2407.11850v1 [cs.CV] 16 Jul 2024

arxXiv

SpaceJAM: a Lightweight and Regularization-free
Method for Fast Joint Alignment of Images

Nir Barel* ®, Ron Shapira Weber* ®, Nir Mualem®, Shahaf E. Finder®, and
Oren Freifeld

The Department of Computer Science, Ben-Gurion University of the Negev, Israel
{banir,ronsha,nirmu,finders}@post.bgu.ac.il, orenfr@cs.bgu.ac.il

Abstract. The unsupervised task of Joint Alignment (JA) of images is
beset by challenges such as high complexity, geometric distortions, and
convergence to poor local or even global optima. Although Vision Trans-
formers (ViT) have recently provided valuable features for JA, they fall
short of fully addressing these issues. Consequently, researchers frequently
depend on expensive models and numerous regularization terms, resulting
in long training times and challenging hyperparameter tuning. We intro-
duce the Spatial Joint Alignment Model (SpaceJAM), a novel approach
that addresses the JA task with efficiency and simplicity. SpaceJAM
leverages a compact architecture with only ~16K trainable parameters
and uniquely operates without the need for regularization or atlas main-
tenance. Evaluations on SPair-71K and CUB datasets demonstrate that
SpaceJAM matches the alignment capabilities of existing methods while
significantly reducing computational demands and achieving at least a
10x speedup. SpaceJAM sets a new standard for rapid and effective image
alignment, making the process more accessible and efficient. Our code is
available at: https://bgu-cs-vil.github.io/SpaceJAM/.

Keywords: Joint Alignment - Congealing - Regularization-free - STN

1 Introduction

Joint alignment (JA) of images is the task of geometrically transforming an image
collection in a way that optimizes some criterion of mutual similarity. JA is
useful for reducing uninformative intra-dateset (or intra-class) variability, thereby
facilitating more accurate analysis and interpretation across various applications,
ranging from medical imaging to automated recognition systems. Unfortunately,
achieving a successful JA is fraught with challenges, including poor local optima or
even poor global optima (i.e., trivial non-useful solutions; e.g., shrinking all images
to zero size), intra-class variations in pose/orientation/illumination, complex
geometric deformations, visual clutter, and more. A JA method typically consists

*Contributed equally.

https://orcid.org/0000-0003-4751-5653
https://orcid.org/0000-0003-4579-0678
https://orcid.org/0000-0005-1216-6774
https://orcid.org/0000-0003-0254-1380
https://orcid.org/0000-0001-9816-9709
https://bgu-cs-vil.github.io/SpaceJAM/

2 N. Barel et al.

images

AL

> o

...--.- Atlas

Input

T @

= &

TE

s o & S 4 &5
< &

E?E = 3 ' o = U. ‘
22 . v ¢ =

Fig.1: SpaceJAM joint alignment Our framework jointly aligns a set of images of
an object category in only a few minutes. Top-to-bottom: 1) input images; 2) learned
low-dimensional representations; 3) aligned features; 4) aligned images. The last column
depicts the average representation (atlas) obtained after training.

of four components: 1) features to be aligned; 2) a criterion of joint similarity; 3) an
optimization process; 4) warping the images via either a parametric transformation
family (e.g., homographies) or dense pixel-to-pixel correspondences.

Traditionally, JA has relied on classical methods such as congealing [9, 10,
32,45], which gradually aligns one image towards the rest, or alignment to a
centroid which uses a reference image or a (possibly-latent) template. Other
methods have utilized feature-based approaches, such as SIFT [41], to establish
correspondences between images or key-points. While effective in certain domains
(e.g., medical scans), those classical approaches often struggle with more diverse
image collections.

With the integration of Deep Learning (DL) into JA (e.g., Chelly et al. [8]),
especially via the use of Vision Transformers (ViT) [12]| features, the field has
witnessed a leap forward. ViTs, DINO specifically [7], offer rich semantic features
that partially mitigate some of the challenges that hindered traditional JA
methods. However, many issues persist even when using ViT features. This is
arguably what led recent works [20,49] to over-rely on high-capacity-but-expensive
models, as well as extensive regularization strategies. The latter, besides adding
to the computational burden, require regularization hyperparameter tuning.
Together, that approach led to methods that are slow and often too brittle.

We take a different approach. While we are happy to use DINO features, we
arque that feeding such features to high-capacity models is not, in fact, needed
for the JA task and that rather than using such models here, it is better to
explore what the best ways are to formulate, and then solve, this task. With
this in mind, this paper shows how to effectively, and efficiently, solve the JA
task. To that end, we introduce the Spatial Joint Alignment Model (SpaceJAM),
a regularization-free JA approach that does not require explicitly maintaining

SpaceJAM: A Method for Fast Joint Alignment of Images 3

an atlas. See also Figure 1. SpaceJAM utilizes a lightweight recurrent Spatial
Transformer Network (STN) [26], a Lie-algebraic framework, and a novel loss
function. The proposed approach not only ensures fast JA (e.g., at least a 10x
speedup in comparison to contemporary methods [20,49]) but also maintains
the geometric integrity of the aligned images. We evaluate our method on the
SPair-71K and CUB datasets, and show performance either better than, or on
par with, state-of-the-art models but with significantly reduced computational
demands, marking a significant advancement in the field of JA.

To summarize, our key contributions are as follows: 1) we introduce SpaceJAM,
a lightweight method for JA of in-the-wild images which is much faster than
contemporary approaches; 2) a novel inverse-compositional loss function that
obviates the need of using regularization terms and does not require maintaining
an atlas; 3) an efficient solution for handling reflections (also known as flips).

2 Related Work

Classical JA methods focused on techniques that leverage geometric trans-
formations and hand-crafted features. Congealing, a seminal concept introduced
in [32,45], refers to gradually aligning an image set by iteratively aligning one
image towards the others, to minimize a global cost function, typically the entropy
or least-squares of the raw pixel values [9,10,32] or SIFT descriptors [24, 38, 61].
Other approaches use clustering to simultaneously partition the data and align all
class members to their respective mean [39,44] or via template matching [14,18,27].
The success of those classical JA methods, however, was hindered by the quality
of the to-be-aligned features. Another classical approach seeks to model an image
set as a low-rank linear subspace [21,30,69], the most noticeable work being
RASL [53], whose main problem lies in its reliance on a good initial alignment.

Deep learning. The advent of deep learning has significantly expanded the
capabilities of image alignment techniques. Huang et al. applied the classical
congealing algorithm to the features of a Convolutional Neural Net (CNN) [23].
The Spatial Transformer Net (STN) [26] introduced a differentiable module
that can be integrated into larger neural nets to predict and apply spatial
transformations to input images or feature maps, enabling end-to-end learning of
the alignment process. Since their inception, STNs have proven an invaluable tool
for the JA task and were used in both the congealing framework [3], explicit Atlas
building [11, 35,62, 66], joint clustering and alignment tasks [40,47], and for a
JA step before building moving-camera background models [8,13]. Coupled with
Generative Adversarial Networks (GAN) [19], STNs were also shown to produce
high-fidelity class-category canonical spaces (or atlases) for natural images [48,52].
However, GAN-based methods requires large amount of training data.

Semantic correspondence through self-supervision. Self-supervised learn-
ing (SSL) approaches have recently gained traction for the task of correspondence

4 N. Barel et al.

Table 1: A comparison with recent JA methods (SPair’s ‘Cat’ category [46]).

Method # Params # Losses #HP Atlas-free learning #epochs Time PCK®@O0.10
NeuCongealing [49] 28.7M 8 8 X 8K 1:17:02 53.3
ASIC [20] 7.9M 4 5 X 20K 1:06:48 54.8
SpaceJAM (Ours) 0.016M 1 (0] v 0.7K 0:05:58 60.8

discovery between images. By leveraging the representations learned by ViTs
(such as DINO [7]) or text-to-image diffusion models [58], several works were
able to use these features for the task of pairwise image correspondence and
alignment [28,29,43,64,68]. While useful in the pairwise case, finding joint dense
correspondence between IN images is intractable for a large IV, as the complexity is
O(N?). Additionally, the Nearest Neighbor (NN) algorithm requires a comparison
between every pixel in the source image and all of the pixels in all of the other
images. Finally, methods such as [64,68] require multiple ¢ steps for the diffusion
model, which further contributes to the computation burden. In contrast, our
proposed JA method produces such a mapping without performing NN searches.

JA using DINO features. DINO features offer robust and semantically
meaningful representations for many computer-vision tasks, JA included. The
Neural Congealing algorithm [49] utilizes a test-time training framework to build
an atlas for a given class (e.g., birds) by matching DINO features via rigid and
non-rigid warps, using a ResNet-based STN for each [22]. We remark that despite
its name, Neural Congealing [49] is more related to atlas-based methods than to
congealing methods. Such ambivalent terminology is prevalent, unfortunately, as
sometimes people mistakenly refer to the JA task itself as congealing, regardless
whether the JA method is congealing-based or atlas-based.

ASIC [20] uses DINO features to perform dense warping to map every pixel
in the input to a canonical space using a U-net architecture [57]. However,
both [49] and [20] grapple with computational overhead, stability issues, and
the necessity for extensive regularization to prevent model collapse or trivial
solutions. Additionally, ASIC’s dense warping approach is prone to incoherent
global alignment, often resulting in fragmented or an inconsistent alignment. In
contrast, SpaceJAM reaches competitive results much faster and with orders
of magnitude fewer trainable parameters. See, e.g., Table 1, as well as the
supplementary material (SupMat) for additional running times.

In summary, while classical methods have provided a strong foundation for
image alignment, DL has significantly enhanced the ability to handle complex
and varied alignment tasks. The move towards SSL and semantic correspondence
methods further illustrates the evolving landscape of the image alignment field,
highlighting ongoing challenges and the need for innovative solutions to address
computational efficiency, coherence, and optimization stability. These needs
motivated our proposed framework, whose overview is depicted in Figure 2.

SpaceJAM: A Method for Fast Joint Alignment of Images 5

()

=

Target Source
Input DINO ViT features |

+ masks

Fig. 2: Framework overview. Given a set of images,(I;)/;, their DINO-ViT repre-
sentations and coarse masks , (V;, Mi)f\[:l, SpaceJAM learns an inverse-compositional
pairwise alignment between each image pair, and consequently, features, (Ui)fil, in a
shared semantic space, where they are warped (according to learned warping parameters,
(0:)1) to produce their aligned versions, (U; o %)X, . Pairwise alignment of I; to a
target image I;, is achieved by warping to the shared space and then wapring the result

by the inverse transformation of the target image, yielding I; o T% o T,

3 Background: Typical Challenges in Joint Alignment

Let 7 be a family of spatial transformations, from R? to R2. For concreteness,
our notation below assumes 7T is parametric (as is the case, e.g., for affine
transformations or homographies) but most of the discussion holds for the
nonparametric case as well. Let 7% € T denote the generic element of 7 where
0 is the corresponding parameter vector. Let (I;,I;) be an image pair. The
pairwise alignment problem is

arg min D(I;, I; o T%") (1)

T%ieT
where o is function composition, 7% is the transformation warping I ; towards
I;, and D is a discrepancy measure, based on raw pixels or image features.
Joint alignment. Given N images, (I;)Y , the underlying notion behind the
JA problem (see, e.g., [17]) is that for each observed image I; there is a latent
transformation, 7% € T, such that (I; o T%)Y | are essentially different realiza-
tions of some shared canonical representation. In other words, the JA solution
is the set of warping parameters, (6;)Y ;, that warps the entire image ensemble
to some shared representation, usually referred to as an atlas (or prototypical
image). Thus, the JA problem is often formulated as finding a latent atlas, I,,,
together with the aforementioned parameters:

N
argmin Y D(I,,[;0T%). (2)
L (T8N eT T

JA Approach #1: Alignment to a Shared Atlas. One JA approach relies
on building a shared atlas, I,,, that minimizes Equation 2. The atlas could be

6 N. Barel et al.

a learnable parameter [47] or the average of the warped images [8, 14,27, 53],
I, =+ Zi\;l I; 0 T%. A key challenge in that approach is that since the (6;)Y,
are unknown, so is I,, and thus the latter must be found during the optimization
process together with (8;)Y ;. Note that the optimization may also be amortized
via the training of a neural net [13].

Unfortunately, Equation 2 can be undesirably minimized by, e.g., (i) removing
all images from the domain of I, or (ii) severely shrinking or stretching the
images. Both (i) and (ii) represent poor global minima: the nonnegative loss
becomes zero, yet the solution is useless. Additionally, the process heavily relies
on a good initial alignment of the set and is prone to converge to poor local
minima, which could be visually seen as a blurred representation of the set.
See Erez et al. [13] for a detailed discussion on problems associated with that
approach. One possible remedy to the issues above is to use a regularization over
the predicted transformations (not to be confused with regularization over the
network’s weights). That is, the JA problem becomes:

N
arg min Z D(I,,1; o T%) + R(T%; \), (3)
L (TN eT =t

where the regularization term, 7% +— R(T%; \) is parameterized by hyperparam-
eters (HP), A. For instance, one may hope, against hope, that penalizing large
deviations from the identity transformation would guide the optimization process
to a more plausible atlas. However, there is a major problem here whose severity
is often swept under the rug: the need to determine good values for \.

JA Approach #2: Congealing. The discussion above leads to another JA
approach: congealing [32,45]. The congealing algorithm seeks to minimize some
JA criterion (e.g., in its original formulation it was entropy) by iteratively warp-
ing each single image towards the other images but only after those images
were already warped using the current estimates of their respective transforma-
tions. One appealing property of congealing is that it defines a notion of central
tendency of the data without having to explicitly build an atlas or to rely on
a reference image [32]. Congealing avoids some of the pitfalls of aligning to a
shared atlas, though sometimes regularization is still used. It was later shown
that least squares congealing (LSC) has several advantages over the entropy-
based algorithm in terms of optimization and convergence [9]. Finally, the clever
Inverse-Compositional LSC (IC-LSC) method was introduced to handle outlier
images and objects being warped outside of the image domain when applying a
single warp to the entire set [10]. Although not DL-based, IC-LSC is, in some
sense, the closest to our approach.

Regularization-based DL Approaches for Joint Alignment. The afore-
mentioned challenges in solving the JA problem still exist even when considering
rich semantically-meaningful representations such as DINO [7]. Contemporary
methods handle these issues by employing extensive regularization on the pre-
dicted warps and/or learned atlas. Consider ASIC [20], for instance, which seeks
to densely map every input pixel to a canonical shared space. Dense mapping

SpaceJAM: A Method for Fast Joint Alignment of Images 7

SpaceJAM - & % -
p(Ours) ’\', T @ i" /4 ;;* @

Fig. 3: Global alignment vs. dense warping evaluated on several classes of the
SPair-71K dataset [46]. A source image (1°° row) is mapped to the target image (2™
row) via either dense warping (3" row) achieved by ASIC [20] (as presented in their
paper) or a parametric alignment by SpaceJAM (ours, 4th row). Dense mapping is
prone to produce incoherent results (please zoom in to better see that effect) and
heavily relies on regularization. In comparison, our regularization-free method produces
geometrically-coherent results and is also much faster.

strategies are inherently susceptible to breaking the object geometry (as shown
in Figure 3). To mitigate this problem, the authors of [20] enforce the following
regularization and auxiliary losses: (1) an equivariance loss to handle geometric
variations, (2) total-variation regularization to encourage smooth mappings, (3)
consistent part alignment to map semantically similar parts, combined with
additional two losses that are not directly related to the object geometry, for
a total of 5 regularization terms (while [49] has 6 reg. terms and 8 HPs). Each
loss term requires its own HP, A. The reason that the crucial dependency on
regularization terms, let alone so many of them, is much worse than one might
expect is threefold. First, the optimal choice of A is usually dataset-specific and
this renders such methods either too brittle or limited. Second, even on a single
dataset, determining a good value typically requires some supervision — at odds
with the unsupervised nature of the JA task. Third, the need to have several
(sometimes many) loss terms, can complicate and prolong the optimization pro-
cess. Thus, it is unsurprising that current DL-based JA methods such as [20,49]
must use expensive architectures and are slow.

4 Method

Given a collection of images, (I;)¥ , along with their DINO representations,
(V;)X,, of an object (e.g., a particular bird) or an object class (e.g., multiple
birds), our goal is to jointly align the images in a semantically-meaningful manner.

8 N. Barel et al.

Before describing the proposed method we emphasize that all of our design choices
below were made with the goal of making the JA process easier, faster, and
more stable. Together, those choices have a surprisingly strong synergistic effect,
yielding a lightweight JA method that is much faster and its number of trainable
parameters is < 1% of the numbers in contemporary methods.

4.1 Preprocessing

The goal of our preprocessing procedure is to extract object masks and reduce
the dimensionality of the DINO features. Similarly to [20,49], and to keep the
comparison with those methods fair, we use [2] to produce the saliency-based
masks for the image collection. Let M; denote the binary mask for I;. Next,
we apply dimensionality reduction to the DINO features. Let V; € R&XHXW
where d is typically high (e.g., d = 384) and (H, W) are the (height,width) of
the DINO representation. Our dimensionality reduction has two steps.

To reduce the computational burden, we apply Principal Component Analysis
(PCA) using the first K principal components, where K < d (in our experiments,
K = 25). Let V; € REXHXW denote the PCA representation of V;, and let
f/i = Vl - M; denote its masked version.

In the second step, we train a fully convolutional, low-capacity autoencoder
(only ~3K parameters) to reduce the number of channels to 3. We chose 3 since it
is low enough to serve as an information bottleneck that removes redundant details
and since it allows for interpretability when visualizing the encoded features
using RGB colors. The AE is trained to reconstruct V; using the following loss,

~ - 2
‘/i - wdec (wenc (‘/1))

b

N
Lag = ZZ_:) ’ (4)
As we explain later, the obtained latent representation of the AE, U; = 1/)enc(Vz‘) S
R3*HXW " will serve a purpose in our alignment network. We find that the
combination of PCA and AE to reduce the input’s number of channels is highly
effective from both computational and representational points of view.

4.2 Alignment Network

Our alignment network, 9ajign, is based on an STN [26]. Below we provide a brief
overview of that STN and how we handle common pitfalls in STN training. Let
¥srN denote the STN and, for now, let X denote its generic input. The core of
the STN is the so-called localization network, denoted by)., that predicts
transformation parameters from X; i.e., @ = ¢1o.(X). The output of the entire
STN is (8, X o T%) = ¢srn(X). That is, the output is both 8 and the warped
image obtained by applying 7% to X. STNs have been shown to be an effective
tool for various tasks, albeit difficult to optimize [35,63]. The issue stems from a
few reasons, which we address in a theoretically-grounded manner.

The first difficulty is in predicting large transformations. To address this issue,
the Inverse-Compositional STN (IC-STN) [35] was proposed, which, based on

SpaceJAM: A Method for Fast Joint Alignment of Images 9

the classical Inverse-Compositional Lucas & Kanade algorithm [42], predicts a
cascade of smaller warps and composes them. In our case, we do so by recursively
feeding the STN several times with its own output (see SupMat for details).
Empirically, 5 recurrences suffice (a higher number yielded a very small gain) so
this is what we used in our experiments. Since the recurrences share the same
STN, the number of trainable parameters does not increase with the number
of recurrences. As we apply several transformations in cascade, each predicted
transformation can be relatively small. A fine nuance is that while usually each
STN call involves interpolation (due to the resulting irregular grid), here whenever
we compose transformations we perform only the last interpolation; this improves
the quality of the resulting image as fewer interpolation artifacts occur. Our
entire model, 1align, consists of the AE and 5 recurrences of 1gn.

4.3 Lie Algebras, Lie groups, and the Matrix Exponential

Another difficulty is that, without special care, an STN might predict non-
invertibile transformation matrices, which could hinder the optimization process;
e.g., [63] showed that restricting an affine STN to invertible affine transformations
allows for more robust and stable training. Thus, our alignment network, talign,
uses a cascade of transformations that are members of a Lie group. This formula-
tion is more stable and robust compared to the vanilla STN. We represent spatial
transformations as elements of Lie groups via a Lie-algebraic parameterization,
as we now explain. Consider these 6 spaces of 3-by-3 real matrices:

se(2) = {4 A= [_Ze 9830]} (SE@2) = {T:T= [% % ?i] &[5 2] es0@)},
aff(2) = {A: A = [30%3:” ARQ) = {T:T = {% % zTﬂ &detT >0},

01 02 03 H, Hy Hs
Sl(3)={A:A:[9495 06]},SL(?)):{H:H:|:H4H5H6:|&d6tH=1}.

07 03 —(01+05) Hr Hs Ho
The shortcuts SE (or se) Aff (or aff), SL (or sl), and SO stand for “Special
Euclidean”, “Affine”, “Special Linear”, and “Special Orthogonal", respectively. The
following are well-known mathematical facts, widely used in computer vision (see,
e.g., [8,13,36,37]): 1) se(2), aff(2), and sl(3) are linear spaces, called (matrix)
Lie algebras. 2) SE(2), Aff(2), and SL(3) are nonlinear spaces. Moreover, they
are (matrix) Lie groups; namely, each of these spaces is both a group (the
binary operator being matrix multiplication) and a smooth manifold, and the
group operations (multiplication; inversion) are smooth. 3) Each element of each
of those groups is an invertible matrix. 4) Nesting property: se(2) is a
linear subspace of aff(2) and the latter is a linear subspace of sl(3). Likewise,
SE(2) is a matrix subgroup of Aff(2) and the latter is a matrix subgroup of
SL(3). 5) SE(2) is the group of rigid-body transformations in R?. Aff(3) is the
group of (orientation-preserving) invertible affine transformations in R2.
SL(3), the group of volume-preserving linear transformations in R3, can also
be identified with the group of homographies in R? (this is why we denoted

10 N. Barel et al.

its generic element by H). 6) The matrix exponential maps se(2) — SE(2),
aff(2) — Aff(2), and sl(3) — SL(3).

The matrix exponential provides a differentiable map from a linear space (the
algebra) into its corresponding nonlinear space (the group). This implies that,
using the Lie-algebraic parametrization, an STN [26] can be easily restricted
to yield only elements of the Lie group of interest [63]. This is useful since
while optimization over nonlinear manifolds can be hard (e.g., even a simple
gradient-descent step might bring us outside the manifold), the Lie-algebraic
parametrization, together with the matrix exponential, lets us perform gradient-
based optimization in a linear space (for other methods for optimization on
manifolds, see Boumal’s textbook [5]) In fact, [63] showed that an STN restricted
to invertible affine transformations was more stable and yielded better results
than the commonly-used unrestricted STN. In our case, there is also an additional
reason why we use Lie groups and this is the fact that our approach relies directly
on Lie groups’ closure under inversion and composition (as detailed below).

4.4 Loss Function

Recall that, for image I,;, we let V;, U;, and M; denote its DINO representation,
an encoded 3-channel representation, and mask map, respectively. We train va1ign
to find the JA of (I;)Y; in a forward-inverse compositional manner. Part of the
motivation behind our loss is to avoid the drawbacks of explicitly warping the
images to a shared space (see § 3). In particular, we avoid using regularization
terms over the transformations. Our loss consists of two conceptual steps: (i)
for each image, I;, in batch k — denoted by By = (Ii)fv:bl (where N, is the # of
images in the batch) — predict the forward warping parameters, 6;, using U; as
the recurrent STN’s input, and then (ii) compose the forward warp with the
inverse warp of every other image in the batch, to build the following loss:

Lo = Z Z] E

Minimizing this loss implicitly maps each image to the shared space, since

0 2
Vi — VoTloT)

()

b

Vj%f/ingionej<:>VjoT9-7z‘7ioT0i. (6)

The loss in Equation 5 relies on Lie groups’ closure under inversion (i.e., the
matrix associated with T9 is invertible) and composition. Notably, the proposed
loss effectively frees us from having to use regularization. This is because, by
construction, a “bad” predicted transformation would directly increase the loss as
the corresponding warped image would fail to “explain away" the other images,
unless all the predicted transformations would be “bad” in ezactly the same way
(which is unlikely and indeed never happens in practice).

Training is done via standard DL gradient-based optimization, except we
also use a Lie-algebraic curriculum learning to ease the optimization further.
Meaning, exploiting the nested structure of the Lie algebras, we start the training

SpaceJAM: A Method for Fast Joint Alignment of Images 11

with SE(2) and end with homographies. See SupMat for details. After training,
SpaceJAM jointly aligns the entire image collection using its forward pass.

Reflections. The outline of our proposed solution for handling reflections
(i.e., flips), whose full details are in our SupMat, is as follows. During training, we
dynamically change the selected flip configuration and train on all configurations
simultaneously (this yields smooth and robust training) but save computations
and increase stability by calculating gradients only for the best flip configuration.

Atlas Building. Upon learning the JA, the method can also quickly generate
an atlas as follows. Given the images (I;))Y.;, we predict the forward warping
parameters via SpaceJAM’s forward pass and obtain the aligned images via
(I; o T9)N ,. The atlas can be taken as the sample mean of either the warped
features, % Zf\; V; 0o T% or the warped PCA-related versions, % Zi\il V; o T?,
Either way results in a semantically-meaningful atlas; see, Figure 4.

4.5 Implementation

We use simple architectures. 1, is a 2-layer CNN with ~13K trainable parameters
and g is a fully-convolutional AE with ~3K trainable parameters, so the total
is only 16K. The final layer predicts 8 parameters (the number of degrees of
freedom in a homography) in total. We predict a cascade of 5 warps in total,
where 9,1ign is shared throughout the process (akin to standard IC-STN [35]).
SpaceJAM is implemented in PyTorch [51] and optimized for 300 epochs for ax
and then an additional 400 for the entire framework (Y)ag+align), using the
Adam optimizer [31] and a StepLR scheduler (v = 0.9, every 50 epochs).

5 Results

We evaluate our method on several real-world benchmarks, containing object
categories with different illuminations, visual clutter, and occlusions, and compare
it with several JA methods. The Datasets include SPair-71k [46], which consists
of 1,800 images from 18 categories (i.e., bird). As is common in the weakly-
supervised test-time optimization scenario, we train (in a weakly-supervised
manner; i.e. only the categories are known, but the latent alignments are not)
SpaceJAM on each of the SPair-71k test sets independently and report results for
each category. For CUB-200 [65], we 1) report results on its first 3 categories,
consisting of 25-30 images each when comparing with [20] and 2) the average
of 14 subsets, following the protocol in [49,52|. For a fair comparison, in the
quantitative comparison our method, like [20,49], used DINOv1 (ViT-S/8) [7]. For
completeness and future comparisons, we also report our results with DINOv2 [50].

5.1 Qualitative Results

Recall that SpaceJAM is trained in an inverse-compositional framework which
first aligns an image to a shared space and then warps it to all other images in the
batch using the inverse transform of the target. This allows us to compute (after

12 N. Barel et al.

ges

Input
ima,

Learned

gnment features

2
z
H
3 g
A s
8Sourcc
-
=}
L9 @ 0 @ ¥ w o
- &

Fig. 4: Pairwise and joint alignment using SpaceJAM. The input images (1th
row) overlayed by the learned features (2“d row) which are used to predict the warping
parameters. The 3™ row shows source-to-target alignment under severe conditions and

the 4*® row shows the jointly aligned features and the category atlas (right column).

the training is done) a shared atlas without explicitly maintaining one during
training. Examples of our method’s JA and resulting atlas can be seen in Figure 1
and Figure 4. Figure 3 provides a visual comparison between SpaceJAM and
ASIC in terms of pairwise alignment (for AISC, we use the visual results appearing
in [20]). Evidently, SpaceJAM achieves high fidelity and geometrically-coherent
alignment under challenging conditions. Figure 4 shows how the learned low-
dimensional features (U; € R3*H*W: second row) allow us to perform both
pairwise alignment (3¢ row) and JA (4" row) in an interpretable manner, where
semantically-related parts (e.g., faces) share the same color across images. The
visual results indicate that SpaceJAM can align diverse collections of images
efficiently and accurately (see the SupMat for more visual results).

5.2 Quantitative Evaluation

We assess our method on the semantic point correspondence task using the SPair-
71k [46] and CUB-200 [65] datasets, which are widely recognized benchmarks
in both pairwise and JA domains. The performance is quantified by the PCK-
Transfer metric, which calculates the proportion of keypoints accurately aligned
within a threshold of « - max(h,w) relative to the true position. Following
established protocols [19], & = 0.1 (denoted as PCK@0.10) for both datasets,
with (h,w) representing the dimensions of the object’s bounding box. We perform
pairwise alignment using Equation 6.

In line with the comparative framework established by [20], we categorize
existing methods into 3 groups: (1) Strong supervision, which relies on manually
annotated keypoints; (2) GAN supervision, using category-specific GANs and;
(3) Weak supervision, using category-level supervision without explicit keypoints.

SpaceJAM: A Method for Fast Joint Alignment of Images 13

Table 2: SPair-71k Dataset results: Per-class and overall mean PCK@0.10 evaluated
on the test set. The best result among weakly-supervised methods is boldfaced (the
runner-up is underlined). (%) indicates that the method used a reference image. Missing
values (—) indicate unreported results (we, like [20], found that running the code
from [49] usually did not converge successfully).

Supervision Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All
Strong Supervision SCorrSAN [23] 571 40.3 78.3 38.1 518 57.8 47.1 67.9 252 71.3 639 493 453 49.8 488 403 77.7 69.7 55.3
GAN supervision _ GANgealing [52] - 315 - - - - - 610 - - 231 - - - - - - 519

CNNGeo [54] 234 16.7 40.2 14.3 364 27.7 26.0 32.7 127 27.4 22.8 137 209 210 17.5 102 308 34.1 206

A2Net [60] 22.6 185 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 228 20.5 13.5 31.4 36.5 22.3

Weak supervision \VeakAlign [55] 222 17.6 41.9 151 381 274 27.2 318 128 26.8 226 142 200 222 17.9 104 322 351 20.9
(train, rest) NCNet [56] 17.9 122 320 117 290 19.9 16.1 39.2 9.9 239 188 157 174 159 148 96 242 311 20.1
SFNet [33] 269 17.2 45.5 147 380 222 164 553 13.5 334 27.5 17.7 208 211 16.6 156 32.2 35.9 26.3

PMD [34] 26.2 185 48.6 15.3 38.0 21.7 17.3 516 13.7 34.3 254 180 200 249 157 163 314 381 265

PSCNet-SE [29] 283 17.7 45.1 15.1 30.1 27.5 47.4 14.6 32.5 264 17.7 249 245 199 169 342 37.9 27.0

VGG MLS [1] 205 22.7 61.9 26.5 4 141 237 142 27.6 300 201 247 274 191 103 244 226 274

Weak supervision ~ DINO+MLS [1,6] 49.7 20.9 63.9 19.1 7.6 22.4 48.9 14.0 369 39.0 30.1 21.7 411 17.1 181 359 214 311
(test-time DINONN [2] 572 24.1 674 245 0 27.1 52.1 15.7 424 43.3 30.1 232 407 166 241 310 249 333
optimization) NeuCongeal [19] - 290% - - - - - 533 - - 352 - - - B
ASIC [20] 57.9 25.2 68.1 24.7 354 28.4 30.9 548 21.6 45.047.2 30.0 262 48.8 145 245 49.0 24.6 369

SpaceJAM (DINOvl, ViT-S) 43.4 22.0 34.5 18.8 324 36.3 24.1 60.8 06.5 37.1 35.9 46.7 53.6 46.9 36.0 24.6 75.0 46.0 37.8
SpaceJAM (DINOv2, ViT-B) 52.9 48.9 48.1 25.1 45.8 53.7 47.9 61.2 187 40.5 51.5 49.8 583 56.3 31.8 427 59.9 59.7 42.0
SpaceJAM (DINOv2, ViT-L) 53.6 53.4 454 47.5 71.0 66.8 59.5 62.7 19.8 59.2 56.2 63.8 62.1 59.6 33.1 481 68.0 61.6 45.7

A subset of these methods adopts a train/test paradigm, using a large amount
of data. Unlike those works, SpaceJAM involves training a compact model and
leverages a test-time optimization scheme. The baseline scores, obtained from [20],
include: 1) DINO nearest neighbor (DINO+NN; [2]); 2) Neural Congealing [19],
which builds a shared atlas; and 3) ASIC [20] which densely maps pixels to a
canonical grid (both are weakly-supervised JA methods).

Table 2 shows PCK@0.1 for all classes of the SPair-71k dataset [16]. We report
the average of 3 runs for SpaceJAM. Our method performs best on average for
all object classes (All) in the weak supervision category, using a much lighter
model that trains 10x faster. It also performs best and second-best in 9 out of 18
classes. The results are consistent for both rigid objects (i.e., ‘Train’) and ones
with extreme variations (‘Cat’) with the exception of the ‘Chair’ category, where
it was unable to overcome the initial coarse masks provided by [2]. Table 3 shows
the results on the CUB-200 dataset [65] as reported in [20], where our method
is the runner-up after [20]. That dataset consists of only birds and offers less
variety than SPair-71K. When comparing to [49,52], on 14 subsets, our method
outperforms both. Please see our SupMat for further discussion of the results.

5.3 Complexity

SpaceJAM is a lightweight model, consisting of only 16K (i.e., 0.016M) trainable
parameters. We compare our method to [20,49] using the official implementations.
As Table 1 shows, SpaceJAM’s # of trainable parameters is much lower than
those of [49] and [20] which are 28.7M and 7.9M, respectively. Table 1 also shows
that SpaceJAM achieves convergence within only 300 AE pretraining epochs and
400 AE+STN epochs, translating to a training time of ~ 6 minutes on a single
RTX4090, which starkly contrasts with the hours required by the competing
methods. Despite its compact design, SpaceJAM attains a PCK@O0.1 score of 60.8
on the ‘Cats’ dataset, outperforming both competitors. Evidently, SpaceJAM’s

14 N. Barel et al.

Table 3: A comparison on CUB-200. Table 4: Ablation Study.
Method CUB-200 Method CUB-200 Ablation CUB-200 SPair-71k
(3 cate.) (Subsets) (3 cate.) (3 cate.)

VGG+MLS [1] 25.8 - Alignment to atlas 58.5 54.6

DINO+MLS [1,6] 67.0 - - No AE pre-training 54.9 56.6

DINO+NN [2] 68.3 GANgealing [52] 56.8 No Curiculum 70.8 57.2

ASIC [20] 75.9 |NeuCongeal [19] 63.6 No Lie Groups 65.6 57.1

SpaceJAM 69.6 SpaceJAM 69.9 STN 61.6 43.5

ICSTN-3 72.6 57.6

Complete model 73.3 58.1

efficiency does not hurt performance, as it not only accelerates the training
process but also enhances alignment accuracy.

5.4 Ablation Study & Limitations

Ablation. We conducted an ablation study for SpaceJAM (using DINOv2 [50])
on subsets of the CUB-200 and SPair-71k datasets and evaluated them using
PCK@Q.1, as shown in Table 4. Due to the low-capacity of the models used
in SpaceJAM, the AE pre-training proves essential before the JA. Predicting a
cascade of 5 small transformations shows significant improvement over a single
large one (STN) or three (ICSTN-3), when the # of trainable parameters is the
same. An alignment to an atlas, even when using the robust Inverse Consistency
Averaging Error (ICAE [67]) performs worse than our inverse-compositional
framework. Table 4 also shows that using the Lie groups is crucial and that the
curriculum learning’s effect, while positive, is less significant.

Limitations. SpaceJAM, while being an JA effective method, was not
designed for pairwise dense correspondences. Thus, it was not optimized for
maximizing the per-pixel agreement between an image pair. That said, § 5 shows
that the speed gains in speed are drastic and that the method is much faster than
contemporary JA methods [20,49] while its dense mapping score (a standard
evaluation metric for both pairwise and JA tasks) is still comparable (and in fact,
in some cases better). This trade-off also comes into play in the choice of the
transformation family. As with other STNs [26,59,63], it is possible to incorporate
more expressive transformations such as diffeomorphisms (as in, e.g., [15,16,63])
which are richer than homographies. Lastly, our performance also partially relies
on the quality of the initial masks, a limitation we share with [20,49].

6 Conclusion

SpaceJAM is a lightweight method that effectively performs JA with neither regu-
larization terms nor building an explicit atlas during the process. It demonstrates
excellent performance on benchmarks like SPair-71K and CUB, on par with, or
outperforming, existing methods despite having far less trainable parameters and
a much shorter running time. While here we mentioned only 3 matrix groups,
both our method and code support additional ones (e.g., the similarity group).

SpaceJAM: A Method for Fast Joint Alignment of Images 15

Acknowledgements. This work was supported by the Lynn and William Frankel
Center at BGU CS, by the Israeli Council for Higher Education via the BGU
Data Science Research Center, and by Israel Science Foundation Personal Grant
#360/21. R.S.W. and S.E.F. were also funded in part by the BGU Kreitman
School Negev Scholarship.

SpaceJAM: a Lightweight and Regularization-free
Method for Fast Joint Alignment of Images
Supplemental Material

Nir Barel* ®, Ron Shapira Weber* ®, Nir Mualem®, Shahaf E. Finder®, and
Oren Freifeld

The Department of Computer Science, Ben-Gurion University of the Negev, Israel
{banir,ronsha,nirmu,finders}@post.bgu.ac.il, orenfr@cs.bgu.ac.il

1 Handling flips

As detailed in the main manuscript, flips require special care. Let (I;, ;) be a
source and target images respectively (for simplicity, we drop the DINO ViT
and learned features notion and use this notion). In this particular case, our loss
function reduces to

Lic = |[I; — Lo T® o T~%)]; . (1)

To incorporate flips efficiently, we consider only horizontal flips (since vertical
flips could be reached through a horizontal flip + rotation) and compute the
gradient only between the best matching pair. Particularly, let F*: be the k"
flip configuration applied to the i*" image, where k € C such that C holds the
possible configuration (in our case, 2). The objective function is now

N |C|
Lic = Z Z gnelré HIJ o Fki — ((I; OTB"') o F’“) oT Y% HZ) (2)
i=1 k=1~

where (k;, k;) are the flips considered for the image pair (I;, I;).

2 Curriculum learning

To incorporate the Lie-algebraic curriculum learning during training, we gradu-
ally add more complex transformation modules, starting from SE(2) and later
“release" more of the transformation parameters, to obtain (invertible) affine
transformations and finally homographies. Figure 1 illustrate the process, where
additional transformation parameters are ‘“released", as illustrated by the warped
images above the training timeline.

https://orcid.org/0000-0003-4751-5653
https://orcid.org/0000-0003-4579-0678
https://orcid.org/0000-0005-1216-6774
https://orcid.org/0000-0003-0254-1380
https://orcid.org/0000-0001-9816-9709

SpaceJAM: A Method for Fast Joint Alignment of Images 17

0 SE(2) 100 Aff(2) 200 Hom(2) 400
Epoch

Fig. 1: Lie Algebric curriculum learning. The notation SE(2) between the epochs (0, 100)
states that during that interval, the training is restricted to SE(2). At epoch 100, more
transformation parameters are “released" to allow for affine transformations.

3 Inverse-Compositional STN (IC-STN) [35]

The IC-STN [35], based on the classical Inverse-Compositional Lucas & Kanade
algorithm [42], predicts a cascade of smaller warps and composes them. In our
case, we do so by recursively feeding the STN several times with its own output.
In effect,

(6, X 0 T%) = ¢srn(X) (3)
(0", X oT? 0 T%) = hgn (X 0 T9) (4)
0", XoT® 0T o T®") = thsrn(X 0 TP 0 T?) (5)

and so on.

4 An Additional runtime comparison

We provide an additional runtime comparison with Neural Congealing [19] and
ASIC [20] on the ‘Dog’ and ‘Bike’ datasets [46]. The results are presented
in Table 1.

Table 1: A comparison with recent JA methods and evaluation on 3 SPair-71K
categories [46].

Method # Params # Losses #HP Atlas-free learning #epochs‘ Time ‘
Cat Bike Dog

NeuCongealing [49] 28.7M 8 8 X 8K 1:17:02 1:12:55 1:25:28

ASIC [20] 7.9M 4 5 X 20K 1:06:48 1:07:40 1:06:11

SpaceJAM (Ours) 0.016M 1 0 v 0.7K 0:05:58 0:06:11 00:05:43

18 N. Barel et al.

5 Architectures

A detailed overview of the Autoencoder (AE) and Spatial Transformer Network
(STN) architectures and the number of trainable parameters. Together they form
our alignment module - ¥,jign.

Table 2: Autoencoder Model Summary.
GFMN = GlobalFeatureMapNormalizer.

Table 3: STN Model Summary.

Layer (type:depth-idx) Output Shape Param
Layer (type:depth-idx) Output Shape Param Conv2d-1 1, 10, 250, 250] 1,480
Autoencoder 1, 25, 256, 256] _ AdaptiveMaxPool2d-2 [1, 10, 32, 32] 0
Encoder: 1-1 1, 3, 256, 256 _ ReLU-3 1, 10, 32, 32 0
Sequential: 2-1 1, 3, 256, 256] _ Conv2d-4 1,5, 28, 28| 1,255
Convad: 3-1 1, 32, 256, 256 g39 AdaptiveMaxPool2d-5 [1, 5, 8, 8] 0
ReLU: 3-2 1, 32, 256, 256 - ReLU-6 15,8, 8 0
BatchNorm2d: 3-3 [1, 32, 256, 256 64 Linear-1 1,1, 32] 10,272
Convad: 3-4 1, 16, 256, 256] 528 ReLU-2 1,1, 32] 0
ReLU: 3-5 1, 16, 256, 256 — Linear-3 1, 1,9 297
BatchNorm2d: 3-6 [1, 16, 256, 256 32
Conv2d: 3-7 1, 3, 256, 256] 51
GFMN: 3-8 1, 3, 256, 256 -
Decoder: 1-2 1, 25, 256, 256
Sequential: 2-2 1, 25, 256, 256 —
Conv2d: 3-9 1, 16, 256, 256 64
ReLU: 3-10 1, 16, 256, 256 -
BatchNorm2d: 3-11 [1, 16, 256, 256 32
Conv2d: 3-12 1, 32, 256, 256] 544
ReLU: 3-13 1, 32, 256, 256 -
BatchNorm2d: 3-14 [1, 32, 256, 256 64
Conv2d: 3-15 1, 25, 256, 256 825

We also evaluate the effect of the STN size on the resulting alignment. Fig-
ure 2 shows the average PCK@OQ.1 of 5 runs for the 3 subsets of the CUB200
datasets [65]. We increase the number of trainable parameters by using the same
STN architecture with larger convolutional blocks in terms of # kernels and
their size. Notably, the performance effectively saturates at as early as ~15K
parameters. Increasing the model further even to 24M parameters, does not
results in additional gains.

6 Further Discussion of the Results

A natural question arises — why do different models perform better in some classes
and worse in others? For instance, consider the 'Dogs’ class of the SPair dataset. In
the results presented in Table 2 in the main paper, ASIC outperforms the proposed
method on that class by approximately 11 points, suggesting superior alignment.
However, the visual comparison in Figure 3 reveals that dense-correspondence
methods like ASIC often result in incoherent alignment. The warped images
display artifacts such as holes, and the dog faces become unrecognizable. This
discrepancy arises because benchmarks like SPair and CUB-200 focus on the
sparse correspondence of hand-picked key points rather than measuring global

SpaceJAM: A Method for Fast Joint Alignment of Images 19

0.60 //

0.50
0.45 /
0.40

10° 104 10° 10° 107
STN #params

PCK mean

Fig. 2: Average PCK@Q.1 score as a function of # trainable parameters of the STN
(the x-axis is log-scaled). The model reaches saturation around ~ 15K parameters.

(a) DINO+NN (b) ASIC (c) SpaceJAM (ours)

Fig. 3: Geometric fidelity of transformed images (DINO+NN and ASIC results were
obtained from [20]).

)

alignment. In fact, the basic DINO-NN outperforms SpaceJAM on the same ‘Dog
class, but yields significantly poorer visual results, as illustrated in Figure 3. This
highlights the limitations of the DINO-NN approach. Additionally, our method
outperforms ASIC in more than half of the classes while requiring 100x fewer
parameters and achieving a 10x reduction in training time. Finally, the variance
in results can also be attributed to the small set size (20-30 images) compared to
the diverse poses, illuminations, and occlusions present in each set.

20 N. Barel et al.

7 Additional Visualizations

7.1 Additional joint alignment results

More visual results of SpaceJAM’s joint alignment (JA) are presented below
(Figures 2-6) for the SPair-71K [46] and Samurai (‘robot’) [4] datasets. The
figures show, from top-to-bottom: 1) input images; 2) DINO ViT features (first 3
PCs); 3) learned features 4) aligned features, and 5) aligned images. The aligned
features and images are masked by the intersection of the coarse input mask and
the median mask of the set (both after alignment). The atlas of the set appears
at the bottom right.

Aligned Aligned Learned DINO ViT Input
features features features
>
)
(&

4
b
b
b
b
i
b

Fig. 4: Joint alignment results - "train".

21

SpaceJAM: A Method for Fast Joint Alignment of Images

A& 4 4
®

&

%

So.I1jeo] Sadnjesa] Solnjes]

A
sogewr

€ < (4§

Fig. 5: Joint alignment results - "

¥

N

v

sogeur

nduy JIA ONI(pouIed| pousiy poudiyy

cat".

$ & & & & & @
&

e
"

sogewrr SOINYBOJ SOINYRIJ SOINYEO] soFeulr
mduy LIA ONI(pouIesr| pousiy peusyy

robot".

Fig. 6: Joint alignment results - "

22 N. Barel et al.

Atlas

features features features

e wip e e e o v |\

Aligned Aligned Learned DINO ViT Input

images

Fig. 7: Joint alignment results - "plane".

images

Aligned Aligned Learned DINO ViT Input
features features features
>
=
@

images

Fig. 8: Joint alignment results - "bus".

SpaceJAM: A Method for Fast Joint Alignment of Images 23

7.2 Additional pairwise alignment results

More visual results of SpaceJAM’s pairwise alignment are presented below. The
figures show, from top-to-bottom: 1) input images; 2) learned features overlay;
3-7) Source-to-target pairwise alignment, where the image in the red square is
aligned to all other images.

Learned Input
images

features

Pairwise
alignment

Source

Fig. 9: Pairwise alignment results - "train".

24 N. Barel et al.

Input
images

T ®n
o 9O
S8

-
g g
.E E
g =
=
[a W

Source
Fig. 10: Pairwise alignment results - "bus".
References

1. Aberman, K., Liao, J., Shi, M., Lischinski, D., Chen, B., Cohen-Or, D.: Neural
best-buddies: Sparse cross-domain correspondence. ACM TOG (2018)

2. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep vit features as dense visual
descriptors. In: ECCV Workshops (2022)

3. Annunziata, R., Sagonas, C., Cali, J.: Jointly aligning millions of images with deep
penalised reconstruction congealing. In: ICCV (2019)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

SpaceJAM: A Method for Fast Joint Alignment of Images 25

Boss, M., Engelhardt, A., Kar, A., Li, Y., Sun, D., Barron, J., Lensch, H., Jampani,
V.: Samurai: Shape and material from unconstrained real-world arbitrary image
collections. Advances in Neural Information Processing Systems 35, 26389—-26403
(2022)

Boumal, N.: An introduction to optimization on smooth manifolds. Cambridge
University Press (2023)

Caron, M., Misra, 1., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. NeurIPS (2020)
Caron, M., Touvron, H., Misra, 1., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.:
Emerging properties in self-supervised vision transformers. In: ICCV (2021)
Chelly, I., Winter, V., Litvak, D., Rosen, D., Freifeld, O.: JA-POLS: a moving-camera
background model via joint alignment and partially-overlapping local subspaces.
In: CVPR (2020)

Cox, M., Sridharan, S., Lucey, S., Cohn, J.: Least squares congealing for unsupervised
alignment of images. In: CVPR, (2008)

Cox, M., Sridharan, S., Lucey, S., Cohn, J.: Least-squares congealing for large
numbers of images. In: ICCV. IEEE (2009)

Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable
templates with convolutional networks. NeurIPS (2019)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020)

Erez, G., Weber, R.S., Freifeld, O.: A deep moving-camera background model. In:
ECCV. Springer (2022)

Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In:
CVPR. pp. 1-8. IEEE (2007)

Freifeld, O., Hauberg, S., Batmanghelich, K., Fisher III, J.W.: Highly-expressive
spaces of well-behaved transformations: Keeping it simple. In: ICCV (2015)
Freifeld, O., Hauberg, S., Batmanghelich, K., Fisher III, J.W.: Transformations
based on continuous piecewise-affine velocity fields. IEEE TPAMI (2017)

Frey, B.J., Jojic, N.: Estimating mixture models of images and inferring spatial
transformations using the em algorithm. In: CVPR. IEEE (1999)

Gavrila, D.M.: Multi-feature hierarchical template matching using distance trans-
forms. In: ICPR. IEEE (1998)

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. NeurIPS (2014)

Gupta, K., Jampani, V., Esteves, C., Shrivastava, A., Makadia, A., Snavely, N.,
Kar, A.: Asic: Aligning sparse in-the-wild image collections. In: ICCV (2023)

He, J., Zhang, D., Balzano, L., Tao, T.: Iterative grassmannian optimization for
robust image alignment. Image and Vision Computing (2014)

He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: ECCV. Springer (2016)

Huang, G., Mattar, M., Lee, H., Learned-Miller, E.G.: Learning to align from
scratch. In: NeurIPS (2012)

Huang, G.B., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex
images. In: ICCV. IEEE (2007)

Huang, S., Yang, L., He, B., Zhang, S., He, X., Shrivastava, A.: Learning semantic
correspondence with sparse annotations. In: ECCV. pp. 267-284. Springer (2022)
Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
In: NeurIPS (2015)

26

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

N. Barel et al.

Jain, A.K., Zhong, Y., Lakshmanan, S.: Object matching using deformable templates.
IEEE TPAMI (1996)

Jeon, S., Kim, S., Min, D., Sohn, K.: Parn: Pyramidal affine regression networks
for dense semantic correspondence. In: ECCV (2018)

Jeon, S., Kim, S.; Min, D., Sohn, K.: Pyramidal semantic correspondence networks.
IEEE TPAMI (2021)

Kemelmacher-Shlizerman, 1., Seitz, S.M.: Collection flow. In: CVPR. IEEE (2012)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR (2014),
http://arxiv.org/abs/1412.6980

Learned-Miller, E.G.: Data driven image models through continuous joint alignment.
IEEE TPAMI (2006)

Lee, J., Kim, D., Ponce, J., Ham, B.: Sfnet: Learning object-aware semantic
correspondence. In: CVPR (2019)

Li, X., Fan, D.P., Yang, F., Luo, A., Cheng, H., Liu, Z.: Probabilistic model
distillation for semantic correspondence. In: CVPR (2021)

Lin, C.H., Lucey, S.: Inverse compositional spatial transformer networks. In: CVPR
(2017)

Lin, D., Grimson, E., Fisher III, J.: Learning visual flows: A Lie algebraic approach.
In: CVPR (2009)

Lin, D., Grimson, E., Fisher III, J.: Modeling and estimating persistent motion
with geometric flows. In: CVPR (2010)

Lin, W.Y., Liu, L., Matsushita, Y., Low, K.L., Liu, S.: Aligning images in the wild.
In: CVPR. IEEE (2012)

Liu, X., Tong, Y., Wheeler, F.W.: Simultaneous alignment and clustering for an
image ensemble. In: ICCV. IEEE (2009)

Loiseau, R., Monnier, T., Aubry, M., Landrieu, L.: Representing shape collections
with alignment-aware linear models. In: 3DV. IEEE (2021)

Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV. IEEE
(1999)

Lucas, B.D., Kanade, T.: An iterative image registration technique with an applica-
tion to stereo vision. In: IJCAT (1981)

Mariotti, O., Mac Aodha, O., Bilen, H.: Improving semantic correspondence with
viewpoint-guided spherical maps. arXiv preprint arXiv:2312.13216 (2023)

Mattar, M.A., Hanson, A.R., Learned-Miller, E.G.: Unsupervised joint alignment
and clustering using bayesian nonparametrics. arXiv preprint arXiv:1210.4892
(2012)

Miller, E.G., Matsakis, N.E., Viola, P.A.: Learning from one example through
shared densities on transforms. In: CVPR. IEEE (2000)

Min, J., Lee, J., Ponce, J., Cho, M.: Spair-71k: A large-scale benchmark for semantic
correspondence. arXiv preprint arXiv:1908.10543 (2019)

Monnier, T., Groueix, T., Aubry, M.: Deep transformation-invariant clustering.
NeurIPS (2020)

Mu, J., De Mello, S., Yu, Z., Vasconcelos, N., Wang, X., Kautz, J., Liu, S.: Coordgan:
Self-supervised dense correspondences emerge from gans. In: CVPR (2022)
Ofri-Amar, D., Geyer, M., Kasten, Y., Dekel, T.: Neural congealing: Aligning images
to a joint semantic atlas. In: CVPR (2023)

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

http://arxiv.org/abs/1412.6980

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

SpaceJAM: A Method for Fast Joint Alignment of Images 27

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. NeurIPS (2019)

Peebles, W., Zhu, J.Y., Zhang, R., Torralba, A., Efros, A.A., Shechtman, E.:
Gan-supervised dense visual alignment. In: CVPR (2022)

Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: Robust alignment by sparse
and low-rank decomposition for linearly correlated images. IEEE TPAMI (2012)
Rocco, 1., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for
geometric matching. In: CVPR (2017)

Rocco, 1., Arandjelovié¢, R., Sivic, J.: End-to-end weakly-supervised semantic align-
ment. In: CVPR (2018)

Rocco, 1., Cimpoi, M., Arandjelovi¢, R., Torii, A., Pajdla, T., Sivic, J.: Ncnet:
Neighbourhood consensus networks for estimating image correspondences. IEEE
TPAMI pp. 1020-1034 (2020)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In: MICCALI. Springer (2015)

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. NeurIPS (2022)
Schwobel, P., Warburg, F.R., Jgrgensen, M., Madsen, K.H., Hauberg, S.: Proba-
bilistic spatial transformer networks. In: UAT (2022)

Seo, P.H., Lee, J., Jung, D., Han, B., Cho, M.: Attentive semantic alignment with
offset-aware correlation kernels. In: ECCV (2018)

Shokrollahi Yancheshmeh, F., Chen, K., Kamarainen, J.K.: Unsupervised visual
alignment with similarity graphs. In: CVPR (2015)

Sinclair, M., Schuh, A., Hahn, K., Petersen, K., Bai, Y., Batten, J., Schaap, M.,
Glocker, B.: Atlas-istn: joint segmentation, registration and atlas construction with
image-and-spatial transformer networks. Medical Image Analysis (2022)

Skafte Detlefsen, N.; Freifeld, O., Hauberg, S.: Deep diffeomorphic transformer
networks. In: CVPR (2018)

Tang, L., Jia, M., Wang, Q., Phoo, C.P., Hariharan, B.: Emergent correspondence
from image diffusion. NeurIPS (2024)

Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

Weber, R.S., Eyal, M., Skafte Detlefsen, N., Shriki, O., Freifeld, O.: Diffeomorphic
temporal alignment nets. In: NeurIPS (2019)

Weber, R.S., Freifeld, O.: Regularization-free diffeomorphic temporal alignment
nets. In: ICML. PMLR (2023)

Zhang, J., Herrmann, C., Hur, J., Polania Cabrera, L., Jampani, V., Sun, D.,
Yang, M.H.: A tale of two features: Stable diffusion complements dino for zero-shot
semantic correspondence. NeurIPS (2024)

Zhang, X., Wang, D., Zhou, Z., Ma, Y.: Robust low-rank tensor recovery with
rectification and alignment. IEEE TPAMI (2019)

	SpaceJAM: a Lightweight and Regularization-free Method for Fast Joint Alignment of Images
	SpaceJAM: a Lightweight and Regularization-free Method for Fast Joint Alignment of Images Supplemental Material

