
Published as a workshop paper at ICLR 2025

UNDERSTANDING INFERENCE SCALING LAWS FOR
MIXTURES OF LLMS

Alex Havrilla
School of Mathematics
Georgia Institute of Technology
ahavrilla3@gatech.edu

Srishti Gureja
Cohere
srishtias1016@gmail.coma

ABSTRACT

Scaling inference time compute has enabled a significant improvement in model
mathematical problem solving ability. However, most inference scaling strategies
sample only from a single model. We extend and analyze inference scaling in
the mixed model setting, where samples from weak but inexpensive and strong
but expensive models can be pooled at test time. We find mixing samples over a
distribution of problems can outperform the best pure, single model strategy by
over 5% when given the same compute budget. Further, model mixing extends
the compute regimes for which inference scaling reliably improves performance.
However, as part of our analysis, we prove that for a fixed problem Q a pure strat-
egy sampling only a single model is most efficient. Further, the best model can be
identified as having the largest compute normalized probability of success for Q.
This implies the observed empirical improvements from model mixing stem from
an average improvement over the problem distribution as opposed to improvement
over the best pure strategy for any single problem. To better understand this re-
sult we empirically analyze the distribution of compute normalized probabilities
over problems for variously sized models. Our analysis reveals each model is best
suited for efficiently solving a non-trivial subset of problems, further motivating
the effectiveness of mixing solutions. Somewhat surprisingly, this remains true
even for the hardest set of problems, where, for example, the smallest model is
most efficient in solving 25% of the problem set.

1 INTRODUCTION

Recently, scaling the inference time compute of reasoning models has emerged as a powerful tool
for boosting problem solving ability (Brown et al., 2024; Snell et al., 2024; Wu et al., 2024). RL
fine-tuned models like o1 (OpenAI, 2024) and r1 (DeepSeek-AI et al., 2025) exhibit an ability
to explore multiple branches of thought, conducting an in-context search for the correct solution.
Remarkably, these methods exhibit a log-linear scaling law between inference-time compute and
model performance over several orders of magnitude. However, all of these approaches sample
solutions only from a single model, thereby potentially limiting solution diversity (Havrilla et al.,
2024).

In this work we study the inference time scaling benefits of model mixing: allocating a fixed compute
budget C amount multiple models M1, ...,Mk instead of a single model M . We are primarily
interested in two research questions (RQs):

• RQ1: Can model mixing improve inference time scaling either by 1) boosting performance
or 2) extending the scaling law to larger compute regimes?

• RQ2: If the answer to RQ1 is yes, what factors account for this improvement?

In answer to RQ1 we find that model mixing both improves overall inference scaling performance
and extends the compute regimes for which scaling continues. In an effort to address RQ2 and
understand what factors might account for this improvement, we prove that for a fixed problem
Q a pure strategy sampling only a single model is most efficient. This implies the observed em-
pirical improvements from model mixing stem from an average improvement over the problem
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distribution as opposed to improvement over the best pure strategy for any single problem. Our
analysis leads us to define the compute normalized probability (cnp) of success at solving a problem
Q as a quantity useful for identifying which problems are most efficiently solved by which mod-
els from a set M1, ...,Mk with costs c1, ..., ck. Empirically computing the distribution of cnps for
M1, ...,Mk across a large set of reasoning problems reveals each Mi is most efficient for solving a
large percentage of problems across all difficulty levels.

In summary we make the following contributions:

• An extension of inference-time scaling to the mixed model setting, revealing benefits to
both overall performance and scaling longevity.

• An analysis of factors leading to improvement, revealing large, disjoint subsets of problems
across all difficulty levels are most efficiently solved by different models.

Background The inference time scaling benefits of LLMs for reasoning tasks were initially re-
vealed in Brown et al. (2024); Snell et al. (2024); Wu et al. (2024), all of which compared the
test performance of LLMs versus compute used when equipped with various search strategies (i.i.d
parallel sampling, MCTS (Browne et al., 2012), etc). More recently, o1 (OpenAI, 2024) and r1
(DeepSeek-AI et al., 2025) which train LLMs to conduct an in-context search process, thereby scal-
ing the number of sampled tokens in a given solution attempt. Most related to this work is the recent
Zhang et al. (2024) which proposes a training based method for finding the ideal allocation of com-
pute among multiple models to boost inference time performance. Also related are works which
combine the usage of small and large models at test time by dynamically selecting the best model
on a question by question basis (Shufaro et al., 2024).

2 METHODS

For the remainder of the work we fix our model set M1, M2, M3 as the Qwen-1.5-4B, 14B, and
32B models respectively. We evaluate on reasoning problems drawn from the MATH (Hendrycks
et al., 2021) test set. Let ∆(3) denote the two-dimensional probability simplex such that λ ∈ ∆(3)
satisfies λ1+λ2+λ3 = 1. Then, given a compute budget C > 0, the λ-mixing Mλ of M1,M2,M3

allocates λi · C compute to Mi. For a distribution of problem solution pairs (Q,A) ∼ P we then
seek to maximize

λ∗ = argmax
λ∈∆(3)

E
(Q,A)∼P

PMλ
(A|Q)

where λ∗ will be our optimal mixture allocation. We know that, for a fixed problem solution pair
(Q,A) the optimal allocation is in fact pure (no mixing):
Proposition 1. Let k ∈ N and M1, ...,Mk be language models with inference costs c1, ..., ck. Fix
a problem, answer pair (Q,A). For 1 ≤ i ≤ k, let pi = PMi

(A|Q) and ri =
log(1−pi)

ci
be the log-

compute normalized failure probability of model Mi for Q. Fix a compute budget C > 0 and Mλ

the λ ensemble of M1, ...,Mk for some λ in ∆(k) where ∆(k) is the k − 1 dimensional probability
simplex. Then

argmax
λ∈∆(k)

P(A|Q,Mλ) = argmax
ei

P(A|Q,Mλ) = ei∗

and
i∗ = argmin

1≤i≤k
ri

where ei is the ith standard basis vector. I.e. the probability of solving the fixed question Q with com-
pute budget C is maximized by only sampling the model Mi with the smallest compute inefficiency
ri.

A proof is provided in Appendix Section B. The proposition reveals that if model mixing does lead
to better inference scaling laws, this cannot be due to an improvement over the best pure strategy for
a single question Q. Additionally, the proof of 1 suggests the following useful quantity identifying
which model among M1,M2,M3 will most efficiently solve a fixed Q. We define the compute nor-
malized probability of success for Mi on Q as 1−(1−pi,Q)

cmax
ci where cmax = maxi ci. The quantity
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measures the probability model Mi successfully solves Q after cmax
ci

solution attempts (where without
loss of generality we suppose ci | cmax). We’ll now experimentally evaluate a range of Mλ model
mixtures and investigate which types of problems are best solved by which models.

3 RESULTS WHEN SCALING MIXED INFERENCE COMPUTE

Figure 1: Left: Mixed inference compute scaling laws for different λ. Right: Performance curves
for two-way mixtures for fixed compute budgets when varying the % allocation to the smaller model.

Mixing models leads to more performant scaling laws We now sample solutions from
M1,M2,M3 using up to 221 flops per problem. For each compute budget C ≤ 221 we run a
run a grid search over λ ∈ ∆(3) with a step-size of 0.1. Figure 1 plots the inference time scaling
behavior of selected mixtures. The best performing one-way mixture solves 77% with the full bud-
get. In comparison, a mixture allocating 20% compute to the 4B model, 20% to 14B, and 60% to
32B solves 82% of problems, demonstrating the improvement from model mixing. Additionally, the
slope of the mixed model curve is steeper than the one-way curves, indicatin better scalability.

In Figure 1 we additionally plot curves for the two-way mixtures at various compute budgets, varying
the % allocation to the smaller model. In general it appears the largest model (32B) performs best
even in combination with either of the other model. Somewhat surprisingly, the best performance
consistently comes from the combination of the 4B and 32B models, instead of 14B and 32B. This
is despite the 4B model performing worst overall with the equal compute budgets. This suggests
that while the 32B model is the most compute efficient over the entire distribution of problems, the
types of problems it fails to solve are better complemented by 4B than 14B.

Figure 2: Left: Max performance over one, two, and three way mixture strategies vs. compute.
Right: Three-way mixture performance with 221 flop compute budget.

Three-way mixtures are not overly sensitive to mixture allocation To more precisely under-
stand the overall performance of different mixture combinations we plot the results of our grid
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search with the highest compute budget in Figure 2. The results confirm that the highest performing
strategies concentrate in the center of the simplex (i.e. contain a high-degree of mixing). Further, the
improvement does not appear to be sensitive to the exact model mixture, as long as λ is well-enough
mixed.

Figure 3: Breakdown of problems by most compute efficient solver across problem difficulty levels.

All models uniquely best solve a large percentage of problems Now having established the ben-
efits of model mixing for inference-time scaling we seek to understand where these improvements
come from. Via proposition 1 we know for a fixed problem Q a mixed model strategy cannot im-
prove over the best pure strategy on Q. If the best pure strategy on all problems was always the
largest 32B model, then the mixed strategy would not give any improvement at all. This suggests
there is significant diversity among the best pure strategy for different types of problems.

For each problem Q in the test dataset we compute the compute normalized probability of success for
each model M1,M2,M3. The model with the largest cnp for Q will then be the best pure strategy for
solving Q. We plot the percentage of problems best solved by each model in Figure 3 broken down
by difficulty level. We find several interesting trends. At all difficulty levels all models uniquely
best solve more than 15% of problems. The 4B model best solves the same percentage of level 1
problems as 32B. This percentage steadily decreases across problem difficulties, reaching 25% for
the 4B model on the hardest set of problems. Surprisingly, the 14B best solves a relatively small
percentage of level 1 problems compared to both other models across all difficulties. This explains
why the 4B+14B model mixtures perform better than 14+32B mixtures in Figure 1. However,
the subset of problems 14B best solves does increase in percentage among harder subsets, closely
matching the 4B’s percentage. The 32B model consistently best solves the highest percentage of
problems across all levels. Yet surprisingly, the difference in percentage between 4B and and 32B
does not appear to change much on the harder subsets. Remarkably, on the hardest set of problems,
all models best solve between 20-40% of problems, with the rest remaining unsolved with the given
compute budget. Note: the raw and compute normalized probabilities for each model across all
problems are plotted in Figure 4. Figure 5 similarly plots the difference in compute normalized
probability between sets of paired models.

4 CONCLUSION AND FUTURE WORK

In this work we conducted an analysis of inference scaling laws in the mixed compute regime where
samples from multiple models can be pooled given a fixed compute budget C > 0. We found
mixing solutions from different models improved both overall performance in the most expensive
compute budget regime and exhibited better scaling trends than single model strategies. As part of
our analysis, we showed this is due to the complementary problem solving abilities of differently
sized models. Future work might conduct more investigations into the type of data produced by
mixtures of models versus single models, focusing in particular on the diversity of generated data
both at the final answer and trajectory level.
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Ethics Statement As with any work studying generative models, we note generative modeling
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A SUCCESS PROBABILITY DISTRIBUTIONS

Figure 4: Distributions of raw and compute normalized success probability. The success probability
of a model for a question Q is the probability of correctly solving Q.

Figure 5: Distributions of the difference between compute normalized success probabilities between
various models. Note: negative values indicate the larer model has a larger cnp.

B PROOF OF PROP 1

Here we present the proof of proposition 1.
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Proof. First we compute P(A|Q,Mλ). The probability of Mλ solving Q is equal to one minus the
probability of no model in the ensemble ever solving Q, i.e.

P(A|Q,Mλ) = 1−
k∏

i=1

(1− pi)
λiC

ci

where we allocate λiC compute to Mi allowing for λiC
ci

samples. Then

argmax
λ∈∆(k)

P(A|Q,Mλ) = argmax
λ∈∆(k)

1−
k∏

i=1

(1− pi)
λiC

ci = argmin
λ∈∆(k)

k∏
i=1

(1− pi)
λiC

ci

= argmin
λ∈∆(k)

k∑
i=1

λiC

ci
log((1− pi)) = argmin

λ∈∆(k)

k∑
i=1

λiri

where we use the monotonicity of log on the second line. The final term is simply a convex com-
bination of fixed real numbers ri which is minimized by choosing λi = 1 for the smallest ri and
λj = 0 for j ̸= i.
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