predictor, whose results are
summarized in App. F.4. Practically, we
choose the KD-Tree [40] for its compu-
tational efficiency and estimation perfor-
mance, with states as tree nodes and un-
certainties estimated by return transformers as node values.

Different from the conventional planning procedure of DTs, UNREST requires the specification of
not only the target global return 𝑅1, but also the initial return-span ℎ1 = 𝐻 and the target truncated
return 𝑅ℎ1 . After segmentation, the effective planning horizon of the trained sequences is reduced
to the return-span ℎ𝑡 . Once ℎ𝑡 reaches 1, we need to reset the target return and the return-span.
Practically, we simply reset ℎ𝑡 to a fixed return horizon 𝐻. For the truncated return, we train a return
prediction model 𝑅ℎ𝜑 (·) similar to that defined in Eq. 4 and take the upper percentile 𝜂 of the predicted
distribution as the new target return to attain. The hyperparameter 𝜂 can be tuned for a higher target
return. We do not need to consider targets at ‘uncertain states’ since they are just set as dummy
tokens. The planning process is summarized in Alg. 1.

5 Experiments
In this section, we conduct extensive experiments to answer the following questions. Q1: How does
UNREST perform in different driving scenarios? Q2: How do components of UNREST influence its
overall performance? Q3: Does our uncertainty estimation possess interpretability?
5.1 Experiment Setup
Datasets: The offline dataset is collected from CARLA [4] with its built-in Autopilot. Specifically,
we collect 30 hours of data from 4 towns under 4 weather conditions, saving tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 ) at each
timestep. More details about the state, action, and reward definitions are left to App. D.
Metrics: We evaluate models at training and new driving scenarios and report metrics from the
CARLA challenge [4, 41] to measure their driving performance: driving score (the most significant
metric that accounts for various indicators like driving efficiency, safety, and comfort), infraction
score, route completion, and success rate. Besides, we also report the normalized rewards (the ratio
of total return to the number of timesteps) to reflect driving performance at timestep level [2].
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Table 1: Driving performance on train (new) town and weather conditions in CARLA. Mean and
standard deviation are computed over 3 seeds. All metrics are recorded in percentages (%) except the
normalized rewards. The best results are in bold and our method is colored in gray.

Planner Driving Score↑ Success Rate↑ Route Completion↑ Infraction Score↑ Normalized Rewards↑
BC 51.9 ± 1.9 (45.6 ± 5.2) 37.9 ± 4.7 (36.3 ± 8.6) 79.7 ± 6.0 (77.1 ± 7.8) 54.5 ± 1.8 (47.0 ± 4.8) 0.63 ± 0.02 (0.61 ± 0.04)
MARWIL [42] 54.3 ± 2.0 (47.8 ± 3.4) 44.8 ± 3.2 (42.2 ± 2.2) 81.4 ± 3.2 (80.2 ± 3.8) 57.9 ± 2.0 (48.4 ± 4.4) 0.65 ± 0.02 (0.63 ± 0.01)
CQL [9] 55.0 ± 2.4 (50.7 ± 2.8) 48.6 ± 4.5 (42.8 ± 4.6) 80.5 ± 3.4 (78.7 ± 5.2) 62.4 ± 3.0 (57.7 ± 5.0) 0.65 ± 0.03 (0.62 ± 0.02)
IQL [43] 55.9 ± 3.3 (52.2 ± 3.3) 50.2 ± 6.2 (44.2 ± 2.2) 77.2 ± 4.6 (68.8 ± 4.2) 68.4 ± 2.4 (62.6 ± 6.2) 0.66 ± 0.03 (0.60 ± 0.01)

DT [14] 55.2 ± 2.0 (47.6 ± 1.2) 48.0 ± 4.7 (46.4 ± 0.3) 82.6 ± 1.0 (81.8 ± 4.9) 57.4 ± 1.3 (47.3 ± 3.4) 0.66 ± 0.01 (0.64 ± 0.02)
TT [15] 58.3 ± 3.3 (54.8 ± 2.2) 45.9 ± 5.2 (52.0 ± 4.4) 78.4 ± 5.8 (77.0 ± 4.6) 63.6 ± 3.6 (56.0 ± 5.0) 0.74 ± 0.02 (0.64 ± 0.03)
SPLT [11] 57.8 ± 4.9 (56.4 ± 6.1) 30.1 ± 8.1 (39.5 ± 9.5) 36.7 ± 8.7 (48.2 ± 9.7) 73.9 ± 1.4 (70.7 ± 8.3) 0.55 ± 0.03 (0.57 ± 0.05)
ESPER [17] 54.8 ± 2.0 (51.2 ± 3.1) 48.5 ± 4.3 (53.3 ± 2.0) 77.3 ± 5.4 (84.7 ± 1.4) 56.2 ± 2.2 (46.9 ± 5.6) 0.64 ± 0.04 (0.63 ± 0.02)
ACT [27] 57.5 ± 2.7 (55.2 ± 4.3) 49.1 ± 4.8 (53.5 ± 3.3) 77.9 ± 4.5 (85.2 ± 3.6) 61.8 ± 2.5 (53.2 ± 4.2) 0.66 ± 0.03 (0.65 ± 0.05)
DoC [18] 56.9 ± 3.1 (54.4 ± 2.3) 49.9 ± 5.2 (54.0 ± 4.2) 79.2 ± 3.6 (84.0 ± 2.8) 60.3 ± 2.4 (51.5 ± 4.8) 0.64 ± 0.03 (0.65 ± 0.04)

UNREST 63.5 ± 3.2 (62.9 ± 4.0) 54.5 ± 7.0 (57.5 ± 5.4) 83.8 ± 3.1 (90.0 ± 6.0) 70.2 ± 2.8 (62.9 ± 3.8) 0.64 ± 0.04 (0.65 ± 0.03)

Expert [4] 74.0 ± 6.0 (75.3 ± 1.3) 65.4 ± 8.8 (68.6 ± 5.1) 84.2 ± 4.6 (95.8 ± 1.1) 82.8 ± 3.2 (77.5 ± 1.6) 0.72 ± 0.01 (0.69 ± 0.01)

Baselines: First, we choose two IL baselines: BC and MARWIL [42]. We also include state-of-
the-art offline RL baselines: CQL [9] and IQL [43]. Besides, we compare two classic Transformer-
based offline RL algorithms: DT [14] and TT [15]. We also select ACT [27] as a baseline, which
approximates value functions as the hindsight condition. Finally, we adopt three algorithms as
rigorous baselines: SPLT [11], ESPER [17], and DoC [18]. These algorithms fit state transition
models and employ generative training to mitigate DTs’ limitations in stochastic environments.
5.2 Driving Performance
We evaluate all the models’ (baselines inherited from their public implementations) performance at
training (Town03) and new (Town05) scenarios (Q1). The results are summarized in Tab. 1.

Analyzing the results, we first notice that DT performs worst among all sequence models, with a gap
in driving score compared to IQL. We attribute this to the uncertainty of global return it conditions
on. ACT gains better performance through conditioning on approximated value functions. However,
it does not fundamentally decouple the effects of environmental stochasticity, resulting in suboptimal
infraction scores. ESPER and DoC also perform poorly in both scenarios, which may result from
ineffective generative training from long-horizon and complex driving demonstrations.

To tackle stochasticity, SPLT learns to predict the worst state transitions and achieves the best
infraction score. However, its overly cautious planning process leads it to stand still in many scenarios
like Fig. 3(c), resulting in an extremely poor route completion rate and normalized rewards. TT
instead learns a transition model regardless of environmental stochasticity and behaves aggressively.
It attains the highest normalized rewards at training scenarios since the metric prioritizes planners that
rapidly move forward (but with low cumulative rewards because of its short trajectory length caused
by frequent infractions). In unseen driving scenarios, TT often misjudges the speed of preceding
vehicles, resulting in collisions and lower normalized rewards (than ours) as in Fig. 3(a).

Notably, UNREST achieves the best driving score, route completion, and success rate in both
scenarios, and the highest normalized rewards in new scenarios without the need to learn transition
or generative models. Its driving score surpasses the strongest baselines, TT over 5% in training
scenarios, and SPLT over 6% in new scenarios, achieving a reasonable balance between aggressive
and cautious behavior. It indicates that the truncated returns successfully mitigate the impacts of
uncertainty and provide effective supervision. In App. F.2 we validate that UNREST runs significantly
faster while consuming less memory than TT and SPLT, which additionally fit transition models. More
results like uncertainty calibration, hyperparameters (e.g. the uncertainty threshold 𝜖), environments
beyond driving (e.g. D4RL), and new policies other than BC at uncertain states are studied in App. F.
5.3 Ablation Study
In this section, we conduct ablation experiments by removing key components (global return embed-
ding, return-span embedding, ensemble-based uncertainty estimation, and the uncertainty-guided
planning process) to explore their impacts on UNREST (Q2). Results are shown in Tab. 2 and 3.

Eliminating any part of the four components harms the driving score in new scenarios. Among them,
the global return embedding has the slightest impact, which suggests that the highly uncertain global
return does not provide much new information over the truncated return due to temporal locality
(Prop. 2). When the return-span embedding is removed, the absolute driving score drops by about 6%.
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(a) Lane changing: Failing case of TT (b) Lane changing: UNREST’s performance

(c) Light crossing: Failing case of SPLT (d) Light crossing: UNREST’s performance
Figure 3: UNREST performs well at failing cases of TT and SPLT. White rectangles are ego-vehicles.
Table 2: Ablation study results for UNREST on
train town and train weather conditions.

Planner Driving Success Route Infraction Norm.
Score↑ Rate↑ Co.↑ Score↑ Rewards↑

W/o global emb. 64.5 ± 2.8 55.8 ± 6.0 80.2 ± 4.2 68.0 ± 1.6 0.63 ± 0.03
W/o ret-span emb. 57.0 ± 1.8 33.3 ± 4.5 47.6 ± 3.3 65.6 ± 3.1 0.57 ± 0.01
W/o ensemble 60.4 ± 3.4 51.3 ± 6.3 80.2 ± 4.4 65.5 ± 3.1 0.62 ± 0.03
W/o guided plan 55.1 ± 2.3 42.1 ± 1.5 52.6 ± 6.0 65.2 ± 1.7 0.57 ± 0.02
Full model 63.5 ± 3.2 54.5 ± 7.0 83.8 ± 3.1 70.2 ± 2.8 0.64 ± 0.04

Table 3: Ablation study results for UNREST on
new town and new weather conditions.

Planner Driving Success Route Infraction Norm.
Score↑ Rate↑ Co.↑ Score↑ Rewards↑

W/o global emb. 61.8 ± 3.3 55.0 ± 3.8 82.8 ± 3.4 57.8 ± 2.7 0.64 ± 0.03
W/o ret-span emb. 56.2 ± 4.7 47.6 ± 3.7 78.9 ± 5.4 58.2 ± 3.4 0.59 ± 0.02
W/o ensemble 57.4 ± 2.8 48.8 ± 4.1 85.4 ± 3.8 56.7 ± 2.7 0.61 ± 0.04
W/o guided plan 54.0 ± 3.0 54.5 ± 2.7 81.8 ± 3.8 57.3 ± 3.1 0.59 ± 0.03
Full model 62.9 ± 4.0 57.5 ± 5.4 90.0 ± 6.0 62.9 ± 3.8 0.65 ± 0.03

(a) Car following: Uncertainty curve and state changing process

(b) Light crossing: Uncertainty curve and state changing process
Figure 4: Visualizations of UNREST’s uncertainty estimation results.

This implies that the introduction of return-span embedding provides necessary information about
the timesteps needed to achieve the target return. Removing the ensemble of return transformers
induces a significant performance drop in both scenarios, because a simple Gaussian distribution
cannot express the return distribution well. Finally, canceling test time uncertainty estimation causes a
substantial decline in driving and infraction scores, which proves the importance of cautious planning.
5.4 Uncertainty Visualization
Finally, we verify the interpretability of our uncertainty estimation through visualizations (Q3). In
Fig. 4(a), we observe an increase in uncertainty as the ego-vehicle enters the lane, owing to the lack
of knowledge about the other vehicle’s behavior. This uncertainty decreases below the threshold
when the vehicle stabilizes in the following states. Fig. 4(b) shows a green light crossing scenario.
While approaching the light, the unpredictable light state causes the uncertainty value to rise quickly.
6 Conclusion and Limitations
The paper presents UNREST, an uncertainty-aware decision transformer to apply offline RL in
stochastic driving environments. Specifically, we propose a novel uncertainty measurement by
computing the divergence of return prediction models, bypassing complex transition and generative
training. Then, based on properties we discover at driving, we segment sequences w.r.t. estimated
uncertainty and adopt truncated returns as conditioning goals. This new condition helps UNREST
learn policies that are less affected by stochasticity. Dynamic uncertainty estimation is also integrated
at inference for cautious planning. Empirical results demonstrate UNREST’s superior performance,
lower resource occupation, and effective uncertainty estimation in various driving scenarios.

One limitation of UNREST is that its inference process is somewhat complex with auxiliary models
and hyperparameters. A possible improvement direction is directly integrating return and uncertainty
predictions into one single model. Besides, though UNREST is evaluated in the CARLA simulator,
we believe it can surmount the sim-to-real gap and benefit practical autonomous driving.
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Supplementary Materials

A Additional Related Works

A.1 Planning for Self-Driving

Most autonomous driving systems [44] adopt a modular pipeline to break down the massive driving
task into a set of submodules, with planning being one of the most fundamental components. The
objective of motion planning is to efficiently drive the ego-vehicle to the destination while conforming
to safety and comfort constraints, which is essentially a decision problem. Often engineers manually
design rules [44] for specific driving scenarios, which struggles to scale for complex tasks. In contrast,
IL is the earliest and most widely [2, 45] used learning-based planning algorithm, which learns from
offline data for either a cost function [45] or an executable policy [2]. However, they are strictly
limited by expert quality [46] and will perform poorly when encountering out-of-distribution (OOD)
states [46]. RL algorithms [3] own better performance and generalizability with the downside of
trial-and-error learning. To address these shortcomings, we employ offline RL as an alternative to
train our planner.

A.2 Uncertainty Estimation

Variance networks estimate uncertainty by loss attenuation [35]. Treating the output as a Gaussian
distribution N(·), given input 𝑥 and its label 𝑦, the network outputs mean 𝜇(𝑥) and variance 𝜎2 (𝑥)
at its final layer. The network parameter 𝜙 is subsequently optimized by maximizing sample log-
likelihood:

Lvarnet (𝜙) = E(𝑥,𝑦)∼D
[
− logN𝜙 (𝑦 |𝑥)

]
= E(𝑥,𝑦)∼D

[ ((𝜇𝜙 (𝑥) − 𝑦2)
𝜎2
𝜙
(𝑥)

+ ln𝜎2
𝜙 (𝑥)

]
.

(10)

As the variance predicted by neural networks may be not well-calibrated or overestimated [47], in
this paper we practically train an ensemble of 𝐾 variance networks with data drawn from different
subsets of the dataset (implemented by masking) and estimate the variance according to [38]:

𝜎2 =
∑𝐾
𝑙=1𝜎

2
𝑙 + 𝜇

2
𝑙 − 𝜇

2, where 𝜇 =
∑𝐾
𝑙=1𝜇𝑘/𝐾, (11)

which has been proven to have strong estimation capability [38].

B Proof for Proposition 1

We next formally state our theorem, followed by detailed proofs of the proposition.

B.1 Theorem Statement

Before stepping into the main theorem, we first introduce the problem setting that we undertake
for the sake of concise proof. First, we assume the reward 𝑟𝑡 is within [0, 1] at each timestep for
conveniently bounding the error. Besides, we use 𝑔(𝑠1, 𝑎1:ℎ) to denote the cumulative rewards by
rolling out the open loop sequence of actions 𝑎1:ℎ under the deterministic dynamics 𝑃 : S × A → S
and reward function 𝑟 : S × A → [0, 1] (so that the maximum return difference over future ℎ
timesteps is ℎ). Moreover, 𝐽ℎ (𝜋) represents the rollout rewards of policy 𝜋 over future ℎ timesteps.
Next, we formally introduce the assumption, theorem and its corresponding proof, which is inspired
by the reference [16]:

Theorem 1 (UNREST Alignment Bound) Consider an MDP (S,A, 𝑃, 𝑟, 𝛾), expert behavior 𝛽 :
S × A → [0, 1] and conditioning function 𝑓 : S × N+ → R. Assume the following:

S-1



1. Return Coverage: 𝑝𝛽 (𝑔 = 𝑓 (𝑠1, ℎ) |𝑠1) ≥ 𝛼 𝑓 for the initial state 𝑠1 and return-span ℎ.

2. Near Determinism: 𝑝(𝑟 ≠ 𝑟 (𝑠, 𝑎) 𝑜𝑟 𝑠′ ≠ 𝑃(𝑠, 𝑎) |𝑠, 𝑎) ≤ 𝛿 at all state-action pairs (𝑠, 𝑎)
for dynamics 𝑃 and reward function 𝑟 .

3. Consistency of 𝑓 : f(s,h)=f(s’,h-1) for all states 𝑠.

Then (URT shorted for UNREST):

E𝑠1 ,ℎ

[
𝑓 (𝑠1, ℎ)

]
− 𝐽ℎ (𝜋𝑈𝑅𝑇𝑓 ) ≤ 𝛿( 1

𝛼 𝑓
+ 2)ℎ2. (12)

As shown by the theorem, the error between the specified target and UNREST’s rollout return is
bounded by the factor of environment determinism 𝛿, data coverage 𝛼, and the horizon ℎ.

Based on the theorem, we aim to demonstrate the generalization ability of UNREST at the identified
‘certain states’ by our uncertainty estimation stra. Specifically, we have the following lemma:

Lemma 1 (Determinism Equality) Assuming that the rewards obtained are uniquely determined
by transitions (𝑠, 𝑎 → 𝑠′) at each timestep, then there exists 𝜖 > 0 and 𝛿 > 0, such that:

𝐷KL
[
𝑝(𝑅𝑡 |𝝉<𝑡 ) | | 𝑝(𝑅𝑡 |𝑠𝑡 , 𝝉<𝑡 )

]
≤ 𝜖 ⇐⇒ 𝑝(𝑟 ≠ 𝑟 (𝑠, 𝑎) 𝑜𝑟 𝑠′ ≠ 𝑃(𝑠, 𝑎) |𝑠, 𝑎) ≤ 𝛿. (13)

While the reverse direction is easy to see (the state transition probability is nearly deterministic so the
transitions cannot provide additional information for return prediction), here we focus on proving the
forward direction. Let us demonstrate its contrapositive proposition:

If 𝑝(𝑟 ≠ 𝑟 (𝑠, 𝑎) 𝑜𝑟 𝑠′ ≠ 𝑃(𝑠, 𝑎) |𝑠, 𝑎) > 𝛿, then ∃𝜖, s.t. 𝐷KL
[
𝑝(𝑅𝑡 |𝝉<𝑡 ) | | 𝑝(𝑅𝑡 |𝑠𝑡 , 𝝉<𝑡 )

]
> 𝜖. (14)

First, since 𝑟 is uniquely (different transitions lead to distinct rewards) determined by (𝑠, 𝑎 → 𝑠′),
we can induce that 𝑟 ≠ 𝑟 (𝑠, 𝑎) is equivalent with 𝑠′ ≠ 𝑃(𝑠, 𝑎) as the only difference can occur in 𝑠′.
Therefore, we need to prove:

If 𝑝(𝑟 ≠ 𝑟 (𝑠, 𝑎) |𝑠, 𝑎) > 𝛿, then ∃𝜖, s.t. 𝐷KL
[
𝑝(𝑅𝑡 |𝝉<𝑡 ) | | 𝑝(𝑅𝑡 |𝑠𝑡 , 𝝉<𝑡 )

]
> 𝜖. (15)

Considering the extreme case, set 𝛾 → 0, thus we have 𝑅𝑡 → 𝑟𝑡 . From the perspective of proof by
contradiction, the KL-divergence cannot be smaller than any 𝜖 > 0, since 𝑝(𝑟𝑡 |𝝉>𝑡 ) and 𝑝(𝑟𝑡 |𝑠𝑡 , 𝝉>𝑡 )
must differ for that the probability 𝑟𝑡 ≠ 𝑟 (𝑠𝑡−1, 𝑎𝑡−1) is larger than 0 and can be determined by 𝑠𝑡 . To
this end, we have proved the contrapositive proposition of the forward direction, which is equivalent
to the original proposition.

Therefore, we can summarize from the above theorem and lemma that UNREST can generalize to
achieve high returns at ‘certain states’ as long as the corresponding actions are covered by the expert.

B.2 Proof for the Theorem

The next theorem proof is largely built on [16]. Note that we omit the superscript ‘URT’ to simplify
the equations. First, we expand the left term in Eq. 12:

E𝑠1 ,ℎ

[
𝑓 (𝑠1, ℎ)

]
− 𝐽ℎ (𝜋 𝑓 ) = E𝑠1

[
E𝜋 𝑓 |𝑠1 [ 𝑓 (𝑠1, ℎ) − 𝑔1

]
= E𝑠1 ,ℎ

[
E𝑎1:ℎ∼𝜋 𝑓 |𝑠1

[
𝑓 (𝑠1, ℎ) − 𝑔(𝑠1, 𝑎1:ℎ)

] ]
+ E𝑠1 ,ℎ

[
E𝑎1:ℎ∼𝜋 𝑓 |𝑠1

[
𝑔(𝑠1, 𝑎1:ℎ) − 𝑔1

] ]
≤ E𝑠1 ,ℎ

[
E𝑎1:ℎ∼𝜋 𝑓 |𝑠1

[
𝑓 (𝑠1, ℎ) − 𝑔(𝑠1, 𝑎1:ℎ)

] ]
+ 𝛿ℎ2. (16)

The last step follows by bounding the difference between 𝑔1 and 𝑔(𝑠1, 𝑎1:ℎ) by the maximum return
difference ℎ and a union of probability bound over ℎ timesteps based on the near determinism
assumption:

ℎ · sup
𝑠1

ℎ⋃
𝑡

𝑝𝑎𝑡∼𝜋 𝑓 |𝑠1

(
𝑟𝑡 ≠ 𝑟 (𝑠𝑡 , 𝑎𝑡 ) 𝑜𝑟 𝑠𝑡+1 ≠ 𝑃(𝑠𝑡 , 𝑎𝑡 )

)
≤ 𝛿ℎ2. (17)
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For the first term in Eq. 16, it can also be expressed and bounded by the maximum return difference:

E𝑠1 ,ℎ

[
E𝑎1:ℎ∼𝜋 𝑓 |𝑠1

[
𝑓 (𝑠1, ℎ) − 𝑔(𝑠1, 𝑎1:ℎ)

] ]
≤ E𝑠1 ,ℎ

∫
𝑎1:ℎ

𝑝𝜋 𝑓
(𝑎1:ℎ |𝑠1)I

[
𝑔(𝑠1, 𝑎1:ℎ) ≠ 𝑓 (𝑠1, ℎ)

]
ℎ.

(18)
To bound this term, we need to further expand the distribution 𝑝𝜋 𝑓

. First, with the assumption that
UNREST is perfectly fitted to the expert dataset, we can deduce the following by the bayesian law:

𝜋 𝑓 (𝑎1 |𝑠1) = 𝛽(𝑎1 |𝑠1)
𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) |𝑠1, 𝑎1)
𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) |𝑠1)

. (19)

For simplification, we use 𝑠𝑡 = 𝑃(𝑠1, 𝑎1:𝑡−1) to denote the state reached by following the deterministic
dynamics defined by 𝑃 till timestep 𝑡. Next, based on the near determinism, consistency and coverage
assumption, we can expand 𝑝𝜋 𝑓

to get:

𝑝𝜋 𝑓
(𝑎1:ℎ | 𝑠1) = 𝜋 𝑓 (𝑎1 | 𝑠1)

∫
𝑠2

𝑝 (𝑠2 | 𝑠1, 𝑎1) 𝑝𝜋 𝑓
(𝑎2:ℎ | 𝑠1, 𝑠2)

≤ 𝜋 𝑓 (𝑎1 | 𝑠1) 𝑝𝜋 𝑓
(𝑎2:ℎ | 𝑠1, 𝑠2) + 𝛿

= 𝛽 (𝑎1 | 𝑠1)
𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) | 𝑠1, 𝑎1)
𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) | 𝑠1)

𝑝𝜋 𝑓
(𝑎2:ℎ | 𝑠1, 𝑠2) + 𝛿

≤ 𝛽 (𝑎1 | 𝑠1)
𝛿 + 𝑝𝛽 (𝑔1 − 𝑟 (𝑠1, 𝑎1) = 𝑓 (𝑠1, ℎ) − 𝑟 (𝑠1, 𝑎1) | 𝑠1, 𝑎1, 𝑠2)

𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) | 𝑠1)
𝑝𝜋 𝑓
(𝑎2:ℎ | 𝑠1, 𝑠2) + 𝛿

= 𝛽 (𝑎1 | 𝑠1)
𝛿 + 𝑝𝛽 (𝑔2 = 𝑓 (𝑠2, ℎ − 1) | 𝑠2)

𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) | 𝑠1)
𝑝𝜋 𝑓
(𝑎2:ℎ | 𝑠1, 𝑠2) + 𝛿

≤ 𝛽 (𝑎1 | 𝑠1)
𝑝𝛽 (𝑔2 = 𝑓 (𝑠2, ℎ − 1) | 𝑠2)
𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) | 𝑠1)

𝑝𝜋 𝑓
(𝑎2:ℎ | 𝑠1, 𝑠2) + 𝛿

(
1
𝛼 𝑓
+ 1

)
. (20)

Similarly, we can further expand 𝑝𝜋 𝑓
(𝑎2:ℎ | 𝑠1, 𝑠2) using the same rule:

𝑝𝜋 𝑓
(𝑎2:ℎ | 𝑠1, 𝑠2) = 𝜋 𝑓 (𝑎2 | 𝑠2)

∫
𝑠3

𝑝(𝑠3 | 𝑠2, 𝑎2)𝑝𝜋 𝑓
(𝑎3:ℎ | 𝑠1, 𝑠2, 𝑠3)

≤ 𝜋 𝑓 (𝑎2 | 𝑠2)𝑝𝜋 𝑓
(𝑎3:ℎ |𝑠1, 𝑠2, 𝑠3) + 𝛿

= 𝛽(𝑎2 | 𝑠2)
𝑝𝛽 (𝑔2 = 𝑓 (𝑠2, ℎ − 1) |𝑠2, 𝑎2)
𝑝𝛽 (𝑔2 = 𝑓 (𝑠2, ℎ − 1) |𝑠2)

𝑝𝜋 𝑓
(𝑎3:ℎ | 𝑠1, 𝑠2, 𝑠3) + 𝛿. (21)

Substituting this back to Eq. 20, we have:

𝑝𝜋 𝑓
(𝑎1:ℎ | 𝑠1)

≤ 𝛽 (𝑎1 | 𝑠1) 𝛽 (𝑎2 | 𝑠2)
𝑝𝛽 (𝑔2 = 𝑓 (𝑠2, ℎ − 1) | 𝑠2)
𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) | 𝑠1)

·
𝑝𝛽 (𝑔2 = 𝑓 (𝑠2, ℎ − 1) | 𝑠2, 𝑎2)
𝑝𝛽 (𝑔2 = 𝑓 (𝑠2, ℎ − 1) | 𝑠2)

𝑝𝜋 𝑓
(𝑎3:ℎ | 𝑠1, 𝑠2, 𝑠3)

+ 2𝛿
(

1
𝛼 𝑓
+ 1

)
. . . recursively expand 𝑝𝜋 𝑓

≤
ℎ∏
𝑡=1

𝛽 (𝑎𝑡 | 𝑠𝑡 )
𝑝𝛽 (𝑔ℎ = 𝑓 (𝑠ℎ, 1) | 𝑠ℎ, 𝑎ℎ)
𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) | 𝑠1)

+ ℎ𝛿
(

1
𝛼 𝑓
+ 1

)
=

ℎ∏
𝑡=1

𝛽 (𝑎𝑡 | 𝑠𝑡 )
I [𝑔 (𝑠1, 𝑎1:ℎ) = 𝑓 (𝑠1, ℎ)]
𝑝𝛽 (𝑔1 = 𝑓 (𝑠1, ℎ) | 𝑠1)

+ ℎ𝛿
(

1
𝛼 𝑓
+ 1

)
. (22)

The last step is deduced by the trajectory determinism and the consistency of the conditioning function
𝑓 . Multiplying this back to Eq. 18 and noticing that the two indicator functions can never both be 1,
we can yield that:

E𝑠1 ,ℎ

[
E𝑎1:ℎ∼𝜋 𝑓 |𝑠1

[
𝑓 (𝑠1, ℎ) − 𝑔(𝑠1, 𝑎1:ℎ)

] ]
≤ ℎ2𝛿( 1

𝛼 𝑓
+ 1). (23)

This can finally yield the bound in Eq. 12 by adding back to Eq. 16.
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Algorithm 2: UNREST training procedure

Input: Offline dataset D = {𝝉𝑖}𝑁𝑖=1, batch size 𝐵.
1 # Stage I: Train return transformers.
2 for each iteration do
3 Sample batch B = {𝝉𝑖}𝐵𝑖=1 from D, where 𝝉𝑖 = {(𝑠𝑡 , 𝑎𝑡 )}𝑇𝑡=1;
4 Feed sampled sequences into Transformer and get embeddings 𝑥𝑠𝑡 , 𝑥𝑎𝑡 by Eq. 3;
5 Feed Transformer outputs into variance networks to predict return

𝑅𝜑𝑎 (𝑅𝑡 |𝝉<𝑡 ), 𝑅𝜑𝑠 (𝑅𝑡 |𝝉<𝑡 , 𝑠𝑡 );
6 Update network parameters based on the learning objectives in Eq. 4;
7 # Stage II: Segment sequence w.r.t. estimated uncertainty.
8 Compute uncertainty of each timestep 𝑢𝑡 ← 𝐷KL (𝑅𝜑𝑎 (𝑅𝑡 |𝝉<𝑡 ), 𝑅𝜑𝑠 (𝑅𝑡 |𝝉<𝑡 , 𝑠𝑡 ));
9 Segment sequence w.r.t. uncertainties Dseg ← {𝝉seg

𝑖
}𝑁
𝑖=1, as discussed in Sec. 4.3;

10 # Stage III: Train decision model.
11 for each iteration do
12 Sample batch B = {𝝉seg

𝑖
}𝐵
𝑖=1 from Dseg, where 𝝉

seg
𝑖

= {(ℎ𝑡 , 𝑅𝑡 , 𝑅ℎ𝑡 , 𝑠𝑡 , 𝑎𝑡 )}𝑇𝑡=1;
13 Feed sampled sequences into Transformer and get embeddings 𝑥𝑅ℎ

𝑡
, 𝑥𝑠𝑡 , 𝑥𝑎𝑡 by Eq. 7;

14 if using global return then
15 Concatenate Transformer outputs with global return 𝑥𝑠𝑡 ← [𝑥𝑠𝑡 | | 𝑓 𝑅 (𝑅𝑡 )];
16 Feed 𝑥𝑠𝑡 into variance network to predict action distribution 𝜋𝜃 (𝑎𝑡 |𝝉seg

<𝑡 , ℎ𝑡 , 𝑅𝑡 , 𝑅
ℎ
𝑡 , 𝑠𝑡 );

17 Update network parameters based on learning objective in Eq.9;
Output: Trained return transformers 𝑅𝜑𝑎 (·), 𝑅𝜑𝑠 (·) and policy 𝜋𝜃 (·).

C UNREST Training Procedure

To get a more clear understanding of our training pipeline, we present the training procedure of
UNREST in Alg. 2.

D Dataset Information

Our dataset is collected from the CARLA simulator, using its built-in Autopilot, which is a rule-based
motion planner. Specifically, CARLA [4] is an open-sourced simulator designed for autonomous
driving research. It provides researchers with a realistic environment that faithfully simulates traffic
dynamics, weather conditions, and high-fidelity sensor data. The pre-built scenarios in CARLA offer
a diverse set of driving scenes, while its high level of customizability and flexibility make it the
preferred simulation platform for a majority of autonomous driving researchers.

We collect training data at a frequency of 10Hz, accumulating 30 hours of driving data from four
distinct training towns (Town01, Town03, Town04, Town06) under four different weather conditions
(ClearNoon, WetNoon, HardRainNoon, ClearSunset). At each timestep, we store the data tuple
(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 ), whose compositions will be introduced in detail in the next paragraphs.

Reward: The symbol 𝑟𝑡 ∈ R denotes the reward returned by the environment at the timestep 𝑡.
Typically, our reward design is revised from Roach [48], encompassing factors such as speed, safety,
and comfort.

𝑟 = 𝑟speed + 𝑟position + 𝑟rotation + 𝑟action + 𝑟terminal. (24)

Among them, 𝑟speed = 1 − |𝑣−𝑣desired |
𝑣max

represents the reward of approaching the target speed; 𝑟position =

−0.5Δ𝑝 represents the reward obtained from driving in the correct position, where Δ𝑝 is the lateral
distance between the ego vehicle and the centerline of the target route; 𝑟rotation = −Δ𝑟 represents the
reward obtained from driving in the correct orientation, where Δ𝑟 is the angle difference between the
ego vehicle and the centerline of the target route; 𝑟action incurs a penalty of -0.1 when the steering in
current timestep differs from the previous step by more than 0.01, promoting smooth and comfortable
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driving; 𝑟terminal is 10 when reaching the destination, -10 when encountering a collision or violation
of traffic rules, to encourage driving safely.

Safety constraints: In addition to the reward setting, the Constrained Penalized Q-learning
(CPQ) [49] algorithm also needs a constraint definition for training. Specifically, we adopt the
same setting as in [50], where each time of collision or traffic rule violation incurs a penalty of 1.0.
The constraint limit for CPQ is 1.0 (i.e. ensures no safety issue at each ride).

In order to avoid memory overflow in the sequence model, both the action space and state space have
been specially designed. Specifically, we adopt a similar setting to SPLT [11].

Action: The action 𝑎 ∈ R2 consists of two values, representing the target angle and target velocity
that will be fed into two separate PID controllers.

State: The observed state 𝑠 ∈ R37 includes the following components: (i) ego vehicle velocity (ii)
relative distance and velocity to the leading vehicle, which will be set to the default maximum value
if no leading vehicle is perceived in the horizon (iii) relative distance and velocity to the pedestrian
ahead, which will be set to default maximum values if no pedestrian is perceived in the horizon (iv)
relative velocities and distances to vehicles in four cardinal directions (front, rear, left, right), also set
to default maximum values if no vehicles are perceived in the horizon (v) distance to the traffic light
ahead, set to default maximum value if no red light ahead (vi) distance to the stop sign ahead, set to
default maximum value if no stop sign ahead (vii) relative angle difference w.r.t. the centerline of the
target route (viii) distance to the centerline of the target route (ix) relative positions of the next 10
target waypoints.

As for stochasticity, we introduce stochastic speed ranges in [20, 40]m/s and vehicle-specific random
sizes of visibility areas in [10, 30]m. This results in aggressive vehicles with higher speeds and
smaller visibility ranges, as well as cautious vehicles with lower speeds and larger visibility ranges.
These characteristics cannot be inferred from the observable state of the ego vehicle, leading to
greater uncertainty during its interactions with the environment. Additionally, we also add Gaussian
noise to the control signals of the ego vehicle to incorporate stochasticity into its behavior. These
special designs, integrating with the complex scenarios and interactions from our collected large
dataset, ensure that our training data contains sufficient stochasticity.

E Implementation Details

In this section, we introduce the implementation details, including our training process, evaluation
process, and hyperparameters. Specifically, UNREST and all the baselines are implemented with
Python 3.7 and PyTorch 1.13.1. Besides, all training processes are run on a NVIDIA A10 while
inference is conducted on one NVIDIA 3090 GPU for fair comparison.

E.1 Training Details

Training Process: For all training processes, We employ an AdamW optimizer with a learning
rate of 10−4, and a consistent batch size of 256. For the training of sequence models, a history length
of 10 is carefully selected to be sampled each time, which corresponds to a real-world duration of 1
second. To determine the number of epochs for training, a dynamic value is assigned based on the
dataset’s size, defined by the following formula: 𝑛epochs = int

(
1𝑒6

len(dataset) × 𝑛ref

)
, where 𝑛ref represents

a reference epoch number that can be tuned.

Details for segmentation: As discussed in Sec. 4.3, we train two return transformers for sequence
segmentation. In practical implementation, to accurately quantify environmental uncertainty, we
employ the ensemble method to train each return transformer. Using Eq. 11, we recalculate the
variance and expectation of the returns. Then the sequences are segmented into certain and uncertain
parts w.r.t. estimated uncertainties according to the principles we introduce in Sec. 4.3.
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In our experiments, we discover that ‘uncertain states’ tend to occur consecutively. To ensure
meaningful segmentation, we enforce a minimum ‘uncertain part’ length of 𝑐 = 20 frames and select
the uncertainty threshold 𝜖 = 3 according to Fig. 5(a). Under these two hyperparameter settings, we
find the segmented sequences often correspond to the completion of a significant driving task.

Details for return-span embedding: We introduce the return-span embedding 𝑓 ℎ
𝜃
(ℎ𝑡 ) to enhance

the interpretability of truncated returns as conditions. Specifically, we explore two variants to
incorporate this embedding. The first variant is to add the return-span embedding to the return
embedding, as stated in the main text. The second variant considers treating 𝑓 ℎ

𝜃
(ℎ𝑡 ) as a distinct

token input to the sequence model. However, we observe that the latter approach results in increased
memory consumption without yielding improvements in performance (Tab. 8 and Tab. 9).

Details for global return embedding: The approach for obtaining the global return embedding
differs from other embeddings due to its high uncertainty. Typically, instead of utilizing parameterized
networks, we opt for a coarse uniform discretization approach, resulting in a corresponding one-hot
vector (specifically, a 50-dimensional vector in our implementation). This strategy enables us to
provide global guidance while mitigating the influence of its uncertainty on the training process.

Details for decision models: In the practical implementation, following DT [14], we directly
predict the value of the action instead of its distribution. Specifically, we only retain the mean 𝜇𝜃 and
assume unit variance. Consequently, the loss in Eq. 9 can be reformulated as the mean square loss,
resembling the learning objective in DT.

E.2 Evaluation Details

Main setting: To comprehensively evaluate our models’ planning capability, we select two distinct
driving scenarios from CARLA: the training town under training weather conditions and the new
town under new weather conditions. Typically, the training town is chosen as Town03, the most
complex town among the training dataset, and the training weathers are ‘WetNoon’ and ‘ClearSunset’.
The new town is Town05, the most complex town in the rest of the training set, and the new weathers
are ‘SoftRainSunset’ and ‘WetSunset’. For each tested scenario, we carefully set up the vehicles
and driving routes w.r.t. the specifications of CARLA Leaderboard [41]. Moreover, we conduct
experiments with three different seeds (2022, 2023, 2024) to facilitate the calculation of mean values
and variances.

Details for dynamic uncertainty estimation: As we have stated in the main text, we employ
dynamic uncertainty estimation at inference time to enable cautious planning. Typically, we imple-
ment more variants (results are shown in Tab. 8 and Tab. 9) other than KD-Tree [40] for test-time
uncertainty estimation:

• Network prediction: The first approach entails training a neural network to forecast environmental
uncertainty. Leveraging the uncertainty values computed by the aforementioned return transformers
and employing the provided threshold, we assign binary class labels (certain and uncertain) to each
state in the training dataset. Subsequently, these labels are utilized to train an uncertainty network.

• Heuristic: The heuristic method turns out to be a straightforward and intuitive alternative. Specif-
ically, we observe that specific dimensions within received states have a strong correlation with
uncertainties (e.g. distance to traffic light ahead). Thus, we directly compare the values of these
particular dimensions to the preset uncertainty threshold to determine whether the state is uncertain.

• KD-tree: Our chosen methodology employs a KD-tree for uncertainty estimation. Specifically, we
use all state vectors to initialize the KD-tree. Subsequently, the tree will select a dimension at each
level and perform a binary split, ultimately placing all inputs in the leaf nodes (implemented by
calling the Sklearn package). At test time, we query the nearest neighbors of the current state from
the tree and compute the average uncertainty of its nearby 5 states as the estimated uncertainty.
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Table 4: Hyperparameters for training return transformers for Sequence Segmentation.
Hyperparameters Value Hyperparameters Value
# Transformer layers 4 # Transformer heads 8
Embedding dimension 128 Batch size 𝐵 256
Sampled Sequence length 10 Discount 𝛾 0.95
Learning rate 1e-4 Dropout 0.1
Optimizer AdamW Weight decay False
Ensemble size 𝐾 5 Data mask probability 0.6
# Reference epoch 𝑛ref 50 Transformer Activation GELU

Table 5: Hyperparameters for training UNREST decision models.
Hyperparameters Value Hyperparameters Value
Uncertainty threshold 𝜖 3.0 Min ‘uncertain part’ length 𝑐 20
# Transformer layers 4 # Transformer heads 8
Embedding dimension 128 Batch size 𝐵 256
Sampled Sequence length 10 Discount 𝛾 1.0
Optimizer AdamW Weight decay False
Learning rate 1e-4 Dropout 0.1
# Reference epoch 𝑛ref 200 Transformer Activation GELU
Global return dimension 50 Action Activation Tanh

Table 6: Hyperparameters for UNREST’s inference process.
Hyperparameters Value Hyperparameters Value
Max history length 5 Uncertainty threshold 𝜖 3.0
Return Horizon 𝐻 100 Upper Percentile 𝜂 0.7
Deterministic sample True # KD-Tree neighbor 5

E.3 Hyperparameters

We select several well-established approaches to serve as our comparative baselines. Specifically,
we include Behavior Cloning (BC), Implicit Q-Learning (IQL) [43], as well as prominent sequence
models such as Decision Transformer (DT) [14], Trajectory Transformer (TT) [15], SPLT [11],
and ESPER [17]. To ensure a fair comparison, for all these baselines, we adopt the default hyper-
parameter settings from the repository https://github.com/avillaflor/SPLT-transformer.
For Monotonic Advantage Re-Weighted Imitation Learning (MARWIL) [42] and Conservative
Q-Learning (CQL) [9], we adopt the default hyperparameter from the Ray RLlib https://docs.

ray.io/en/latest/rllib/index.html. Finally for the safe offline RL baseline Constraints-
Penalized Q-learning (CPQ) [49], we employ the default hyperparameters from the repository
https://github.com/liuzuxin/OSRL.

The full list of UNREST’s hyperparameters can be found in Tab. 4, Tab. 5, and Tab. 6.

F More Experimental Results

In this section, we supplement more experimental results, including the visualizations, complexity
comparisons, sensitivity analysis of hyperparameters, the results for more UNREST variants, and
results on environments other than driving (D4RL).

F.1 Visualizations

Uncertainty visualizations: We present more visualizations of UNREST’s uncertainty estimation
in Fig. 5 to validate its interpretability. We first visualize the uncertainty distribution in Fig. 5(a). As
we can see, the majority of uncertainty values associated with state transitions fall within the range
of 0 to 10−4, aligning with intuitive expectations. In autonomous driving environments with sparse
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(a) Uncertainty distribution
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(b) Right turning: Uncertainty curve
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(c) Light crossing: Uncertainty curve

(d) Right turning: State changing process

(e) Light crossing: State changing process

Figure 5: More visualizations of UNREST’s uncertainty estimation results. The black background
indicates non-drivable areas, the dark gray areas represent drivable regions, the white rectangle
denotes the ego vehicle, the dark blue rectangles signify surrounding vehicles, the sky blue rectangles
indicate pedestrians, the purple lines represent lane boundaries, and the red, green, and yellow
markers indicate traffic lights and stop signs. Finally, the light gray path extending from the ego
vehicle represents its intended route.

vehicle presence and a limited number of traffic signals, the stochasticity of environment transitions
tends to be relatively low. The uncertainty threshold 𝜖 is accordingly chosen as 3.0 to cover corner
cases with large uncertainties.

Then, we seek uncertain transition states within the training dataset and visualize two typical scenarios.
Fig. 5(b) and Fig. 5(d) correspond to a turning scenario, while Fig. 5(c) and Fig. 5(e) depict a scenario
of passing through a red light. By associating the temporal steps with the uncertainty curves, it can
be observed that as the ego-vehicle approaches the turning point, the uncertainty gradually increases
since the ego-vehicle cannot forecast the traffic conditions after turning. After the turning behavior is
almost completed, the uncertainty decreases below the threshold again. In the scenario of waiting
at a red light, the uncertainty rapidly increases as the ego-vehicle approaches the red light due to
the uncertain color changes of the traffic light. However, after the ego-vehicle decides to stop in
front of the red light at approximately the 15th timestep, the uncertainty decreases sharply below the
threshold. These visualization results effectively demonstrate the interpretability of our uncertainty
measurement approach.

Uncertainty Calibration: To provide a more intuitive impression of UNREST’s effectiveness,
we present the return distribution calibration results in Fig. 6. Notably, the uncertainty in the figure
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Figure 6: Calibration results of return distribution using ensemble models are obviously better
than that using a single model. We use the standard variance of the networks’ predictions as an
approximate indicator of uncertainty. The blue line signifies the ground truth, while the red dots
denote the predicted mean returns. The areas shaded in orange represent the predicted mean coupled
with their respective standard deviations.

denotes the variance of the distribution, different from the so-called environmental uncertainty we
used in the main text that reflects the impact of environment transitions (through conditional mutual
information). The impact of the environment has no ground truth value and can only be interpreted
through visualizations like Fig. 5, while the predicted return distribution has corresponding ground
truth and thus can be directly calibrated like what we do in Fig. 6. Typically, the figure illustrates
that using an ensemble of return transformers can significantly better predict the return distribution
than using a single model (closer to the ground truth, with tight uncertainty bands), where it achieves
smaller (better) results on two widely adopted calibration metrics: RMSE and NLL than the single
return transformer variant.

Sequence length distributions: We present different segmented sequence length distributions in
Fig. 7. Analyzing the figures, it is evident that most uncertain sequences tend to possess lengths close
to the state transition timestep 𝑐 (translate from uncertain to certain states if the last 𝑐 − 1 steps are all
identified as certain), while certain sequences are almost uniformly distributed w.r.t. their lengths.

F.2 Complexity Comparisons

We provide empirical results about space/time usage as shown in Tab. 7. Regarding GPU usage,
UNREST demonstrates comparable levels to DT, while significantly less utilization compared to
SPLT and TT. Regarding training and inference time, UNREST consumes slightly more time than
DT, yet notably faster than TT and SPLT. These results signify that UNREST achieves superior
performance while requiring relatively modest computational resources.
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Figure 7: Segmented sequence length distributions with different threshold 𝜖 and state transition
timestep 𝑐.

Table 7: Comparison results of training/inference time (10−2s) and training GPU memory (GB)
between different sequence models. The training time is calculated w.r.t. multiple iterations, while
the inference time is calculated w.r.t. multiple rollout steps. The GPU usage is a fixed value for one
training model.

Metric BC DT TT SPLT UNREST

GPU usage 1.00 1.46 23.3 1.96 1.48
Training time 0.83 ± 0.13 0.93 ± 0.13 32.7 ± 0.2 4.20 ± 0.1 1.47 ± 0.12
Inference time 0.15 ± 0.01 0.16 ± 0.02 25.6 ± 0.7 0.89 ± 0.02 0.24 ± 0.03
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Figure 8: The sensitivity analysis of hyper-parameters 𝐻 and 𝜖 .

F.3 Sensitivity Analysis

Impact of return horizon 𝐻: We investigate the influence of the return horizon length, denoted
as 𝐻, on the performance of UNREST. The experimental results are depicted in Fig. 8, where the
return horizon varies from 50 to 1000. It is evident that a relatively modest value of 𝐻 (e.g., 𝐻=100)
yields the best performance, while minimal and large values of 𝐻 exhibit noticeable performance
deterioration. These findings align with our underlying assumption that shorter sequences can
alleviate uncertainty, while excessively short sequences may give rise to shortsightedness, thereby
compromising performance.

Impact of uncertainty threshold 𝜖: We next investigate the impact of the uncertainty threshold
𝜖 and present the results in Fig. 8 where we increase 𝜖 from 0.5 to 10. As shown in the figure, a
moderate value of 𝜖 , namely 𝜖 = 3 gives the best performance, while smaller and larger values of 𝜖
exhibit obvious performance degradation. This behavior can be attributed to the fact that the majority
of uncertainty values fall within the range of 0 to 10−4. Consequently, excessively small values
may incorrectly identify ‘certain states’ as uncertain, while excessively large values may overlook
important ‘uncertain states’.
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Table 8: Driving performance of more UNREST variants on train town and train weather condition.
Planner Driving Score↑ Success Rate↑ Route Comp.↑ Infrac. Score↑ Norm. Rewards↑
Tokened ret-span emb. 62.8 ± 3.6 56.2 ± 4.8 81.1 ± 4.7 66.5 ± 2.5 0.62 ± 0.03
Fixed horizon seg. 59.2 ± 2.6 44.7 ± 3.2 78.3 ± 4.8 64.5 ± 3.0 0.66 ± 0.02
Separate BC model 61.0 ± 4.1 51.7 ± 5.3 82.8 ± 3.7 64.6 ± 2.4 0.68 ± 0.04
Heuristic uncertainty 62.1 ± 2.4 28.8 ± 7.4 43.8 ± 6.9 72.6 ± 4.3 0.47 ± 0.03
Predicted uncertainty 60.7 ± 2.7 50.0 ± 4.4 63.6 ± 5.2 65.8 ± 3.4 0.61 ± 0.02
Reweighted BC 64.2 ± 2.4 57.5 ± 3.3 85.5 ± 2.7 71.4 ± 2.5 0.68 ± 0.03
Original model 63.5 ± 3.2 54.5 ± 7.0 83.8 ± 3.1 70.2 ± 2.8 0.64 ± 0.04

Table 9: Driving performance of more UNREST variants on new town and new weather conditions.
Planner Driving Score↑ Success Rate↑ Route Comp.↑ Infrac. Score↑ Norm. Rewards↑
Tokened ret-span emb. 62.0 ± 4.9 56.8 ± 3.0 92.0 ± 5.4 60.3 ± 3.3 0.64 ± 0.04
Fixed horizon seg. 58.5 ± 3.6 46.7 ± 6.2 80.3 ± 2.8 64.7 ± 2.8 0.64 ± 0.02
Separate BC model 59.3 ± 3.4 63.8 ± 4.3 90.0 ± 5.5 59.3 ± 4.4 0.68 ± 0.05
Heuristic uncertainty 56.7 ± 2.6 40.0 ± 7.3 70.0 ± 6.2 72.5 ± 3.0 0.52 ± 0.02
Predicted uncertainty 59.6 ± 3.4 55.6 ± 5.5 88.0 ± 3.7 58.6 ± 4.1 0.64 ± 0.04
Reweighted BC 63.8 ± 2.3 59.3 ± 4.7 91.0 ± 5.0 65.1 ± 3.7 0.67 ± 0.02
Original model 62.9 ± 4.0 57.5 ± 5.4 90.0 ± 6.0 62.9 ± 3.8 0.65 ± 0.03

Table 10: Comparison to SOTA baselines on the standard D4RL Mujoco locomotion-v2 domain. For
BC, MBOP, CQL, DT, TT, IQL, and SPLT we use the results reported from the SPLT paper [11]. For
ESPER, we report the results from their paper [17]. We report the mean and std for our method over
3 seeds with 10 trajectories for each seed. ‘Stochastic’ denotes customized stochastic environments
according to [18]. The symbol ‘-’ is used to indicate the omission of measurement results that are
deemed unimportant.

Dataset Environment BC MBOP CQL DT TT IQL SPLT ESPER DoC UNREST(ours)

Med-Expert HalfCheetah 59.9 105.9 91.6 86.8 95.0±0.2 86.7 91.8±0.5 66.95±11.13 85.6±4.3 91.9±0.8
Med-Expert Hopper 79.6 55.1 105.4 107.6 110.0±2.7 91.5 104.8±2.6 89.95±13.91 91.2±3.3 93.5±5.4
Med-Expert Walker2d 36.6 70.2 108.8 108.1 101.9±6.8 109.6 108.6±1.1 106.87±1.26 107.3±2.1 105.7±4.4

Medium HalfCheetah 43.1 44.6 44.0 42.6 46.9±0.4 47.4 44.3±0.7 42.31±0.08 43.2±0.5 44.5±0.9
Medium Hopper 63.9 48.8 58.5 67.6 61.1±3.6 66.3 53.4±6.5 50.57±3.43 65.4±2.5 79.8±4.2
Medium Walker2d 77.3 41.0 72.5 74.0 79.0±2.8 78.3 77.9±0.3 69.8±1.2 72.2±2.2 70.6±3.9

Med-Replay HalfCheetah 4.3 42.3 45.5 36.6 41.9±2.5 44.2 42.7±0.3 35.9±2.0 38.7±0.7 39.4±0.5
Med-Replay Hopper 27.6 12.4 95.0 82.7 91.5±3.6 94.7 75.0±23.8 50.2±16.1 57.3±9.6 65.7±21.9
Med-Replay Walker2d 36.9 9.7 77.2 66.6 82.6±6.9 73.9 63.7±4.7 65.5±8.1 66.8±5.5 66.3±6.4

Average 47.7 47.8 77.6 74.7 78.9 76.9 72.9 64.2 70.4 73.0

Med-Stochastic HalfCheetah - - - 75.8±1.2 83.7±2.8 - 88.6±2.2 77.4±5.6 84.4±4.1 90.5 ± 3.2
Med-Stochastic Hopper - - - 89.4±3.3 93.4±3.6 - 94.8±2.7 92.5±6.9 95.2±5.3 97.4 ± 4.4
Med-Stochastic Walker2d - - - 86.3±2.4 91.7±2.8 - 95.7±3.4 96.4±2.3 98.8±3.2 100.2 ± 4.1

F.4 More UNREST Variants

Tab. 8 and Tab. 9 record the detailed performance of more UNREST variants in both training and
new scenarios.

As shown in the results, introducing return-span embedding as a separate token yields little im-
provement but will increase memory usage. Fixed horizon segmentation means segmenting the
sequences at a fixed timestep 100. Although simple, it ignores environmental uncertainties and may
lead to shortsighted problems. Therefore, it’s reasonable that it performs notably worse than our
original model. The Separate BC model means separately training an offline RL model in ‘certain
parts’ and a BC model in ‘uncertain parts’. While achieving the highest normalized rewards, there
is still a significant gap in its driving score compared with the original model, which shows that
the joint training of two models can benefit the planning process. Utilizing a heuristic method to
estimate uncertainties at inference time obtains the best infraction score, which is apparent since it is
designed to promote cautious behaviors in every possible uncertain scenario. However, this method
is overly pessimistic and overlooks certain corner cases, ultimately leading to the lowest driving
score. Adopting a network to predict uncertainty at inference time yields better performance than the
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heuristic method, but overall, due to the relatively low dimensionality of the inputs, the original model
performs better than it with a faster inference speed. Finally, we also study a Reweighted BC variant,
which additionally fits state value functions like that in MARWIL [42] and conducts advantage
reweighted behavior cloning at uncertain parts. Since the offline data collected by AutoPilot can
be suboptimal, we find reweighted behavior cloning can effectively down-weight those suboptimal
actions and improve UNREST’s driving scores at both training and new scenarios. However, since it
significantly increases model complexity, we have refrained from incorporating this technique into
the final model.

F.5 Results on D4RL

For completeness, we evaluate our method on D4RL Mujoco tasks, though they are mainly deter-
ministic tasks. Specifically, our UNREST is generally competitive with SOTA baselines on these
tasks, as shown in Tab. 10. The reason for its overall underperformance compared to DT lies in the
unnecessarily forced sequence segmentation in such deterministic tasks, where it is more appropriate
to retain global returns in order to extend the horizon length considered during planning. We also test
UNREST in three customized stochastic D4RL environments from [18]. Compared to complex
generative training (which also harms their performance in complex environments) of DoC [18] and
ESPER [17], UNREST achieves the highest rewards with lightweight models.
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