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Abstract. In this paper, we introduce a novel deep-learning based method for 

virtual stain multiplexing of immunohistochemistry (IHC) stains. Traditional 

IHC techniques generally involve a single stain that highlights a single target 

protein, but this can be enriched with stain multiplexing. Our proposed method 

leverages sequential staining to train a model to virtually stain multiplex addi-

tional IHC on top of a digitally scanned whole slide image (WSI), without requir-

ing a complex setup or any additional tissue sections and stains. To this end, we 

designed a novel model architecture, guided by the physical sequential staining 

process which provides superior performance. The model was optimized using a 

custom loss function that combines mean squared error (MSE) with semantic in-

formation, allowing the model to focus on learning the relevant differences be-

tween the input and ground truth. As an example application, we consider the 

problem of detecting macro-phages on PD-L1 IHC 22C3 pharmDx NSCLC 

WSIs. We demonstrated virtual stain multiplexing CD68 on top of PD-L1 22C3 

pharmDx stained slides, which helps to detect macrophages and distinguish them 

from PD-L1+ tumor cells, which are often visually similar. Our pilot-study re-

sults showed significant improvement in a pathologist's ability to distinguish 

macrophages when using the virtually stain multiplexed CD68 decision support-

ing layer. 

Keywords: Immunohistochemistry, Virtual Stain, Multiplexing, Deep Learn-

ing, Macrophages, NSCLC. 

1 Introduction 

"Tissue is the issue" is a theme that serves as a guideline in nowadays pathology prac-

tice, that requires ever-growing information deduced from tissue samples, while their 

size keeps getting smaller. Extracting maximum information from tissue samples is a 

common challenge in pathology in the era of personalized medicine that necessitates 
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the use of increasing number of immunohistochemical (IHC) stains. Combined with the 

increasing use of small biopsies as the main tissue material, this puts a significant limit 

on the number of different IHC stains which can be run. While this challenge can be 

addressed in research using fluorescent IHC multiplexing or mass spectrometry IHC, 

in routine diagnostic pathology the common practice is to stain multiple consecutive 

sections with different immunostains at the cost of labor, reagents and tissue.  

Digital pathology offers an array of alternative solutions as it enables to digitally 

unmix [1] and superimpose staining from one section to another, to create virtual mul-

tiplexed layers [2,3] or otherwise to project AI inferred specific cell density maps [4]. 

Virtual multiplexing methods, however, suffer from the same two main draw-backs as 

traditional pathology. First, the method requires additional tissue sections and rea-

gents, adding to cost and complexity. Second, the consecutive tissue sections are at 

least 3-5 microns apart resulting in an increasingly growing distance between slides 

with each additional stained section. Thus, sections do not contain the exact same cells. 

With recent advances in deep learning based models, a different approach called 

virtual staining has emerged [5,6]. Virtual staining methods use generative adversarial 

networks (GANs) to unlock information from existing Hematoxylin-Eosin (HE) stained 

tissue patterns without the need for physically staining additional tissues. Pushing this 

approach even further enables the inference of immunohistochemical staining patterns 

using unlabeled tissue [7,8,9]. For example, Bai et al. [10] developed a method that 

generates a virtual HER2 IHC whole slide image (WSI) by recording several auto-flu-

orescence images of an unlabeled tissue section. 

A prime example of the benefits of combining information from multiple stains is 

the detection of macrophages in PD-L1 22C3 pharmDx stained non-small cell lung 

cancer (NSCLC) tissues.   

PD-L1 IHC 22C3 pharmDx (GE006) is an FDA approved qualitative immuno-his-

tochemical assay intended for use in the detection of PD-L1 protein in formalin-fixed, 

paraffin-embedded (FFPE) non-small cell lung carcinoma NSCLC tissue. PD-L1 pro-

tein expression in NSCLC is determined by using Tumor Proportion Score (TPS) [11], 

which is the percentage of viable tumor cells showing partial or complete membrane 

staining at any intensity. The TPS scoring protocol calls for the exclusion of the staining 

of immune cells including macrophages [12]. Since macrophages may show morpho-

logical similarity to NSCLC cells, differentiating positive PD-L1 staining of macro-

phage from that of tumor cell is often challenging [13]. Although some morphological 

features distinguish macrophages from tumor cells, combined staining of PD-L1 IHC 

22C3 pharmDx with a separate IHC stain such as CD68 can highlight the macrophages 

and assist clinical pathologists in scoring more accurately. 

Beck et al. [14] developed an automatic PD-L1+ detection method for urothelial 

carcinoma, achieving strong correlation (0.837) with pathologist consensus scores on 

tumor cells. Although not required for clinical purposes, they found that the detection 

of macrophages is still a challenging task, with inter-observer agreement/correlation as 

low as 0.287. 

In this paper, we present a novel method called virtual stain multiplexing, which 

combines virtual staining and virtual multiplexing. We apply this method to the prob-

lem of detecting macrophages on PD-L1 IHC 22C3 pharmDx NSCLC WSIs.  
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The novel architecture of our proposed method is guided by the physical sequential 

staining process and is trained using a loss function that combines mean squared error 

(MSE) with semantic information. Our approach of incorporating semantic information 

into the training process proved to be a crucial component in achieving the desired 

performance. 

We trained an AI-based model using sequentially stained NSCLC WSIs to infer vir-

tual CD68 IHC from an input stained with PD-L1 IHC 22C3 pharmDx. The inferred 

virtual stain is then combined with the input to yield the virtual stain multiplexed out-

put. As a pilot-study, we tested the effectiveness of our model by comparing the per-

formance of a pathologist in detecting macrophages in PD-L1 IHC 22C3 pharmDx 

stained NSCLC with and without using the CD68 virtual stain as a decision-supporting 

layer. We found that the addition of the virtual stain significantly improved the perfor-

mance of the pathologist in detecting macrophages. 

2 Methods 

Sequential staining is a method for adding an additional immunohistochemical (IHC) 

stain (stain 2), to tissues which were already stained (stain 1) Moreover, according to 

the Beer-Lambert law for absorption of light passing through a medium [15], the optical 

density of stained tissue is linearly dependent on the local concentration and ab-sorption 

coefficient spectrum of chromogen.  

We designed a model architecture [Figure 1(a)] which corresponds to these physical 

properties of sequentially stained tissues. First, the model is optimized using optical 

density. Second, learning the virtual stain concentration map is separated from learning 

the virtual stain color, determined by the absorption coefficient vector.  

The first step of our model involves transforming an input patch stained with stain 1 

to the optical density domain, followed by a U-Net neural network [16] for infer-ring a 

single-channel stain 2 concentration map for the patch. Subsequently, the con-centra-

tion map is multiplied by a learnt absorption coefficient vector to derive an optical den-

sity virtual stain. For brightfield (BF) WSIs, the absorption coefficient is length three 

RGB vector, hence we call this model a 3x1 architecture. The optical density virtual 

stain is then added to the optical density input patch, which yields an optical density 

virtually stain-multiplexed patch. This patch is subsequently inverse-transformed to a 

virtually stain-multiplexed bright-field-like output. It is important to note that although 

the RGB vector is learnt during training, it is a global parameter vector and not depend-

ent on the input patch. 

The physical properties of sequential staining have also informed the development 

of our loss function for model optimization, as depicted in Figure. 1 (b).  

Given the additive nature of sequential/virtual staining, semantic masks, denoted as 

𝑀𝑎𝑠𝑘𝐺𝑇/𝑀𝑎𝑠𝑘𝑜𝑢𝑡 , are constructed for the ground-truth and output patches, respec-

tively. These masks are obtained by taking the difference between the optical density 

ground-truth/output patch and the input patch; any pixel with an optical density differ-

ence exceeding a threshold value is considered positive for sequential/virtual stain. The 
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semantic masks are then used to compute a semantic pixel-wise binary cross entropy 

loss (BCE) between the corresponding ground-truth and output patches.  

 

Fig. 1. Model architecture and training loss structure. Stain 1 is PD-L1 22C3 pharmDx and stain 

2 is CD68 a. 3x1 model architecture guided by physical staining process; virtual stain concentra-

tion inferred using a U-Net is combined with globally learnt virtual stain absorption coefficients 

vector in optical density (OD) domain, in accordance with Beer-Lambert law. b. Predicted virtu-

ally stained (output) and sequentially stained ground truth (GT) patches are used to compute a 

weighted combination of MSE and BCE losses. c. With the 3x1 architecture, the virtual stain hue 

can be easily changed at inference time.  

The semantic loss is combined with a mean squared error (MSE) loss between the op-

tical density ground-truth and output patches. To focus the training on relevant differ-

ences, 𝑀𝑎𝑠𝑘𝐺𝑇  is used as a mask for the MSE loss. The parameter α allows for tunable 

weighting of the relative strengths of these two loss functions, resulting in a combined 

loss function: 

 𝐿𝑜𝑠𝑠 = MSE(output, GT; 𝑀𝑎𝑠𝑘𝐺𝑇) + 𝛼𝐵𝐶𝐸(𝑀𝑎𝑠𝑘𝑜𝑢𝑡 , 𝑀𝑎𝑠𝑘𝐺𝑇) + 𝜃(−v)v2   

Where the last term is a regularization term, reflecting the additive nature of sequen-

tial staining, keeping the inferred virtual stain output positive, 𝜃 is the Heaviside step-

function and v denotes the virtual stain output. 

We evaluate the model's performance using the intersection over union (IOU) metric 

between 𝑀𝑎𝑠𝑘𝐺𝑇  and 𝑀𝑎𝑠𝑘𝑜𝑢𝑡, which is used for both hyperparameter tuning and com-

putational evaluation. 

3 Experimental Results 

To demonstrate the utility of virtual stain multiplexing, we applied it to the problem of 

detecting macrophages in PD-L1 IHC 22C3 pharmDx stained NSCLC WSIs. 
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3.1 Dataset preparation 

Out of 200 NSCLC PD-L1 IHC 22C3 stained slides, 49 slides were chosen based on 

their TPS values, that were near to the clinically relevant thresholds of 1% and 50%. 

Following selection, the tissues were sequentially stained with CD68 PG-M1 (GA613), 

yielding sequentially stained paired WSIs. Each WSI pair was aligned; since paired 

WSIs are of the same tissue section, the obtained alignment was pixel-perfect. The 

study pathologist annotated tumor regions for each WSI pair which were used for model 

training. Of these, 26 regions where macrophages were difficult to distinguish from 

tumor cells, or where macrophages were identified as infiltrating PD-L1 positive tumor 

areas, were selected as validation-set regions for method evaluation and excluded from 

model training. See full dataset curation, preparation and annotation details in Supple-

mentary Information section 1. 

3.2 Training details 

We implemented the model described in section 2 using Pytorch. See full training and 

implementation details in Supplementary Information section 2. 

 

Fig. 2. Left: comparison of virtual stain multiplexed and ground truth patches. Right: a. PD-L1+ 

cells annotated as CD68+ based on sequential CD68 staining by Pathologist 1 (ground truth). b. 

The virtual stain-multiplexed CD68 model correctly stains the tumor-infiltrating macrophages. 

c. Annotation of macrophages by Pathologist 2, based on PD-L1 staining only. The results are 

compared to ground-truth annotation and presented as True Positive (TP) and False Negative 

(FN). 

3.3 Qualitative evaluation 

To evaluate the performance of our proposed virtual stain-multiplexing method in 

whole-slide images (WSIs), we conducted a qualitative assessment. We present sever-

al representative examples of our model outputs generated on challenging validation 
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set regions in Figure 2. (left), alongside the corresponding input and sequentially 

stained ground truth patches. Notably, the virtual CD68 staining demonstrated a high 

degree of visual consistency with the actual CD68 stain, as evaluated by an expert 

pathologist. Additionally, our virtual stain method effectively highlighted macro-

phages, as evidenced by the staining of most macrophages in the validation set regions.  

Figure 2. (right) presents several examples of macrophages correctly identified by 

the model, despite the high variation in macrophage morphology and staining patterns. 

Not all these macrophages were correctly identified by pathologist 2 without the 

model’s assistance. 

 

Fig. 3. Qualitative effect of combined loss. Comparing (left to right) input, ground-truth, full 

model output and the output of an ablation model trained only using MSE loss. Dashed rectangles 

indicate a macrophage with clear membranal staining, which is partially stained in ground-truth 

patch, fully stained in full model outputs, and only faintly stained in the ablation model outputs. 

3.4 Ablation tests 

Qualitative effect of combined loss 

In Figure 3, we present an illustrative example that compares a ground truth patch and 

the corresponding output of a full model trained with combined MSE and BCE loss, to 

the output of an ablation model that is solely trained using MSE loss. The comparison 

shows that the outputs of the ablation model possess two distinctive features in contrast 

to those of the full model. Specifically, the ablation model ac-quires faint and non-

specific background staining artifacts that are present in the ground-truth patches but 

are not present in input patches. Nevertheless, these non-specific stains do not appear 

in the outputs of the full model. Moreover, the outputs of the ablation model exhibit 

fainter overall virtual staining in comparison to the outputs of the full model and the 

ground truth patches. We observed that for cells with explicit membranal staining, the 

full model tends to stain the entire cell cyto-plasm, while the ablation model often dis-

plays partial staining patterns, similar to those found in the ground truth patches. 

 

Quantitative ablation tests 

Several ablation tests were conducted to investigate the contributions of different parts 

of our proposed method. For full ablation tests details see Supplementary Information 

section 3. 
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Fig. 4. Cell classification model evaluation. Presented are confusion matrices comparing 

pathologist 2 annotations to pathologist 1 ground truth annotations, with (right) and without (left) 

the aid of virtual stain. 

3.5 Cell-level evaluation 

The aim of this evaluation was to directly test the potential of the suggested model as 

an assistive tool for pathologists in detecting macrophages. This evaluation scheme dif-

fers from a pixel-level evaluation, as it takes into account that the virtual stain may not 

always match the sequential ground truth stain pixel for pixel, but may still accurately 

stain the correct cells. 

To carry out this evaluation, individual cells from 13 regions of interest, selected 

from the validation set, were annotated as Macrophage/not-Macrophage. Pathologist 1 

generated cell-level ground-truth annotations based on matching pairs of PD-L1 & PD-

L1 + sequentially stained CD68. Pathologist 2 first generated baseline annotations, 

based on PD-L1 WSI only. Then, pathologist 2 generated annotations based on match-

ing pairs of PD-L1 & PD-L1 + virtually stain multiplexed CD68, viewed side-by-side. 

These annotations were then compared to the ground truth annotations by pathologist 

1. The model performance was evaluated by measuring the change in pathologist 2's 

precision, sensitivity, and accuracy when assisted by the model compared to when not 

using the model. 

Confusion matrices comparing the pathologist 2’s annotations are presented in Fig-

ure 4. The addition of virtually stained multiplexed CD68 improved the performance 

of pathologist 2's annotations, increasing precision and sensitivity from 0.44 and 0.32 

to 0.67 and 0.79, respectively, while specificity remained unchanged at 0.92. Paired 

McNemar’s test [17] yielded a p-value of less than 10-30. 

4 Conclusions 

In this pilot-study, we propose the method of virtual stain multiplexing, which com-

bines virtual staining and virtual multiplexing. Virtual stain multiplexing of im-

munostains in the same section offers a promising avenue for the development of more 
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accurate and reliable scoring methods for cancer diagnosis, without incurring additional 

reagents or tissue. 

We presented a deep learning based model for CD68 virtual stain-multiplexing that 

can identify and virtually stain macrophages on an internal validation set. By virtually 

staining these cells, our model provides a useful tool for analyzing and interpreting PD-

L1 22C3 pharmDx IHC WSI. Notably, we found that pathologist 2's performance in 

detecting macrophages improved significantly when assisted by the model.  

In section 3.4, we demonstrated the importance of incorporating semantic loss in the 

ablation test. This addition was essential in enabling the model to focus on learning the 

relevant differences between the input and ground truth. The semantic BCE loss served 

as a guide for the model by providing information on where to add virtual staining, 

while the masked MSE loss directed the model on how to add it.  

Interestingly, we observed that the addition of the semantic loss caused the model to 

virtually stain the entire cell cytoplasm, at the expense of visual fidelity to the ground 

truth staining patterns. However, this characteristic of the model was found to be ad-

vantageous in the context of macrophage detection. The study pathologists found it 

easier to interpret the virtual stain CD68 compared to the ground-truth sequential stain, 

owing to this behavior of the model. 

In Section 3.5, we presented a quantitative pilot-study evaluation of the use of our 

model for macrophage detection. The results were encouraging, showing significant 

improvement in both precision and sensitivity of pathologist 2 when assisted by the 

model. In an ongoing study, building on this pilot-study, we will test the efficacy of the 

method with multiple pathologists. 

Our proposed method can be extended to virtually multiplex additional stains, in-

cluding those for other types of immune cells. As shown in Fig. 1 (c), the 3x1 architec-

ture allows for arbitrary hue settings at inference time, facilitating such multiplexing. 

Moreover, our method opens up avenues for detailed exploration of the spatial arrange-

ment of tumor infiltrating immune cells within the tumor microenvironment. Since our 

model utilizes the same input as the standard PD-L1 IHC 22C3 pharmDx stained tissue 

scans that are used in clinical practice, such investigations can be retrospective, em-

ploying clinically obtained data. This could lead to valuable insights into the relation-

ship between immune cells and tumor cells, ultimately aiding in the development of 

new cancer therapies.  
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Supplementary Information 
 

1. Dataset Preparation  
 

 
Fig. 5. 200 NSCLC slides were stained with PD-L1 IHC 22C3 PharmDx (GE006). 49 se-

lected tissues were sequentially stained with CD68 PG-M1 (GA613) and visualized with 

Envision FLEX HRP Magenta chromogen (GV925) on top of the PD-L1 IHC 22C3 phar-

mDx. An additional section was prepared for each case, stained with hematoxylin and eosin 

(H&E). All stained slides were scanned using a high-resolution scanner at 40x magnifica-

tion. The sequentially stained whole-slide images (WSIs) were aligned with their matching 

WSIs to near pixel-perfect alignment. The H&E WSI were also aligned with their matching 

WSI pair using rough global alignment. 
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Fig. 6. Tumor regions annotation: each case was annotated by the study pathologist, marking 

tumor and tumor-adjacent regions. Tumor identification was done by aligning the H&E and PD-

L1 IHC 22C3 pharmDx stains. Regions were qualitatively classified according to common pa-

thology practice: negative PD-L1 tumor (0 blue), weakly positive PD-L1 tumor (1+ green), and 

strongly positive PD-L1 tumor (2+, 3+ red). 1000x1000px regions from 26 WSIs, where macro-

phages were difficult to distinguish from tumor cells, or where macrophages were identified as 

infiltrating PD-L1 positive tumor areas, were annotated as validation-set regions for method eval-

uation and excluded from model training (brown). 
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2. Architecture and training details 
 

Pytorch version 1.13.1 

Input patch size 512x512 pixels 

Concentration network U-Net 

Depth 7 

Min/Max channels 64/1024 

Initialization Xavier normal, with 0.01 gain 

Semantic loss weight α 0.1 

Optimizer Adam 

Learning Rate 0.0002 

Betas 0.9, 0.999 

Scheduler ReduceLROnPlateau 

Drop factor 0.5 

Patience 4 epochs 

Early stopping grace period 12 epochs 

Table 1. The model optimized using Adam optimizer and a reduce-on-plateau learning-rate 

scheduler, with early stopping. All hyperparameters were manually tuned; the hyperparameter 

choice used for cell-classification evaluation was guided by visual inspection of the produced 

virtual stain by pathologist 1 and validation set IoU. The additional initialization gain was re-

quired due to input transformation to optical density. Scheduler and early stopping were based 

on validation IoU metric. Data sampling was balanced using the region annotations, ensuring 

each batch included the same number of patches from each region class. 

 

3. Quantitative ablation tests 
 

Architecture Validation IoU mean (std) 

Baseline 0.617 (0.0015) 

No semantic loss (α=0, unmasked MSE) 0.631 (0.0015) 

No OD transform 0.608 (0.002) 

No 3x1 architecture (simple U-Net) 0.618 (0.0012) 

No OD transform & No 3x1 architecture 0.58 (0.0023) 

Table 2. Each test repeated five times, with different random seeds. Validation IoU values were 

averaged over last 10 epochs of each run, after convergence. To ensure stable evaluation, the 

learning schedule was fixed and early stopping disabled. The learning rate schedule was 0.0002 

for 167 epochs and then linearly reduced by a factor of 100 over additional 84 epochs. Although 

removing semantic loss improved IoU, the visual qualities of the resultant stain were difficult for 

pathologists to interpret. Removing the OD transformation has a strong effect, which is amplified 

by replacing the 3x1 architecture with a simple U-Net. 

 


