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ABSTRACT

Recent research on robustness has revealed significant performance gaps between
neural image classifiers trained on datasets that are similar to the test set, and
those that are from a naturally shifted distribution, such as sketches, paintings, and
animations of the object categories observed during training. Prior work focuses
on reducing this gap by designing engineered augmentations of training data or
through unsupervised pretraining of a single large model on massive in-the-wild
training datasets scraped from the Internet. However, the notion of a dataset is
also undergoing a paradigm shift in recent years. With drastic improvements in the
quality, ease-of-use, and access to modern generative models, generated data is
pervading the web. In this light, we study the question: How do these generated
datasets influence the natural robustness of image classifiers? We find that Imagenet
classifiers trained on real data augmented with generated data achieve higher
accuracy and effective robustness than standard training and popular augmentation
strategies in the presence of natural distribution shifts. Further, we introduce
and analyze an evolving generated dataset, ImageNet-G-v1, to better benchmark
the design, utility, and critique of standalone generated datasets for robust and
trustworthy machine learning.

1 INTRODUCTION

The ultimate goal of machine learning is to create models that can generalize beyond their training
data. However, recent studies Recht et al. (2019); Hendrycks et al. (2021); Wang et al. (2019);
Barbu et al. (2019); Taori et al. (2020) have shown a gap between the performance of deep neural
classifiers on test data that is independent and identically distributed (i.i.d.) as the training data,
and shifted datasets containing natural variations of the images in the training distribution. One
effective strategy to improve robustness is to enlarge the amount of training data by designing intricate
augmentations Hendrycks et al. (2019; 2022; 2021) of the training data that aid the generalization of
classifier to novel domains. Similarly, datasets can also be enlarged by scraping multimodal paired
datasets on the Internet Radford et al. (2021); Jia et al. (2021); Pham et al. (2021).

However, the notion of a dataset is also experiencing a paradigm shift in recent years. With the
emergence of modern ‘in the wild’ generative models Ramesh et al. (2022); Nichol et al. (2021);
Rombach et al. (2022); Saharia et al. (2022); Chang et al. (2023), generated data is pervading the
web Wang et al. (2022). These models are trained on large diverse datasets Schuhmann et al. (2022)
with open vocabulary annotations, such that post-training, they can synthesize high-fidelity images
for a wide range of concepts. Notably, these models can be repeatedly queried to generate diverse
data through various conditioning mechanisms such as text prompts, images, and guidance strategies.
Given this emerging paradigm, we study the question: How do these generated datasets influence the
natural robustness of image classifiers?

For generating data, we utilize Stable Diffusion Rombach et al. (2022), an in-the-wild, open-source
conditional generative model and create a synthetic dataset conditioned on objects from 2 source
datasets ImageNet-1K Deng et al. (2009) and ImageNet-100 Tian et al. (2020). We utilize the
flexibility of the model’s design to generate diverse data conditioned on the proxy prompts for classes.
By repeatedly sampling from Stable Diffusion using a specific conditioning strategy, we generate
enough samples to create a large, diverse synthetic training dataset. For instance, we generate 1.3M
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images using proxy prompts for the classes in ImageNet-1K, which is the same size as the real
ImageNet-1K training dataset.

Our main takeaway is that training a classifier on a combination of real and generated data can
achieve high absolute performance on natural distribution shift datasets and high effective robustness
(§3.1). Removing either of real or generated data results in a corresponding reduction in accuracy
and effective robustness respectively, thus necessitating the use of a mixture. To further explain these
results, we find that the ‘in-the-wild’ aspects of modern generative indeed plays a role and substituting
these generations with hand-crafted augmentation strategies or outputs of traditional class-conditional
generative models is less effective (§3.2). Previous works such as He et al. (2022) generate synthetic
data using the GLIDE Nichol et al. (2021) and find that it improves the accuracy of the CLIP model
Radford et al. (2021) on image classification. However, we train neural classifiers from scratch,
since CLIP can leverage its pretrained knowledge from 400M data for classification, which makes it
hard to disentangle the effect of generated data for improved accuracy. Additionally, we perform a
detailed analysis of the effectiveness of generated data for robust classification, specifically focusing
on natural distribution shifts.

With the consistent rise of generative AI, we also expect massive amounts of generated data to
permeate the Internet Wang et al. (2022) and directly be used for training ML models, such as in our
work. While this can result in both positive and negative outcomes for trustworthy machine learn-
ing Jahanian et al. (2021); Saha et al. (2022b); Zhang et al. (2022); Jain et al. (2022); Cooper (2022);
Cho et al. (2022); Bansal et al. (2022), it is worth noting that there is a lack of any benchmarking and
critique process for such generated datasets. As a final contribution, we introduce ImageNet-G-v1 (or
ImageNet-G) as a evolving benchmark dataset (§4) to advance research in trustworthy ML.

2 BACKGROUND

Here, we provide a brief background on the robustness and data generation methods. A detailed
background is present in the Appendix §C.

Robustness: For any classifier f̂ , we can quantify the accuracy gap (AG) between the accuracy on a
test set Dtest that follows the same distribution as the training set, and a test set that varies naturally
from the training distribution D′.

AG(f̂ ,Dtest,D′) = A(f̂ ,D′)−A(f̂ ,Dtest) (1)

However, a classifier that closes the accuracy gap might decrease the individual accuracies. Addi-
tionally, given a robust classifier f̂ that offers high accuracy on the shifted datasets, we can assess it
relative to the expected accuracy on the shifted dataset with a standard classifier that is trained on the
source training set without any specific robustness intervention. This notion is formalized as effective
robustness (ER) (Recht et al., 2019; 2018).

ER(f̂ ,D′) = A(f̂ ,D′)− β(A(f̂ ,Dtest),D′,Dtest) (2)

where β(z,D′,Dtest) is the accuracy on the shifted test set D′ for a given accuracy z on the source
test set Dtest. We calculate β by fitting a linear function on the collection of standard classifiers.
Positive ER indicates that the robustness intervention improves over standard training.

Data Generation: We describe the methods that we use to generate data from Stable Diffusion in
§2. Throughout the main text, we will focus on generating images by conditioning on the natural
language prompts for the class labels. For example, we can condition the model with a prompt ‘a
photo of a [dog]’ to generate images for the class label dog. Results for the other generation methods
are relegated to the Appendix §C.4.

3 EXPERIMENTS

In our experiments, we choose ImageNet-1K as the source real dataset, and ImageNet-Sketch,
ImageNet-R, ImageNet-V2, and ObjectNet as the source of natural distribution shift (NDS) datasets.
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We train a wide variety of classifiers e.g., ResNext-101, on the real dataset and the generated dataset.
More details of the experimental setup are provided in the Appendix §D.

3.1 CLASSIFICATION ACCURACY AND ROBUSTNESS

ImageNet-1K ImageNet-Sketch ImageNet-R ImageNet-V2 ObjectNet0
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Figure 1: Accuracy of ImageNet-1K classifiers on ImageNet-
1K validation set and its natural distribution shift datasets.

We train on 3 kinds of datasets: the
real ImageNet-1K dataset with 1.3M
images, a generated dataset of 1.3M
images created using Stable Diffusion
conditioned on proxy captions for the
class labels in ImageNet-1K, and a
combination of all images from the
real and generated training datasets.

The average accuracy of five classi-
fiers over three random seeds is shown
in Figure 1. We find that models
trained on the real ImageNet-1K (Im-
1K) dataset (Green bar) perform well
on its validation set but experience a
significant drop in performance un-
der natural shifts. Interestingly, we
find that training on generated images
using the same training dataset size
leads to poor absolute performance
on Im-1K (32%) as well as its NDS
datasets. The low absolute performance may be due to the large distribution gap between the source
and generated training datasets. However, we observe that the accuracy gaps performance on the real
validation dataset and its NDS datasets are low, which might be attributed to the benefits of training
on diverse generated data. Finally, we train the classifiers on an equal-sized combination of real and
generated datasets to understand the effectiveness of generative augmentations.

As seen in Figure 1, we find that absolute performance across the majority of the NDS datasets is
higher than training solely on the real or generated dataset. Notably, training on the combination of
the real and generated dataset does not affect performance on the ImageNet1K validation dataset
compared to standard training (Orange and Green bar). We see a similar effect for the natural
distribution dataset, ImageNet-V2, which is closest in distribution to ImageNet-1K since both the
datasets are derived from Flickr30K Recht et al. (2019). On ObjectNet, the gain is ∼ 1%, indicating
the difficulty of this dataset. Surprisingly, we find that training with the combination of the real and
generated data leads to an absolute improvement of ∼15% on ImageNet-Sketch and ImageNet-R
over standard training. Additionally, we find that the effective robustness (ER) of the classifier is
higher (Table 1) than standard training (= 0) but lower than classifiers trained on the generated data
(Row 1 and Row 2). We further compare the average FID scores between the real/generated data
and the NDS datasets, and find that ImageNet-R/Sketch are closer to the generated data than real
data, which might be attributed to the presence of rendition and sketch images in the generated data
(App. §I), that eventually gets reflected as larger improvements on classification accuracy and ER
on these datasets. For broader evaluation, we also show that training a classifier on the real data
augmented with the generated data achieves high accuracy and ER on corruption-based datasets
such as ImageNet-C Hendrycks & Dietterich (2019) (App. §E). In summary, generated data alone
increases the effective robustness at the cost of accuracy, whereas an augmented mixture of real and
generated data strikes a good balance for robust and accurate training.

Table 1: Comparison of the effective robustness of the classifiers trained solely on the generated dataset and on
the real data augmented with the generated dataset.

ImageNet-Sketch ImageNet-R ImageNet-V2 ObjectNet Average
Generated Data 37.83 45.34 9.12 49.91 35.55
Real + Generated Data 14.88 16.68 0.47 2.28 8.55
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Table 2: FID score averaged over the ImageNet classes between the real/generated data and the NDS datasets.

FID ImageNet-Sketch ImageNet-R ImageNet-V2 ObjectNet
Real Dataset 248 225 179 224
Generated Dataset 210 190 223 255

Table 3: Comparison of the models trained on real data and an equal mix of real data and generated data
(100:100 ratio) using different augmentation strategies on ImageNet-100 validation set and its natural distribution
shift (NDS) datasets. We report results over the classes that overlap with ImageNet-100.

Im-100 Im-Sketch-100 Im-R-100 Im-V2-100 Obj-100 Average
Real Data 85.67 28.64 49.76 74.83 42.26 56.23
+ DeepAugment Hendrycks et al. (2021) 86.73 45.15 67.2 76.50 44.94 64.10
+ PixMix Hendrycks et al. (2022) 85.33 32.71 56.60 73.69 43.92 58.45
+ Class Conditioned LDM Rombach et al. (2022) 86.69 27.88 54.99 75.57 46.12 58.25
+ Stable Diffusion Rombach et al. (2022) 86.79 48.40 71.23 75.96 47.49 65.97

3.2 COMPARISON WITH STANDARD AUGMENTATIONS

We examine the average performance of three classifiers (ResNet-18, ResNeXt-50, and ResNeXt-101)
trained on the real ImageNet-100 dataset with 130K images, augmented with an equal number of
generated images from Stable Diffusion, DeepAugment, PixMix, and class-conditional LDM on the
set of overlapping classes with 4 NDS datasets in Table 3. We observe that augmenting with the diverse
in-the-wild generated datasets yields the highest performance on Im-R, Im-Sketch, and ObjectNet,
followed by DeepAugment, highlighting the utility of modern generative models that are trained on
larger multimodal datasets and allow for more flexible conditioning. We perform experiments to
understand the effect of real and generated data size in App. §E.1, choice of conditioning in App.
§E.2.1, and perform human evaluation of generated data in App. §E.2.2.

4 BENCHMARKING GENERATED DATASETS

In our previous experiments §3, we showed that training a classifier on the real ImageNet data
augmented with the generated ImageNet-G data strikes a good balance between robustness and
accuracy. Here, we evaluate the performance of a variety of supervised, zero-shot, and fine-tuned Im-
ageNet classifiers on ImageNet-G dataset, containing 50K generated images, similar to ImageNet-1K
validation dataset. In Table 4, we find that all the classifiers, except for zero-shot CLIP, underperforms
on ImageNet-G while performing well on ImageNet-1K validation dataset. The performance of the
classifier trained on the mix of real and generated data (Row 6) highlights the potential for further
improvements in the existing models on ImageNet-G. We perform detailed analysis in App. §E.3.

Table 4: Comparison of different classifiers on the ImageNet-G variants. The accuracy gap between Im-1K and
the Im-G variant is reported inside the gray brackets.

Models ImageNet-1K ImangeNet-1K-G
ResNeXt-101 (Trained on ImageNet1K) 79.28 55.93 (-23.3)
ViT-L/14-336 (PT-Im12K-FT-Im1K) Dosovitskiy et al. (2020) 88.54 66.24 (-22.30)
MaxViT-XL-512 (PT-Im21K-FT-Im1K) Tu et al. (2022) 88.26 68.61 (-19.65)
Zero-shot CLIP (ViT-B/32) Radford et al. (2021) 68.33 71.89 (+3.56)
Finetuned CLIP (ViT-B/32) Wortsman et al. (2022) 81.31 64.05 (-17.26)
ResNeXt-101 (Trained on real and generated data) 80.39 89.04 (+8.65)

5 CONCLUSION

We developed a framework to improve performance of image classifiers by augmenting real datasets
with a diverse dataset generated by a modern ‘in-the-wild’ generative models. We introduced
ImageNet-G-v1, an evaluation dataset that highlights the brittleness of state-of-the-art models to
natural variations in images. An important future direction and a current limitation is evaluating the
trustworthiness of generated data based solely on robustness. Future research should incorporate a
multi-dimensional analysis, including factors such as privacy and the presence of harmful stereotypes.
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A ETHICS STATEMENT

In our work, we utilize modern ‘in the wild’ generative models to create generated data, that is
further employed for training Image classifiers. Since these generative models are trained on large,
diverse, and uncurated web-scraped datasets, there are several privacy concerns surrounding the
suitable use of public data Scheuerman et al. (2021), and their harmful biases and stereotypes Birhane
et al. (2021); Bender et al. (2021). Once trained, these generative models can amplify these biases
during generation Saharia et al. (2022); Cho et al. (2022); Bansal et al. (2022). With the generative
model’s ability to create and combine different concepts in realistic ways, there are harms associated
with changing the predictions based on the natural language descriptions of the concepts as it is
much easier to generate objectionable content with these. It necessitates further research into closely
curating the generated data as well as building fairer multimodal representations of the real world.

As generated data pervades the Internet, it is inevitable that they will be explicitly used or automatically
scraped as training data for building new data-driven models, such as our work. These scenarios
present a difficult challenge for researchers to better understand and track the source of harmful biases
introduced in the dataset. Additionally, there are equally relevant privacy concerns as we train on the
model generations, which in recent times, have been shown to replicate styles of real artists Cooper
(2022). Hence, introducing an evolving dataset, ImageNet-G, and making it publicly available is a
step in the direction towards future benchmarking and critique of the design and use of generated
datasets for trustworthy ML.

B RELATED WORK

Training Robust Classifiers: Many works propose hand-engineered augmentations to increase the
training data and improve generalizability of the classifiers, e.g., Hendrycks et al. (2019; 2022);
Zhang et al. (2017). Cubuk et al. (2018; 2020) learn augmentation policies directly from the data and
have been shown to improve classification accuracy. DeepAugment Hendrycks et al. (2021) was one
of the first augmentation strategies to perform well on natural distribution shifts. Additionally, studies
on CLIP-verse Radford et al. (2021); Jia et al. (2021); Li et al. (2021); Goel et al. (2022); Mu et al.
(2022) have shown natural robustness. In our work, we take the best of both paradigms by leveraging
the strengths of modern generative models to augment real datasets. We find that classifiers trained
with generated datasets are effectively robust and outperform current data augmentation strategies in
eliciting robustness.

Robustness via Generated Data: Gowal et al. (2021) studied the effectiveness of synthetic data
from these models for creating adversarially robust classifiers, but did not examine the robustness in
the regime of natural distribution shifts (NDS) and modern in-the-wild generative models Rombach
et al. (2022); Ramesh et al. (2021); Xu et al. (2022); Saharia et al. (2022); Balaji et al. (2022); Chang
et al. (2023). He et al. (2022) generates synthetic data using the GLIDE Nichol et al. (2021) and
finds that it improves the accuracy of the CLIP model Radford et al. (2021), indicating the usefulness
of synthetic data for pre-training image models. However, we perform a detailed analysis of the
effectiveness of generated data for robust classification, specifically focusing on NDS. Yuan et al.
(2022) adapt to the target domain by training on a generated dataset using the variations of the images
in the source domain. In contrast, our work does not make assumptions about the target domain
and does not require access to source images to train robust classifiers. Our study further includes
experiments on the effectiveness of various generation strategies to elicit robustness to NDS for larger
datasets such as ImageNet.

Model Evaluation: Studies by Recht et al. (2018; 2019); Hendrycks et al. (2021); Wang et al.
(2019); Barbu et al. (2019) assess the model’s ability to generalize to natural variations in images
containing objects from the source dataset, showing severe performance dips and questioning their
usefulness for real-world applications. In our work, we propose a dataset, ImageNet-G-v1, containing
new realizations of the objects in the ImageNet-1K dataset that may be difficult to acquire in the
real-world. With advancements in generative modeling, we can synthesize more novel, consistent,
and high-quality images that can be integrated into ImageNet-G as an evolving benchmark dataset.

Augmenting with Generated Data: Antoniou et al. (2017) used generated data to enhance the
diversity of training data, leading to improved classification results, via an image-conditional GAN
Goodfellow et al. (2020). Since then, numerous studies have applied generated data in various
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domains. West et al. (2021) generated a massive commonsense knowledge corpus using GPT-3
Brown et al. (2020) to train commonsense models. Brooks et al. Brooks et al. (2022) fine-tuned
a stable diffusion model with a set of creative image-text pairs generated from a combination of
GPT-3 and Stable diffusion for image editing. Our work demonstrates a practical application of using
generated data for improved robustness in model training.

M(y): A photo of a langur 

CLIP Text Encoder CLIP Vision Encoder

x

xg

Stable Diffusion

(a) Data Generation using either the proxy captions
for class labels (SD-Labels) or the source image from

the dataset (SD-Images).

Stable Diffusion

CLIP Text Encoder

M(y): A rendition of a borzoi

xg

(b) Data Generation using both the proxy captions
and the source image from the dataset

(SD-Labels&Images).

Figure 2: Overview of our generation strategies. We use Stable Diffusion (SD) to create the generated
dataset. (a) We can create images by conditioning on either the proxy caption for the class label,
which we refer as SD-Labels, or conditioning on the images from the source dataset which is referred
as SD-Images. (b) We can also generate data by first encoding the source images to get the latent
representation, which is then denoised conditioned on the text prompt for the class label. We refer to
this strategy as SD-Labels&Images.

C DETAILED BACKGROUND

C.1 SUPERVISED CLASSIFICATION

Given a labelled dataset D = {(x1, y1), . . . , (xn, yn)} ∼ P (x, y) where xi ∈ X ⊂ Rd represents
the ith input, and yi ∈ Y ⊂ {1, 2, . . . ,K} represents its corresponding target label, we train
a classifier f̂(x) on Dtrain ⊂ D such that it models P (y|x), i.e., conditional distribution of y
given the input x. The classification model is usually trained via empirical risk minimization,
L(f̂ ,Dtrain) = E

[
l(f̂(xtrain), ytrain)

]
, where l is the training objective, under the assumption that

samples in the training data are identically and independently distributed (i.i.d.). Eventually, we
evaluate the performance of the classifier on a held test set Dtest ⊂ D ∼ P with Dtest ∩Dtrain = ϕ)
using accuracy A(f̂ ,Dtest) = E

[
I(f̂(xtest) = ytest)

]
.

If a classifier achieves high accuracy on the examples from the test set, we hope that it will perform
well on the other examples that come from P as well as semantically related data distributions.
However, in practice, we encounter test sets D′ sampled from a data distribution P ′ that contains the
samples resembling the ones in D with slight variations e.g., images in D′ may vary from the images
in the D in terms of differences in camera settings, and captured views.

C.2 ROBUSTNESS

For any classifier, we can quantify the accuracy gap (AG) between the accuracy on a test set that
follows the same distribution as the training set, and a test set that varies naturally from the training
distribution.

AG(f̂ ,Dtest,D′) = A(f̂ ,D′)−A(f̂ ,Dtest) (3)

For a robust classifier, the accuracy gap should be low up to random sampling error. However, a
classifier that closes the accuracy gap might decrease the individual accuracies. Additionally, given a
robust classifier f̂ that offers high accuracy on the shifted datasets, we can assess it relative to the
expected accuracy on the shifted dataset with a standard classifier that is trained on the source training
set without any specific robustness intervention. This notion is formalized as effective robustness
(ER) (Recht et al., 2019; 2018).
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ER(f̂ ,D′) = A(f̂ ,D′)− β(A(f̂ ,D),D′,D) (4)

where β(z,D′,D) is the baseline accuracy on the shifted test set D′ for a given accuracy z on the
source test set D. We calculate β by fitting a linear function on the performances of a collection
of standard classifiers. Positive ER values indicate that the robustness intervention improves over
standard training.

C.3 GENERATIVE MODELING

Generative models pθ(x) are probabilistic models that are trained to learn the data distribution
pdata(x) Tomczak (2022). Due to their flexible design, we can further train their class-conditional
versions Brock et al. (2018); Karras et al. (2019) to model the class-conditional distributions p(x|yg)
where is yg is the conditioning variable, that can take various forms, which we describe in next
section. Post-training, we can generate a new sample xg by sampling from the class-conditional
model distribution xg ∼ pθ(x|yg). In Figure 1, this stochastic mapping pθ(x|yg) is referred to as
G. Thus, we can create a generated dataset Dg = {(xg, yg)} by repeatedly querying the conditional
generative model.

C.4 DATA GENERATION USING STABLE DIFFUSION

In this work, we employ Stable Diffusion (SD) Rombach et al. (2022), a conditional probabilistic
latent space diffusion model that learns the data distribution by denoising the normally distributed
variable zT ∼ N(0, I) for a finite number of denoising steps T . Specifically, it is a text-to-image
generative model that can create novel images conditioned on their natural language descriptions.

An ‘in the wild’ generative model is one that can generate images from the natural language de-
scription of a wide range of concepts, combine unrelated concepts in a realistic manner, and apply
novel transformations to existing images. Such abilities are exhibited by Stable Diffusion through
training on a large, diverse dataset LAION Schuhmann et al. (2022) on matched image-text pairs
(X , C) scraped from the web where x ⊂ X denotes a raw image and c ⊂ C denotes its corresponding
caption in natural language. During training, the image x is passed through a pre-trained encoder
z0 = E(x) where z0 is the latent representation of x. Under a noise schedule p(ϵ), a small amount of
normally distributed gaussian noise ϵt is added to z0 for finite steps T , also referred to as forward
diffusion, until the representation converges to a normal distribution zT ∼ N(0, I). The objective
of the denoising model R(zt, t, yg) is to predict z0 from every intermediate representation zt where
t := 1, . . . , T such that the conditioning variable yg guides the training process. In practice, Stable
Diffusion uses CLIP’s Radford et al. (2021) text encoder yg = htext(c) for conditioning during the
training process. We can sample from zT ∼ N(0, I) and use the trained model R(.) to reconstruct z0
that is eventually decoded using a pretrained decoder xg = D(z0).

Given a single data point (x, y) from the source dataset, we have various ways to generate a new data
point xg with a trained Stable Diffusion, as summarized in Figure 2.

Generation w/ Class Labels (SD-Labels): We can synthesize images by denoising zT ∼ N(0, I)
conditioned on the natural language templates M for the class labels y. An example template
M ⊂ M includes ‘A photo of a dog’ where dog is the class label y. This generation strategy involves
using a pretrained CLIP text encoder yg = htext(M(y)).

Generation w/ Source Images (SD-Images): Here, we use CLIP’s vision encoder yg = himage(x)
for conditioning. In this case, we generate variations of the images from the source dataset by
denoising the latent variable zT conditioned on their representations.

Generation w/ Labels and Images (SD-Labels and Images): We can create realistic variations of the
source image x by first encoding it using the pretrained encoder E(x) followed by forward diffusion
for T steps to approximate a normal distribution ẑT (x). Consequently, we can generate a new image
by denoising ẑT (x) conditioned on the natural description of the class label yg = htext(M(y)).

11



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale ML Models

D SETUP

Real Dataset: The ImageNet-1K dataset is widely used as a benchmark for building robust classifiers
for image recognition. It contains 1.3 million labeled training images and 50,000 validation images
across 1000 categories. To evaluate the effectiveness of generated data in this task, we use ImageNet-
1K as our benchmark. However, due to the limitations of compute and storage, we also utilize
ImageNet-100, a subset of 100 classes randomly sampled from ImageNet-1K, for many of our
analysis and ablation studies. In line with previous studies Saha et al. (2022a); Tian et al. (2020), we
find that the trends observed in ImageNet-100 are similar to those in ImageNet-1K.

Natural Distribution Shift Datasets: Similar to the previous studies Miller et al. (2021); Radford
et al. (2021); Nguyen et al. (2022), we consider ImageNet as the reference dataset where ImageNet-
Sketch Wang et al. (2019), ImageNet-R Hendrycks et al. (2021), ImageNet-V2 Taori et al. (2020),
and ObjectNet Barbu et al. (2019) are natural distribution shift datasets. We provide more further
description about these datasets in Appendix §H.

Classifiers: We consider models with varying architectures and model capacities as classifiers. This
includes ResNet-18 He et al. (2016), ResNeXt-50, ResNeXt-101 Xie et al. (2017), EfficientNet-B0
Tan & Le (2019) and MobileNet-V2 Howard et al. (2017). We provide further details on training
them in Appendix §G.

Data Generation: We utilize Stable Diffusion Rombach et al. (2022) to generate synthetic data
conditioned on the natural descriptions of the objects in the dataset, and/or the training images.
Specifically, we use the Stable Diffusion-V1-5 implementation and inference settings detailed in the
diffusers von Platen et al. (2022) library. For ImageNet-1K, we construct a 1.3M generated training
dataset and 50K validation dataset from Stable Diffusion by conditioning on the proxy captions for
the class labels. The proxy captions are a set of 80 diverse templates given by Radford et al. (2021)
to evaluate their CLIP model (Appendix Table 11). It took us ∼10 days to generate the complete
dataset on 5 Nvidia RTX A5000 GPUs with a batch size of 12 per GPU. Additionally, we generate a
separate training dataset of 130K images and a validation dataset of 5K images for every generation
strategy described in §C.4. We present some sample generations in Appendix Figure 6.

E IMAGENET-C

The evaluation datasets such as ImageNet-C intend to perturb the real images and distort their quality,
such that the representations of the perturbed images are pushed outside the decision boundary of their
true class ids. This differs from natural distribution shift datasets such as ImageNet-V2, ObjectNet,
ImageNet-R, and ImageNet-Sketch, since these datasets are acquired under different environments in
the real-world rather than formed by perturbing the original datasets themselves. To understand the
usefulness of the generated data for ImageNet-C, we provide the results for the absolute accuracy and
effective robustness of the models on ImageNet-C (Severity-5). We report the average accuracy over
all the sub-datasets in the ImageNet-C, in Table 5.

Table 5: Comparison of training ImageNet-1K classifiers on the real data, generated data, and the
equal mix of real and generated data, on ImageNet-C (Severity = 5) validation datasets.

Method Accuracy (%) Effective Robustness (%)
Real Data 20.5 -
Generated Data 3.3 25.5
Real Data + Generated Data 21.75 1.3

We find that the classifiers trained with solely the generated data as well as the mix of real and
generated achieve high effectiveness robustness over standard training on the real data (Column
2). The absolute accuracy increases by 1.25% on the validation set of the ImageNet-1K using our
augmentation.
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Figure 3: Variation in the accuracy and the effective robustness as we vary the proportion of the real
ImageNet-100 data and the generated data created using its class labels in the training set. Here 100%
refers to 130K training size. While calculating effective robustness, standard training is performed on
100% real data.

E.1 EFFECT OF REAL AND GENERATED DATASET SIZE

Here, we investigate how different combinations of the real dataset and the generated one can help
the classifiers take advantage of the complementary strengths of the two data sources. To do so,
we assessed the average performance of classifiers (ResNet-18, ResNext-50, and ResNext-101)
trained with six different input mixing combinations created by using 25%, 50%, 100% of the real
data for ImageNet-100 and 50%, 100%, 200% of the generated dataset using the class labels from
ImageNet-100.

As shown in Figure 3a, we observed an increase in accuracy on shifted datasets as the size of the real
data increases while keeping the amount of generated data fixed. Similarly, when the proportion of
the generated data increases while keeping the proportion of the real data fixed, we observed similar
results. Overall, we found that increasing the amount of training data from either distribution leads to
an improvement in performance on the shifted test beds.

In Figure 3b, we present the average effective robustness of the classifiers across NDS datasets.
Interestingly, we observe that as the proportion of real data increases while keeping the amount of
generated data fixed, the effective robustness of the classifier decreases. Conversely, as the proportion
of generated data increases while keeping the amount of real data fixed, the effective robustness of
the classifier increases. These findings hold across majority of dataset-specific results, as shown in
Appendix §K.

We conducted an experiment to examine the impact of varying the amount of generated data with a
fixed 1.3M training sample budget on ImageNet1K. Results are shown in Figures 4 and 4a. Figure
4 shows the accuracy and robustness of ResNeXt-50 over four natural distribution shifts, with an
average of the results. In Figure 4a, accuracy increases initially with increasing generated data
but drops by 15% when the fraction of generated data increases from 0.75 to 1. Conversely, the
effective robustness increases monotonically with the increase in the proportion of generated data in
the training mixture.
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Figure 4: Variation in the accuracy and the effective robustness as we vary the proportion of the
generated ImageNet1K data by fixing the number of training samples to 1.3M. While calculating
effective robustness, standard training is performed on 1.3M real data. We report the results for the
ResNeXt-50 classifier over three random seeds.

Table 6: Comparison of consistency (0-1) and quality (1-5) between the real images and the synthetic
images created using various generation images. The numbers are averaged over the individual scores
of the 10 human annotators.

Real SD-Labels SD-Images SD-Labels&Images
Consistency 0.96 0.86 0.54 0.85
Quality 4.52 4.2 2.96 3.8

E.2 EFFECTIVENESS OF GENERATION STRATEGIES

E.2.1 CHOICE OF CONDITIONING

Previously, we trained classifiers on data generated using 80 diverse templates with class label
information from the ImageNet datasets. We chose this generation strategy as it does not require
access to source images and thus generates diverse images that complement the images in the real
dataset. As an alternative, we could have used just a single template, such as ‘a photo of a class
label’, to create the complete dataset. We describe the other data generation strategies, SD-Images
and SD-Labels&Images in §C.4.

To compare the diversity of images in the generated datasets, we calculated the diversity scores by
subtracting the average of 1 - mean cosine pair-wise similarities between the CLIP representations
of the images within each class of ImageNet-100, as done in Udandarao et al. (2022). The diversity
scores are presented in Table 7. We find that the generated dataset created with a diverse set
of templates ranked higher on the diversity score than the dataset created with a single template.
Furthermore, we observed that data generation using only source image information (SD-Images) led
to the most diverse creations within each class.

We compare the performance of classifiers trained on equal mixes of real ImageNet-100 data and
synthetic data using various generation strategies results in Table 8. We find that the performance
on training with synthetic dataset generated using diverse templates for class labels (SD-Labels),
or the one generated using both class labels and source images (SD-Labels&Images), were closely
tied at ∼66%. Further, we observe that training on the generated datasets created solely with single
templates while utilizing class information results in lower robustness than training on images created
via diverse templates. The lowest performances were achieved by training on real data and the mix of
real data and generated data using real data images (SD-Images), even though they ranked highly
on the diversity metric (Table 7). This implies that the objects created by SD-Images may not be
represented meaningfully or the quality of images is low.
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Table 7: Comparison of diversity for various generation strategies.

Data Diversity
Real 0.30
SD-Labels (Diverse Templates) 0.26
SD-Labels (a photo of a {class label}) 0.15
SD-Labels (a rendition of a {class label}) 0.16
SD-Images 0.32
SD-Labels and Images (Diverse Templates) 0.23

Table 8: Comparison of the models trained on real data and an equal mix of real data and generated
data (100:100 ratio) using different generation strategies on ImageNet-100 validation set and its natural
distribution shift (NDS) datasets. We report results over the classes that overlap with ImageNet-100.
The results are averaged over three runs of ResNet-18, ResNeXt-50/101. We abbreviate ImageNet as
Im.

Im-100 Im-Sketch-100 Im-R-100 Im-V2-100 Obj-100 Average
Real Data 85.67 28.64 49.76 74.83 42.26 56.23
+ SD-Labels (Diverse Templates) 86.79 48.40 71.23 75.96 47.49 65.97
+ SD-Labels (a photo of a {class label}) 87.45 35.66 59.51 75.63 44.87 60.62
+ SD-Labels (a rendition of a {class label}) 87.37 46.27 67.75 75.95 46.48 64.83
+ SD-Images 85.89 32.20 50.00 74.90 45.13 59.51
+ SD-Labels and Images 87.37 46.73 71.42 76.50 47.87 65.98

E.2.2 HUMAN EVALUATIONS

Since the classifiers are trained using the generated data, we perform a human evaluation study to
assess whether there is a lack of useful information in the generated datasets that might be relevant to
classify an object, and whether the generated images are of poor quality i.e., they lack sharpness or
contain perceptible noise. To that end, we collect 1600 annotations from 20 human surveyors for
40 images that are sampled from different datasets (one real and three generated) belonging to 10
ImageNet classes. Further details on the data collection process are presented in Appendix §F.

We find that images belonging to the real ImageNet dataset are the most consistent and of highest
quality, which is expected given the extensive data curation and cleaning process that went into
creating ImageNet. Additionally, we observe that the consistency and quality scores of images
generated via the SD-Labels or SD-Labels&Images strategies are close, providing further evidence
for the effectiveness of these strategies for training robust classifiers. However, we also find that
synthetic data generated using the SD-Images had low consistency and quality scores, suggesting
at the poor object representations and image quality, which do not aid in robustness to natural
distribution shifts.

Table 9: Comparison of different classifiers on the ImageNet-G (Im-G) variants. The accuracy gap
between Im-1K and the Im-G variant is reported inside the gray brackets. We abbreviate Stable
Diffusion as SD, Labels as L, Images as I, Pretraining as PT, & Finetuning as FT.

Models Im1K Im1K-G (SD-L) Im1K-G (SD-I) Im1K-G (SD-LI)
ResNeXt-101 (Trained on ImageNet1K) 79.28 55.93 (-23.3) 33.38 (-45.90) 60.9 (-18.38)
ViT-L/14-336 (PT-Im12K-FT-Im1K) Dosovitskiy et al. (2020) 88.54 66.24 (-22.30) 35.67 (-52.87) 66.78 (-21.76)
MaxViT-XL-512 (PT-Im21K-FT-Im1K) Tu et al. (2022) 88.26 68.61 (-19.65) 39.29 (-48.97) 70.61(-17.65)
Zero-shot CLIP (ViT-B/32) Radford et al. (2021) 68.33 71.89 (+3.56) 34.45 (-33.88) 73.09 (+4.76)
Finetuned CLIP (ViT-B/32) Wortsman et al. (2022) 81.31 64.05 (-17.26) 34.67 (-46.64) 65.17 (-16.14)
ResNeXt-101 (Trained on ImageNet1K&SD-Labels) 80.39 89.04 (+8.65) 34.40 (-45.99) 83.91 (+3.52)

E.3 EVALUATING CLASSIFIERS ON GENERATED DATASETS

We compare the performance of a diverse set of classifiers, (a) ResNeXt-101 trained solely on
the real ImageNet-1K (ImageNet-1K), (b) ViTs pretrained on a larger set of ImageNet categories
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Table 10: Comparison of different classifiers on the filtered images from the ImageNet-G variants.
We abbreviate Filtered-ImageNet as F-Im, Stable Diffusion as SD, Labels as L, and Images as I. The
performance gap between ImageNet-1K validation set and the respective generated evaluation set is
reported inside the grey brackets.

Models F-Im1K F-Im1K-G (SD-L) F-Im1K-G (SD-I) F-Im1K-G (SD-LI)
ResNeXt-101 (Trained on ImageNet1K) 90.75 73.18 (-17.57) 57.08 (-33.67) 74.54 (-16.21)
ViT-L/14-336 (pt-12K-ft-1K) 94.41 82.29 (-12.12) 64.29 (-30.12) 81.44 (-12.97)
MaxViT-XL-512 (pt-21K-ft-1K) 94.49 79.93 (-14.93) 58.87 (-35.62) 76.87 (-17.62)
Zero-shot CLIP (ViT-B/32) 83.13 85.63 (+2.50) 65.50 (-17.63) 85.01 (+1.88)
Finetuned CLIP (ViT-B/32) 90.73 78.35 (-12.38) 59.61 (-31.12) 76.86 (-13.87)
ResNeXt-101 (Trained on ImageNet1K&SD-Labels) 90.99 96.95 (+5.96) 60.07 (-30.92) 91.75 (+0.76)

(ImageNet-21K/12K) and finetuned on ImageNet-1K, (c) Zero-shot CLIP, (d) CLIP finetuned on the
real ImageNet-1K dataset, on the three ImageNet-G variants, in Table 9.

We find that the ResNeXt-101 model trained solely on the real ImageNet-1K dataset experiences a
large accuracy gap between the performance on ImageNet-1K validation dataset, and ImageNet-G
variants. Despite performing the best on ImageNet-1K validation datasets, ViTs underperform on
ImageNet-G variants. The performance of this classifier on ImageNet-G (SD-Labels) highlights the
potential for further improvements in the existing models on ImageNet-G benchmark. Interestingly,
we find that zero-shot CLIP does not undergo a distribution shift on two of the three ImageNet-G
variants. Since the zero-shot CLIP encoders are used as module in our data generator Stable Diffusion,
the good performance of CLIP on the generated dataset underscores a “cyclic consistent” nature
where the conditional generations of an encoder-decoder generative model (Stable Diffusion) agree
with the standalone encoders in CLIP. However, we find that finetuned CLIP to large accuracy gaps
on ImageNet-G variants. An identical behavior of the finetuned CLIP was observed in Wortsman
et al. (2022) for established NDS datasets, which suggests at the worthiness of ImageNet-G to be also
considered as distribution shift test bed. We also train a classifier on the mix of real and generated
data to assess the best achievable performance on ImageNet-G (SD-Labels). The performance of this
classifier on ImageNet-G highlights the potential for further improvements in the existing models on
Im-G.

In Table 9, we find that all the models suffer the most on the dataset created using the SD-Image
strategy. Hence, to assess the performance of the models on a cleaner generated dataset using
zero-shot CLIP, we filter out all the images whose cosine similarity score with their class label’s
proxy caption (‘a photo of a {class label}’) is less than 0.3, as used in Schuhmann et al. (2022). We
present the results of different classifiers on the filtered versions of the real Im-1K validation set and
Im-G variants in Table 10. We find that the accuracy gap, ranging from 12% − 30% between the
performance on Im-1K and Im-G variants still persists for majority of the classifiers. As before, we
observe large gaps between the performance of a classifier that is trained with the generated dataset
(SD-Labels) and the other classifiers, trained with real data, on ImageNet-G.

F SETUP FOR HUMAN EVALUATION

We randomly selected images from 10 classes of the ImageNet1K dataset and used them to synthesize
generated images using three different strategies: SD-Label, SD-Image, and a combination of both,
as described in §E.2. This resulted in a total of 40 images for our study, including the real images.
We then recruited a pool of 20 human annotators to independently complete a survey in which they
were shown each image without any information about its source. 1 They were asked two questions
for each image: 1) whether the image contained the intended class label, and 2) to rate the image’s
quality on a scale of 1-5. The screenshot of the survey for one image is provided for reference in
Figure 5.

1Human annotators are graduate students from the department of CS at UCLA.
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Figure 5: Survey screenshot

G SETUP FOR TRAINING IMAGE CLASSIFIERS

As suggested in previous studies Kusupati et al. (2022), we train all the models using the efficient
dataloaders of FFCV Leclerc et al. (2022). We train the models for 40 epochs with the batch size
of 512 on ImageNet-1K, and for 88 epochs with the batch size of 512 on ImageNet-100. All the
models are trained with a learning rate of 0.5 with a cyclic learning rate schedule Smith (2017). All
the models are trained with SGD optimizer with a weight decay of 5e-5.

H MORE DETAILS ON NATURAL DISTRIBUTION SHIFT DATASETS

ImageNet-Sketch contains the sketches of ImageNet-1K objects. ImageNet-R contains the renditions
(paintings, sculptures) for 200 ImageNet-1K classes, 19 of which overlap with ImageNet-100.
ImageNet-V2 is a reproduction of ImageNet-1K validation dataset, and we consider its matched
frequency variant that closely follows the ImageNet-1K data distribution. Finally, ObjectNet contains
a objects in novel backgrounds and rotations with 113 overlapping classes with ImageNet-1K, and 13
classes overlapping with ImageNet-100.

I TEMPLATES USED FOR DATA GENERATION

We present the list of 80 diverse templates that were used to generate the new images in Table 11.

J VISUALIZATION OF IMAGE GENERATIONS

We present a sample visualizations of the images generated via different generated strategies in Figure
6.

K EFFECT OF CHANGING THE TRAINING SIZE

We present the effect of variation in the training size along the dimensions of the training data and the
generated data in Figure 7, 8, 9, 10.
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’a bad photo of a {class label}.’, ’a photo of many {class label}.’, ’a sculpture of a {class label}.’, ’a photo of the
hard to see {class label}.’, ’a low resolution photo of the {class label}.’, ’a rendering of a {class label}.’, ’graffiti of
a {class label}.’, ’a bad photo of the {class label}.’, ’a cropped photo of the {class label}.’, ’a tattoo of a {class
label}.’, ’the embroidered {class label}.’, ’a photo of a hard to see {class label}.’, ’a bright photo of a {class label}.’,
’a photo of a clean {class label}.’, ’a photo of a dirty {class label}.’, ’a dark photo of the {class label}.’, ’a drawing
of a {class label}.’, ’a photo of my {class label}.’, ’the plastic {class label}.’, ’a photo of the cool {class label}.’, ’a
close-up photo of a {class label}.’, ’a black and white photo of the {class label}.’, ’a painting of the {class label}.’,
’a painting of a {class label}.’, ’a pixelated photo of the {class label}.’, ’a sculpture of the {class label}.’, ’a bright
photo of the {class label}.’, ’a cropped photo of a {class label}.’, ’a plastic {class label}.’, ’a photo of the dirty
{class label}.’, ’a jpeg corrupted photo of a {class label}.’, ’a blurry photo of the {class label}.’, ’a photo of the
{class label}.’, ’a good photo of the {class label}.’, ’a rendering of the {class label}.’, ’a {class label} in a video
game.’, ’a photo of one {class label}.’, ’a doodle of a {class label}.’, ’a close-up photo of the {class label}.’, ’a
photo of a {class label}.’, ’the origami {class label}.’, ’the {class label} in a video game.’, ’a sketch of a {class
label}.’, ’a doodle of the {class label}.’, ’a origami {class label}.’, ’a low resolution photo of a {class label}.’, ’the
toy {class label}.’, ’a rendition of the {class label}.’, ’a photo of the clean {class label}.’, ’a photo of a large {class
label}.’, ’a rendition of a {class label}.’, ’a photo of a nice {class label}.’, ’a photo of a weird {class label}.’, ’a
blurry photo of a {class label}.’, ’a cartoon {class label}.’, ’art of a {class label}.’, ’a sketch of the {class label}.’, ’a
embroidered {class label}.’, ’a pixelated photo of a {class label}.’, ’itap of the {class label}.’, ’a jpeg corrupted
photo of the {class label}.’, ’a good photo of a {class label}.’, ’a plushie {class label}.’, ’a photo of the nice {class
label}.’, ’a photo of the small {class label}.’, ’a photo of the weird {class label}.’, ’the cartoon {class label}.’, ’art
of the {class label}.’, ’a drawing of the {class label}.’, ’a photo of the large {class label}.’, ’a black and white photo
of a {class label}.’, ’the plushie {class label}.’, ’a dark photo of a {class label}.’, ’itap of a {class label}.’, ’graffiti
of the {class label}.’, ’a toy {class label}.’, ’itap of my {class label}.’, ’a photo of a cool {class label}.’, ’a photo of
a small {class label}.’, ’a tattoo of the {class label}.’

Table 11: List of diverse templates used for generating data.

Figure 6: Visualization of samples from the real dataset and various generation strategies using Stable
Diffusion (SD).

L TRAINING DYNAMICS

We present the loss curve, in Figure 11, to compare the training dynamics of a classifier, ResNeXt-50,
on the real ImageNet-1K data and an equal mix of real and generated ImageNet-1K data in 100:100
proportion.
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Figure 7: Variation in the accuracy and the effective robustness on ImageNet-Sketch as we vary the
proportion of the real ImageNet-100 data and the generated data created using its class labels in the
training set. Here 100% refers to 130K training size. While calculating effective robustness, standard
training is performed on 100% real data.
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Figure 8: Variation in the accuracy and the effective robustness on ImageNet-R as we vary the
proportion of the real ImageNet-100 data and the generated data created using its class labels in the
training set. Here 100% refers to 130K training size. While calculating effective robustness, standard
training is performed on 100% real data.
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Figure 9: Variation in the accuracy and the effective robustness on ImageNet-V2 as we vary the
proportion of the real ImageNet-100 data and the generated data created using its class labels in the
training set. Here 100% refers to 130K training size. While calculating effective robustness, standard
training is performed on 100% real data.
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Figure 10: Variation in the accuracy and the effective robustness on ObjectNet as we vary the
proportion of the real ImageNet-100 data and the generated data created using its class labels in the
training set. Here 100% refers to 130K training size. While calculating effective robustness, standard
training is performed on 100% real data.

Figure 11: Comparison of the Loss Curve for ResNeXt-50 while training with the real and the
generated data. The number of training samples in the real data is 1.3M whereas the number of
training samples in the real and generated data scenario is 2.6M.
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