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Abstract
Recent singing-voice-synthesis (SVS) methods001
have achieved remarkable audio quality and nat-002
uralness, yet they lack the capability to control003
the style attributes of the synthesized singing004
explicitly. We propose Prompt-Singer, the first005
SVS method that enables attribute controlling006
on singer gender, vocal range and volume with007
natural language. We adopt a model architec-008
ture based on a decoder-only transformer with009
a multi-scale hierarchy, and design a range-010
melody decoupled pitch representation that011
enables text-conditioned vocal range control012
while keeping melodic accuracy. Furthermore,013
we explore various experiment settings, includ-014
ing different types of text representations, text015
encoder fine-tuning, and introducing speech016
data to alleviate data scarcity, aiming to facil-017
itate further research. Experiments show that018
our model achieves favorable controlling ability019
and audio quality. Audio samples are available020
at http://prompt-singer.github.io.021

1 Introduction022

Singing-voice-synthesis (SVS) systems (Chen023

et al., 2020; Liu et al., 2022; Zhang et al., 2022b,c,024

2023b), which aim to generate high-fidelity singing025

voices given lyrics and pitch notes, have made sig-026

nificant advancements in improving audio quality027

and naturalness in recent years, facilitating music028

composition and development of entertainment in-029

dustries. However, it hasn’t been fully studied to030

control the style attributes of synthesized singing,031

such as speaker timbre, vocal range and energy.032

Despite that some works use fixed speaker IDs033

(Huang et al., 2021; Zhang et al., 2022c) or refer-034

ence speech/singing segments (Shen et al., 2023) to035

provide information on singer identity or other style036

attributes, these mechanisms are not user-friendly037

and lack the ability to control specific acoustic at-038

tributes explicitly.039

An ideal approach to controlling the style of040

generated singing voices is to use natural lan-041

guage instructions as style prompts, as it can not 042

only achieve precise control over specific attributes 043

with certain descriptions, but also simplify user 044

interaction, which may bring convenience to non- 045

professional users such as musicians and video 046

creators. However, applying natural language style 047

prompts in singing-voice-synthesis faces several 048

challenges: 049

• Decoupling Melody and Vocal Range. In real- 050

life situations, different speakers (e.g. an elderly 051

man and a little girl) may sing the same song 052

within different vocal ranges. However, pitch 053

annotations in SVS data are each tied to a specific 054

singer in a certain vocal range. This coupling 055

nature makes it challenging to generate singing 056

voices with consistent vocal range and timbre 057

to the prompt together with an accurate melody 058

aligned with given pitch notes. 059

• Textual Representation. Despite that some 060

works have explored connecting text represen- 061

tations with music, speech and general audio 062

concepts (Elizalde et al., 2023a,b; Wu et al., 063

2023), there is no text representation tailored for 064

singing style descriptions, and the optimal choice 065

of prompt representation for this task remains un- 066

known. 067

• Data Scarcity. Due to the requirement of fine- 068

grained annotations, existing SVS datasets (Liu 069

et al., 2022; Wang et al., 2022; Huang et al., 2021; 070

Zhang et al., 2022a) are small in scale, typically 071

consisting of only a few hours or tens of hours 072

of singing data. This not only causes limited 073

data diversity but also poses more challenges to 074

learning the correlation between natural language 075

descriptions and data distribution. 076

In this paper, we propose Prompt-Singer, the 077

first controllable SVS model with natural language 078

prompts to control the singer gender, vocal range 079
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and volume. Considering the outstanding perfor-080

mance of recent spoken LLMs (Borsos et al., 2023;081

Wang et al., 2023; Yang et al., 2023b) in terms082

of generation and in-context learning capabilities,083

we adopt a decoder-only transformer with a multi-084

scale hierarchy for conditional generation of dis-085

crete codec units of the singing, together with a unit086

vocoder for waveform reconstruction. To address087

the challenges mentioned above, we 1) design a088

decoupled pitch representation with a vocal range089

factor and a speaker-independent melody sequence,090

enabling voice range controlling while maintaining091

melodic accuracy; 2) investigate various text en-092

coders for prompt encoding, as well as fine-tuning093

the encoders to seek the optimal textual represen-094

tation for this task; 3) introduce speech data to095

alleviate data scarcity, and evaluate the model per-096

formance under different levels of low-resource097

singing data combined with speech data. Exper-098

iments show that our method achieves favorable099

style controlling accuracy on the three attributes,100

while keeping good audio quality and melodic accu-101

racy. Our contributions are summarized as follows:102

• We propose the first controllable SVS model with103

natural language prompts to control the singer104

gender, vocal range, and volume of the generated105

singing voice.106

• We design a pitch representation for SVS that107

decouples voice range and melody, which en-108

ables prompt-conditioned voice range manipula-109

tion while keeping melodic accuracy.110

• We investigate different text representations and111

fine-tune the text encoders to seek optimal text112

representation for the prompt in this task.113

• We alleviate data scarcity by introducing speech114

data, which boosts prompt-SVS performances in115

low-resource scenarios.116

2 Related Works117

2.1 Singing Voice Synthesis118

Singing-voice-synthesis aims to generate human-119

like singing voices from lyrics and pitch notes, and120

recent deep-learning-based models have achieved121

remarkable progress in synthesized voice quality.122

Several works (Chen et al., 2020; Zhang et al.,123

2022c, 2023b) adopt generative adversarial net-124

works for high-fidelity SVS. Diffsinger (Liu et al.,125

2022) adopts a shallow diffusion mechanism to en-126

hance the quality of the generated mel-spectrogram.127

VISinger (Zhang et al., 2022b) proposes an end-to- 128

end architecture based on a variational autoencoder. 129

However, it has not been fully studied to control the 130

style of generated singing. Previous multi-singer 131

systems (Huang et al., 2021; Zhang et al., 2022c) 132

use a fixed group of IDs to indicate singer identi- 133

ties. NaturalSpeech 2 (Shen et al., 2023) uses a 134

reference singing or speech clip to provide holis- 135

tic style information. Currently, there is a lack of 136

fine-grained controllable methods for SVS. 137

2.2 Instruct-guided Voice Generation 138

Inspired by the success in text, image and audio 139

generation guided with natural language instruc- 140

tions (Brown et al., 2020; Ramesh et al., 2021; 141

Kreuk et al., 2022), some recent works have ex- 142

plored using text prompts to govern the stylistic 143

attributes in voice synthesis. PromptTTS (Guo 144

et al., 2023) incorporates style features from a fine- 145

tuned BERT into a TTS backbone with attention. 146

InstructTTS (Yang et al., 2023a) achieves a text- 147

controlled expressive TTS system with cross-modal 148

representation learning. PromptTTS 2 (Leng et al., 149

2023) employs a variational network to generate 150

reference acoustic features conditioned on text fea- 151

tures. PromptVC (Yao et al., 2023) and Prompt- 152

Speaker (Zhang et al., 2023a) investigate text- 153

prompted voice conversion and speaker-embedding 154

generation separately. However, due to the data 155

scarcity and the demand for precise pitch control- 156

ling, research on natural-language-instructed SVS 157

is currently lacking. 158

3 Prompt Generation and Fetching 159

Our goal is to control the singer gender, vocal range 160

and volume in singing-voice-synthesis with natu- 161

ral language prompts. Since there is no available 162

dataset for this task, we utilize normal SVS datasets 163

and design a method for generating a prompt sen- 164

tence for each data item. We introduce this process 165

in this section. 166

Considering the high cost of manual annotation, 167

we utilize a large language model (GPT 3.5 Turbo) 168

to generate prompt sentences. The prompt gen- 169

eration mainly consists of 3 stages: 1) attribute 170

categorization; 2) keyword and sentence template 171

generation and 3) prompt sentence assembling. 172

Figure 1(a) and (b) demonstrate the process of 173

the first two stages. Initially, we categorize the 174

audio based on different attributes. The two gen- 175

der categories, male and female, are pre-annotated 176
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Figure 1: The pipeline of generating and fetching prompt sentence for training data.

in the datasets. For volume, we build three cate-177

gories of "low", "medium", and "high", indicating178

the amplitude root mean square (RMS) ranges of179

[0.02, 0.04], [0.07, 0.10] and [0.16, 0.20], respec-180

tively. Additionally, we can rescale audio into181

different ranges dynamically during training. For182

vocal range, we set two categories of "high" and183

"low", and use the average f0 of the voiced part184

as the criterion for classification, with the thresh-185

old being 125 Hz for male singers and 305 Hz for186

female singers.187

After categorization, we use LLM to generate a188

set of 4-7 synonyms for each category as the key-189

words. We further utilize LLM to generate prompt190

sentence templates for each single attribute, where191

each template contains a placeholder to be replaced192

with the keywords (such as "Generate a song by a193

[gender] singer"). We also generate a small number194

of prompt sentences targeting specific categories195

(such as "Could you synthesize a song that’s as196

powerful as a thunderstorm?" for large volume).197

We obtain approximately 50 sentence templates198

for each attribute after manual selection. These199

single-attribute templates can be further combined200

to create multi-attribute templates by prompting201

LLM. We provide sample sentence templates and202

keywords in Appendix A.203

The prompt sentence assembling stage takes204

place dynamically during training. Figure 1(c) il-205

lustrates the pipeline of fetching a prompt sentence.206

We first obtain the pre-annotated labels for the data207

item, and in order to make the model adaptable to208

prompts with varying numbers of attributes, one or209

two labels are randomly dropped with probabilities210

p1 and p2. We then randomly fetch a keyword and211

a sentence template from the pre-generated sets,212

and replace the placeholder with the keyword to 213

get the final prompt sentence. Note that we do not 214

control vocal range independently in the absence 215

of gender, as its boundary is different for male and 216

female. We use pre-generated specific prompts for 217

each sample in the evaluation for fair comparison. 218

4 Prompt-Singer 219

In this section, we introduce the model design of 220

Prompt-Singer. The overall architecture of our 221

model is illustrated in Figure 2(a). It is primarily 222

composed of two sub-modules: 1) the multi-scale 223

transformer, which generates discrete acoustic units 224

conditioned on inputs of natural language prompt, 225

lyrics with duration, and pitch information; and 2) 226

the unit vocoder, which maps the generated acous- 227

tic units to an audio waveform. 228

In the following subsections, we introduce the 229

input and output representations of the model in 230

Section 4.1 to 4.3, model architecture in detail in 231

Section 4.5 and 4.6, together with our method for 232

data scarcity alleviation in Section 4.4. 233

4.1 Voice Representation 234

The acoustic units used as the prediction tar- 235

gets of the transformer are generated by Sound- 236

Stream(Zeghidour et al., 2021), a neural codec 237

with an encoder-decoder architecture and a resid- 238

ual vector quantizer (RVQ). Such a codec model 239

can produce discrete compressed representations 240

of audio by employing a convolutional encoder 241

followed by the RVQ, and these representations 242

can be used to reconstruct waveforms with the 243

decoder. An acoustic unit sequence can be rep- 244

resented as a = [a11, a
2
1, ..., a

C
1 , a

1
2, ..., a

C
T ], a

j
i ∈ 245

{0, 1, ...,Ka − 1},∀1 ≤ i ≤ T, 1 ≤ j ≤ C, with 246
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Figure 2: Model architecture of Prompt-Singer and the multi-scale transformer.

T,C,Ka being number of frames, number of resid-247

ual codebooks and codebook size.248

4.2 Textual Representation249

The textual input for our model comprises two com-250

ponents: 1) lyrics, which correspond to the con-251

tent of the generated song, and 2) natural language252

prompt, which controls the style of the singing. We253

introduce their representations in this subsection.254

For lyrics, we first phonemize the text and obtain255

corresponding phoneme-level duration in seconds256

from dataset annotations or a forced-alignment tool257

(McAuliffe et al., 2017). We then convert the dura-258

tion to frame level based on a preset frame rate, and259

regulate the length of the phoneme sequence with260

this duration by duplicating phonemes. We set the261

frame rate of phonemes to be the same as acous-262

tic units, making it easier for the model to learn263

the length alignment. The regulated phoneme se-264

quence is then embedded by a look-up table (LUT)265

and fed to the transformer.266

For the natural language prompt, we utilize a267

parameter-frozen text encoder to extract a seman-268

tic representation, followed by a linear layer for269

mapping its dimension to fit the transformer. To270

explore the impact of different text representations271

on style controlling, we attempt three types of272

encoders in our experiments: 1) BERT (Devlin273

et al., 2018), a widely-used self-supervised text274

encoder trained with masked-language modeling;275

2) FLAN-T5 (Chung et al., 2022), the encoder of276

a unified text-to-text transformer fine-tuned with277

instructions; and 3) CLAP (Wu et al., 2023), a text278

encoder through contrastive pretraining on natu-279

ral language and audio. We compare BERT and 280

FLAN-T5 of different sizes, as well as CLAP pre- 281

trained on two different datasets. We also fine-tune 282

BERT-large and FLAN-T5-large using prompts and 283

corresponding labels. We fine-tune BERT with 284

multi-label prediction and have FLAN-T5 predict 285

the label sequence corresponding to the prompt in 286

a text-to-text manner. Note that the prompts used 287

in the evaluation are not included in fine-tuning. 288

4.3 Decoupled Pitch Representation 289

According to equal temperament theory(Wikipedia, 290

2023), humans’ perception of musical intervals cor- 291

responds to the logarithmic distance of frequen- 292

cies. This means if we multiply the fundamental 293

frequency (F0) of the voiced part of singing by a 294

factor (equivalent to adding an offset in the logarith- 295

mic domain), we can adjust the vocal range without 296

changing the melody. Based on this principle, we 297

decompose F0 into two components: 1) f̄0, which 298

is the average value of the voiced part of F0, indict- 299

ing the vocal range; and 2) f̃0, where we rescale 300

the voiced part of the original F0 sequence to have 301

a specific mean value (230Hz, in our practice), in- 302

dicating vocal-range-invariant melody information. 303

This simple yet effective representation creates an 304

information bottleneck, forcing the model to ex- 305

tract melodic and vocal range information from 306

the rescaled F0 sequence and average F0 factor, 307

respectively. 308

In our practice, we round f̃0 and f̄0 into integers, 309

and use an LUT to embed them before feeding 310

them to the transformer backbone. Both f̃0 and f̄0 311

share the same embedding space. 312
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4.4 Alleviating Data Scarcity313

Considering that both speech and singing are hu-314

man voices in different forms, it is intuitive that315

they share some commonalities in style characteris-316

tics and distributions. Based on this point, we incor-317

porate text-to-speech (TTS) data into the training318

of the prompt SVS task to alleviate data scarcity.319

Specifically, we employ the same methods as for320

singing to phonemize the text and generate prompts,321

and use an off-the-shelf tool to extract pitch from322

the speech, finally obtaining data items in the same323

format as SVS data.324

Furthermore, we explore the feasibility of substi-325

tuting speech data for singing data in low-resource326

scenarios. We evaluate the model performance327

under compositions of varying amounts of low-328

resourced SVS data with abundant TTS data, with329

experiment results presented in Section 5.5.330

4.5 Multi-Scale Transformer Architecture331

The multi-scale transformer serves as the backbone332

of our model. It is a decoder-only transformer333

with a hierarchical structure to facilitate the mod-334

eling of long sequences. This module aims to335

generate discrete acoustic units of singing voices336

conditioned on natural language prompts, lyrics337

phonemes, phoneme durations and vocal-range ag-338

nostic melody representation, together with the339

vocal-range factor as intermediate output. During340

training, the conditional inputs and target outputs341

are concatenated into a single sequence and fed to342

the transformer, which models the correlation using343

next-token-prediction with cross-entropy loss cal-344

culated on the target output part. During inference,345

the model predicts the range factor and acoustic346

units conditioned on the prefix input sequence au-347

toregressively, which can be formulated as:348

Pcond (a) = Pcond

(
f̄0
)
·

T∏
t=1

C∏
c=1

PAR (ac
t) (1)349

Pcond (∗) = p
(
∗ | EP (P ), L,D, f̃0; θAR

)
(2)350

PAR (ac
t) = p

(
ac
t | a<t,a

<c
t ,EP (P ), L,D, f̃0, f̄0; θAR

)
(3)

351

where a, EP , P , L, D, f̄0, f̃0 and θAR indicate352

acoustic units, prompt encoder, prompt, lyrics, du-353

rations, vocal-range factor, melody representation354

and model parameters, respectively, and t, c indi-355

cate temporal and codebook indices of the acoustic356

unit. Consider the process of the transformer pre-357

dicting the vocal range factor, which is formulated 358

by 359

Pcond

(
f̄0
)
= p

(
f̄0 | EP (P ), L,D, f̃0; θAR

)
, (4) 360

as we assume that the average F0 value is inde- 361

pendent of the lyrics, duration and melody, this 362

formula indicates our model’s capability to control 363

the vocal range through natural language prompts. 364

The predicted vocal range information is further 365

taken as a condition for singing acoustic unit gen- 366

eration. 367

The hierarchical structure of the multi-scale 368

transformer is illustrated in Figure 2(b). Such a 369

hierarchical structure is formed by a global and a 370

local transformer, both of which are decoder-only 371

transformers. For a temporal position t, embed- 372

dings z
1:nq

t of acoustic units from different code- 373

books are concatenated and fed to the global trans- 374

former for inter-frame correlation modeling. The 375

output hidden feature ht is generated autoregres- 376

sively conditioned on h1:t. This hidden feature is 377

then split according to the original shape of the em- 378

beddings, projected by a linear layer and added to 379

the input embeddings of the local transformer as a 380

frame-level context. The local transformer predicts 381

acoustic units of different codebooks inside a frame 382

autoregressively. Such a design derives from a re- 383

cent audio generation model (Yang et al., 2023b) 384

and aims to reduce the computational complexity 385

for over-long sequences caused by multi-codebook 386

acoustic units. For non-acoustic modalities, each 387

item is repeated nq times to fit this modeling mech- 388

anism, with nq being the number of codebooks. 389

4.6 Unit Vocoder 390

When the acoustic unit generation finishes, the gen- 391

erated units need to be mapped to a high-fidelity 392

audio waveform. Due to the compressive nature of 393

the codec, reconstructing audio from acoustic units 394

of limited codebooks with the decoder may result 395

in degraded perceptual quality. Instead of using 396

the codec decoder directly, we adopt a GAN-based 397

unit vocoder for singing voice reconstruction, aim- 398

ing to generate audio of higher quality and richer 399

details. Specifically, our vocoder is derived from 400

BigVGAN (Lee et al., 2022), with a generator built 401

from a set of look-up tables (LUT) that embed the 402

discrete units, and a series of blocks composed of 403

transposed convolution and a residual block with 404

dilated layers. Multi-period and multi-resolution 405
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discriminators (MPD, MRD) are used for adversar-406

ial training.407

5 Experiments408

5.1 Datasets409

We combine 4 SVS datasets for our task, includ-410

ing M4Singer, Opencpop, Opensinger and PopCS,411

forming a multi-singer singing dataset of 127 hours.412

For speech data, we utilize 4 Mandarin TTS cor-413

pora, including AISHELL-3, Biaobei, THCHS-30414

and a subset of DidiSpeech, totaling approximately415

179 hours. We provide details of these datasets in416

Appendix B.417

We phonemize the lyrics with PyPinyin1, and418

extract F0 from raw audios with harvest (Morise419

et al., 2017). We separately select 2% of the singing420

data randomly for validation and testing, with the421

remaining used for training.422

5.2 Model Configurations423

The global transformer has 20 layers with 320M424

parameters, while the local transformer has 6 lay-425

ers with 100M parameters. Both of them share426

the same hidden dimension of 1152. For acoustic427

units, we train a SoundStream model for 24k au-428

dio, with 12 quantization levels, a codebook size429

of 1024 and a downsampling rate of 480. We use430

the first 3 quantization levels as the acoustic units,431

and the unit vocoder is trained to reconstruct 24k432

audios from acoustic units of 3 codebooks. The433

label dropping probability p1 and p2 are both set to434

0.25. Detailed structure and hyper-parameters of435

the model are appended in Appendix C.436

5.3 Experiment Settings437

As we are investigating a new task with no previous438

work to compare with, our experiments mainly fo-439

cus on exploring different settings within our frame-440

work, including different text representations and441

different training data compositions, together with442

ablation studies. The settings of various text rep-443

resentations are presented in table 1. As described444

in Section 4.2, we experimented with encoders of445

different types, parameter sizes, and pre-training446

data as well as fine-tuning the encoders. We also447

provide the results of ground truth and two non-448

controllable SVS models in table 1 as baselines of449

singing quality: 1) FFT-Singer, which generates450

mel-spectrograms through stacked feed-forward451

transformer blocks; and 2) Diffsinger(Liu et al.,452

1https://github.com/mozillazg/python-pinyin

2022), an SVS model based on the diffusion proba- 453

bilistic model. 454

In table 2, we compare the results of incorporat- 455

ing speech data for training or not, together with 456

a series of low-resource data configurations with 457

SVS data varying from 10 minutes to 100 hours 458

paired with speech data of a fixed quantity of 100 459

hours. The ablation studies are described in a dedi- 460

cated subsection. 461

5.4 Metrics 462

We employ both subjective and objective metrics 463

to measure the controlling ability and singing voice 464

quality of the models. For objectives metrics, we 465

calculate the percentage accuracy for each attribute, 466

where we train a gender classifier and use ampli- 467

tude RMS and average F0 of the voiced part for 468

volume and range evaluation. We mainly use single- 469

attribute prompts for evaluation with an additional 470

gender attribute for vocal range, and multi-attribute 471

evaluation is conducted in ablation studies. We 472

also calculate R-FFE for melodic accuracy between 473

the synthesized and reference singing, which is 474

F0-frame-error (FFE) with the voiced part of F0 475

rescaled to have an average of 230Hz to eliminate 476

the impact of vocal range. For subjective metrics, 477

we use crowd-sourced human evaluation via Ama- 478

zon Mechanical Turk, where raters are asked to rate 479

scores on 1-5 Likert scales on singing voice quality 480

and the relevance between synthesized singing and 481

the prompt. We report the mean-opinion-scores 482

of quality (MOS) and relevance(RMOS) with 95% 483

confidence intervals (CI) in the tables. Details of 484

evaluation metrics are provided in Appendix D. 485

5.5 Results and Analysis 486

We can draw two basic conclusions from the results 487

in table 1: 1) Generally, our models (1-10) exhibit 488

favorable attribute controlling accuracies, with the 489

best values being 87.7 / 86.3, 94.9 and 84.7 for the 490

three attributes, together with competitive audio 491

quality and melodic accuracy to non-controllable 492

baselines (1-10 v.s. 11-13), with the best R-FFE 493

and MOS being 0.09 and 3.90. This indicates the 494

effectiveness of our model design on the task of 495

controllable SVS. 2) The accuracies on volume are 496

higher than gender and vocal range by a salient 497

margin, with the values varying between 7.4 and 498

15.4 across different models. We speculate that 499

this is because the random amplitude scaling in 500

training allows the data with different volumes to 501

be expanded to a large scale (somewhat similar to 502
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ID Model Gender (F/M) Volume Range R-FFE MOS RMOS

Prompt-Singer with Pre-trained Text Encoders

1 FLAN-T5 small 76.7 / 78.1 92.0 79.1 0.11 3.75 ± 0.08 3.27 ± 0.09
2 FLAN-T5 base 82.2 / 79.5 92.4 80.8 0.12 3.79 ± 0.07 3.39 ± 0.07
3 FLAN-T5 large 83.1 / 80.8 92.7 82.6 0.12 3.83 ± 0.08 3.43 ± 0.08
4 FLAN-T5 XL 83.4 / 80.4 92.6 82.9 0.11 3.84 ± 0.06 3.46 ± 0.08
5 BERT-base 80.8 / 80.1 93.9 80.1 0.10 3.81 ± 0.06 3.42 ± 0.07
6 BERT-large 84.9 / 80.9 94.3 78.9 0.09 3.78 ± 0.08 3.44 ± 0.08
7 CLAP-general 82.2 / 79.5 94.1 80.3 0.12 3.83 ± 0.07 3.43 ± 0.06
8 CLAP-speech/music 82.2 / 78.1 94.2 80.8 0.11 3.85 ± 0.09 3.38 ± 0.08

Prompt-Singer with Fine-tuned Text Encoders

9 FLAN-T5 large finetuned 87.7 / 86.3 94.4 84.7 0.12 3.89 ± 0.07 3.62 ± 0.08
10 BERT-large finetuned 86.3 / 83.6 94.9 79.8 0.10 3.90 ± 0.07 3.60 ± 0.08

Non-controllable SVS models and Ground Truth

11 FFT-Singer / / / 0.17 3.67 ± 0.08 /
12 Diffsinger / / / 0.09 3.86 ± 0.07 /
13 Ground Truth 98.0 / 97.0 / / / 4.09 ± 0.06 /

Table 1: Results on different text representations, including percentage accuracies of the three attributes, rescaled
f0-frame error (R-FFE) and mean-opinion-scores of audio quality (MOS) and relevance to the prompt (RMOS).

ID SVS Data TTS Data Gender (F/M) Volume Range R-FFE MOS RMOS

1 ✓ ✗ 75.3 / 65.8 87.6 78.7 0.11 3.68 ± 0.08 3.37 ± 0.08
2 ✓ ✓ 87.7 / 86.3 94.4 84.7 0.12 3.89 ± 0.07 3.62 ± 0.08

3 10min 100h 65.8 / 65.6 78.3 80.9 0.29 3.06 ± 0.09 2.89 ± 0.09
4 1h 100h 71.2 / 64.4 84.8 81.2 0.25 3.34 ± 0.08 3.03 ± 0.09
5 10h 100h 76.7 / 68.5 88.6 81.6 0.23 3.28 ± 0.08 3.17 ± 0.09
6 100h 100h 86.2 / 80.5 92.5 82.3 0.12 3.75 ± 0.08 3.45 ± 0.08

Table 2: Experiment results on data scarcity alleviation in low resource scenarios.

data augmentation), while the quantities and diver-503

sities of gender and range are limited by the train-504

ing datasets. This, from one perspective, confirms505

that data scarcity makes learning the correlation506

between prompt and style attributes difficult.507

5.5.1 Evaluation on Text Representations508

We have the following further observations from509

the results in table 1: 1) Fine-tuning the text en-510

coders leads to a considerable improvement in con-511

trolling accuracy (3 vs. 9 & 6 vs.10), with the im-512

provements being 4.6 / 5.5, 1.7 and 2.1 for FLAN-513

T5 large, and 1.4 / 2.7, 0.6 and 0.9 for BERT-large.514

This indicates that aligning the text representations515

with the labels, which have a much simpler dis-516

tribution, helps the model learn their correlation517

with singing style. Nevertheless, using only the518

pre-trained text encoders already yields quite good519

results. 2) Generally, larger model sizes bring bet-520

ter results (1-4 & 5-6). However, such a tendency521

between 3 and 4 is less significant compared to 1-2522

and 2-3, suggesting that text encoder parameters523

beyond a certain size are no longer a bottleneck524

for model performance. 3) Different types of text 525

encoders exhibit varying controlling capabilities 526

over different attributes. For instance (1-4 vs. 5-8), 527

the FLAN-T5 family shows weaker control over 528

volume compared to CLAP and BERT, with an 529

accuracy gap of 1.2-2.3. However, the large and 530

xl models outperform CLAP and BERT in vocal- 531

range controlling accuracy by 1.8-4.0. This may 532

be related to differences in the models’ pretrain- 533

ing methods and data. We choose the fine-tuned 534

FLAN-T5 large model for subsequent experiments. 535

5.5.2 Evaluation on Data Scarcity Alleviation 536

From the results of different data compositions in 537

table 2, we have the following observations: 1) 538

Introducing speech data leads to a comprehensive 539

improvement in controlling accuracies and gener- 540

ation quality, with the cost being a slight increase 541

in R-FFE of 0.01 (1 vs. 2). This is because the 542

additional speech data increases the quantity and 543

diversity of the training data, aiding the network 544

in modeling the correlation between prompt and 545

acoustic style. However, due to the difference in the 546
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ID Model Gender (F/M) Volume Range R-FFE RMOS

Ablation on Decoupled Pitch Representation

1 Factor: ✓ Rescale: ✓ 87.7 / 86.3 94.4 84.7 0.12 3.62 ± 0.08
2 Factor: ✗ Rescale: ✓ 78.1 / 63.0 91.3 76.1 0.11 3.34 ± 0.09
3 Factor: ✗ Rescale: ✗ 64.4 / 58.9 91.6 72.3 0.08 2.75 ± 0.09

Ablation on Different Prompted Attribute Numbers

4 Attribute Num: 1 87.7 / 86.3 94.4 / 0.12 3.67 ± 0.08
5 Attribute Num: 2 84.3 / 82.9 93.4 84.7 0.11 3.58 ± 0.08
6 Attribute Num: 3 81.2 / 80.7 93.0 82.4 0.11 3.52 ± 0.07

Table 3: Results of ablation studies.

distributions of singing melody and speech prosody,547

both of which are manifested in pitch variation, the548

speech data may have a negative impact on mod-549

eling singing melody, causing the slight increase550

in R-FFE. 2) In the low resource scenarios (3-6),551

we find that there is a drastic decline in the singing552

audio quality, melody accuracy as well as the accu-553

racy on gender with the decrease in the quantity of554

SVS data. In contrast, the changes in volume and555

vocal range are relatively gradual, yielding accept-556

able results of 88.6 and 81.6 even with 10 hours557

of singing data. This suggests that, while speech558

data helps improve controlling accuracy and audio559

quality, it still cannot substitute for singing data in560

modeling certain vocal characteristics. In conclu-561

sion, introducing speech data effectively enhances562

the performance of controllable SVS, but it is still563

necessary to have a sufficient amount of singing564

data to ensure synthesis quality and melody accu-565

racy.566

5.6 Ablation Studies567

We mainly focus on validating the effectiveness568

of our decoupled pitch representation and multi-569

attribute prompting mechanism in the ablation stud-570

ies, and the results are presented in table 3.571

For pitch representation (1-3), we first remove572

the vocal range factor from the sequence, and then573

eliminate the rescaling on the input F0. We can574

see that when removing the range factor, there is a575

drastic drop of 9.6 / 23.3, 3.1 and 8.6 in accuracies,576

accompanied by an RMOS decrease of 0.28. This577

indicates that explicitly predicting the vocal range578

factor facilitates vocal range and gender control579

greatly. When we continue to eliminate the input580

F0 rescaling, the accuracies on gender and range as581

well as RMOS further decline by 13.7 / 4.1, 3.8 and582

0.59, respectively, which indicates that the vocal583

range information contained in the original F0 inter-584

feres with the model’s modeling of the correlation585

between prompt and singing style. We also observe 586

that removing the range factor and input F0 rescal- 587

ing leads to an improvement in melodic accuracy. 588

This suggests that the decoupling mechanism may 589

cause some loss of pitch information. Despite this, 590

our model keeps a satisfactory melodic accuracy 591

with the decoupled pitch representation. 592

We further examine the model’s controlling ef- 593

fectiveness under multi-attribute prompts. The re- 594

sults of 4-6 in table 3 show that there is a slight 595

decrease in accuracies and RMOS as the attribute 596

number increases, with the drop being 3.4 / 3.4, 1.0, 597

0.09 from 1 to 2 attributes, and 3.1 / 2.2, 0.4, 2.3, 598

0.06 from 2 to 3. We suggest that this is because the 599

conditional distribution of acoustic style with re- 600

spect to controlling signals of multiple attributes is 601

more complicated to be modeled. Nevertheless, our 602

model shows favorable performance on prompts 603

with both single and multiple attributes. 604

6 Conclusion 605

In this paper, we propose Prompt-Singer, the first 606

singing-voice-synthesis method with the ability of 607

style control using natural language prompts. We 608

adopt a multi-scale decoder-only transformer for 609

generating acoustic units of singing, followed by a 610

unit-vocoder for audio reconstruction. We design 611

a decoupled pitch representation for vocal range 612

modification with an accurate melody kept. Fur- 613

thermore, we investigate various experiment set- 614

tings, including different text representations, fine- 615

tuning the text encoders, and using speech data to 616

boost performance in low-resource scenarios. 617

In future works, we plan to introduce more style 618

attributes in controllable SVS, such as emotion, 619

rhythm and more detailed singer information. We 620

hope our work will facilitate the development of 621

the SVS community. 622
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7 Limitations and Potential Risks623

Despite that our model achieves remarkable con-624

trolling capability and audio quality on prompt625

singing-voice-synthesis, it still has two major limi-626

tations: 1) Our descriptions of singing voice styles627

are based on a limited set of predefined categories,628

which constrains our model’s ability to control spe-629

cific acoustic attributes to a coarse granularity. 2)630

Due to the limitation of text generation capabil-631

ity of the LLM used for prompt generation, the632

generated prompts may suffer from lower diversity633

compared with real-world instructions, and may634

have a bias in distribution, which may limit the635

potential of real-world applications of our model.636

Besides, misuse of our model for singing voice gen-637

eration may lead to copyright issues. We will add638

some constraints to guarantee people who use our639

code or pre-trained model will not use the model640

in illegal cases.641
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A Sample Prompt Keywords and809

Sentence Templates810

We list the keywords for each category in table811

4, and provide some samples of prompt sentence812

templates in table 6.813

Category Keywords

Gender

female woman, lady, girl, female, lass, miss, madam

male man, boy, guy, gentleman, male, sir

Volume

high loud, ringing, booming, thunderous,
deafening, roaring

medium moderate, average, intermediate,
middle-range

low quiet, slight, twittering, hushed, whispering

Vocal Range

high sharp, treble, shrill, whistling,
shrieking, high-pitched

low deep, low, bass, thick, low-pitched

Table 4: Prompt keywords for each category.

B Dataset Statistics814

In table 5, we list the statistics of the datasets used.815

F and M in the Speakers column indicate the num-816

bers of female and male speakers or singers.817

Dataset Hours Speakers

SVS datasets

M4Singer (Zhang et al., 2022a) 29.8 F:10 M:10
Opencpop (Wang et al., 2022) 5.3 F:1
Opensinger (Huang et al., 2021) 86.5 F:49 M:28
PopCS (Liu et al., 2022) 5.9 F:1

TTS datasets

AISHELL-3 (Shi et al., 2020) 86.4 F:176 M:42
Biaobei 2 11.8 F:1
THCHS-30 (Dong Wang, 2015) 34.2 F:31 M:9
Didispeech (Guo et al., 2021) 47.0 F:198 M:202

Table 5: Statistics of training datasets.

C Model Settings818

We illustrate the architecture of the global trans-819

former in Figure 3. The local transformer shares820

the same structure as the global one with two dif-821

ferences: 1) the local transformer has no positional822

embedding, and 2) there is a linear lm-head ap-823

pended to the top of it for token prediction. We also824

2https://www.data-baker.com/open_source.html

Layer Norm

Causal Self-Attention

Learned Positional 
Embedding

Input Embeddings/ Features

Layer Norm

MLP

Layer Norm

Output Features

×N

Figure 3: Structure of Global Transformer

list the model hyper-parameters of Prompt-Singer 825

in Table 7. The multi-scale transformer is trained 826

with 6 NVIDIA-V100 gpus for about 4-5 days, and 827

the vocoder is trained with 4 NVIDIA-V100 gpus 828

for a week. 829

D Evaluation Metrics 830

D.1 Objective Evaluation 831

For gender controlling accuracy, we train an open- 832

source gender classifier3 with our singing and 833

speech data. The performance of the classifier on 834

the test set is provided as ground-truth accuracy in 835

line 13 of table 1. 836

For controlling accuracies on volume and vo- 837

cal range, considering that the values of generated 838

singing may slightly deviate from the boundaries 839

used for categorization, we adopt a soft-margin 840

mechanism for accuracy calculation. Specifically, 841

we take the accuracy of data falling within the cor- 842

rect range as 100, and calculate the accuracy with 843

100 ∗ exp (−kϵ) for data outside the correct range, 844

where ϵ is the error between the data value and 845

the boundary, and k is a hyper-parameter control- 846

ling the decay rate of accuracy at the margins, with 847

3https://github.com/x4nth055/gender-recognition-by-
voice/tree/master
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Single-Attribute Templates

Do you have any songs with a [gender] lead singer?
Can you create a song sung by a [gender] vocalist?
I’m searching for a song featuring a [gender] singer.
I need a song with a [volume] voice that resonates.
Play me a song with a [volume] voice.
I’d like to listen to a song with a [volume] voice.
I need a song where every note is gentle and delicate. (for low volume)
Kindly provide me with a song that features a voice of balanced volume, pleasing to the ears. (for medium volume)
Give me a song with a voice that shakes the ground with its thunderous vocals! (for high volume)

Double-Attribute Templates

Can you find me a song with a [gender] singer and a [volume] voice?
I would like to hear a song with a [volume] voice and if possible, a [gender] voice.
Synthesize a new song with a [volume] voice and a [gender] lead singer.
Need a [pitch] pitch song sung by a [gender] vocalist.
Generate a song featuring a [gender] vocalist with a unique use of [pitch] pitch.
A [gender] voice with a [pitch] pitch is what I’m looking for.
Create an enchanting song sung by a [gender] vocalist in the [pitch] pitch.
Create a [gender] artist’s song with a [volume] voice, softly mesmerizing with its gentle tone. (for low volume + any gender)
Generate a [gender] artist singing at just the right volume. (for medium volume + any gender)
Can you generate a [gender]-sung song with a [volume] voice that balances softness and loudness? (for medium volume +
any gender)
I’m looking for a song with a [gender] singer and a voice that’s as powerful as a thunderstorm. (for high volume + any gender)

Triple-Attribute Templates

Explore [gender] [volume] songs with emotive [pitch] pitch.
Synthesize a song with a [pitch] pitch and a [volume] voice, preferably [gender].
Design a [gender] singer’s song with a [volume] voice and [pitch] pitch.
Showcasing superb [pitch] pitch, create a [volume] song by a [gender] artist.
Generate a song with stunning [pitch] harmonies and a [gender] singer with a [volume] voice.
Can you compose a song with a [gender] vocalist and [volume] volume, while incorporating the singer’s unique use of [pitch]
pitch?
Generate a song featuring [gender] vocals, delicately whispered with [volume] voice and [pitch] harmony. (for low volume +
any gender / vocal range)
Compose a [pitch]-keyed song with a [volume] voice that balances softness and loudness, sung by a [gender] singer. (for
medium volume + any gender / vocal range)
Craving a [gender] artist’s song with a [volume] voice that exudes energy and power and a [pitch] note that creates a
memorable hook! (for high volume + any gender / vocal range)

Table 6: Sample Prompt Sentence Templates.

Figure 4: Soft-margin accuracy curve of high vocal-
range of male.

larger k corresponding to faster decay. We take848

accuracy curves of high vocal-range of male and849

medium volume as examples and illustrate them in850

Figure 4 and 5, respectively. We set k to 120, 150851

and 180 for high, medium and low volume, and 0.2852

Figure 5: Soft-margin accuracy curve of medium vol-
ume.

for vocal range accuracy. 853

D.2 Subjective Evaluation 854

For each evaluated model, we mix all generated re- 855

sults together and randomly select 220 items with 856
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Hyperparameter Prompt-Singer

Global
Transformer

Layers 20
Hidden Dim 1,152

Attention Headers 16
FFN Dim 4,608

Number of Parameters 320.07M

Local
Transformer

Layers 6
Hidden Dim 1,152

Attention Headers 8
FFN Dim 4,608

Number of Parameters 100.13M

Unit
Vocoder

Upsample Rates [6,5,2,2,2,2]
Hop Size 480

Upsample Kernel Sizes [12,9,4,4,4,4]
Number of Parameters 125.43M

Table 7: Hyperparameters of Prompt-Singer.

their corresponding prompts for subjective evalua-857

tion.858

Our subjective evaluation tests are crowd-859

sourced and conducted via Amazon Mechanical860

Turk. For audio quality evaluation, we ask the861

testers to examine the audio quality and naturalness862

and ignore the content. For prompt-style relevance,863

we instruct the testers to evaluate the relevance be-864

tween the natural language prompt and the singing865

style while ignoring the content. The testers rate866

scores on 1-5 Likert scales. We provide screenshots867

of the testing interfaces in Figure 6 and 7. Each868

data item is rated by 4 testers, and the testers are869

paid $8 hourly.870
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Figure 6: Screenshot of MOS testing.

Figure 7: Screenshot of RMOS testing.
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