
Under review as a conference paper at ICLR 2021

BAYESADAPTER: BEING BAYESIAN, INEXPENSIVELY
AND ROBUSTLY, VIA BAYESIAN FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their theoretical appealingness, Bayesian neural networks (BNNs) are
falling far behind in terms of adoption in real-world applications compared with
deterministic NNs, mainly due to their limited scalability in training and low fi-
delity in uncertainty estimates. In this work, we develop a new framework, named
BayesAdapter, to address these issues and bring Bayesian deep learning to the
masses. The core notion of BayesAdapter is to adapt pre-trained deterministic
NNs to be BNNs via Bayesian fine-tuning. We implement Bayesian fine-tuning
with a plug-and-play instantiation of stochastic variational inference, and propose
exemplar reparameterization to reduce gradient variance and stabilize the fine-
tuning. Together, they enable training BNNs as if one were training deterministic
NNs with minimal added overheads. During Bayesian fine-tuning, we further pro-
pose an uncertainty regularization to supervise and calibrate the uncertainty quan-
tification of learned BNNs at low cost. To empirically evaluate BayesAdapter, we
conduct extensive experiments on a diverse set of challenging benchmarks, and
observe satisfactory training efficiency, competitive predictive performance, and
calibrated and faithful uncertainty estimates.

1 INTRODUCTION

Much effort has been devoted to developing flexible and efficient Bayesian deep models to make
accurate, robust, and well-calibrated decisions (MacKay, 1992; Neal, 1995; Graves, 2011; Blun-
dell et al., 2015), with Bayesian neural networks (BNNs) as popular examples. The principled
uncertainty quantification inside BNNs is critical for realistic decision-making, well evaluated in
scenarios ranging from model-based reinforcement learning (Depeweg et al., 2016) and active learn-
ing (Hernández-Lobato & Adams, 2015), to healthcare (Leibig et al., 2017) and autonomous driv-
ing (Kendall & Gal, 2017). BNNs are also known to be capable of resisting over-fitting.

However, there are fundamental obstacles posed in front of ML practitioners when trying to push the
limit of BNNs to larger datasets and deeper architectures: (i) The scalability of the existing BNNs
is generally restrictive owing to the essential difficulties of learning a complex, non-degenerate dis-
tribution over parameters in a high-dimensional and over-parameterized space (Liu & Wang, 2016;
Louizos & Welling, 2017; Sun et al., 2019). (ii) The Bayes posteriors learned from scratch are of-
ten systematically worse than their point-estimate counterparts in terms of predictive performance
when “cold posterior” strategies are not applied (Wenzel et al., 2020). (iii) It is shown that the BNNs
have the possibility to assign low (epistemic) uncertainty for realistic out-of-distribution (OOD) data
(e.g., adversarial examples), rendering their uncertainty estimates unreliable in safety-critical sce-
narios (Grosse et al., 2018).

To solve these problems, we present a scalable workflow, named BayesAdapter, to learn more re-
liable BNNs. In a holistic view, we unfold the learning of a BNN into two steps: deterministic
pre-training of the deep neural network (DNN) counterpart of the BNN followed by several-round
Bayesian fine-tuning. This enables us to learn a principled BNN with slightly more efforts than
training a regular DNN, and provides us with the opportunities to embrace qualified off-the-shelf
pre-trained DNNs (e.g., those on PyTorch Hub). The converged parameters of the deterministic
model serve as a strong start point for Bayesian fine-tuning, allowing us to bypass extensive local

1



Under review as a conference paper at ICLR 2021

h1 = x@w1; w1 ∼ 𝒩(μ1, ψ1)

h2 = h1@w2; w2 ∼ 𝒩(μ2, ψ2)

h3 = h2@w3; w3 ∼ 𝒩(μ3, ψ3)

Training samples OOD samples

Log-likelihood Uncertainty reg.

h1 = x@w1*

h2 = h1@w2*

h3 = h2@w3*

Training samples

Transform 
DNN to be 

BNN; 
Initialize  

as  
μ

ω*

Set up 
optimizers with 
built-in weight 

decay

Fine-tune the BNN

Predictions
grad. grad.

Pre-train the DNN class MuOptimizer:
    ...
    def step(mu, lambda):
        # perform weight decay
        grad = mu.grad + lambda * mu.data
        # update via SGD, Adam, etc.
        mu.data = descent(mu.data, grad, self.lr)

class PsiOptimizer:
    ...
    def step(psi, lambda, num_training_data):
        # perform exponential weight decay
        grad = psi.grad + lambda * exp(psi.data * 2)
        # integrate a constant gradient
        grad -= 1. / num_training_data
        # update via SGD, Adam, etc.
        psi.data = descent(psi.data, grad, self.lr)

Figure 1: The workflow of BayesAdapter. We assume a three-layer model for simplicity. We at first pre-
train a DNN counterpart of the target BNN via maximum a posteriori (MAP) estimation, then transform it
to be a BNN by replacing the point-estimate parameters with a diagonal Gaussian centered at them, from
which the parameter samples are drawn for computation. After that, we build separate optimizers with built-in
weight decay for the Gaussian mean and variance, and perform fine-tuning to fit the data under uncertainty
regularization based on autodiff libraries.

optimum suffered by a direct learning of BNN1. To render the fine-tuning in the style of training
normal NNs, we resort to stochastic variational inference (VI) to update the approximate posterior.
We develop optimizers with built-in weight decay for the parameters of the variational distribution
to absorb the regularization effects from the prior, and develop exemplar reparametrization to re-
duce the gradient variance. Moreover, to make the uncertainty estimation of the learned models
reliable, we propose to additionally, explicitly regularize the model to behave uncertainly on repre-
sentative foreseeable OOD data during fine-tuning. This regularization takes the form of a margin
loss, and is readily applicable to most of the existing BNNs. Figure 1 depicts the whole frame-
work of BayesAdapter. Extensive empirical studies validate the efficiency and effectiveness of our
workflow. In summary, our contributions are as follows:

1. We propose BayesAdapter, to quickly and cheaply adapt a pre-trained DNN to be Bayesian
without compromising performance when facing new tasks.

2. We provide an easy-to-use instantiation of stochastic VI, which allows learning a BNN as
if training a deterministic NN and frees the users from tedious details of BNN.

3. We augment the fine-tuning with a generally applicable uncertainty regularization term to
rectify the predictive uncertainty according to a collection of OOD data.

4. Extensive studies validate that BayesAdapter is scalable; the delivered BNN models are
high-quality; and the acquired uncertainty quantification is calibrated and transferable.

2 BAYESADAPTER

In this section, we first motivate BayesAdapter by drawing a connection between maximum a poste-
riori (MAP) and Bayesian inference. We then describe the proposed procedure Bayesian fine-tuning,
and a practical and robust implementation of stochastic VI to realize it. Figure 1 illustrates the over-
all workflow of BayesAdapter.

2.1 FROM DNNS TO BNNS

Let D = {(xi, yi)}ni=1 be a given training set, where xi ∈ Rd and yi ∈ Y denote the input data and
label, respectively. A DNN model can be fit via MAP as following:

max
w

1

n

∑
i

[log p(yi|xi;w)] +
1

n
log p(w). (1)

We use w ∈ Rp to denote the high-dimensional model parameters, and p(y|x;w) as the predictive
distribution associated with the model. The prior term p(w), when taking the form of an isotropic
Gaussian, reduces to the common L2 weight decay regularizer in optimization. Despite the wide
adoption, DNNs are known to be prone to over-fitting, generating over-confident predictions, and
are unable to convey valuable information on the trustworthiness of their predictions. Naturally,
Bayesian neural networks (BNNs) come into the picture to address these limitations.

1Here the BNN mainly refers to mean-field variational BNNs, and the results in Sec 4.1 testify this point.

2



Under review as a conference paper at ICLR 2021

Typically, a BNN imposes a prior p(w) on model parameters, which is put together with the
likelihood p(D|w) to infer the posterior p(w|D). Among the wide spectrum of BNN algo-
rithms (MacKay, 1992; Neal, 1995; Graves, 2011; Blundell et al., 2015; Liu & Wang, 2016; Gal
& Ghahramani, 2016; Louizos & Welling, 2017), variational BNNs are particularly promising due
to their ease of training compared with other BNN variants. Formally, variational BNNs derive a
θ-parameterized varitional distribution q(w|θ) to approximate the true posterior p(w|D), by maxi-
mizing the evidence lower bound (ELBO) (scaled by 1/n):

max
θ

Eq(w|θ)
[ 1
n

∑
i

log p(yi|xi;w)
]

︸ ︷︷ ︸
Lell

− 1

n
DKL (q(w|θ)‖p(w))︸ ︷︷ ︸

Lc

, (2)

whereLell is the expected log-likelihood andLc is the complexity loss. By casting posterior inference
into optimization, Eq. (2) makes the training of BNNs more approachable. However, most existing
BNNs2 trained under such a criterion exhibit limitations in scalability and performance (Osawa et al.,
2019a; Wenzel et al., 2020) compared with their deterministic counterparts, mainly attributed to the
higher difficulty of learning high-dimensional distributions than point estimates, and challenges in
finding non-degenerated optima of highly nonlinear functions characterized by NNs.

Given that MAP converges to the mode of the Bayesian posterior, it might be plausible to adapt pre-
trained deterministic DNNs to be Bayesian economically. Following this hypothesis, we propose
to repurpose the converged parameters w∗ of MAP, and use it to instantiate q(w|θ) as a Gaussian
N (w;θ) with θ = (µ,Σ), where µ is initialized as w∗ and Σ ∈ Rp×p denotes the covariance.
Then, we arrive at a BNN with posterior predictive:

p(y|x,D) = EN (w;µ,Σ)p(y|x;w) ≈ 1

S

S∑
s=1

p(y|x;w(s)),where w(s) ∼ N (w;µ,Σ), s = 1, ..., S. (3)

Eq. (3) is also called Bayes ensemble, where µ is perturbed, and the predictions from multiple likely
models are assembled. Σ controls the magnitude of perturbation. A classic method to generate
an informative Σ is by Laplace approximation (Bleistein & Handelsman, 1986), but it is more like
a postprocessing procedure, lacking the flexibility to jointly adapt the mean and covariance of the
Gaussian posterior w.r.t. data, and its naive implementation without strong assumptions may be
computationally prohibitive. Instead, we suggest a more practical workflow – that fine-tunes the
approximate posterior N (w;µ,Σ) by maximizing the ELBO with randomly initialized Σ.

2.2 BAYESIAN FINE-TUNING IN THE STYLE OF FINE-TUNING DNNS

We develop practical learning algorithms under the stochastic VI scheme to fine-tune the imperfect
variational posterior, and to cope with contemporary ML frameworks. In the following, we discuss
how to deal with each term in Eq. (2). Algorithm 1 gives an overview of BayesAdapter.

Complexity loss Lc. Without losing generality, we assume an isotropic Gaussian prior p(w) =
N (w;0, σ2

0I). Then the complexity loss is derived as:

Lc = −
1

n
DKL

(
N (w;µ,Σ)‖N (w;0, σ2

0I)
)
= −µ

Tµ+ tr(Σ)

2σ2
0n

+
log detΣ

2n
+ c, (4)

where tr and det are matrix trace and determinant, respectively. c is a constant. The gradients of
Lc w.r.t. µ and Σ can be estimated precisely as:

∇µLc = −
µ

σ2
0n
, ∇ΣLc =

σ2
0Σ−1 − I

2σ2
0n

. (5)

Eq. (5) indicates that maxµ Lc amounts to applying a weight decay regularizer with coefficient λ =
1
σ2
0n

on µ, which can be conveniently optimized by leveraging the built-in weight decay modules in
ML frameworks such as TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al., 2019).

Directly computing ∇ΣLc involves matrix inversion. Implementing the posterior as matrix-variate
Gaussian is an alternative, while existing algorithms for matrix-variate Gaussian posterior typically
exhibit high complexity in time or memory, limited compatibility with contemporary NN build-
ing block operations (e.g., convolution), and struggle to scale with data-parallel distributed train-
ing (Louizos & Welling, 2016; Sun et al., 2017; Osawa et al., 2019b). To simplify the implemen-
tation and boost scalability, we assume a fully factorized Gaussian variational by devising Σ as

2We use BNNs equivalently with variational BNNs in the following text when there is no ambiguity.

3



Under review as a conference paper at ICLR 2021

diag(exp(2ψ)), where ψ ∈ Rp is the parameter to be optimized along with µ (i.e., θ = (µ,ψ)).
Injecting this into Eq. (5) gets a more concise gradient estimator: ∇ψLc = 1/n−λ exp(2ψ), mean-
ing that maxψ Lc adds an exponential weight decay of ψ with coefficient λ, which can be realized
by modifying only two lines of code on top of de facto DL frameworks (see Figure 1).

Expected log-likelihood Lell. With the complexity loss expressed as weight decay, we now develop
efficient ways for calculating the Lell at the end of forward pass, and for performing backpropagation
afterwards. In particular, we derive a Monte Carlo (MC) estimation of Lell based on reparameter-
ization (Kingma & Welling, 2013): we sample a p-dimensional Gaussian noise ε ∼ N (0, I), then
obtain the sampled parameter for the whole mini-batch B of data viaw = µ+exp(ψ)ε, given which
we approximate Lell with L′ell = 1

|B|
∑

(xi,yi)∈B log p(yi|xi;w). The gradients of µ and ψ can be
derived automatically with autodiff libraries, thus the training resembles that of normal DNNs.

However, gradients derived by L′ell might exhibit high variance, caused by sharing one set of sam-
pled parameters w across all the training instances in B. Local reparameterization is proposed to
reduce the variance, but it requires at least 2x forward-backward FLOPS than vanilla reparameter-
ization (refer to Kingma et al. (2015) for more details). Flipout (Wen et al., 2018) is an alternative
solution. But it is only suitable for perturbation based MC estimation and its modeling assumptions
make Flipout unable to handle complex variational posterior like a FLOW (Louizos & Welling,
2017), or an implicit model (Shi et al., 2018b). Besides, it is still as slow as local reparameter-
ization. To mitigate these issues, we propose exemplar reparametrization (ER) which samples a
separate set of parameters for every exemplar in the minibatch. Formally, for ∀xi ∈ B, we draw
w(i) = µ + exp(ψ)ε(i) where ε(i) ∼ N (0, I), and approximate the expected log-likelihood by
L∗ell = 1

|B|
∑

(xi,yi)∈B log p(yi|xi;w
(i)).

# assume shape x: [b, i, h, w]; w, mu, psi: [o, i, k, k]
def DNN_conv(x, w, stride, padding, groups):
    return conv2d(x, w, stride, padding, groups)

def BayesAdapter_conv(x, mu, psi, stride, padding, groups):
    b = x.shape[0]
    # sample a batch of parameters w: [b, o, i, k, k]
    w = mu + exp(psi) * randn(b, *list(mu.shape))
    # reshape w to have shape [b*o, i, k, k]
    w = w.flatten(start_dim=0, end_dim=1)
    # reshape x to have shape [1, b*i, h, w]
    x = x.flatten(start_dim=0, end_dim=1).unsqueeze(0)
    # perform b convs in parallel
    y = conv2d(x, w, stride, padding, groups*b)
    # reshape the result to standard format
    return y.view(b, mu.shape[0], y.shape[2], y.shape[3])

Figure 2: The comparison between standard convolu-
tion and convolution used in BayesAdapter.

Obviously, ER is distribution agnostic, and is
readily applicable to various variational distri-
butions. While ER generates more parame-
ters at training, they are mostly temporary, and
the resultant computational FLOPS are prov-
ably identical to that of the vanilla reparame-
terization. The challenge of ER is to cope with
nowadays ML frameworks and maintain com-
puting efficiency, because off-the-shelf compu-
tation kernels in autodiff libraries typically as-
sume a batch of instances share a common set
of parameters. We present an example in Fig-
ure 2 on how the standard convolution op can be converted into its exemplar version without
compromising computational efficiency. The key insight here is that multiple exemplar convolutions
can be expressed as a group convolution, which can be performed in parallel using a single group
convolution kernel, leveraging the optimized implementations provided by various device-propriety
kernel backends (e.g. cuDNN (Chetlur et al., 2014)). Other common operators such as matrix
multiplication are straightforward to handle (refer to Appendix A).

With this insight, BayesAdapter enables to obtain a BNN with only minor computational cost in
addition to pre-training, and can immediately benefit from the availability of higher-performance
computational kernels (e.g., more powerful group convolution kernel).

3 CALIBRATE THE UNCERTAINTY ESTIMATION

So far we have developed an inexpensive fine-tuning procedure to obtain BNNs from deterministic
NNs. While BNNs can offer uncertainty estimates, these uncertainty measures are highly non-
smooth due to the non-convexity of NNs – they might exhibit high uncertainty for data from faraway
out-of-distribution (OOD) regions, but become vulnerable on OOD samples close to the normal
ones (Grosse et al., 2018), rendering BNNs unable to react to potentially harmful inputs. We quantify
this phenomenon in Section 4.2. To address this problem, we next develop methods to further
calibrate the uncertainty estimation of naively trained BNNs. Inspired by recent work on OOD
detection (Wang et al., 2020; Durall et al., 2020), we propose to additionally incorporate uncertainty
regularization on top of the above fine-tuning procedure. The idea is to force BNNs to generate
inconsistent predictions for each sample from a cheaply collected OOD sample set, so that they
acquire the ability to yield high uncertainty for OOD samples with similar fingerprints.

4



Under review as a conference paper at ICLR 2021

Algorithm 1: BayesAdapter
Input: normal training set D in the size of n, OOD training set D†, weight decay coefficient λ for both

the pre-training and the fine-tuning, threshold γ, learning rates lrµ, lrψ , fine-tuning epochs T
1 Pre-train the DNN counterpart of the target BNN on D by MAP; denote the converged parameters as µ
2 Create randomly initialized parameters ψ; make the computation modules be Bayesian (see Figure 2)
3 Build optimizers optµ and optψ (see Figure 1) with learning rate lrµ and lrψ for µ and ψ respectively
4 for epoch = 1, 2, ..., T do
5 for mini-batch B = {(xi, yi)}|B|i=1 in D, mini-batch B† = {x†i}

|B†|
i=1 in D† do

6 Build the whole mini-batch {x1, ...,xB,x
†
1, ...,x

†
|B†|,x

†
1, ...,x

†
|B†|}, and feed it into the model

7 Given the predictive distribution and labels {yi}|B|i=1, compute L∗ell and Lunc
8 Derive the gradients of L∗ell + Lunc w.r.t. µ and ψ via AutoGrad
9 Update the parameters µ and ψ with optimizers optµ and optψ

To achieve this, we start by defining a differentiable uncertainty metric in terms of mutual informa-
tion, following Smith & Gal (2018):

I(w, y|x,D) ≈ H
(

1
S

∑S
s=1 p(y|x;w

(s))
)
− 1

S

∑S
s=1H

(
p(y|x;w(s))

)
,where w(s) ∼ N (w;µ,ψ), s = 1, ..., S. (6)

H is the Shannon entropy. I highly correlates with softmax variance (Smith & Gal, 2018), and
measures the epistemic uncertainty which describes uncertainty in the model and can be used to
identify OOD instances. Then, assuming access to an OOD dataset D† = {x†i}n

†

i=1, we enforce the
model to behave uncertainly on each of them by optimizing a margin loss with threshold γ:

maxθ Lunc =
1
|B†|

∑
x
†
i∈B

† min
(
I(w, y|x†i ,D), γ

)
, (7)

where B† refers to a mini-batch of OOD data. For efficiency, we adopt S = 2 MC samples for esti-
mating I(w, y|x†i ,D) in Eq. (7) in the training. While this loss has a seemingly opposite form from
the consistency-promoting loss in semi-supervised learning (SSL) (Laine & Aila, 2016), they share
the same design philosophy: Lunc maximizes the prediction inconsistency of OOD instances so as to
distinguish them from in-distribution instances, while SSL minimizes the prediction inconsistency
of unlabeled data so to classify them without labels. Put it in the context of autonomous driving:
if the model is trained on data only containing scenes in regular weather, we can take a small set
of scene data of extreme weather, e.g., tornado and sandstorm, to regularize the training following
Eq. (7). Then the model will learn to identify these abnormal scenes based on predictive uncertainty,
thus can refuse to make unreliable decisions in these scenes.

Constructing the OOD dataset D† is flexible and application-specific. In discriminative tasks, two
types of OOD data of particular concerns are adversarial and fake samples, which can be both
collected trivially following procedures described below.

Adversarial samples. Directly generating adversary samples following methods like PGD (Madry
et al., 2017) might be expensive. We propose a more cost-effective alternative based on a key obser-
vation: given a valid perturbation space [−δm, δm]d where δm is the maximum norm under the l∞
threat model, we can see that uniform noises δ ∼ U(−δm, δm)d radically encompass the adversarial
perturbations which usually reside at local optimas. Thus we can add uniformly perturbed samples
into uncertainty training to direct the model to behave uncertainly on randomly contaminated data,
bypassing the potential cost of generating real adversary samples. The results in Sec 4.2 surprisingly
confirm the effectiveness of uniform noises, and imply a strong connection between uniform noises
and adversarial ones, which deserves a future investigation.

Fake samples. Fake samples can be obtained by utilizing pretrained state-of-the-art GANs (Miyato
et al., 2018; Brock et al., 2018), DeepFake (Deepfakes, 2018), and FaceSwap (Faceswap, 2018). We
use only 1000 random fake samples for Bayesian fine-tuning on diverse benchmarks.

For both, we empirically find the proposed uncertainty regularization is data efficient – with access
to a proxy set of adversarial samples and a small set of fake samples, the model can acquire reliable,
transferable uncertainty quantification.

4 EXPERIMENTS

In this section, we evaluate BayesAdapter on a diverse set of challenging benchmarks.

5



Under review as a conference paper at ICLR 2021

Table 1: Predictive performance comparison on image classification. NLL denotes the negative log-likelihood.

Method CIFAR-10 (wide-ResNet-28-10) ImageNet (ResNet-50)
TOP1 (%) ↑ NLL ↓ TOP1 (%) ↑ TOP5 (%) ↑ NLL ↓

MAP 96.92 0.1312 76.13 92.86 0.9618
Deep Ensemble 97.40 0.0869 - - -

SWAG 96.32 0.1122 - - -
Laplace Approx. 96.41 0.1204 75.89 92.70 0.9739

MC dropout 96.95 0.1151 74.88 92.32 0.9884
BNN 97.02 0.0975 75.97 92.95 0.9435

BayesAdapter- 97.09 0.0945 76.49 93.10 0.9337
BayesAdapter 96.82±0.07 0.1004±0.0026 76.26±0.06 92.96±0.03 0.9428±0.0020

Table 2: Accuracy ↑ comparison on open-set face recognition with MobileNetV2 architecture.
Method LFW CPLFW CALFW CFP-FF CFP-FP VGGFace2 AgeDB-30

MAP 98.2% 84.0% 87.6% 97.8% 92.7% 91.7% 85.3%
MC dropout 98.2% 83.6% 87.3% 97.8% 92.8% 92.6% 86.0%

BNN 97.8% 82.4% 85.7% 96.8% 91.4% 90.5% 83.8%
BayesAdapter- 98.4% 84.4% 87.3% 97.7% 92.7% 92.3% 85.1%
BayesAdapter 98.5% 84.1% 87.4% 97.9% 93.1% 92.5% 84.8%

Settings. We first conduct experiments on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng
et al., 2009) using wide-ResNet-28-10 (Zagoruyko & Komodakis, 2016) and ResNet-50 (He et al.,
2016), respectively. Besides, we train face recognition models on CASIA (Yi et al., 2014) with Mo-
bileNetV2 (Sandler et al., 2018), and perform comprehensive evaluation on face verification datasets
including LFW (Huang et al., 2007), CPLFW (Zheng & Deng, 2018), CALFW (Zheng et al., 2017),
CFP (Sengupta et al., 2016), VGGFace2 (Cao et al., 2018), and AgeDB-30 (Moschoglou et al.,
2017). We pre-train DNNs following standard protocols, and perform Bayesian fine-tuning for 40,
12, and 16 epochs with weight decay coefficients (i.e., λ) 2e-4, 1e-4, and 5e-4 on these benchmarks
respectively. We set uncertainty threshold γ according to an observation that the normal examples
usually present < 0.75 mutual information uncertainty, across the studied scenarios. Then we use
γ = 0.75 in the regularization to push both the adversarial and fake data to exhibit distinguish-
able uncertainty from the normal data. We initialize ψ uniformly from [−6,−5]p and use 20-step
PGD as validation adversaries. On the three benchmarks, the perturbation budgets δm are set 0.031,
16/255, and 16/255, and the fake samples are obtained from SNGAN (Miyato et al., 2018), Big-
GAN (Brock et al., 2018), and DeepFake. We perform intensive data augmentation for fake training
data with a random strategy including Gaussian blur, JPEG compression, etc. We defer more details
to Appendix B. We run every experiment 3 times on 8 RTX 2080-TIs and report the average.

Baselines. We compare the full BayesAdapter to extensive baselines including: (1) MAP, (2)
Laplace Approx.: Laplace Approximation with diagonal Fisher information matrix, (3) MC dropout
(detailed in Appendix B), (4) BNN: BNNs trained from scratch by solving Eq. (2) without uncer-
tainty regularization, (5) BayesAdapter-: a variant of BayesAdapter without uncertainty regulariza-
tion. We also include Deep Ensemble (Lakshminarayanan et al., 2017), one of the state-of-the-art
BNNs, and SWAG (Maddox et al., 2019), whose performance is not worse than SGLD (Welling &
Teh, 2011), KFAC Laplace (Ritter et al., 2018), and temperature scaling (Guo et al., 2017), into the
comparison on CIFAR-103.

Metrics. We concern (i) the posterior predictive performance with S = 100 MC samples; (ii) the
average precision (AP) of directly using the uncertainty estimated by Eq. (6) (S = 20) to distinguish
OOD test samples (labeled 1) from normal test samples (labeled 0). Eq. (6) of the deterministic
baseline MAP is 0, so we take the predictive entropy as an alternative uncertainty measure for MAP.

4.1 PREDICTIVE PERFORMANCE

We compare the prediction performance, which is of central importance in practice, of various meth-
ods in Table 1 and 2. Deep Ensemble shows outperforming classification performance because the
ensemble candidates can investigate diverse function modes, but it is orders of magnitude more
expensive than BayesAdapter. BayesAdapter- notably surpasses the MAP, especially in NLL, ver-
ifying the modeling superiority of a Bayesian formulation and highlights the practical value of our
workflow. Laplace Approx. is consistently worse than MAP. In all settings, BNN is significantly
defeated by BayesAdapter-, confirming our claim that performing Bayesian fine-tuning from the

3Currently, we have not scaled Deep Ensemble and SWAG up to ImageNet due to resource constraints.

6



Under review as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
Mutual information

0

5

10

15

20

D
en

si
ty

Normal
Adversarial

(a) BayesAdapter, CIFAR-10

0.00 0.02 0.04
Mutual information

0

200

400

600

800

D
en

si
ty

Normal
Adversarial

(b) BayesAdapter-, CIFAR-10

0 1 2 3
Mutual information

0

2

4

6

D
en

si
ty

Normal
Fake

(c) BayesAdapter, ImageNet

0 1 2 3
Mutual information

0.0

2.5

5.0

7.5

10.0

12.5

D
en

si
ty

Normal
Fake

(d) BayesAdapter-, ImageNet

Figure 3: The histograms for the mutual information uncertainty of normal data and OOD data given by models
trained w/ and w/o uncertainty regularization.

Table 3: Comparison on the quality of uncertainty estimates in terms of average precision (AP) ↑ of uncertainty
based binary classification. (CIFAR-10 and ImageNet)

Method CIFAR-10 ImageNet
Adversarial (PGD) Fake (SNGAN) Adversarial (PGD) Fake (BigGAN)

MAP 0.307 0.800 0.308 0.010
Deep Ensemble 0.427 0.812 - -

SWAG 0.316 0.816 - -
Laplace Approx. 0.308 0.800 0.311 0.015

MC dropout 0.308 0.803 0.309 0.012
BNN 0.307 0.799 0.310 0.021

BayesAdapter- 0.307 0.806 0.387 0.013
BayesAdapter 0.993±0.003 0.994±0.001 0.964±0.009 0.848±0.037

converged deterministic checkpoints is beneficial to bypass the local optimas potentially encoun-
tered by direct Bayesian inference. The popular baselines MC dropout and SWAG show weaker
performance on ImageNet and CIFAR-10, respectively, revealing limited applicability. Also of note
that no method shows dominant performance on face recognition, probably due to the diversity of
these validation sets. Across these tasks, BayesAdapter is slightly worse than its regularization-free
version BayesAdapter-. This is reasonable since such a regularization enforces the model to trade
partial capacity for fidelity of uncertainty estimates. Nevertheless, BayesAdapter is substantially
better than its fine-tuning start point MAP and the BNN trained from scratch in most settings.

Speedup. BayesAdapter is a much more economical way to obtain BNNs. To interpret the speedup
of BayesAdapter over BNN, we assume deterministic ResNet-50 takes one unit time t for one epoch
of training on ImageNet, and observe Bayesian ResNet-50 takes ≈ 2.1t for one epoch. Thus, BNN
trained from scratch consumes 189t for 90-epoch training, while BayesAdapter- need t ∗ 90+2.1t ∗
12 = 115.2t, saving 73.8t (around 40%) training time than BNN. 4

4.2 QUALITY OF UNCERTAINTY ESTIMATES

We study the effects of the proposed uncertainty regularization by visualizing the predictive uncer-
tainty of BayesAdapter and BayesAdapter- on validation data in Figure 3. On both CIFAR-10 and
ImageNet, BayesAdapter yields evidently higher uncertainty for OOD data than normal data, while
BayesAdapter- is on the contrary, showing it can effectively calibrate the predictive uncertainty.

To precisely evaluate its efficacy, we quantitatively assess the quality of the predictive uncertainty of
various methods by estimating AP, which reflects if the model knows what it knows. As stated, we
take adversarial samples crafted by PGD and fake samples from GANs and DeepFake as proxies of
harmful OOD data. We report the results in Table 3 and Table 6 in Appendix C. As shown, SWAG,
Laplace Approx., MC dropout, BNN, and BayesAdapter- perform all as bad as MAP across settings,
except that MC dropout is capable of partially detecting OOD data on face tasks5. Despite impressive
prediction accuracy, Deep Ensemble also yields unreliable uncertainty estimates on these two kinds
of challenging OOD data. These results echo our concern on the reliability of existing BNNs’
predictive uncertainty. By contrast, BayesAdapter, which is fine-tuned upon MAP for only several
rounds based on low-cost supervisions, achieves near-perfect results in detecting OOD instances
on CIFAR-10 and face recognition, and also detects most of the OOD instances on ImageNet (see
Appendix D for some samples).

4.3 ABLATION STUDY
4In practice, BayesAdapter would be a little slower than BayesAdapter- due to the incorporation of the OOD

training set, but still much more efficient than BNN.
5We speculate this may relate to where to add dropout in the NN architecture, but leave it for future study.

7



Under review as a conference paper at ICLR 2021

Table 4: Comparison on ECE ↓.
Method CIFAR-10 ImageNet

MAP 0.0198 0.0373
Deep Ensemble 0.0057 -

SWAG 0.0088 -
Laplace Approx. 0.0106 0.0375

MC dropout 0.0119 0.0152
BNN 0.0055 0.0183

BayesAdapter- 0.0094 0.0159
BayesAdapter 0.0057 0.0165

Model calibration. Model calibration is an-
other important aspect of the uncertainty estima-
tion. Suggested by pioneering works, we take the
Expected Calibration Error (ECE) (Guo et al.,
2017) as the measure of calibration, and report
the ECE of the studied methods in Table 4. The
ECE of BayesAdapter is on par with the MC
dropout, Deep Ensemble, and BNN baselines, but
BayesAdapter can meanwhile offer much better
uncertainty for detecting risky OOD data.

Transferability of uncertainty quantification. One may wonder if the uncertainty quantification
learned according to specialized OOD data can generalize to other OOD data. To figure out this prob-
lem, we evaluate the BayesAdapter trained on CIFAR-10 on 10000 samples from PGGAN (Karras
et al., 2017) whose patterns are unseen during training. We compute their uncertainty and calculate
the AP metric, obtaining 0.932. As comparison, the APs of MAP, Deep Ensemble, SWAG, Laplace
Approx., MC dropout, BNN, BayesAdapter- on such data are 0.789, 0.797, 0.809, 0.800, 0.792,
0.793, 0.803 respectively. On the other hand, we craft adversarial examples by the fast gradient sign
method (FGSM) (Goodfellow et al., 2014) against the ResNet-152 DNN model with 1000 valida-
tion images from ImageNet. Then we estimate the AP on these instances, and obtain 0.011, 0.125,
0.027, 0.202, 0.019, and 0.882 for MAP, Laplace Approx., MC dropout, BNN, BayesAdapter-, and
BayesAdapter respectively. These studies validate the transferability of our uncertainty estimation.

The effectiveness of exemplar reparameterization. We build a toy model with only a Bayesian
convolutional layer, fixing the model input and target output, and computing the variance of stochas-
tic gradients across 500 runs. We average the gradient variance ofµ andψ over all their coordinates,
and observe that standard reparameterization typically introduces more than 100× variance than ex-
emplar reparameterization, despite with the same FLOPS.

Table 5: Ablation study on γ.
γ Acc. AP (PGD) AP (fake)

0.25 96.93% 0.915 0.910
0.50 96.70% 0.948 0.981
0.75 96.82% 0.993 0.994
1.00 96.74% 0.991 0.994
1.50 96.79% 0.944 0.988

Ablation study on uncertainty threshold γ. We
perform an ablation study regarding γ on CIFAR-
10 to evaluate the hyper-parameter tolerance of
the proposed method. Table 5 presents the results.
The results reveal that values of γ ∈ [0.75, 1.0]
may be good choices for OOD detection, and also
echo the observation that normal examples usu-
ally present < 0.75 uncertainty.

1 20 40 60 80 100
The number of MC sample

74

75

76

Te
st

 a
cc

ur
ac

y 
(%

)

Individual
Ensemble
Deterministic

Figure 4: The change of test ac-
curacy w.r.t. the number of MC
samples for estimating Eq. (3).

The impacts of ensemble number. We draw the change of test
accuracy w.r.t. the number of MC samples S for estimating Eq. (3)
in Figure 4. The model is trained by BayesAdapter on ImageNet.
The points on the red line represent the individual accuracies of the
100 parameter samples. The yellow dashed line refers to the de-
terministic inference with only the Gaussian mean. The green line
displays the effects of Bayes ensemble – the predictive performance
increases from < 74% to > 76% quickly before seeing 20 parame-
ter samples, and gradually saturate after that. That is why we use 20
samples for estimating uncertainty and crafting adversarial samples.

4.2e-07 5.0e-04 3.5e-03 1.3e-02 3.2e-02 6.2e-02 1.1e-01 1.7e-01 2.5e-01 3.7e-01 3.3e+00

Uncertainty
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Figure 5: Comparison on accu-
racy for instance buckets of equal
size but with rising uncertainty.

Uncertainty-based rejective decision. In practice, we expect our
models can reject to predict for data with relatively large uncer-
tainty, and only care about the data that they are certain about. In
this spirit, we sort the validation data of ImageNet w.r.t. the uncer-
tainty provided by BayesAdapter, and split them into 10 buckets of
equal size. We depict the average accuracy of each bucket in Fig-
ure 5. As expected, our BNN is more accurate for instances with
smaller uncertainty. Quantitatively, there are 95% instances with
uncertainty less than 0.45, and their accuracy is 78.6%; there are
90% instances with uncertainty less than 0.37, and their accuracy is
80.7%; there are 80% instances with uncertainty less than 0.25, and their accuracy is 84.8%.

8



Under review as a conference paper at ICLR 2021

5 RELATED WORK

Fruitful works have emerged in the BNN community in the last decade (Graves, 2011; Welling &
Teh, 2011; Blundell et al., 2015; Kingma & Welling, 2013; Balan et al., 2015; Liu & Wang, 2016;
Kendall & Gal, 2017). However, most of the existing works cannot achieve the goal of practica-
bility. For example, Liu & Wang (2016); Louizos & Welling (2016; 2017); Shi et al. (2018a); Sun
et al. (2019) trade learning efficiency for flexible variational posteriors, leading to restrictive scala-
bility. Khan et al.; Zhang et al.; Osawa et al. build Adam-like optimizers to do variational inference,
but their parallel training throughput and compatibility with data augmentation are inferior to SGD.
Empirical Bayes methods, e.g., Monte Carlo (MC) dropout (Gal & Ghahramani, 2016), deep ensem-
ble (Lakshminarayanan et al., 2017), and SWAG (Maddox et al., 2019), usually maintain impressive
predictive performance, but suffer from degenerated uncertainty estimates (Fort et al., 2019) or ex-
pensive training/storage cost. What’s worse, the existing works usually evaluate on impractical OOD
data (Louizos & Welling, 2017; Pawlowski et al., 2017) to show the promise of Bayesian principle.
Instead, we offer a new evaluation standard in this work, which may benefit the following works.

Laplacian approximation (Bleistein & Handelsman, 1986; Ritter et al., 2018) is a known approach
to transform a DNN to a BNN, but it is inflexible due to its postprocessing nature and some strong
assumptions made for practical concerns. Alternatively, BayesAdapter works in the style of fine-
tuning, which is more natural and economical for deep networks. Bayesian modeling the last layer
of a DNN is proposed recently (Kristiadi et al., 2020), and its combination with BayesAdapter de-
serves an investigation. BayesAdapter connects to MOPED (Krishnan et al.) in that their variational
configurations are both based on MAP. Yet, beyond MOPED, BayesAdapter is further designed to
achieve good user-friendliness, improved learning stability, and trustable uncertainty estimation, by
virtue of optimizers with built-in weight decay, exemplar reparameterization, and uncertainty reg-
ularization, respectively, which significantly boost the practicability of BayesAdapter, especially in
real-world and large-scale settings.

6 CONCLUSION

In this work, we propose a scalable BayesAdapter framework to learn practical BNNs. Our core
idea is to learn a BNN by first pre-training its DNN counterpart and then performing Bayesian fine-
tuning. In BayesAdapter, we develop a plug-and-play instantiation of stochastic VI, and propose
exemplar reparameterization to reduce the gradient variance. We also propose a generic uncertainty
regularization to calibrate the uncertainty quantification given low-cost supervisions. We evaluate
BayesAdapter in diverse realistic scenarios and report promising results.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pp. 265–283, 2016.

Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian dark knowl-
edge. In Advances in Neural Information Processing Systems, pp. 3438–3446, 2015.

Norman Bleistein and Richard A Handelsman. Asymptotic expansions of integrals. Courier Corpo-
ration, 1986.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International Conference on Machine Learning, pp. 1613–1622, 2015.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vggface2: A dataset for
recognising faces across pose and age. In 2018 13th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE, 2018.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catan-
zaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

9



Under review as a conference paper at ICLR 2021

Deepfakes, 2018. https://github.com/deepfakes/faceswap. Accessed: 2018-10-29.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning
and policy search in stochastic dynamical systems with Bayesian neural networks. arXiv preprint
arXiv:1605.07127, 2016.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Ricard Durall, Margret Keuper, and Janis Keuper. Watch your up-convolution: Cnn based gener-
ative deep neural networks are failing to reproduce spectral distributions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7890–7899, 2020.

Faceswap, 2018. https://github.com/MarekKowalski/FaceSwap. Accessed: 2018-
10-29.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, pp. 1050–1059,
2016.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, pp. 2348–2356, 2011.

Kathrin Grosse, David Pfaff, Michael Thomas Smith, and Michael Backes. The limitations of model
uncertainty in adversarial settings. arXiv preprint arXiv:1812.02606, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. arXiv preprint arXiv:1706.04599, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learn-
ing of Bayesian neural networks. In International Conference on Machine Learning, pp. 1861–
1869, 2015.

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild: A
database forstudying face recognition in unconstrained environments. In Technical report, 2007.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer
vision? In Advances in Neural Information Processing Systems, pp. 5574–5584, 2017.

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivas-
tava. Fast and scalable Bayesian deep learning by weight-perturbation in adam. In International
Conference on Machine Learning, pp. 2616–2625, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

10

https://github.com/deepfakes/faceswap.
https://github.com/MarekKowalski/FaceSwap.


Under review as a conference paper at ICLR 2021

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameteri-
zation trick. In Advances in Neural Information Processing Systems, pp. 2575–2583, 2015.

Ranganath Krishnan, Mahesh Subedar, and Omesh Tickoo. Specifying weight priors in bayesian
deep neural networks with empirical bayes.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes
overconfidence in relu networks. arXiv preprint arXiv:2002.10118, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pp. 6402–6413, 2017.

Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl. Lever-
aging uncertainty information from deep neural networks for disease detection. Scientific Reports,
7(1):1–14, 2017.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. In Advances in Neural Information Processing Systems, pp. 2378–2386, 2016.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with matrix
gaussian posteriors. In International Conference on Machine Learning, pp. 1708–1716, 2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational Bayesian neural
networks. In International Conference on Machine Learning, pp. 2218–2227, 2017.

David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural Compu-
tation, 4(3):448–472, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems, pp. 13153–13164, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia,
and Stefanos Zafeiriou. Agedb: the first manually collected, in-the-wild age database. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
51–59, 2017.

Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.

Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E Turner, Rio
Yokota, and Mohammad Emtiyaz Khan. Practical deep learning with Bayesian principles. arXiv
preprint arXiv:1906.02506, 2019a.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Large-scale distributed second-order optimization using kronecker-factored approximate curva-
ture for deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 12359–12367, 2019b.

11



Under review as a conference paper at ICLR 2021

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Nick Pawlowski, Andrew Brock, Matthew CH Lee, Martin Rajchl, and Ben Glocker. Implicit weight
uncertainty in neural networks. arXiv preprint arXiv:1711.01297, 2017.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In 6th International Conference on Learning Representations, ICLR 2018-Conference
Track Proceedings, volume 6. International Conference on Representation Learning, 2018.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Soumyadip Sengupta, Jun-Cheng Chen, Carlos Castillo, Vishal M Patel, Rama Chellappa, and
David W Jacobs. Frontal to profile face verification in the wild. In 2016 IEEE Winter Conference
on Applications of Computer Vision (WACV), pp. 1–9. IEEE, 2016.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. Kernel implicit variational inference. In International
Conference on Learning Representations, 2018a.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral approach to gradient estimation for implicit
distributions. arXiv preprint arXiv:1806.02925, 2018b.

Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detec-
tion. arXiv preprint arXiv:1803.08533, 2018.

Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning structured weight uncertainty in
Bayesian neural networks. In International Conference on Artificial Intelligence and Statistics,
pp. 1283–1292, 2017.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational Bayesian
neural networks. In International Conference on Learning Representations, 2019.

Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Niebner.
Face2face: Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2387–2395, 2016.

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated
images are surprisingly easy to spot... for now. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 7, 2020.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688,
2011.

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient pseudo-
independent weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386, 2018.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes
posterior in deep neural networks really? arXiv preprint arXiv:2002.02405, 2020.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch. arXiv
preprint arXiv:1411.7923, 2014.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient as
variational inference. In International Conference on Machine Learning, pp. 5847–5856, 2018.

12



Under review as a conference paper at ICLR 2021

Tianyue Zheng and Weihong Deng. Cross-pose lfw: A database for studying cross-pose face recog-
nition in unconstrained environments. Beijing University of Posts and Telecommunications, Tech.
Rep, 5, 2018.

Tianyue Zheng, Weihong Deng, and Jiani Hu. Cross-age lfw: A database for studying cross-age
face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197, 2017.

13



Under review as a conference paper at ICLR 2021

A THE EXEMPLAR VERSION OF POPULAR OPERATORS

As introduced in Sec 2.2, the regular convolution can be elegantly converted into an exemplar ver-
sion by resorting to group convolution. The other popular operators are relatively easy to handle.
For example, we substitute the qualified batch matrix multiplication, which is highly optimized in
the well-known autodiff libraries, for matrix multiplication. For the affine transformation in batch
normalization (Ioffe & Szegedy, 2015), we can at first sample dedicated affine weight and bias for
every exemplar in the batch, then perform transformation with these two batches of parameters by
just not broadcasting on the batch dimension.

B MORE EXPERIMENTAL DETAILS

The only two important hyper-parameters are the weight decay coefficient λ and the uncertainty
threshold γ. Other hyper-parameters for defining PGD or specifying learning rates, etc., all follow
standard practice in the DL community. The number of fake data training (1000) and the number of
MC samples for evaluation (S) are flexible and not tuned.

For λ, we keep it consistent between pre-training and fine-tuning (stated in Algorithm 1), without
elaborated tuning, for example, λ = 2e − 4 for the wide-ResNet-28-10 architecture on CIFAR-10,
λ = 1e−4 for ResNet-50 architecture on ImageNet, and λ = 5e−4 for MobileNet-V2 architecture
on CASIA. These values correspond to isotropic Gaussian priors with σ2

0 as 0.1, 0.0078, and 0.0041
on CIFAR-10, ImageNet, and CASIA, respectively. It is notable that for a “small” dataset like
CIFAR-10, a flatter prior is preferred. While on larger datasets with stronger data evidence, we need
a sharper prior for regularization.

For γ, we use γ = 0.75 for training across all the scenarios. But it is not used for OOD detection
in the testing phase. For estimating the results of OOD detection, we use the non-parametric metric
average precision (see the metric part of Section 4), which is the Area Under the Precision-Recall
Curve and is more suitable than the ROC-AUC metric when there is class imbalance.

For the pre-training, we follow standard protocols available online. On CIFAR-10, we perform
CutOut (DeVries & Taylor, 2017) transformation upon popular resize/crop/flip transformation for
data augmentation. On ImageNet, we leverage the ResNet-50 checkpoint on PyTorch Hub as the
converged deterministic model. On face tasks, we train MobileNetV2 following popular hyper-
parameter settings, and the pre-training takes 90 epochs. We use the same weight decay coefficients
in both the pre-training and the fine-tuning.

For the fine-tuning, we set lrψ to decay at 1/4, 1/2, and 3/4 of the total fine-tuning steps from 0.1, and
set lrµ to be the final value of lrψ on the CIFAR-10, ImageNet, and face recognition benchmarks.
We add a coefficient 3 before the Lunc term in Line 8 of Algorithm 1 for Bayesian fine-tuning on
ImageNet to achieve better uncertainty calibration. For models on face recognition, we utilize the
features before the last FC layer of the MobileNetV2 architecture to conduct feature distance-based
face classification in the validation phase, due to the open-set nature of the validation data. The
Bayes ensemble is similarly achieved by assembling features from multiple runs as the final feature
for estimating predictive performance. But we still adopt the output from the last FC layer for
uncertainty estimation (i.e., calculating Eq. (6)).

The training perturbation budget is identical to the evaluation budget on CIFAR-10 and ImageNet.
But we set the budget of the uniform noise used for training in face tasks to be 1/4 of the evaluation
budget to make the models more sensitive to the perturbed data. We adopt PGD for generating
adversarial samples in the validation phase. Concretely, we attack the posterior predictive objective,
i.e., Eq. (3), with S = 20 MC samples. On CIFAR-10, we set δm = 0.031 and perform PGD for 20
steps with step size at 0.003. On ImageNet and face recognition, we set δm = 16/255 and perform
PGD for 20 steps with step size at 1/255.

Regarding the fake data, we craft 1000 fake samples for training and 10000 ones for evaluation
with SNGAN (Miyato et al., 2018) on CIFAR-10; we craft 1000 fake samples for training and
1000 ones for evaluation with BigGAN (Brock et al., 2018) on ImageNet; we randomly sample
1000 fake samples for training and 10000 ones for evaluation from DeepFakes (Deepfakes, 2018),
FaceSwap (Faceswap, 2018) and Face2Face (Thies et al., 2016) on face recognition.

14



Under review as a conference paper at ICLR 2021

Table 6: Comparison on the quality of uncertainty estimates in terms of AP ↑ on face recognition tasks. The
upper part is for adversarial instances and the other part is for DeepFake.

Method LFW CPLFW CALFW CFP FF CFP FP VGG2 FP AGEDB 30
MAP 0.191 0.192 0.191 0.211 0.205 0.200 0.199

MC dropout 0.965 0.946 0.959 0.965 0.949 0.954 0.952
BNN 0.399 0.282 0.429 0.390 0.271 0.291 0.327

BayesAdapter- 0.189 0.189 0.189 0.193 0.191 0.191 0.190
BayesAdapter 0.998 0.981 0.999 0.999 0.983 0.990 0.995

MAP 0.389 0.456 0.375 0.394 0.454 0.519 0.437
MC dropout 0.846 0.664 0.862 0.874 0.685 0.733 0.785

BNN 0.621 0.399 0.648 0.559 0.355 0.469 0.516
BayesAdapter- 0.273 0.273 0.273 0.251 0.248 0.309 0.275
BayesAdapter 0.998 0.987 0.999 0.999 0.986 0.994 0.996

As for the MC dropout, we add dropout-0.3 (0.3 denotes the dropout rate) before the second con-
volution in the residual blocks in wide-ResNet-28-10, dropout-0.2 after the second and the third
convolutions in the bottleneck blocks in ResNet-50, and dropout-0.2 before the last fully connected
(FC) layer in MobileNetV2.

For reproducing Deep Ensemble, we train 5 MAPs separately, and assemble them for prediction and
uncertainty quantification. For reproducing SWAG, we take use of its official implementation, and
leverage 20 MC samples for decision making.

C MORE RESULTS FOR UNCERTAINTY ESTIMATION

We provide the comparison on the quality of uncertainty estimates on face recognition in Table 6. It
is an immediate observation that BayeAdapter outperforms the extensive baselines significantly, and
can detect almost all the OOD instances across the validation datasets. By contrast, BayeAdapter-,
MAP, and BNN are similarly unsatisfactory. Surprisingly, MC dropout exhibits some capacity to
detect adversarial instances and DeepFake ones in the face tasks. Comparing these results with
those of MC dropout on CIFAR-10 and ImageNet, we speculate that such results may stem from the
location of deploying dropout in the architecture, which deserves a future investigation.

D VISUALIZATION OF SOME OOD DATA

We provide some random samples of the OOD data used for evaluation in Figure 6. Obviously, these
samples are pretty realistic and challenging.

E VISUALIZATION OF THE LEARNED POSTERIOR

We plot the parameter posterior of the first convolutional kernel in ResNet-50 architecture learned
by BayesAdapter on ImageNet. The results are depicted in Figure 7. The learned posterior variance
seems to be disordered, unlike the mean. We leave more explanations as future work.

15



Under review as a conference paper at ICLR 2021

Figure 6: Some random samples of the OOD data used for evaluation. The first row refers to the fake sam-
ples from BigGAN on ImageNet. The second row refers to the adversarial examples generated by PGD on
ImageNet. The third row refers to the fake samples from DeepFake.

16



Under review as a conference paper at ICLR 2021

Figure 7: Left: the mean of the Gaussian posterior. Right: the variance of the Gaussian posterior. These
correspond to a convolutional kernel with 64 output channels and 3 input channels, where every output channel
is plotted as a separate image.

17


