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ABSTRACT

Deep-learning based image classification is applied in this studies to the Luria’s
alternating series tests to support diagnostics of the Parkinson’s disease. Luria’s
alternating series tests belong to the family of fine-motor drawing tests and been
used in neurology and psychiatry for nearly a century. Introduction of the digital
tables and later tablet PCs has allowed deviating from the classical paper and
pen setting, and observe kinematic and pressure parameters describing the test.
While such setting has led to a highly accurate machine learning models, the visual
component of the tests is left unused. Namely, the shapes of the drawn lines are
not used to classify the drawings, which eventually has caused the shift in the
assessment paradigm from visual-based to the numeric parameters based. The
approach proposed in this paper allows combining two assessment paradigms by
augmenting initial drawings by the kinematic and pressure parameters. The paper
demonstrates that the resulting network has the accuracy similar to those of human
practitioner.

1 INTRODUCTION

The present paper proposes an approach to support diagnostics of the Parkinson’s disease (PD)
using convolution neural networks (CNN) to classify the drawing representing the results of digital
Luria’s alternating series tests (dLAST). Parkinson’s disease is the degenerative disorders which
most characteristic symptoms rigidity, tremor and non-purposeful motions may severely affect the
quality of everyday life of the patient. (Kalia & Lang, 2015), (Louis & Machado, 2015). While there
is no known cure from the PD, early diagnoses and proper therapy may relieve the patients from the
majority of the symptoms and in turn, improve the quality of the everyday life.

Drawing tests and their digital versions (Vessio, 2019) become more popular in the clinical studies
targeted to support early diagnosis of the PD. In the area of kinematic (Marquardt & Mai, 1994),
(Drotar et al., 2013) and pressure parameters based analysis (Drotár et al., 2016) spiral drawing test
(Danna et al., 2019) is one of the most popular. Some times simpler tests like one described in
Kotsavasiloglou et al. (2017) are used. The battery of Luria’s alternating series tests (LAST) was
proposed by Hodges (2007) and Luria (1995) and later digitised by Nõmm et al. (2018). Machine
learning-based approach to study older LAST tests is described inStepien et al. (2019). Analysis of
more complex tests, like a clock drawing test (Harbi et al., 2017) or Poppelreuter’s Test (Nõmm et al.,
2016a) require one to involve neural networks (NN) based techniques either to perform complete
analysis or to analyse their parts.

The present research differs from the existing results by the procedure used to incorporate kinematic
and pressure parameters into the original drawing. First repeating patterns and thir elements are
extracted from the drawing. For each element or pattern, kinematic (velocity, acceleration, jerk,
etc.) and pressure parameters are computed. This data is used to colour each segment and change
the thickness of its line. Finally, the typical workflow of training and validation of deep neural
network models is applied.

The paper is organised as follows. Section 2 explains the symptoms of PD in terms of kinematic
and pressure parameters of the fine motor motions, common to the drawing procedure. The same
section presents Luria’s alternating series tests and their digital version. Formal problem statement
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is provide by the section 3. Experimental setting is explained in detail in section 4. Transformation
technique used to incorporate kinematic and pressure parameters into the original drawing together
with the applied data augmentation technique and deep neural network employed are described in
section 5. Main results are presented in section 6. Limitations of the proposed approach, together
with the interpretation of the achieved results, are discussed in section 7. The final section lists
conclusions and possible directions of the future studies.

2 BACKGROUND

Once one decides to perform a particular action, their brain generates the sequence of impulses to be
sent to the spinal cord. Luria referred these sequences as motion melodies (Luria, 1995). One may
think about the motion melodies as the programs to be executed. Then motion melody is sent to the
spinal cord to execute the motions. These two steps are usually referred to in the literature as motion
motion planning and motion execution functions or phases. Progressing PD may affect any of these
phases or both of them. The symptoms of the PD such as tremor, rigidity and bradykinesia (Kalia
& Lang, 2015) are caused by either distorted planning function or problems on the level of motions
implementation. If motion planning function is affected, motion melody would not be optimal to
reach the target and would require to be corrected during the motion. Disorders on the level of
implementation would disrupt the implementation of the motion melody. From the viewpoint of
the motion description, these symptoms of PD are reflected by the features describing velocities,
accelerations, and pressure applied the stylus tip to the screen of tablet PC (Drotár et al., 2016),
(Nõmm et al., 2018).

2.1 LURIA’S ALTERNATING SERIES TESTS

LAST tests were proposed in Hodges (2007) and Luria (1995) later their digital version dLAST in
Nõmm et al. (2016b). LAST and dLAST require the tested subject to complete, copy and trace the
drawing of a repeating pattern. The pattern is designed such that one would have to switch between
the motion melodies. Inability to switch between the melodies is referred to as perseveration. De-
tecting perseveration was the original purpose of the LAST tests. In their digital version battery
allows diagnosing PD on the basis of kinematic parameters describing the motion of the stylus tip.
Originally the battery consisted of three tests ΠΛ, Π and sin wave and three exercises: continue,
follow and trace applied to each test. Such a large battery is difficult and time consuming for some
elderly subjects to complete. To optimise the testing procedure, within the frameworks of the present
contribution employed only ΠΛ and Π tests are considered. Whereas, only ΠΛ test is used in this
paper to explain proposed technique. In Figure 1 the thin blue line represents the reference patterns
shown to the tested subject one by one. In the same Figure, the thick yellow line represents the
drawings produced by the subject during the testing. Besides the simplicity of the tests, there is one
more advantage of this battery. Namely, in some cases, it allows determining if PD has affected
motion planning function. If the patient has no difficulty to complete trace tests but fails on the
tests requiring to copy or continue the pattern, it is a clear indicator that motion planning function
is affected and motion execution function not. The difference between the copy and continue tests
is in their complexity. Also, ΠΛ differs from the Π pattern by its complexity. Sometimes in the
literature theses tests are referred to as Alternating Sequences Tests, and slightly different patterns
may be studied Fountoulakis et al. (2008).

3 PROBLEM STATEMENT

The working hypothesis of the present research is that the machine learning (ML) classifier able to
use the shape of the drawn lines together with kinematic and pressure parameters would be able
to provide high-level predictions to support diagnostics of the PD. This hypothesis leads to the
following problem statement. The main goal of this research is to incorporate the kinematic and
pressure parameters describing the motions of the stylus tip to the image of the lines drawn to
the test. Then train the classifier to distinguish between the PD patients and healthy control (HC)
subjects. This primary goal leads the following sub-problems to be tackled.

• Among available kinematic and pressure parameters chose the subset to be incorporated as
part of the image.

2



Under review as a conference paper at ICLR 2021

 continue  continue

 copy  copy

 trace  trace

Figure 1: Reference patterns and patient drawings produced during the testing.

• Incorporate chosen parameters without altering the shape of the drawn lines.

• Chose proper classifier architecture, train and validate it.

4 EXPERIMENTAL SETTING

4.1 TESTED SUBJECTS

To answer the problem statement and solve sub-problems identified in the previous section, labelled
data-set is required. Following the strict personal data protection laws and with the permission of the
ethics committee two groups representing 17 PD patients and similar in age and gender distribution
group of 33 HC were chosen among those who volunteered to participate in the trials. Mean age of
both groups is 69 years old.

4.2 DATA ACQUISITION

Tablet computer with stylus and special software developed by work-group was used to conduct
the tests. The testing software demonstrates the pattern to be completed, copied or traced, and
assignment is demonstrated on the screen and duplicated verbally by the practitioner conducting the
test. Using stylus pen tested subject continues, copies and traces the patterns. Tablet PC records the
position of the stylus pen with respect to its screen surface together with the pressure applied to the
screen two hundred times per second. This information is saved in the form of N × 4 matrix, where
N is the total number of observation points per test. Four columns of the matrix are the time stamp,
x and y coordinates and pressure.

5 PROPOSED WORKFLOW AND METHODS

Among all the supervised learning techniques known today, convolution neural networks (CNN)
are the most suitable choice for image data classification []. This choice immediately poses the re-
quirement of to have a large dataset, which in turn requires one to use data augmentation procedure.
Proposed workflow is depicted in Figure 2.

5.1 ENHANCEMENT AND AUGMENTATION

The first step: based on the coordinates and time stamps velocity, acceleration and jerk are computed
for each observation point. Together with the pressure, this gives four kinematic parameters to
choose from. On the second step, the Shi-Tomasi corner detection algorithm (Shi et al., 1994) is
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Figure 2: Research workflow.

applied to detect corners of the patterns drawn by the patient. In Figure 3 thin blue line drawn by
the patient and yellow points are the corners detected by Shi-Tomasi algorithm.
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Figure 3: Corners detect by Shi-Tomasi algorithm.

Knowledge of the corner coordinates allows extracting straight segments of the drawing. Then
combine them into the repeating patterns. Figure ΠΛ depicts one such pattern where line thickness
corresponds to the pressure applied by the stylus tip to the tablet screen and colour is generated by
the jet colour map on the basis of acceleration values. The thin black line represents one repeating
pattern drawn by the tested subject.

On the third step, the width of the line is changed to reflect the pressure. Colour of the line is
changed then to reflect acceleration. Then the data is split into training and validation data sets.
On the fourth step, the data augmentation procedure (Shorten & Khoshgoftaar, 2019) is applied
to the training set only. Since drawings are not real-life images, there is no need to apply the
noise procedure. Also, the colouring of the image was left unchanged. Remaining augmentation
transformations belong to the set of affine transforms; stretching and squeezing along the axis and
counterclockwise and clockwise rotations. Augmentation parameters then consist of stretching and
squeezing parameters and rotation angles. Stretching and squeezing parameters are taken from the
interval (0.85, 1.15) whereas rotation angle from (−5◦, 5◦). For each segment, six values are chosen
from each transformation. The number of recognised segments vary between five and four; these
lead more around 33000 images to be used for the training and testing. As the last step, each image
was resized to 224 × 224 pixels.
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Figure 4: Pattern enhanced by the acceleration and pressure

Table 1: Goodness of the different deep CNN architectures
LeNet-5 AlexNet

Accuracy 0.8427 0.9917
Recall 0.9753 0.9976

Precision 0.7709 0.9858
F1 - score 0.8611 0.9917

5.2 WORKFLOW OF CNN TRAINING TESTING AND VALIDATION

Augmentation procedure also was used to balance the data-set between (PD) and (HC) Augmented
data-set is split for training and validation in the proportion of 70/30. Among the most popular
deep CNN architectures LeNet-5 (Lecun et al., 1998), AlexNet (Krizhevsky et al., 2012) and Vgg16
(Simonyan & Zisserman, 2015) were chosen to be evaluated upon their description and suitability
for the particular time of the images. These architectures were chosen based on their popularity and
description, which is at least in theory, fits the type of images representing drawings of the dLAST.

6 MAIN RESULTS

LeNet-5 and AlexNet usually converge after four epochs whereas Vgg16 not only took much longer
time to converge but also demonstrated poor accuracy of just 0.62. Based on its performance for the
particular type of task studies in the present paper Vgg16 was excluded from further consideration.
More complex AlexNet has demonstrated a better performance. Figure 5 depicts evaluation of the
accuracy and loss for the LeNet-5 architecture. Confusion matrix for the LeNet-5 model is pre-
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Figure 5: Training of LeNet-5.

sented by Figure 6 Figure 7 depicts evaluation of the accuracy and loss for the AlexNet architecture.
Confusion matrix for the AlexNet model is presented by Figure 8 Since each pattern was analysed
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Figure 6: Confusion matrix for the LeNet-5 model.
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Figure 7: Training of AlexNet architecture
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Figure 8: Confusion matrix for the AlexNet model.

separately and each test consists of five full patterns (some times subjects draw a lesser or greater
number of patterns), it is essential to see how the position of the pattern affects the performance
of the classifiers. Figures 9 and 10 represent numbers of false positives and false negatives (for a
small separate selection previously unseen by the network) for LeNet-5 and AlexNet architectures
respectively.

7 DISCUSSION

The proposed technique is based on analysing each pattern of the drawing separately, which requires
one to summarise classification results for each pattern. Observing classification results for each
pattern, one can see that these may be done employing computing the mode of the classes. On the
one hand accuracy prediction accuracy for each pattern is in line with Nomm et al. (2019), which
demonstrates that patterns in different positions have different discriminating power. On the other
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Figure 9: LeNet-5, interval-wise prediction errors.
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Figure 10: AlexNet, interval-wise prediction errors.

hand, positions of most informative patterns are not the same as in Nomm et al. (2019), which may
be due to the difference between machine learning and deep CNN classifiers.

Performance of only three deep CNN structures was evaluated in this paper, whereas, the architec-
tures were used without any tuning or adjustments. The specific nature of the analysed images may
require to adjust or tune one of the existing structures to suit particularities of the dLAST images
better.

8 CONCLUSIONS

The present paper has proposed a novel way to enhance drawing tests used to diagnose Parkinson’s
disease. Main results of the paper demonstrate the combined with the image augmentation technique
proposed approach allows efficient use of the deep convolution neural networks to support diagnos-
tics of Parkinson’s disease. Main results have identified the necessity to pay attention to choosing
and tuning architecture of the CNN, which will constitute the subject of future studies.
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