
Under review as a conference paper at ICLR 2022

A NOVEL WATERMARKING FRAMEWORK FOR OWNER-
SHIP VERIFICATION OF DNN ARCHITECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel watermarking scheme to achieve the intellectual property (IP)
protection and ownership verification of DNN architectures. Existing works all
embedded watermarks into the model parameters while treating the architecture as
public property. These solutions were proven to be vulnerable by an adversary to
detect or remove the watermarks. In contrast, we are the first to claim model archi-
tectures as an important IP for model owners, and propose to implant watermarks
into the architectures. We design new algorithms based on Neural Architecture
Search (NAS) to generate watermarked architectures, which are unique enough to
represent the ownership, while maintaining high model usability. Such watermarks
can be extracted via side-channel-based model extraction techniques with high
fidelity. Extensive evaluations show our scheme has negligible impact on the model
performance, and exhibits strong robustness against various model transformations
and adaptive attacks.

1 INTRODUCTION

Commercialization of the deep learning technology has made Deep Neural Network (DNN) models
the core Intellectual Property (IP) of AI products and applications. Hence, release of DNN models can
incur illegitimate plagiarism, unauthorized distribution or reproduction. One common IP protection
approach is DNN watermarking, which processes the protected model in a unique way such that the
model owner is able to recognize the ownership of his model without affecting its usability.

All the existing solutions treat the model parameters as the IP, and embed the unique watermarks
into the parameters for ownership verification (Uchida et al., 2017; Rouhani et al., 2019; Adi et al.,
2018; Zhang et al., 2020; Chen et al., 2021a). Unfortunately, those watermarking solutions are
not practically robust. An adversary can easily detect or remove them by slightly modifying the
parameters of a plagiarized model (Chen et al., 2021c; Shafieinejad et al., 2019; Liu et al., 2020; Guo
et al., 2021; Namba & Sakuma, 2019; Aiken et al., 2020).

In this paper, we propose a fundamentally different watermarking scheme. Instead of protecting
the parameters, we treat the network architecture as the IP of the model. There are a couple of
incentives for the adversary to plagiarize the architectures (Yan et al., 2020; Hong et al., 2020). First,
it is costly to craft a qualified architecture for a given task. Architecture design and testing require
lots of valuable human expertise and experience. AutoML is introduced to automatically search for
architectures (Zoph & Le, 2016), which still needs a large amount of time, computing resources and
data samples. Second, the network architecture is critical in determining the model performance.
Obtaining it brings high commercial values. Additionally, the adversary can steal an architecture
and apply it to multiple tasks with different datasets, significantly improving the benefit. Hence, it is
worthwhile to treat the architecture design as an important IP and provide particular protection to it.

We aim to design a methodology to generate unique network architectures for the owners, which can
serve as the evidence of ownership. This scheme is more robust than previous solutions, as refining
the parameters cannot tamper with the watermarks. The adversary can only remarkably change the
network architecture in order to erase the watermarks. This will not violate the copyright, since
the new architecture is totally different from the original one, and can be legally regarded as the
adversary’s own IP. Two questions need to be answered in order to establish this scheme: (1) how to
systematically design architectures, that are unique for watermarking and maintain high usability for
the tasks? (2) how to extract the architecture of the suspicious model, and verify the ownership?

1

Under review as a conference paper at ICLR 2022

We introduce a set of techniques to address these questions. For the first question, we leverage Neural
Architecture Search (NAS) (Zoph & Le, 2016), which can automatically discover the optimal network
architecture for a given task and dataset. We design a novel NAS algorithm, which fixes certain
connections with specific operations in the search space, determined by the owner-specific watermark.
Then we search for the rest space to produce a high-quality network architecture. This architecture is
unique enough to represent the ownership of the model.

For the second question, the owner can use cache side-channel techniques to extract the architecture
of a black-box model to verify the ownership, even the model is encrypted or isolated. It is difficult to
extend prior solutions (Yan et al., 2020; Hong et al., 2018) to our scenario, because they are designed
only for conventional DNN models, but fail to recover new operations in NAS. We devise a more
comprehensive method to analyze the types and hyper-parameters of these new operations from a
side-channel pattern. This enables us to precisely extract the watermark from the model.

The integration of these techniques leads to the design of our watermarking framework. Experiments
show that our method is immune to common model parameter transformations (fine-tuning, pruning),
which could compromise prior solutions. Furthermore, we test some new adaptive attacks that
moderately refine the architectures (shuffling operation order, adding useless operations), and confirm
their incapability of removing the watermarks in the architecture.

2 PRELIMINARIES

2.1 NEURAL ARCHITECTURE SEARCH

NAS (Zoph & Le, 2016; Elsken et al., 2019) has gained popularity in recent years, due to its capability
of building machine learning pipelines with high efficiency and automation. It systematically searches
for the optimal network architecture on a task dataset.

0

1

2

3

0

3

: input

: output

Figure 1: A toy cell supernet

The search space of a NAS method defines the scope of neural
networks to be designed and optimized. A practical strategy is to
decompose the target neural network into multiple cells, and search
for the optimal structure of a cell instead of the entire network (Zoph
et al., 2018). A cell is generally represented as a directed acyclic
graph (DAG), where each edge is associated with an operation se-
lected from a predefined operation set (Pham et al., 2018). Figure
1 gives a toy cell supernet that contains three computation nodes
(gray squares) and a set of three candidate operations (circles). Such
supernet enables the sharing of network parameters, and signifi-
cantly accelerates the search process (Liu et al., 2018b; Dong &
Yang, 2019; Chu et al., 2019; Chen et al., 2021b). A NAS method
(Zoph et al., 2018; Pham et al., 2018; Real et al., 2019; Liu et al., 2018b; Chu et al., 2020; Dong &
Yang, 2019) is adopted to search for the optimal architecture of two types of cells: a normal cell for
interpreting the features and a reduction cell for reducing the spatial size. Then multiple normal cells
construct a block, and multiple blocks are interconnected by reduction cells to form the final model.

Formally, we consider a NAS task, which aims to construct a model architecture containing N cells:
A = {c1, ..., cN}. The search space of each cell is denoted as S = (G,O). G = (N , E) is the DAG
representing the cell supernet, where set N contains two inputs (a, b) from previous cells and B
computation nodes in the cell, i.e.,N = {a, b,N1, ...,NB}; E = {E1, ..., EB} is the set of all possible
edges between nodes and Ej is the set of edges connected to the node Nj (1 ≤ j ≤ B). Each node
can only select at most two inputs from previous nodes. O is the set of candidate operations on these
edges. Then we combine the search spaces of all cells as S, from which we look for an optimal
architecture A. The NAS method we consider is defined as below:

Definition 2.1. (NAS) A NAS method is a machine learning algorithm that iteratively searches
optimal cell architectures from the search space S on the proxy dataset D. These cells construct one
architecture A = {c1, ..., cN}, i.e., A = NAS(S,D).

After the search process, A is trained from the scratch on the task dataset D to obtain the optimal
parameters and final DNN model M = train(A,D).

2

Under review as a conference paper at ICLR 2022

2.2 THREAT MODEL

We consider that a model owner designs an architecture A using a conventional NAS method, and
trains a production-level DNN model M . An adversary may obtain an illegal copy of M and use it
for profit without authorization. The goal of the model owner is to detect whether a suspicious model
M ′ plagiarizes the architecture A from M . He has black-box access to the target model M ′, without
any knowledge about the architecture, parameters, training algorithms and hyper-parameters. We
consider two techniques an adversary may employ to hide the evidence of architecture plagiarism.
(1) Parameter modification: the adversary may alter the model parameters (e.g., fine-tuning, model
compression, transfer learning) while maintaining similar performance. (2) Architecture modification:
the adversary may moderately obfuscate the model architecture by changing the execution behaviors
of model inference (reordering the operations, adding useless computations or neurons). However,
we do not consider the case that the adversary redesigns the model architecture completely (e.g.,
knowledge distillation (Ba & Caruana, 2013; Hinton et al., 2015)), since the new model architecture
is totally different, and can be legally regarded as the adversary’s own asset.

We further follow the same assumption in (Yan et al., 2020; Batina et al., 2019; Hu et al., 2020)
that the model owner can extract the inference execution trace of the target model M ′ via cache
side channels. This is applied to the scenario where the suspicious application is securely packed
with countermeasures against reverse-engineering, e.g., encryption. For instance, Trusted Execution
Environment (TEE) (McKeen et al., 2013; Kaplan et al., 2016) has been abused by the adversary
to launch attacks and hide malicious activities (Schwarz et al., 2017; Gruss et al., 2018). Similarly,
an adversary can hide the stolen model in TEE (Ohrimenko et al., 2016; Kunkel et al., 2019) when
distributing it to the public, so the model owner cannot introspect into the DNN model to obtain the
evidence of ownership. With our watermarking framework, the model owner can extract watermarks
from the isolated enclaves using cache side-channel techniques (Brasser et al., 2017).

3 OUR WATERMARKING SCHEME

3.1 OVERVIEW

We give the definition of the watermarking scheme for NAS architectures as below:

Definition 3.1. A watermarking scheme for NAS is defined as a tuple of probabilistic polynomial
time algorithms (WMGen, Mark, Verify), where

• WMGen: takes the search space of a NAS method as input and outputs secret marking key mk
and verification key vk.
• Mark: outputs a watermarked architecture A from a NAS method, a proxy dataset D, and mk.
• Verify: takes the input of vk and the monitored side-channel trace, and outputs the verification

result of the watermark in {0, 1}.

A strong watermarking scheme has the following properties (Zhang et al., 2018; Adi et al., 2018). (1)
Effectiveness: the watermarking scheme needs to guarantee the success of ownership verification
over the watermarked A using the verification key. (2) Usability: let A0 be the original architecture
without watermarks. For any data distribution D, the watermarked architecture A should exhibit
competitive performance compared with A0 on the data sampled from D. (3) Robustness: since a
probabilistic polynomial time adversary may modify f with common transformation or obfuscation
operations, we expect the watermark remains in A after those changes. (4) Uniqueness: a normal
user can follow the same NAS method to learn an architecture from the same proxy dataset. Without
the marking key, the probability that this architecture contains the same watermark should be smaller
than a given threshold δ.

Figure 2 shows the overview of our watermarking framework, which consists of three stages. At
stage 1 , the model owner generates a unique watermark and the corresponding key pair (mk, vk)
using the algorithm WMGen. At stage 2, he adopts a conventional NAS method with the marking
key mk to produce the watermarked architecture following the algorithm Mark. He then trains the
model from this architecture. Stage 3 is to verify the ownership of a suspicious model: the owner
collects the side-channel information at inference, and identifies any potential watermark based on
the verification key vk using the algorithm Verify.

3

Under review as a conference paper at ICLR 2022

Monitor

Owner

Key

Generation

Model

Marking

NAS

Method

Stamp

Size ns

Marked Model

Verification Key

CNN

RNN

BLAS

Framework

Stamp

Verification

GEMM

Activations

Library Trace

Stage3: Side Channel Extraction

Watermarking

State

Marking

key

Stage 1 Stage 2

Figure 2: Overview of our watermarking framework

3.2 WATERMARK GENERATION (WMGEN)

According to Definition 2.1, a NAS architecture is a composition of cells. Each NAS cell is actually
a sampled sub-graph of the supernet G, where the attached operations are identified by the search
strategy. To generate a watermark, the model owner selects some edges from G which can form a
path1. Then he fixes each of these edges with a randomly chosen operation. The set of the fixed
edge-operation pairs {se : so} inside a cell is called a stamp, as defined below:

Definition 3.2. (Stamp) A stamp for a cell is a set of edge-operation pairs {se : so}, where se, so
denote the selected edges in a path and the corresponding operations, respectively.

The combination of the stamps of all the cells form a watermark for a NAS architecture:

Definition 3.3. (Watermark) Consider a NAS method with a proxy dataset D and search space S.
A = {c1, ..., cN} represents the neural architecture produced from this method. A watermark for A
is a set of stamps mk1, ...,mkN , where mki is the stamp of cell ci.

Algorithm 1: Marking Key Generation (WMGen)
Input: # of fixed edges ns, search space S = (G,O)
Output: marking key mk, verification key vk
Se = GetPath(G, ns)
for i from 1 to N do

se ← randomly select one path from Se

so ← randomly select ns operations from O for se
mki = {se : so}, vki = so

return mk = (mk1, ..., mkN), vk = (vk1, ..., vkN)

Algorithm 1 illustrates the detailed
procedure of constructing a water-
mark and the corresponding mark-
ing and verification keys (mk, vk).
Given the supernet G, we call func-
tion GetPath (Algorithm 4 in Ap-
pendix) to obtain a set Se of all the
possible paths with length ns, where
ns is the predefined number of stamp
edges (1 ≤ ns ≤ B). Then for each
cell ci, we randomly sample a path se from Se. Each edge in the selected path is attached with a fixed
operation chosen by the model owner, while in this paper we use a random operation, to form the
cell stamp mki = {se : so}. Finally we can construct a marking key mk = (mk1, ...,mkN). The
verification key is vk = (vk1, ..., vkN), where vki is the fixed operation sequence so in cell ci.

3.3 WATERMARK EMBEDDING (MARK)

To generate a competitive DNN architecture embedded with the watermark, we fix the edges and
operations in the marking key mk, and apply a conventional NAS method to search for the rest
connections and operations for the optimal architecture. This process will have a smaller search space
compared to the original method. However, as shown in previous works (Zoph et al., 2018; Liu et al.,
2018b), there are multiple sub-optimal results with comparable performance in the NAS search space,
which makes random search also feasible. Hence, we hypothesize that we can still find out qualified
results from the reduced search space. Experimental evaluations in Section 5 verify that the reduced
search space incurs negligible impact on the model performance.

Algorithm 2 shows the procedure of embedding the watermark to a NAS architecture. For each cell
ci in the architecture, we first identify the fixed stamp edges and operations {se : so} from key mki.
Then the cell search space S is updated as (G = (N , E),O), where E is the set of connection edges
excluding those fixed ones: E = E − se. The updated search spaces of all the cells are combined
to form the search space S, from which the NAS method is used to find the optimal architecture A
containing the desired watermark.

1We select the edges in a path as the executions of their operations have dependency (see the red edges in
Figure 4). So an adversary cannot remove the watermarks by shuffling the operation order at inference.

4

Under review as a conference paper at ICLR 2022

3.4 WATERMARK VERIFICATION (VERIFY)

During verification, we utilize cache side channels to capture an execution trace T by monitoring
the inference process of the target model M ′. Details about side-channel extraction can be found in
Section 4. Due to the existence of extra computations like concatenating and preprocessing, cells in
T are separated with much larger time intervals and hence can be intuitively identified as sequential
leakage windows. If T does not have observable windows, we claim it is not generated by a NAS
method. A leakage window further contains multiple clusters, each of which corresponds to an
operation inside the cell.

Algorithm 3 describes the verification process. First the side-channel leakage trace T is divided
into cell windows, and for the i-th window, we retrieve its stamp operations so from vki. Then the
cluster patterns in the window are analyzed in sequence. Since the adversary can possibly shuffle
the operation order or add useless computations to obfuscate the trace, we only verify if the stamp
operations exist in the cell in the correct order, which is not affected by the obfuscations due to their
execution dependency, while ignoring other operations. We claim the architecture ownership once all
cells contain the corresponding stamp operation sequences.

Algorithm 2: Watermark Embedding (Mark)
Input: marking key mk, NAS method,

proxy dataset D
Output: watermarked architecture A
S← search space of the whole model
for each cell ci do

retrieve {se : so} from mki
E = E − se
S = (G = (N , E),O)
S.append(S)

A = NAS(S,D)
return A

Algorithm 3: Watermark Verification (Verify)
Input: verification key vk, monitored trace T
Output: verification result r
Split T into cell windows
for each windowi in T do

retrieve so from vki, id← 0
for each cluster in windowi do

if match(cluster, so[id]) = True then
id+ = 1

r = (id = ns)?True : False
if not r then

return r
return r

3.5 THEORETICAL ANALYSIS

We theoretically prove that our proposed three algorithms (WMGen, Mark, Verify) form a qualified
watermarking scheme for NAS architectures, satisfying the properties in Section 3.1. The proof can
be found in Appendix A.

Theorem 1. The proposed Algorithms 1-3 form a watermarking scheme that satisfies the properties
of effectiveness, usability, robustness, and uniqueness.

4 SIDE CHANNEL EXTRACTION

Given a suspicious model, we aim to extract the embedded watermark using cache side channels. Past
works (Yan et al., 2020; Hong et al., 2018) only focused on conventional DNN models and normally
required knowledge of the target model’s architecture family. Hence, they cannot extract novel NAS
architectures with more sophisticated operations (e.g., separable convolutions, dilated-separable
convolutions). We design an enhanced methodology to extract the architectures of NAS models
by monitoring the side-channel pattern. To accelerate the computation, complex DNN operations
(e.g., convolutions) are generally transformed to General Matrix Multiply (GEMM) that is achieved
by the low-level BLAS library. We monitor the function activities in BLAS to recover the model
architecture and operations. In this paper, we take OpenBLAS as an example, while our method is
also generalized to other BLAS libraries, such as Intel MKL.

Our method contains three steps: (1) we monitor the memory accesses to the itcopy and oncopy
functions in OpenBLAS and record the pattern of itcopy-oncopy loops. These two functions are used
to load matrix data for multiplication, and the number of their invocations is determined by the matrix
dimensions. (2) we derive possible values of matrix dimensions (m,n, k) based on the obtained
itcopy-oncopy pattern, for the multiplication of matrix A (m × k) and matrix B (k × n). (3) The
operation type and hyper-parameters are revealed through deduced matrix dimensions, following the
rules of matrix transformation for different operations.

5

Under review as a conference paper at ICLR 2022

(a) fully connected layer (b) normal convolution

(c) separable convolution (d) dilated separable convolution
: itcopy : oncopy

Figure 3: Side-channel patterns of four operations in NAS (sampling interval is 2000 CPU cycles).

Figure 3 shows the leakage pattern of four representative operations used in NAS. Figure 3(a) is for a
classifier with two fully-connected (FC) layers, where we can clearly identify two separate clusters.
Figure 3(b) is for a normal convolution. In terms of the leakage pattern, a normal convolution is
hard to be distinguished from a FC layer, so that past work (Yan et al., 2020) needs to know the
architecture family to distinguish the operations. In the NAS scenario, since the normal convolution
is generally used at the preprocessing stage, while the FC layer is adopted as the classifier at the end,
they can be distinguished based on their locations. Figures 3(c) and 3(d) show the trace of a separable
convolution and a dilated separable (DS) convolution with the same configurations, respectively. The
leakage patterns of such two operations are fairly distinguishable, which contains C consecutive
clusters and one individual cluster at the end, where C is the number of input channels. Note that in a
NAS model, the separable convolution is always applied twice (Zoph et al., 2018; Real et al., 2019;
Liu et al., 2018a;b) to improve the performance, which makes its leakage pattern more recognizable.
Besides, it is easy to see the performance advantage of the DS convolution (8400 intervals) over the
separable convolution (10000 intervals). The reason is that the input matrix in a DS convolution
contains more padding zeros to reduce the computation complexity. More details about the leakage
patterns and hyper-parameter recovery of different NAS operations can be found in Appendix D.

5 EVALUATION

Configurations and implementation. Our approach is general for different types of deep learning
frameworks and libraries, and can be applied to all cell-based NAS methods. Without loss of
generality, we adopt Pytorch (1.8.0) and OpenBLAS (0.3.15). We mainly focus on the CNN tasks,
and select a state-of-the-art NAS method GDAS (Dong & Yang, 2019). It contains eight candidate
operations: identity, zeroize, 3×3 and 5×5 separable convolutions (SC), 3×3 and 5×5 dilated
separable convolutions (DS), 3×3 average pooling (AP), 3×3 max pooling (MP). We adopt CIFAR10
as the proxy dataset to search the optimal architecture, and the searched architecture is trained over
different datasets, e.g., CIFAR10, CIFAR100, ImageNet. We also consider watermarking RNN
models. We choose the DARTS (Liu et al., 2018b) method. The candidate operations for a RNN cell
contains tanh, relu, sigmoid activations, identity and zeroize. We use the PTB dataset to search and
train RNN models. More details can be found in Appendix E.

Side channel extraction. For CNN models, we monitor the itcopy and oncopy functions in Open-
BLAS. For RNN models, we monitor the activation functions (tanh, relu and sigmoid) in Py-
torch, since executions in OpenBLAS do not leak information about the models. We adopt the
FLUSH+RELOAD side-channel technique (Yarom & Falkner, 2014), but other methods can achieve
our goal as well. We inspect the cache lines storing these functions at a granularity of 2000 CPU
cycles to obtain accurate information. Details about the monitored code locations can be found in
Table 4 in Appendix F.

5.1 EFFECTIVENESS

mkn
sen ci−2 → N0 N0 → N1 N1 → N2 N2 → N3

son 3× 3 AP 5× 5 SC 3× 3 DS 3× 3 SC

mkr
ser ci−1 → N0 N0 → N1 N1 → N2 N2 → N3

sor 3× 3 DS 3× 3 SC 3× 3 SC skip

Table 1: An example of the marking key mk. We use skip to
denote the identity operation.

Key generation. A NAS method gen-
erally considers two types of cells. So
we set the same stamp for each type.
Then the marking key can be denoted
asmk = (mkn,mkr), wheremkn =
{sen : son} and mkr = {ser : sor}
represent the stamps embedded to the
normal and reduction cells, respectively. Each cell has four computation nodes (B = 4), and we set

6

Under review as a conference paper at ICLR 2022

ci-1

ci-2

N1

N2

N3

N4

ci

5x5 SC

3x3 AP
5x5 SC

3x3 AP

skip

skip

3x3 DS

3x3 SC

(a) Normal cell

3x3 DS
3x3 SC

ci-1

ci-2

N1

N2

N3

N4

ci

3x3 SC
skip

3x3 AP
3x3 AP

3x3 AP
skip

(b) Reduction cell
Figure 4: Architectures of the searched cells. ci−1 and ci−2 are the inputs from the previous cells.

the number of stamp edges ns = 4 for both cells, indicating four causal edges in each cell are fixed
and attached with random operations. We follow Algorithm 1 to generate one example of mk (Table
1). The verification key vk = (vkn, vkr) is also recorded, where vkn = son and vkr = sor.

Watermark embedding. We follow Algorithm 2 to embed the watermark determined by mk to the
DNN architecture during the search process. Figure 4 shows the architectures of two cells searched
by GDAS, where stamps are marked as red edges, and the computing order of each operation is
annotated with numbers. These two cells are further stacked to construct a complete DNN architecture,
including three normal blocks (each contains six normal cells) connected by two reduction cells. The
number of filters is doubled in the reduction cells, and the channel sizes of three normal blocks are
set as 33, 66 and 132. The searched model achieves a 3.51% error rate over CIFAR10, which is just
slightly higher than the original model (3.32%) searched from the complete search space.

 5 5 SC 3 3 DS

 5 5 SC skip 3 3 AP

 3 3 AP skip

 3 3 SC

Figure 5: A side-channel trace of the first normal cell.

Watermark extraction and verifica-
tion. Given a suspicious model, we
launch a spy process to monitor the
function activities in OpenBLAS dur-
ing inference, and collect the side-
channel trace. Following Algorithm
3, we divide the trace into cells and
check if each cell contains the fixed operation sequence given by vk. Figure 5 illustrates the leakage
trace of the first normal cell as an example. Other cells can be analyzed in the same way. From the
figure, we can observe four large clusters, which can be easily identified according to their leakage
patterns that 1 , 3 and 7 are SCs while 5 is a DS. Figure 6a shows the measured execution time of
these four GEMM operations. An interesting observation is that 5× 5 convolution takes much longer
time than 3× 3 convolution, because it computes on a larger matrix. Such timing difference enables
us to identify the kernel size when the search space is limited. Besides, we can also infer that the
channel size is 33, since each operation contains C = 33 consecutive sub-clusters2. Figure 6b gives
the inter-GEMM latency in the cell. The latency of 2 and 4 is much larger, indicating they are
pooling operations. Particularly, the latency of 8 contains two parts: skip and interval between two
cells. The three small clusters at the beginning of the trace are identified as three normal convolutions
used for preprocessing the input. Finally, after identifying the fixed operation sequences (so) in all
cells, we can claim the architecture ownership of the DNN model.

2

2

2

(a) GEMM operations

(b) Inter-GEMM latency
Figure 6: Execution time of the operations

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

8 6

8 8

9 0

9 2

9 4

9 6

9 8

CIF
AR

-10
 Ac

cu
rac

y(%
)

E p o c h I D

 o r i g i n a l
 n s = 1 n s = 2
 n s = 3 n s = 4

(a) CIFAR-10

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

6 0

6 5

7 0

7 5

8 0

8 5

CIF
AR

-10
0 A

ccu
rac

y(%
)

E p o c h I D

(b) CIFAR-100
Figure 7: Top-1 validation accuracy

5.2 USABILITY

To evaluate the usability property, we vary the number of stamp edges ns from 1 to 4 to search
watermarked architectures. Then we train the models over CIFAR10, CIFAR100 and ImageNet,
and measure the validation accuracy. Figure 7 shows the average results on CIFAR dataset of five

2The value of C can be identified if we zoom in Figure 5, which is not shown in this paper due to page limit.

7

Under review as a conference paper at ICLR 2022

(a) Prune Rate = 0.3, Accuracy = 94.13%

(b) Prune Rate = 0.6, Accuracy = 85.59%

(c) Prune Rate = 0.9, Accuracy = 10.03%

(d) Prune the first normal cell, Accuracy = 17.50%

Figure 8: Traces of pruned models

4 1 2 2 5 2 1 3 1 0 0

2 4 2 9 2 0 2 2 1 0 2 7 1 5 1 6

1 1 0 3 8 0 2 0 0

2 4 2 4 3 0 1 9 5 4 1 6 5 4 3 4

4 7 2 5 1 8 1 9 5 1 1 1 1

0 0 4 1 0 1 6 0 2

0 0 0 1 2 7 3 7 3 0 4 7

1 2 3 4 5 6 7 8

s k i p
s e p - c o n v (3)

d i l - c o n v (3)
s e p - c o n v (5)

d i l - c o n v (5)
a v g - p o o l
m a x - p o o l

Op
era

tio
ns

C o n n e c t i o n I n d e x

0 0 0 0 0 0 0 0

3 3 0 0 8 7 0 9 9 2 9

0 0 0 0 0 0 0 0

9 7 6 7 1 0 0 7 1 0 0 8 6 3 8 0

0 1 0 3 0 5 5 1 1

0 2 0 3 0 0 0 0

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8

C o n n e c t i o n I n d e x
0 . 0 0 0

2 0 . 0 0

4 0 . 0 0

6 0 . 0 0

8 0 . 0 0

1 0 0 . 0
T i m e s

Figure 9: Left: normal cell; Right:reduction cell

experiments versus the training epochs. We observe that models with different stamp sizes have quite
distinct performance at epoch 100. Then they gradually converge along with the training process, and
finally reach a similar accuracy at epoch 300. For CIFAR10, the accuracy of the original model is
96.53%, while the watermarked model with the worst performance (ns = 3) gives an accuracy of
96.16%. Similarly for CIFAR100, the baseline accuracy and worst accuracy (ns = 4) are 81.07%
and 80.35%. We also check this property on ImageNet. Since training an ImageNet model is quite
time-consuming (about 12 GPU days), we only measure the accuracies of the original model and
two watermarked models (ns = 2 and 4), which are also roughly the same (73.97%, 73.16% and
72.73%). This confirms our watermarking scheme does not affect the usability of the model.

5.3 ROBUSTNESS

We consider the robustness of our watermarking scheme against two types of model operations.

Model transformation. Prior parameter-based solutions (Adi et al., 2018; Zhang et al., 2020; Chen
et al., 2021a) are proven to be vulnerable against model fine-tuning or image transformations (Chen
et al., 2021c; Shafieinejad et al., 2019; Liu et al., 2020; Guo et al., 2021). In contrast, our scheme is
robust against these transformations as it only modifies the network architecture. First, we consider
four types of fine-tuning operations evaluated in (Adi et al., 2018) (Fine-Tune Last Layer, Fine-Tune
All Layers, Re-Train Last Layer, Re-Train All Layers). We verify that they do not corrupt our
watermarks embedded to the model architecture. Second, we consider model compression. Common
pruning techniques set certain parameters to 0 to shrink the network size. However, the GEMM
computations are still performed over pruned parameters, which give similar side-channel patterns.
Figures 8(a)-(c) show the extraction trace of the first normal cell after the entire model is pruned
with different rates (0.3, 0.6, 0.9) using L2-norm. Figure 8(d) shows one case where we prune all
the parameters in the first normal cell. We observe that a bigger pruning rate can decrease the length
of the leakage window, as there are more zero weights to simplify the computation. However, the
pattern of the operations in the cell keeps unchanged, indicating the weight pruning cannot remove
the embedded watermark.

Model obfuscation. An adversary may also obfuscate the inference execution to interfere with the
verification results. (1) He can shuffle the orders of some operations which can be executed in parallel.
However, since the selected stamp operations are in a path, they have high dependency and must
be executed in the correct order. Hence, we can still identify the fixed operation sequence from the
leakage trace of obfuscated models. (2) The adversary can add useless computations (e.g., matrix
multiplications), operations or neurons to obfuscate the side-channel trace. Again, the critical stamp
operations are still in the trace, and the owner is able to verify the ownership regardless of the extra
operations. We conduct experiments to show the robustness of our solution against those obfuscations
(Appendix G). In short, the stamp operations must be executed sequentially and cannot be removed
in a lightweight manner. This makes it difficult to remove the watermarks in the architecture.

Note that an adversary can leverage some powerful methods (e.g., knowledge distillation (Ba &
Caruana, 2013; Hinton et al., 2015)) to fundamentally change the architecture of the target model and
possibly erase the watermarks. However, this is not flagged as copyright violation, since the adversary
needs to spend a quantity of effort and cost (computing resources, time, dataset) to obtain a new
model. This model is significantly different from the original one, and is regarded as the adversary’s
legitimate property.

8

Under review as a conference paper at ICLR 2022

xi

hi-1
N2

N0 N1 N3

N6

N4

N5

N7

N8

a
v
era

g
e

hi

sigmoid

relu

tanh

relu

sigmoid

tanh

relu

Figure 10: Recurrent cell learned on PTB.

: relu : tanh : sigmoid

Figure 11: Side-channel trace of a recurrent cell.

5.4 UNIQUENESS

The theoretical analysis assumes each edge selects various operations with equal probability, and
shows the collision rate is less than 0.03% (see Appendix A). We further empirically evaluate the
uniqueness of our watermarking scheme. Specifically, We repeat the GDAS method on CIFAR10
for 100 times with different random seeds to generate 100 architecture pairs for the normal and
reduction cells. We find our stamps have no collision with these 100 normal models. Figure 9 shows
the distribution of the operations on eight connection edges in the two cells. We observe that most
edges have some preferable operations, and there are some operations never attached to certain edges,
which does not match our assumptions. Such feature can help us to select more unique operation
sequence as the marking key. Besides, the collision probability is decreased when the stamp size ns is
larger. A stamp size of 4 with fixed edge-operation selection can already achieve strong uniqueness.

5.5 WATERMARKING RNN MODELS

Besides CNN models, our scheme can also watermark RNN architectures. In a recurrent cell, each
node only takes one input from the previous nodes, which is processed by one function in the
candidate operation set. Then all the intermediate nodes are averaged to generate the cell output hi.
Figure 10 shows an example of a recurrent cell searched on the PTB dataset with DARTS. Two inputs
(input xi and hidden state of the last layer) are added and passed to a tanh function for the initial
node (Liu et al., 2018b; Pham et al., 2018).

Our scheme selects a path of ns = 4 edges with random operations as the stamp (red edges in Figure
10). Since the search space for a recurrent cell only contains activation functions, which cannot
be observed from the GEMM trace, we monitor the function accesses in PyTorch instead. Figure
11 shows the trace of a RNN model. We observe a recurrent cell contains 9 separate clusters: the
first one denotes the tanh operation at the cell input and the remaining clusters are the operations
attached to the nodes. The input to each node is processed by sigmoid, followed by the searched
NAS operations. Compared with the CNN trace, a RNN model has a much more observable pattern,
where each cluster corresponds to a node in order. The watermark has relatively larger impact on the
performance of the searched RNN model, as the recurrent cell is more sensitive from the initial state.
Table 2 shows the perplexity of the watermarked models over the validation and test datasets, with
different stamp sizes ns. The watermark can increase the perplexity of the RNN model. However,
such performance is still satisfactory (Liu et al., 2018b), proving the usability of our scheme.

Perplexity Original Stamp Size ns
1 2 3 4 5 6 7 8

Valid 58.1 59.73 59.65 62.85 61.62 60.33 60.27 62.23 62.93
Test 55.7 57.96 57.7 60.82 59.48 58.44 57.86 59.94 61.03

Table 2: Perplexity of watermarked RNN models with various ns.

6 CONCLUSION

In this paper, we propose a new direction for DNN IP protection. We show a carefully-crafted network
architecture can be utilized as the ownership evidence, which exhibits stronger resilience against
model transformations than previous solutions. We leverage Neural Architecture Search to produce
the watermarked architecture, and cache side channels to extract the black-box models for ownership
verification. Evaluations indicate our scheme can provide great effectiveness, usability, robustness,
and uniqueness, making it a promising and practical option for IP protection of AI products.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In USENIX
Security Symposium, pp. 1615–1631, 2018.

William Aiken, Hyoungshick Kim, and Simon Woo. Neural network laundering: Removing black-box
backdoor watermarks from deep neural networks. arXiv preprint arXiv:2004.11368, 2020.

Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? arXiv preprint
arXiv:1312.6184, 2013.

Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN: Reverse engineering
of neural network architectures through electromagnetic side channel. In USENIX Security
Symposium, pp. 515–532, 2019.

Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-
Reza Sadeghi. Software grand exposure: SGX cache attacks are practical. In USENIX Workshop
on Offensive Technologies, 2017.

Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li, and Yang Liu. Temporal watermarks for
deep reinforcement learning models. In International Conference on Autonomous Agents and
Multiagent Systems, 2021a.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. One-shot neural ensemble architecture
search by diversity-guided search space shrinking. arXiv preprint arXiv:2104.00597, 2021b.

Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li, and Dawn Song. REFIT:
A unified watermark removal framework for deep learning systems with limited data. ACM ASIA
Conference on Computer and Communications Security, 2021c.

Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness of
weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair DARTS: Eliminating unfair
advantages in differentiable architecture search. In European Conference on Computer Vision, pp.
465–480, 2020.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours. In IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1761–1770, 2019.

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Kazushige Goto and Robert A van de Geijn. Anatomy of high-performance matrix multiplication.
ACM Transactions on Mathematical Software, 34(3):1–25, 2008.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli O’Connell,
Wolfgang Schoechl, and Yuval Yarom. Another flip in the wall of rowhammer defenses. In IEEE
Symposium on Security and Privacy, pp. 245–261, 2018.

Shangwei Guo, Tianwei Zhang, Han Qiu, Yi Zeng, Tao Xiang, and Yang Liu. Fine-tuning is not
enough: A simple yet effective watermark removal attack for dnn models. International Joint
Conference on Artificial Intelligence (IJCAI), 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stuart Nevans Locke, Ian Rackow, Kevin Kulda,
Dana Dachman-Soled, and Tudor Dumitraş. Security analysis of deep neural networks operating
in the presence of cache side-channel attacks. arXiv preprint arXiv:1810.03487, 2018.

Sanghyun Hong, Michael Davinroy, Yiğitcan Kaya, Dana Dachman-Soled, and Tudor Dumitraş.
How to 0wn NAS in your spare time. arXiv preprint arXiv:2002.06776, 2020.

10

Under review as a conference paper at ICLR 2022

Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei Ding,
Chang Liu, Timothy Sherwood, et al. DeepSniffer: A DNN model extraction framework based on
learning architectural hints. In International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 385–399, 2020.

David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryption. In White Paper, 2016.

Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and Christof
Fetzer. TensorSCONE: A secure TensorFlow framework using Intel SGX. arXiv preprint
arXiv:1902.04413, 2019.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In European
Conference on Computer Vision, pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. Removing backdoor-based watermarks in neural
networks with limited data. arXiv preprint arXiv:2008.00407, 2020.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software model for isolated
execution. Hasp@ isca, 10(1), 2013.

Ryota Namba and Jun Sakuma. Robust watermarking of neural network with exponential weighting.
In ACM Asia Conference on Computer and Communications Security, pp. 228–240, 2019.

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani,
and Manuel Costa. Oblivious multi-party machine learning on trusted processors. In USENIX
Security Symposium, pp. 619–636, 2016.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In AAAI Conference on Artificial Intelligence, volume 33, pp.
4780–4789, 2019.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. DeepSigns: An end-to-end watermarking
framework for protecting the ownership of deep neural networks. In ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, 2019.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Malware
guard extension: Using SGX to conceal cache attacks. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pp. 3–24. Springer, 2017.

Masoumeh Shafieinejad, Jiaqi Wang, Nils Lukas, Xinda Li, and Florian Kerschbaum. On the
robustness of the backdoor-based watermarking in deep neural networks. arXiv preprint
arXiv:1906.07745, 2019.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into
deep neural networks. In ACM on International Conference on Multimedia Retrieval, pp. 269–277,
2017.

Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepathy: Leveraging shared
resource attacks to learn DNN architectures. In USENIX Security Symposium, pp. 2003–2020,
2020.

Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In USENIX Security Symposium, pp. 719–732, 2014.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and Ian
Molloy. Protecting intellectual property of deep neural networks with watermarking. In ACM Asia
Conference on Computer and Communications Security, pp. 159–172, 2018.

11

Under review as a conference paper at ICLR 2022

Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou, Hao Cui, and
Nenghai Yu. Model watermarking for image processing networks. In AAAI Conference on Artificial
Intelligence, volume 34, pp. 12805–12812, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8697–8710, 2018.

12

Under review as a conference paper at ICLR 2022

A PROOF SKETCH OF THEOREM 1

Proof Sketch. We first assume the search space restricted by the watermark is still large enough for
the model owner to find a qualified architecture.

Assumption 1. Let S0, S be the search spaces before and after restricting a watermark in a NAS
method, S0 ⊇ S. A0 ∈ S0 is the optimal architecture for an arbitrary data distribution D. A is the
optimal architecture in S, The model accuracy of A is no smaller than that of A0 by a relaxation of
ε
N .

We further assume the existence of an ideal analyzer that can recover the watermark from the given
side-channel trace.

Assumption 2. Let mk and vk be the marking and verification key of a DNN architecture A =
{c1, ..., cN}. For ∀mk, vk, and A, there is a leakage analyzer P that is capable of recovering all
the stamps of {ci}Ni=1 from a corresponding cache side-channel trace.

With Assumptions 1-2, we prove that our algorithms (WMGen, Mark, Verify) form a qualified
watermarking scheme for NAS models.

Effectiveness. The property can be guaranteed by Assumption 2.

Usability. Let Sci,0, Sci be the architecture search spaces before and after restricting the stamp ki of
ci. Aci,0 and Aci are the two architecture searched from Sci,0 and Sci , respectively. fci,0 and fci are
the corresponding models trained on the the same data distribution D. From Assumption 1, we have

Pr[fci,0(x) = y|(x, y) ∼ D]− Pr[fci(x) = y|(x, y) ∼ D] ≤ ε

N
. (1)

Let f0, f are the DNN models that are learned before and after restricting their architecture search
spaces by a watermark. One can easily use the mathematical induction to prove the usability of our
watermarking scheme, i.e.,

Pr[f0(x) = y|(x, y) ∼ D]− Pr[f(x) = y|(x, y) ∼ D] ≤ ε. (2)

Robustness. We classify the model modification attacks into two categories. The first approach
is to only change the parameters of f using existing techniques such as fine-tuning and model
compression. Since the architecture is preserved, the stamps of all cells are also preserved. According
to Assumption 2, the idea analyzer can extract the stamps and verify the ownership of the modified
models.

The other category of attacks modifies the architecture of the model. Since the marking key (water-
mark) is secret, the adversary can uniformly modify the operation of an edge or delete an edge in a
cell. The probability that the adversary can successfully modify one edge/operation of a stamp is not
larger than ns

|ci| , where |ci| is the number of connected edges in ci. Thus, the expected value of the

total number of modification is δ × N×ns∑N
i=1 |ci|

τ×Ns . However, since the adversary cannot access the
proxy and task datasets, he cannot obtain new models with competitive performance by retraining the
modified architectures.

Uniqueness. Given a watermarked model, we expect that benign users have a very low probability
to obtain the same architecture following the original NAS method. Without loss of generality, we
assume the NAS algorithm can search the same architecture if the search spaces of all cells are the
same. Thus, the uniqueness of the watermarked model is decided by the probability that the adversary
can identify the same search spaces. Because the marking key is secret, the adversary has to guess
the edges and the corresponding operations of each stamp if he wants to identify the same search
spaces. Assume the selection of candidate operations is independent and identically distributed,
the probability that an operation is chosen on an edge is 1

|O| . For a DNN model that contains B
computation nodes, there are 2B connection edges, from which we select ns causal edges. There
are
(
2B
ns

)
combinations. Hence, the probability of the stamp collision in a cell can be computed as(

2B
ns

)
× (1
|O|)

ns . In our experiment configurations, the collision rate is smaller than 1.7%. Considering

13

Under review as a conference paper at ICLR 2022

both the normal and reduction cells, the collision rate is smaller than (1.7%)2 ≈ 0.03%, which can
be neglected.

B GET PATH FROM CELL SUPERNET

Algorithm 4 illustrates how to extract consecutive paths from the cell supernet G. The operation
{set} ◦ Ni appends the node Ni to each element in the set, generating a set Pi of possible paths
from the cell inputs to node Ni. Specifically, PB contains all the candidate paths in the cell supernet
G. Given the number of fixed stamp edges ns , our goal is to identify a path of length ns from G.
Note that the longest consecutive path in G contains B edges, so that it has 1 ≤ ns ≤ B. For each
candidate path p in PB, if its length is larger than ns, we would extract all the subpaths with length
ns from it (GetSubPath), and save them to Se.

Algorithm 4: GetPath from Cell Supernet
Input: cell supernet G, # of fixed edges ns

Output: set Se of all the possible paths with
length ns

Se = {},
P1 = {a, b} ◦ N1

for i from 2 to B do
Pi = (Pi−1 ∪ ... ∪ P1 ∪ {a} ∪ {b}) ◦ Ni

for p in PB do
if |p| ≥ ns then

Se = Se ∪ GetSubPath(p, ns)
return Se

Algorithm 5: GEMM in OpenBLAS
Input: matrice A, B, C; scalars α, β
Output: C = αA×B + βC
for j in (0:R:n) do // Loop 1

for l in (0:Q:k) do // Loop 2
call itcopy
for jj in (j:3UNROLL:j+R) do
// Loop 4

call oncopy
call kernel

for i in (P:P:m) do // Loop 3
call itcopy
call kernel

C DETAILS ABOUT GEMM IN OPENBLAS

BLAS realizes the matrix multiplication with the function gemm. This function computes C =
αA×B + βC, where A is an m× k matrix, B is a k × n matrix, C is an m× n matrix, and both
α and β are scalars. OpenBLAS adopts Goto’s algorithm Goto & Geijn (2008) to accelerate the
multiplication using modern cache hierarchies. This algorithm divides a matrix into small blocks
(with constant parameters P, Q, R), as shown in Figure 12. The matrix A is partitioned into P ×Q
blocks and B is partitioned intoQ×R blocks, which can be fit into the L2 and L3 caches, respectively.
The multiplication of such two blocks generates a P ×R block in the matrix C. Algorithm 5 shows
the process of gemm that contains 4 loops controlled by the matrix size (m,n, k). Functions itcopy
and oncopy are used to allocate data and functions. kernel runs the actual computation. Note that the
partition of m contains two loops, loop3 and loop4, where loop4 is used to process the multiplication
of the first P ×Q block and the chosen Q×R block. For different cache sizes, OpenBLAS selects
different values of P, Q and R to achieve the optimal performance.

C + = A B
m

n

m

k

k

n

+ =

Q

P

 Q

R

R

P

Figure 12: The procedure of GEMM.

These operations are commonly implemented in two steps.
(1) The high-level deep learning framework converts an
operation to a matrix multiplication: C = αA×B + βC,
where input A is an m × k matrix and B is a k × n ma-
trix, output C is an m × n matrix, and both α and β are
scalars; (2) The low-level BLAS library performs the ma-
trix multiplication with the GEMM algorithm (Algorithm
5). Constants of P , Q, R and UNROLL are determined
by the host machine configuration. Our testbed adopts
P = 320, Q = 320, R = 104512 and UNROLL = 4.
AsR is generally larger than n in NAS models, we assume
loop1 is performed only once. More details about GEMM
can be found in Appendix C.

We take three steps to recover each operation and its hyper-parameters. First, we monitor the memory
accesses to the itcopy and oncopy functions in Algorithm 5, and count the number of iterations itern

14

Under review as a conference paper at ICLR 2022

for each loop n. Different operations have distinct patterns of side-channel leakage. By observing
such patterns, we can identify the type of the operation. Second, we utilize the technique in Yan et al.
(2020) to derive the range of the matrix dimension (m,n, k) from itern, based on the equations:
iter1 ≡ 1, iter2 = dk/Qe, iter3 = d(m − P)/P e and iter4 = dn/3UNROLLe. Note that the
final two iterations of each loop are actually assigned with two equal-size blocks, rather than blocks of
size m (or n, k). This does not make big differences on the derivation. Then we deduce the possible
values of matrix dimension from the range, based on the constraints of NAS models. Finally, we
derive the hyper-parameters of each operation based on the matrix dimension, as described below.

D SIDE-CHANNEL LEAKAGE PATTERNS OF NAS OPERATIONS

Fully Connected (FC) Layer. The operation is computed as the multiplication of a learnable weight
matrix θ (m × k) and an input matrix in (k × n), to generate the output matrix out (m × n). m
denotes the number of neurons in the layer; k denotes the size of the input vector; and n reveals
the batch size of the input vectors. Hence, with the possible values of (m,n, k) derived from the
itcopy-oncopy pattern, hyper-parameters (e.g., neurons number, input size) of the FC layer can be
recovered.

Normal Convolution. Although this operation was adopted in earlier NAS methods Real et al.
(2019); Zoph et al. (2018), recent works Liu et al. (2018b); Dong & Yang (2019); Chu et al. (2020)
removed it from the search space as it is hardly used in the searched cells. A normal convolution at
the i-th layer can be transformed to the multiplication of input matrix ini (m× k) and filter matrix
Fi (k × n). The matrix dimensions are: m = (Wi −Ri + Pi + 1)(Hi −Ri + Pi + 1), k = R2

iDi

and n = Di+1, where (Wi, Hi, Di) is the size of input tensor, Pi is the padding size, Ri is the kernel
size of filters and Di+1 is the output channel size. In a NAS model, normal cells take the stride of 1,
while reduction cells take the stride of 2.

Separable Convolution. This operation aims to achieve more efficient computation with less
complexity by separating the filters. It first uses Di filters to convolve each input channel to generate
an intermediate tensor, which can be regarded as Di normal convolutions with the same pattern. Then
a 1× 1 convolution with Di+1 filters is applied to generate the final output. The leakage pattern of
the separable convolution is fairly distinguishable, which contains Di consecutive clusters and one
individual cluster at the end. Note that in a NAS model, the separable convolution is always applied
twice Zoph et al. (2018); Real et al. (2019); Liu et al. (2018a;b); Dong & Yang (2019) to improve the
performance, which makes its leakage pattern more recognizable.

Dilated Separable (DS) Convolution. This operation is the practical implementation of a dilated
convolution in NAS. The DS convolution only introduces a new variable, the dilated space d, from the
separable convolution. Hence, this operation has similar matrix transformation and leakage pattern as
the separable convolution, except for two differences. First, the actually used kernel size is changed
to R′i = Ri + d(Ri − 1). Second, a DS convolution needs much shorter execution time.

Skip Connect. The operation is also called identity in the NAS search space, which just sends outi
to inj without any processing. This operation cannot be directly detected from the side-channel
leakage trace, as it does not invoke any GEMM computations. Our experiments show that while the
skip connect cannot be distinguished in a CNN model, it can still be identified in an RNN model,
as it results in a distinguishable blank area that shortens the cluster length (e.g., the fifth cluster in
Figure 11).

Pooling. Given that pooling can reduce the size of the input matrix ini from the last output matrix
outi−1, the size of the pooling layer can be obtained by performing square root over the quotient
of the number of rows in outi−1 and ini. Besides, pooling introduces much longer latency (nearly
1.5×) than the normal inter-GEMM latency. Hence, we can identify this operation by monitoring the
matrix size and execution intervals. The pooling type can be revealed from the accesses on pooling
functions in the deep learning framework.

Activation Functions. An activation function is normally attached with each convolution operation.
Different from CNN models, an RNN model searched by NAS only consists of activation functions,
e.g., relu, sigmod, tanh. As they do not perform any complex matrix multiplications, their footprints
cannot be found in the low-level BLAS library. Hence, we turn to monitor the deep learning
framework for identification.

15

Under review as a conference paper at ICLR 2022

The relationships between the operation hyper-parameters and the matrix dimensions are summarized
in Table 3.

Operations Parameters Value Operations Parameters Value

Fully Connected Cl: # of layers # of matrix muls Pooling Layer pool width/height ≈
√

row(outi−1)
row(ini)Cn: # of neurons row(θ)

Operations Di+1: Number of Filters Ri: Kernel Size Pi: Padding Stride d: Dilated Space
Normal Conv

col(Fi)
√

col(ini)
col(outi−1)

diff(row(ini), row(outi−1))
NAS: Ri − 1 (non-dilated)
R′i − 1 (dilated), where
R′i = Ri + d(Ri − 1)

√
row(outi−1)
row(ini)

NAS: = 1 (normal cells)
= 2 (reduction cells)

0
Dilated Conv d

Separable Conv Filters 1 : # of same matrix muls
Filters 2 : col(Fi)

Filters 1 :
√
row(Fi)

Filters 2 : 1
0

Dil-Sep Conv d

Table 3: Mapping between operation hyper-parameters and matrix dimensions.

E DETAILS ABOUT THE NAS ALGORITHMS

E.1 ARCHITECTURE SEARCH

CIFAR10. We adopt GDAS Dong & Yang (2019) to search for the optimal CNN architectures on
CIFAR10. We set the number of initial channels in first convolution layer as 16, the number of the
computation nodes in a cell as 4 and the number of normal cells in a block as 2. Then we train the
model for 240 epochs. The setting of the optimizer and learning rate schedule is the same as that in
Dong & Yang (2019). The search process on CIFAR10 takes about five hours with a single NVIDIA
Tesla V100 GPU.

PTB. We adopt DARTS Liu et al. (2018b) to search for the optimal RNN architecture on PTB. Both
the embedding and hidden sizes are set as 300, and the network is trained for 50 epochs using SGD
optimization. We set the learning rate as 20, the batch size as 256, BPTT length as 35, and the weight
decay as 5× 10−7. Other setting of the optimization of the architecture is also the same as Liu et al.
(2018b). The search process takes 6 hours on a single GPU.

E.2 MODEL RETRAINING

CIFAR After obtaining the searched cells, we form a CNN with 33 initial channels. We set number
of computation nodes in a cell as 4 and the number of normal cells in a block as 6. Then we train the
network for 300 epochs on the dataset (both CIFAR10 and CIFAR100), with a learning rate reducing
from 0.025 to 0 with the cosine schedule. The preprocessing and data augmentation is the same as
Dong & Yang (2019). The training process takes about 11 GPU hours.

ImageNet For the CNN on ImageNet, we set the initial channel size as 52, and the number of normal
cells in a block as 4. The network is trained with 250 epochs using the SGD optimization and the
batch size is 128. The learning rate is initialized as 0.1, and is reduced by 0.97 after each epoch. The
training process takes 12 days on a single GPU.

PTB A RNN with the searched recurrent cell is trained on PTB with the SGD optimization and the
batch size of 64 until the convergence. Both the embedding and hidden sizes are set as 850. The
learning rate is set as 20 and the weight decay is 8× 10−7. The training process takes 3 days on a
single GPU.

F MONITORED FUNCTIONS IN PYTORCH AND OPENBLAS

Table 4 gives the monitored lines of the code in the latest Pytorch 1.8.0 and OpenBLAS 0.3.15.

Library Functions Code Line

OpenBLAS Itcopy kernel/generic/gemm_tcopy_8.c:78
Oncopy kernel/x86_64/sgemm_ncopy_4_skylakex.c:57

Pytorch

Relu aten/src/ATen/Functions.cpp:6332
Tanh aten/src/ATen/native/UnaryOps.cpp:452
Sigmoid aten/src/ATen/native/UnaryOps.cpp:389
Avgpool aten/src/ATen/native/AdaptiveAveragePooling.cpp:325
Maxpool aten/src/ATen/native/Pooling.cpp:47

Table 4: Monitored code lines in OpenBLAS and Pytorch.

16

Under review as a conference paper at ICLR 2022

Figure 13: Side-channel patterns of cells after the model obfuscation.

G ROBUSTNESS AGAINST MODEL OBFUSCATION

We consider two classes of model obfuscation attacks: (1) model operation shuffling and (2) useless
computations injection. Take the normal cell in Figure 4a as an example, Figure 13 illustrates the
leakage pattern of original cell and corresponding cells after being obfuscated by above two attacks.
In Figure 13(b), the attacker shuffles the operation execution order, which first executes 2 , 4 , 6 and
8 in Figure 13 and then run the watermarked path. From the figure, we can see that the watermark

(i.e., fixed operations) still can be identified in sequence. In Figure 13(c), the attacker add an unused
3× 3 separable convolution (red block) in the pipeline, but it still does not influence us to extract the
watermark, as the fixed sequence of stamp operations remains.

H WHOLE SIDE CHANNEL LEAKAGE TRACE

Figure 14 shows the whole side channel leakage trace of the tested NAS model in our end-to-end
watermarking process. While the nodes representing the function accesses are stacked up, we can
still identity the first block from interval 0 to around 2× 1e6, where there are more accesses to itcopy
(blue nodes). For the following two blocks, since the number of channels increases, the length of
leakage windows also increases.

Figure 14: Whole leakage trace of the NAS model.

I DEDUCTION OF MATRIX DIMENSIONS FROM THE LEAKAGE TRACE

Figure 15 shows the values of (m,n, k) extracted from itern in the normal cell, where each operation
contains two types of normal convolutions. For certain matrix dimensions that cannot be extracted
precisely, we empirically deduce their values based on the constraints of NAS models. For instance,
m is detected to be between [961, 1280]. We can fix it as m = 1024 since it denotes the size of input
to the cell and 32×32 is the most common setting. The value of n can be easily deduced as it is equal
to the channel size. Deduction of k is more difficult, since the filter size k in a NAS model is normally
smaller than the constant Q in OpenBLAS, which only invokes one loop2 in Algorithm 5. So we
can only tell k ≤ Q from the trace. However, an interesting observation is that 5 × 5 convolution
takes much longer time than 3× 3 convolution, because it computes on a larger matrix. Such timing
difference enables us to identify the kernel size Ri when the search space is limited. Analysis on the
reduction cells is similar.

17

Under review as a conference paper at ICLR 2022

 Actual value
 Detected value or range from side channel
 Deduced value using NAS constraints

Figure 15: Extracted values of the matrix parameters (m,n, k).

18

	Introduction
	Preliminaries
	Neural Architecture Search
	Threat Model

	Our Watermarking Scheme
	Overview
	Watermark Generation (WMGen)
	Watermark Embedding (Mark)
	Watermark Verification (Verify)
	Theoretical Analysis

	Side Channel Extraction
	Evaluation
	Effectiveness
	Usability
	Robustness
	Uniqueness
	Watermarking RNN Models

	Conclusion
	Proof Sketch of Theorem 1
	Get Path from Cell Supernet
	Details about GEMM in OpenBLAS
	Side-channel Leakage patterns of NAS Operations
	Details about the NAS Algorithms
	Architecture Search
	Model Retraining

	Monitored Functions in Pytorch and OpenBLAS
	Robustness against model obfuscation
	Whole side channel leakage trace
	Deduction of Matrix Dimensions from the Leakage Trace

