
Published as a conference paper at ICLR 2024

TRANSFORMER FUSION WITH OPTIMAL TRANSPORT

Moritz Imfeld∗, Jacopo Graldi∗, Marco Giordano∗,
Thomas Hofmann, Sotiris Anagnostidis, Sidak Pal Singh
ETH Zurich, Switzerland
{moimfeld, graldij, mgiordano}@ethz.ch

ABSTRACT

Fusion is a technique for merging multiple independently-trained neural networks
in order to combine their capabilities. Past attempts have been restricted to the case
of fully-connected, convolutional, and residual networks. This paper presents a
systematic approach for fusing two or more transformer-based networks exploiting
Optimal Transport to (soft-)align the various architectural components. We flesh
out an abstraction for layer alignment, that can generalize to arbitrary architectures
– in principle – and we apply this to the key ingredients of Transformers such as
multi-head self-attention, layer-normalization, and residual connections, and we
discuss how to handle them via various ablation studies. Furthermore, our method
allows the fusion of models of different sizes (heterogeneous fusion), providing
a new and efficient way to compress Transformers. The proposed approach is
evaluated on both image classification tasks via Vision Transformer and natural
language modeling tasks using BERT. Our approach consistently outperforms
vanilla fusion, and, after a surprisingly short finetuning, also outperforms the
individual converged parent models. In our analysis, we uncover intriguing insights
about the significant role of soft alignment in the case of Transformers. Our results
showcase the potential of fusing multiple Transformers, thus compounding their
expertise, in the budding paradigm of model fusion and recombination. Code is
available at https://github.com/graldij/transformer-fusion.

1 INTRODUCTION

Transformers, as introduced by Vaswani et al. (2017), have profoundly impacted machine learning,
establishing a prevailing neural network architecture across various domains. Transformers consis-
tently excel in different fields, including natural language processing (Lin et al., 2022), time series
forecasting (Wen et al., 2022), and computer vision (Dosovitskiy et al., 2020). Their success can
be attributed to their scaling properties (Kaplan et al., 2020) and efficient utilization of contempo-
rary hardware architectures designed for extensive parallel computing. The unification of a single
architecture across tasks facilitates immediate, far-reaching applicability of any analysis that handles
general properties of the Transformer architecture.

As large Transformer foundation models (Bommasani et al., 2021) continue to grow in size and
complexity, the challenges associated with training, i.e., exponential increase in parameters and
compute for a fixed incremental improvement in performance (Hoffmann et al., 2022; Zhai et al.,
2022; Bachmann et al., 2023), become increasingly more perilous. Consequently, achieving state-of-
the-art results is often confined to researchers with access to ample GPU resources. To address these
issues and strive for more efficient and sustainable performance improvements, we embark on the
following more compelling and alternative inquiry:

Can we combine the capabilities of pre-trained Transformer models?

Merging multiple Transformer models into a single entity while preserving their unique capabilities
can yield several advantages; (a) Enhanced performance by harnessing the collective capabilities of
individual models. (b) Reduced inference complexity, as querying a single model replaces the need
to query n models in an ensemble, reducing computational (FLOPs) and storage requirements by

*These authors contributed equally to this work

1

https://github.com/graldij/transformer-fusion

Published as a conference paper at ICLR 2024

a factor of n. (c) The necessity to train from scratch can be readily eliminated, leveraging existing
public models, already available, and numerous in quantity 1.

A straightforward way of fusing, i.e., merging, models of the same architecture, is to average their
weight matrices one-to-one, referred to as ‘Vanilla Fusion’ (VF). However, this method overlooks
potential misalignments between the parameter matrices, arising due to neurons at the same positions,
in different models, encoding different information (Godfrey et al., 2022). Instead, we propose to use
Optimal Transport fusion (OTFusion) (Singh & Jaggi, 2020), which at its core, aligns the weight or
parameter matrices before fusing them.

Thus, by virtue of such an alignment, OTFusion ensures that the fused model effectively integrates the
knowledge and capabilities of the individual models to be merged, rather than simply averaging the
weight matrices without guaranteeing meaningful information preservation. Additionally, OTFusion
accommodates the fusion of models with different widths, and in turn, different sizes, which is
fundamentally not possible with VF. This is a crucial feature, as such heterogeneous models are
available in plenty, to better unleash the potential of existing pre-trained models. Consequently,
OTFusion has been shown to be an effective method for fusing fully connected (Singh & Jaggi, 2020),
convolutional (Nguyen et al., 2021) and recurrent neural networks (Akash et al., 2022) on a variety of
tasks, heavily outperforming VF.

Yet, despite its wide adoption (Nguyen et al., 2021; Liu et al., 2022; Ainsworth et al., 2022), the
layerwise procedure proposed by OTFusion does not fit well with contemporary architectural design,
that comprises of constant residual streams, normalization layers, and attention operations. It is
not equipped in any way to align and fuse models with complex information streams and to fuse
transformer-specific components. Hence, the primary aim of our work is to develop techniques that
help bridge these gaps and successfully generalize fusion to Transformer-based architectures.

Our contributions are: (a) We analyze each of the idiosyncratic architectural components in Trans-
formers in thorough detail, with an ultimate aim to best fuse them across different models. Throughout
our discussion, we exposit our approach based on the perspective of flow of the transportation maps2,
that makes for intuitive visualizations and interpretation. (b) We uncover that, surprisingly, OTFusion
based on a hard-alignment underperforms in this context, contrary to the case of fully-connected or
convolutional architectures; and that, soft-alignment plays a key role in successful one-shot fusion.
(c) We showcase the efficacy of our approach by extensive experimentation involving the fusion and
finetuning of Vision Transformers (ViTs) across multiple datasets, including CIFAR10, CIFAR100,
TINY IMAGENET and IMAGENET-1K, as well as BERT (Devlin et al., 2018) models for natural
language tasks. We consistently outperform the original converged models across tasks and datasets,
by about ∼ 1.0%, while significantly reducing computational and storage costs by a factor of n.

Overall, our research marks an important stride in advancing model fusion techniques, that help
deliver enhanced performance and efficiency for modern Transformer based architectures.

2 RELATED WORK

Model combination and ensembling. The combination of multiple models has been a timeless
idea in machine learning, from classical works on bagging and boosting (Breiman, 1996) to more
contemporary approaches (Mienye & Sun, 2022; Garipov et al., 2018; Jolicoeur-Martineau et al.,
2023). The key idea behind these works is to boost model performance, by capitalizing on the unique
strengths of each model while mitigating their individual limitations. Or, more technically, one can
think of model combination as a way of reducing the variance of the predictors (Geman et al., 1992).
However, the main limitation is that such methods require the execution of each (parent) model for
the final prediction, with a cost that scales linearly with the number of models.

Model Fusion. Model fusion (Singh & Jaggi, 2020; Wang et al., 2020; Wortsman et al., 2022;
Matena & Raffel, 2022; Ainsworth et al., 2022; Nguyen et al., 2023) has emerged as a particularly
notable direction in recent years, gaining significant traction in the machine-learning community.
This line of work focuses on building better model combination approaches that account for the

1On huggingface there are more than 339,000 models available as of the 22nd of September 2023.
2This should be reminiscent of the flow of tensors in the computation graph of neural networks, and thus

allows one to see a general strategy that can be potentially be adapted for any architecture type.

2

https://huggingface.co/models

Published as a conference paper at ICLR 2024

network structure and its inherent symmetries. We elaborate on some of these works, which are more
relevant to the focus of our paper, below.

Singh & Jaggi (2020) propose a novel approach based on the OT theory exploiting the Wasserstein
distance, where the neuron association allows fusing pre-existing models with the same depth in a
one-shot fashion, thus without requiring retraining. OTFusion outperforms VF and was successfully
used for model compression and fusion of CNNs, residual networks (ResNets), and multilayer
perceptrons (MLPs). Since its publication, OTFusion has been extended in various ways. Nguyen
et al. (2021) address the same-depth requirement of OTFusion. Liu et al. (2022) generalized the
work as a graph-matching task, and taking into account the second-order similarity of model weights
instead of linear alignment. Recent efforts on the topic have shown theoretical insights on fusion,
extensions of previous algorithms to new network topologies, in particular, Akash et al. (2022)
adapted OTFusion for recurrent networks, such as RNNs and LSTMs. Further, Stoica et al. (2023)
propose an algorithm, for convolutional and residual architectures, that aims at finding redundant
features within the same model and across the different models to be fused, so as to keep only
meaningful and unique features in the fused model.

However, the fully layerwise interpretation of OTFusion (Singh & Jaggi, 2020) is currently only
applicable to simple architectures such as MLPs, CNNs, and instances of ResNet. It is not equipped in
any way to align and fuse models with complex information streams and to fuse transformer-specific
components such as multi-head attention layers, layer-normalization, embeddings, or the sequential
nature of the data.

Fusion with a focus on Transformers. Wortsman et al. (2022), in their approach of ‘model soups’,
consider fusing transformer models that have a common backbone network that is pre-trained on the
same dataset, but that are fine-tuned, say, with different hyperparameters. Owing to this, the models
remain sufficiently close in the parameter space, which precludes the need to align them, and lets
them employ just vanilla fusion (one-to-one averaging of the parameters) while still obtaining a gain
in performance. Therefore, despite apparent practical gains, the ‘model soup’ approach is actually a
poor representative of the complexity and intricacies of the general model fusion problem.

Arguably, the more empowering capability is to fuse transformer networks that are potentially much
more distant in their parameter spaces and are diverse in nature. For instance, this arises when the
networks have different initializations, or see examples in different batch orderings, or when they
have different sizes, and more. This specific problem is tackled in this work, which is, to the best of
our knowledge, the first aiming at fusing transformer architectures by aligning their weights.

The conjecture of Linear Mode Connectivity (LMC) modulo permutations. Given the recent
interest around this conjecture posed in Entezari et al. (2021) and its wider demonstrations (Ainsworth
et al., 2022), we would like to make a few clarifications: (a) The LMC barrier approaches zero only
at very high widths, even for non-transformer architectures, see for instance Figure 4 of Ainsworth
et al. (2022), and importantly, not for any arbitrary width. Thus, for typically sized residual or
convolutional neural networks, the LMC barrier in loss is not zero at all, and the corresponding barrier
when measured in accuracy is even more palpable. (b) Transformers possess a more non-convex
landscape, as shown by Park & Kim (2022) in a comparison of vision transformers with residual
networks, which consequently brings about higher LMC barriers. This can also be seen due to the
fact that transformers contain components which further proliferate the number of symmetries, such
as within- and across-head permutations as well as the translation invariance of softmax, — all of
which serve to interfere the linear interpolation of parameters. Thus, the barriers in (Singh & Jaggi,
2020; Ainsworth et al., 2022) of non-transformer architectures do not reveal the full nature of the
underlying problem being addressed here.

3 BACKGROUND

Optimal Transport (OT). OT (Villani et al., 2009) has gained prominence in machine learning
for its ability to compare probability distributions effectively, with applications in generative mod-
elling (Arjovsky et al., 2017), class incremental learning (Zhou et al., 2021) and model compression
(Li et al., 2021). At its heart, OT aims to find a transport map (TM) T signifying how much of a
discrete source distribution should be moved towards a discrete destination distribution to align the
two. This alignment can be hard (T is a permutation matrix and the solution to the Earth-Mover’s
Distance, EMD, (Rubner et al., 2000) problem) or can be relaxed yielding a soft alignment (solved

3

Published as a conference paper at ICLR 2024

with the Sinkhorn-Knapp algorithm (Knight, 2008)). The softness of the alignment is controlled by a
regularization parameter λsinkhorn, where lower values result in harder alignment. More details about
OT can be found in the Appendix A.1.

OTFusion. Singh & Jaggi (2020) apply this theory to align networks in a layerwise fashion, using
either weights or activations as underlying distributions. After the alignment of one or more models
to an anchor model, these are then averaged. Formally, for a layer ℓ of the model, the transpose
of the TM of the previous layer is pre-multiplied with the weight matrix of the current layer:
Ŵ(ℓ,ℓ−1) ← T(ℓ−1)⊤W(ℓ,ℓ−1). The current layer can then be aligned by post-multiplying with
the TM of the current layer: W̃(ℓ,ℓ−1) ← Ŵ(ℓ,ℓ−1)T(ℓ). Ainsworth et al. (2022) propose a highly
similar approach which, in certain cases, effectively boils down to the same linear programming
problem that uncovers (provably and practically) same alignments as OTFusion; thus we continue to
base our approach on OTFusion henceforth.

4 METHODOLOGY AND IMPLEMENTATION

With a modular architecture like the transformer, it is intuitive to use a divide-and-conquer approach
to develop a fusion algorithm. Therefore, we first divide the architecture into its simplest building
block — fully connected layers — that can be fused by the prevalent OTFusion strategy. The question
remains; how to effectively connect these building blocks, especially if heterogeneous? How to
hierarchically reconstruct a fully fused transformer ensuring consistency of the single fused blocks?

As we provide solutions to such open questions, we will guide our discussion in this section with a
transport flow perspective, which allows for an intuitive and effective concatenation of blocks of any
sort, and that, therefore, in principle can be applied to every architecture. Henceforth, we will use the
notation from Vaswani et al. (2017) for Transformers. We display our methods in the non-masked
self-attention case, but our method can generalize to the cross-attention or causal masked attention.

4.1 TRANSPORTATION MAP FLOW GRAPH

In the typical OTFusion application, the TM of the previous layer is simply passed to the next layer.
However, in more complex architectures, the incoming TM of a layer can depend on multiple TMs.
To formalize and visualize this flow of TMs, we present the Transportation Map Flow Graph.

To introduce the concept, we use the flow graph of a residual connection (Fig. 1). Rectangles represent
the neural network layers; red nodes represent any non-learnable computations or permutations inside
the network; edges represent the propagation of the TMs. Layers have exactly one incoming and one
outgoing edge. Computation nodes always have multiple incoming edges and one outgoing edge,
where the outgoing TM must depend on the incoming TMs. A major contribution of this work is to
handle the various complex transportation map flows throughout the transformer architecture.

4.2 TRANSFORMER FUSION

4.2.1 RESIDUAL CONNECTIONS

Figure 1: TM flow graph for a residual con-
nection.

In residual connections, the outputs of a current layer
and a residual layer are summed up. The TMs coming
from these two layers will be different, therefore the
ideal TM flow strategy has to be determined. We ex-
plored three heuristics to calculate a weighting vector
γ(ℓ), where each entry γ

(ℓ)
i scales the corresponding

rows of the TMs. After obtaining γ(ℓ) we compute
the weighted average as shown in Eq. 1. Find the
results in Sec. 5.1.

T
(ℓ)
out = T

(ℓ)
current diag(1− γ(ℓ)) +T

(ℓ)
residual diag(γ(ℓ)) (1)

Averaging. For plain averaging, as proposed by Singh & Jaggi (2020), we set ∀ i, γi = 0.5. This
heuristic does not depend on activations and can therefore be used even in the case of weight-based
alignment. However, it introduces the strict assumption that the residual and the current layer TM are

4

Published as a conference paper at ICLR 2024

of equal importance when aligning the subsequent layer. We therefore extend Singh & Jaggi (2020)
with two novel residual policies.

Weighted Scalar. To alleviate the equal contribution constraint from the averaging method, we
compute a weighting factor ∀ i, γ(ℓ)

i = γ
(ℓ)
scalar (Eq. 2). We use the activations of the anchor model,

over a batch of samples S, because only those carry information about the importance of the current
and the residual branch in the anchor model to which we try to align the other models. f (ℓ)residual(x) are
the activations from the residual branch while f

(ℓ)
current(x) are the activations from the current layer ℓ.

γ
(ℓ)

scalar =

∑
x∈S ||f (ℓ)residual(x)||1∑

x∈S ||f (ℓ)current(x)||1 +
∑

x∈S ||f (ℓ)residual(x)||1
(2)

Weighted Matrix. As opposed to the Weighted Scalar method, here, we calculate a weight vector
γ(ℓ) where each entry γ

(ℓ)
i weighs one strand of a residual connection. The computation of each γ

(l)
i

is similar to Eq. 2 but here we do not compute the ℓ1-Norm over the whole activation vectors, instead,
we take the absolute value of the corresponding i-th values of the activation vectors.

We note that Ainsworth et al. (2022) propose to propagate either the identity (Tout = I) or the
residual transportation map itself (∀ i, γ(l)

i = 1). In the case of hard alignment, these methods
perform worse than averaging.

4.2.2 MULTI-HEAD ATTENTION

The attention mechanism (Eq. 3) poses multiple challenges when it comes to TM flow (Fig. 2): what
are the incoming TMs for WQ, WK and WV ? Which TM is propagated to WO? How to handle
attention with multiple heads?

Self-Attention(x) = softmax(
QKT

√
dk

)V, with {Q,K,V} = W{Q,K,V}x (3)

The first challenge is conveniently solved by the TM flow graph. We can simply use the TM from the
previous layer for each WQ, WK and WV . This even holds true for multiple heads. The incoming
TM of WO is more complex to obtain because it depends on the outgoing TMs of WQ, WK , and
WV . However, if we constrain both TMs of WK and WQ to be equal permutation matrices (i.e.,
hard alignment with TQ = TK = TQK), we show that the permutation matrices cancel (see Eq. 4)
leaving the softmax undisturbed. Therefore, we only propagate the outgoing TM of WV to WO.

For soft-alignment Eq. 4 no longer holds, in that case we investigated alleviating the constraint of
equal TMs for WK and WQ. Removing this constraint slightly increased one-shot accuracy.

Q̃ = QTQK and K̃ = KTQK and Q̃K̃⊤ = QTQKT⊤
QKK⊤ = QK⊤ (4)

Figure 2: Self-Attention flow graph.

For multi-head attention fusion, there
is an additional layer of complexity be-
cause one must align the weights and
the heads. On top of that, there is no
guarantee that a hard one-to-one align-
ment between heads exists. For that
reason, we propose cross-head align-
ment. During cross-head alignment,
WQ

i , WK
i and WV

i (where i is the
head index) are concatenated across the output dimension to form three combined weight matrices
(WQ, WK and WV). OTFusion is then applied to each of the concatenated weight matrices. Finally,
TV is propagated to WO. Find a visualization of our cross-head alignment method in App. B.

4.2.3 LAYER NORMALIZATION, EMBEDDINGS AND BIAS

The layer normalization is a learnable neural network parameter and consequently must be fused. It
contains only two parameters (α and β) per input and there are no interconnections between different
inputs and outputs. Therefore, no TM has to be computed for this layer. The parameters are only
aligned w.r.t. to the incoming TM. The incoming TM is then propagated to the subsequent layer.

5

Published as a conference paper at ICLR 2024

Figure 3: ViT embed-
dings flow graph.

The ViT embeddings fusion approach is most effectively conveyed by its
TM flow graph, as depicted in Fig. 3. For the concatenation, we notice that
the class token is only a small fraction of the full sequence, in other words,
for the integrity of the sequence, it is far more important to propagate
the TM of the patch embeddings than the one for the class token. After
concatenation, the positional embeddings are added. We notice that the
addition is the same operation as for residual connections, so we can use
one of the three TM flow strategies from Sec. 4.2.1.

The bias is only connected to the output of a neural network layer, so we
align it using the outgoing TM of the corresponding layer.

4.3 ALIGNMENT STRATEGIES

Soft vs Hard Alignment. OTFusion technically allows soft alignment for MLPs, CNNs and
ResNets, but Singh & Jaggi (2020) discovered that for these simpler architectures, hard alignment
outperforms soft alignment. However, we do not want to limit the search space for optimal alignment
to only permutation matrices (possibly too constraining for a complex architecture such Transformers).
We, therefore, broaden the perspective on alignment introduced by OTFusion using the Sinkhorn
algorithm and tuning the softness of the TM by optimizing over the Sinkhorn regularizer, discovering
that soft alignment outperforms hard alignment for Transformers.

Weights vs. activations alignment. The combined methodology introduced so far, and the novel
perspective on the TM flow, allow us to apply OTFusion to the single fully connected layers without
further adaptations in the case of weight-based approach, while the activation-based strategy needs a
bit more thought. Transformers operate on sequences of tokens as opposed to simpler architectures
that only operate one token at a time. In our activations-based algorithm, we treat every token of the
sequence as a possible activation.

Sequence Filtering. For ViTs, it is obvious that not every token contributes equally to the final
image classification. We hypothesize that activations-based alignment performs best if only the most
important tokens of a sequence are considered. Therefore, we explored filtering out unimportant
tokens. For datasets where images are centered, we propose window filtering, where only the
n by n center patches are considered as activations for activations-based alignment (window n).
Additionally, we explored using only the class token for activation-based alignment (only cls).

5 EXPERIMENTS AND RESULTS

We evaluate the quality of our approach with two prominent transformer-based architectures: the ViT
(Dosovitskiy et al., 2020) and BERT (Devlin et al., 2018). Our focus is to assess the performance and
robustness of our proposed fusion techniques in both image and NLP domains. These models offer a
direct comparison as they share the same encoder-only architecture. We conducted our experiments on
multiple well-known image classification datasets: CIFAR10, CIFAR100, TINY IMAGENET, and
IMAGENET-1K. We used Hugging Face both for the implementation of the ViT and for retrieving the
datasets. Besides the image classification tasks, we showcase our fusion strategy on the BERT model
for an NLP task. We train from scratch multiple BERT models on the masked language modeling
(MLM) task over a subset of the Wikipedia dataset, publicly available on the Hugging Face Hub.

Model Training. First, we train individual models from scratch on each dataset until convergence.
We ensure model diversity by initializing each model with different seed values and different batch
randomization. This results in unique models with similar performance but located in diverse parts of
the landscape, and whose suitable fusion can improve performance. These diverse models, which are
rather distant in the parameter space, need a non-trivial alignment strategy to be successfully fused,
and therefore exhibit a dramatic drop in performance when fused with a naive approach such as
VF. This approximates a plethora of other scenarios (e.g. models trained on different (sub)datasets).
Details and training parameters of all models can be found in Appendix C.

Model Fusion. We assessed the proposed fusion strategies, and their combination thereof, on
the CIFAR10 dataset (refer to the ablation studies in Section 5.1). We measure the performance
through the so-called one-shot capability, namely the performance of the fused model, without any
retraining, on the same task and metric of the parents. This capability is the first important proxy of
the capacity of the fusion algorithm to align and then fuse the parent models. The optimal fusion

6

Published as a conference paper at ICLR 2024

strategy identified on the CIFAR10 task is then applied to the other tasks and architectures. For each
task and alignment strategy (i.e. weights-based and activations-based) we optimize the Sinkhorn
regularizer separately (see Fig. 11). The fusion step runs in just seconds on a general-purpose CPU.

Finetuning. Besides the one-shot performance, similar to Singh & Jaggi (2020); Nguyen et al.
(2021), we evaluate the effect of finetuning the fused model. The resulting performance is compared
against the single parent models at convergence (and thus do not benefit from finetuning), their
ensembling, and the VF model that also went through a round of finetuning. Both our fused model
and the VF model are optimized separately over a common set of reasonable hyperparameters.

Note. We encode the model dimension as (hidden-layer dimension/intermediate-layer dimen-
sion/number of encoders). Additionally, we report the relative computational burden (latency and
FLOPs) below each result table entry.

5.1 ONE-SHOT EXPERIMENTS Anchor

OT

VF

7.02

9.69

13.38

18.47

25.50

35.21

48.60

67.10

92.63

Figure 4: 2D slice of the accuracy
landscapes of the anchor and
one-shot OT and VF fused models.

We optimize the fusion strategy on CIFAR10, searching
the configurations previously introduced. In contrast to the
observations of Singh & Jaggi (2020) with non-transformer
architectures, we observe that a soft-alignment (Sinkhorn)
strategy consistently outperforms hard-alignment (EMD).
The value of the Sinkhorn regularizer is chosen to maximize
the one-shot accuracy (separately for activations- and
weights-based alignment). The optimal strategy for handling
the residual connections has proven to be the averaging policy.
Activations-based alignment with the 6x6 window filtering
(window 6) approach performs best among other filtering
strategies and weights-based alignment.

In Tab. 1, we present the one-shot performance for the best configuration of fusion with the weights-
based alignment and the activations-based alignment, both in the scenario with two models and with
five models together. VF dramatically drops at random accuracy, while our fusion methodologies are
able to preserve most of the capabilities of the individual models. In particular, we achieve the best
accuracy with our soft, activations-based fusion.

Fig. 4 visualizes a two-dimensional slice of the accuracy landscapes of the anchor model and the
two fused models, OT and VF. The visualization is based on the procedure outlined in (Garipov
et al., 2018). The plot shows the OT model being in the same basin as the anchor one, while the
VF model is separated by a barrier from such basin. This representation effectively underscores the
superior performance of our algorithm in comparison to VF, emphasizing its ability to facilitate more
dependable knowledge transfer.

Table 1: One-shot accuracies on CIFAR10 for the individual parent models, VF, weights-based
soft-alignment fusion (λsinkhorn = 0.06), activations-based soft alignment (λsinkhorn = 0.08) fusion,
and activations-based hard-alignment (EMD) fusion. Activations-based is reported with mean and
standard deviations over different random seeds. For the best-performing method, we show the
absolute increase over VF.

DATASET INDIVIDUAL VF OT-WTS OT-ACTS OT-ACTS GAIN OVER
MODELS (OURS) (OURS) EMD (OURS) VF

CIFAR10 [92.34, 92.31] 7.59 57.23 60.87 ± 0.44 24.50 ± 5.66 +53.28

CIFAR10 [92.34, 92.31, 92.28, 9.47 44.46 46.56 ± 0.71 43.28 ± 2.81 +37.09
92.04, 91.47]

Ablation Studies. We study the effect of the different OTFusion hyperparameter choices on the
one-shot performance on the CIFAR10 dataset for two-models fusion. We find that soft alignment
(Sinkhorn) outperforms hard alignment (EMD) (see Fig. 5a). We attribute this observation to the
flexibility of soft alignment which better accommodates the highly complex nature of the transformer,
as multi-head self-attention. We observe a bell-shaped curve with a maximum for a non-zero
regularization, thus demonstrating that the optimal alignment is neither hard nor merely soft. We can

7

Published as a conference paper at ICLR 2024

therefore optimize this parameter with an inexpensive sweep. Furthermore, as shown in Fig. 5b, the
soft alignment for the activations-based fusion is much more stable than hard alignment (EMD) for
different seeds of data, suggesting that hard alignment is much more impacted by the activations.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Sinkhorn Regularizer

30

35

40

45

50

55

60

65

70

O
n

e-
sh

ot
A

cc
u

ra
cy

[%
] OT-ACTS SINKHORN

OT-WTS SINKHORN

OT-ACTS EMD

(a)

25 50 75 100 125 150 175 200

Number of Samples

0

10

20

30

40

50

60

70

O
n

e-
sh

ot
A

cc
u

ra
cy

[%
]

SINKHORN

EMD

VF

(b)

25 50 75 100 125 150 175 200

Number of Samples

50

52

54

56

58

60

62

64

O
n

e-
sh

ot
A

cc
u

ra
cy

[%
]

window 6

window 4

window 2

window 8

only cls

(c)

25 50 75 100 125 150 175 200

Number of Samples

50

52

54

56

58

60

62

64

O
n

e-
sh

ot
A

cc
u

ra
cy

[%
]

Average

Weighted Matrix

Weighted Scalar

(d)
Figure 5: (a) Sinkhorn regularizer effect on one-shot performance; (b) stability with different seeds
for activations-based fusion over a different number of samples; (c) performance with different
activations-filtering strategies for a different number of samples; (d) different transport map policies
for residual connections over a different number of samples.

Fig. 5c shows the impact of various filters on the one-shot accuracy of the fusion, thereby strength-
ening our hypothesis that discarding irrelevant activations helps our fusion algorithm converge to
a better optimum. Finally, in Fig. 5d we present the impact of the various transport map policies
for residuals, as presented in Section 4.2.1. Both weighted policies perform very similarly, slightly
falling behind the best accuracy given by the averaged policy.

5.2 FINETUNED PERFORMANCE

As a last stage of the experimental setup, we finetune the fused models. The performance, as well as
the retraining curves, offer an important insight into the quality of the fusion algorithm. While the
one-shot performance can be heavily impacted by even only a single problematic layer, the capacity
of the fused model to effectively, rapidly, and easily recover the performance of the parents allows for
a deeper insight into the quality of the fusion across the whole architecture.

Table 2: Post-finetuning accuracies on the CIFAR100 dataset for the individual parent models, their
ensemble, VF, weights- and activations-based soft alignment. Model dimension: (384/1536/7).

DATASET IND. MODELS ENS. FT. VF FT. OT-WTS FT. OT-ACTS

CIFAR100 [64.94, 64.66] 68.04 64.91 (-0.03) 65.80 (+0.86) 65.35 (+0.41)

×1 ×2 ×1 ×1 ×1

CIFAR100 [64.94, 64.66, 64.44, 70.71 63.19 (-0.75) 65.98 (+1.04) 65.25 (+0.31)

64.38, 64.34, 64.07]
×1 ×6 ×1 ×1 ×1

We show the finetuning results on the widely adopted datasets CIFAR100, and IMAGENET-1K
(results on TINY IMAGENET in the Appendix). We first employ our fusion approach on the ViTs
trained on the CIFAR100 dataset. As mentioned, we separately optimize the fused model on
a common set of hyperparameters, in this case a learning rate (LR) in {10−3, 10−4, 10−5} and
the number of epochs in {10, 20, 100, 200}. In Tab. 2 we observe that both our soft-alignment
strategies (i.e. with weights- and activations-based alignment) are capable of outperforming the
converged parents, with the gain that increases with the number of parent models. This suggests a
successful knowledge transfer of the parents into the fused model. While the obtained accuracy lacks

8

Published as a conference paper at ICLR 2024

behind the ensembling performance, in our scenario there is no computational overhead, while the
cost of the ensembling model grows linearly with the number of models.
Table 3: Accuracies on the IMAGENET-1K dataset after finetuning for the individual parent models,
their ensemble, VF, and weights-based soft alignment. Model dimension: (384/1536/12).

DATASET IND. MODELS ENS. FT. VF FT. OT-WTS

IMAGENET-1K [75.33, 74.88] 76.56 67.83 (-7.50) 75.80 (+0.47)

×1 ×2 ×1 ×1

In Tab. 3 we present further results on the challenging and widely-adopted IMAGENET-1K dataset.
The results are consistent with those found in the CIFAR100 case, strengthening the general
applicability of our methods, and its scalability to larger models and more challenging datasets. We
also stress the fact that, especially with this difficult dataset, even after finetuning, VF fails to recover
a comparable accuracy, converging to suboptimal performance.

In this work, we focused on the vision application of the Transformer architecture, but our method
is agile to architectural changes, and we demonstrate its wide applicability to the BERT model.
Although preliminary explorations of our fusion strategy on the BERT model show some differences
with respect to the ViT case (more details on this in App D), the results are on par with those presented
above. In particular, the fused and finetuned model, outperforms both parents and VF on the widely
adopted GLUE benchmark (Wang et al., 2018). The results are presented in Tab. 17 of the App. E.

Table 4: Results for heterogeneous fusion on
CIFAR100. VF cannot be applied here.

ANCHOR LARGER ENS. FT. OT-WTS

63.18 64.94 67.66 64.11 (+0.93)

×1 ×4 ×5 ×1

(192/768/7) (384/1536/7) (192/768/7)

64.07 64.79 67.94 64.88 (+0.81)

×1 ×2.3 ×3.3 ×1

(384/1536/7) (576/2304/7) (384/1536/7)

We want to highlight an insight into the finetuning
process. In particular, we have observed that the best
accuracy of our fused models is achieved extremely
quickly, as much as two orders of magnitude fewer
steps needed to train the parents from scratch, and, as
a comparison, VF requires far higher computation to
reach a comparable (but worse) performance. For fur-
ther exemplification refer to Fig. 12 in Appendix E.2.

Our methodology, as opposed to VF, works out of the
box with models having different widths (heteroge-
neous fusion). We find a consistent absolute increase
in test accuracy over the performance of the smaller
anchor network, thus implying successful knowledge transfer (Tab. 4). These results showcase that
our method is an effective and efficient alternative to knowledge distillation.

6 DISCUSSION

The fusion methodology for transformer models proposed in this paper is easily adapted to different
architectural variants and is readily applicable to models of different widths. However, heterogeneous
fusion of networks of different depths is a common limitation of the predominant fusion methods
(Singh & Jaggi, 2020; Ainsworth et al., 2022) which are inherently based on a sequential layerwise
alignment. Consequently, we too inherit a similar limitation when expanding fusion to the case of
Transformers. Overall, this is undoubtedly a fascinating research challenge to extend Transformer
fusion (or, broadly speaking, fusion at large) to heterogeneous depth settings which, however, is
outside the scope of the current work.

In summary, we showcased how distinct independently trained transformer networks can be com-
bined through the lens of Optimal Transport. Utilizing a novel graph interpretation of the transporta-
tion map flow, we developed an algorithm for fusing multiple transformer networks that extends the
existing fusion techniques and that specifically caters to the idiosyncrasies of the transformer archi-
tecture. We also uncovered an intriguing benefit of using soft alignment when fusing Transformers,
which had been under-utilized in the past. Overall, we showed that our technique can retain most of the
performance of the converged parent models in one-shot, and even outperforms them after finetuning,
across multiple vision and NLP tasks proving the scalability and wide applicability of our methods
thereby providing a highly efficient and promising alternative to ensembling. Finally, our algorithm
successfully applies to the fusion of models of different sizes, too, efficiently transferring knowledge
from larger to smaller Transformers, and thus offering an effective alternative to distillation.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

Sidak Pal Singh would like to acknowledge the financial support from Max Planck ETH Center for
Learning Systems.

REFERENCES

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Aditya Kumar Akash, Sixu Li, and Nicolás Garcı́a Trillos. Wasserstein barycenter-based model
fusion and linear mode connectivity of neural networks. arXiv preprint arXiv:2210.06671, 2022.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

Gregor Bachmann, Sotiris Anagnostidis, and Thomas Hofmann. Scaling mlps: A tale of inductive
bias. arXiv preprint arXiv:2306.13575, 2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
CoRR, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.11929.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1–58, 1992.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. Advances in Neural Information Processing
Systems, 35:11893–11905, 2022.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-Julien.
Population parameter averaging (papa). arXiv preprint arXiv:2304.03094, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Philip A Knight. The sinkhorn–knopp algorithm: convergence and applications. SIAM Journal on
Matrix Analysis and Applications, 30(1):261–275, 2008.

10

https://arxiv.org/abs/2010.11929

Published as a conference paper at ICLR 2024

Xiaobin Li, Lianlei Shan, and Weiqiang Wang. Fusing multitask models by recursive least squares. In
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3640–3644, 2021. doi: 10.1109/ICASSP39728.2021.9414440.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transform-
ers - sciencedirect. https://www.sciencedirect.com/science/article/pii/
S2666651022000146, 2022. (Accessed on 12/04/2022).

Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep neural
network fusion via graph matching with applications to model ensemble and federated learning. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 13857–13869. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/liu22k.html.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022.

Ibomoiye Domor Mienye and Yanxia Sun. A survey of ensemble learning: Concepts, algorithms,
applications, and prospects. IEEE Access, 10:99129–99149, 2022. doi: 10.1109/ACCESS.2022.
3207287.

Dang Nguyen, Khai Nguyen, Dinh Phung, Hung Bui, and Nhat Ho. Model fusion of heterogeneous
neural networks via cross-layer alignment. arXiv preprint arXiv:2110.15538, 2021.

Dang Nguyen, Trang Nguyen, Khai Nguyen, Dinh Phung, Hung Bui, and Nhat Ho. On cross-layer
alignment for model fusion of heterogeneous neural networks. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE,
2023.

Namuk Park and Songkuk Kim. How do vision transformers work?, 2022.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40(2):99, 2000.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems, 33:22045–22055, 2020.

George Stoica, Daniel Bolya, Jakob Bjorner, Taylor Hearn, and Judy Hoffman. Zipit! merging
models from different tasks without training, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. CoRR,
abs/1804.07461, 2018. URL http://arxiv.org/abs/1804.07461.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
[2202.07125] transformers in time series: A survey. https://arxiv.org/abs/2202.
07125, 2022. (Accessed on 12/04/2022).

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

11

https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://proceedings.mlr.press/v162/liu22k.html
http://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2202.07125

Published as a conference paper at ICLR 2024

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022.

Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Co-transport for class-incremental learning. In
Proceedings of the 29th ACM International Conference on Multimedia, MM ’21, pp. 1645–1654,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450386517. doi:
10.1145/3474085.3475306. URL https://doi.org/10.1145/3474085.3475306.

12

https://doi.org/10.1145/3474085.3475306

Published as a conference paper at ICLR 2024

A BACKGROUND ON OPTIMAL TRANSPORT AND OTFUSION

A.1 OPTIMAL TRANSPORT THEORY

At its core, Optimal transport (OT) provides a way to compare two (or more) probability distributions
µ := (a,X) =

∑n
i=1 ai · δ(xi) and ν := (b,Y) =

∑m
j=1 bj · δ(yj), where δ(·) is the Dirac-delta.

These distributions are typically supported in a high-dimensional space, i.e., xi ∈ X = Rd1 , and
yj ∈ Y = Rd2 , ∀ i, j, and also where, being distributions,

∑n
i=1 ai =

∑m
j=1 bj = 1. These

given distributions, in our case, may correspond to neurons or weights in a particular layer of
the two networks. OT aims to find a transport plan T (or map) that signifies how much of these
weights of the source model, should be moved towards the destination model, while adhering to the
geometry of the underlying ‘ground’ space, usually available in the form of a ‘ground metric’, e.g.,
CG(x,y) = ∥x − y∥22 in the Euclidean case. Mathematically, one can formulate OT through an
equivalent linear program:

OT(µ, ν;C) := min ⟨T,C⟩F s.t., T1m = a, T⊤
1n = b and T ∈ R(n×m)

+ .

where appropriate mass conservation and positivity constraints are met. Here, ⟨·, ·⟩F is the Frobenius
inner product and 1n ∈ Rn denotes a vector containing all ones of size n. While the above problem
will find a solution at the vertex of the polytope, one can relax the search to smooth solutions by
regularizing the entropy h of the transport plan (Cuturi, 2013), i.e., h(T) =

∑
i,j −Tij log(Tij)

OTλ(µ, ν;C) := min ⟨T,C⟩F − λh(T) s.t., T1m = a, T⊤
1n = b and T ∈ R(n×m)

+ .

Besides allowing for a soft assignment, it also allows for an efficient solution via the Sinkhorn-Knapp
algorithm (Knight, 2008) that results in a speed-up by an order of magnitude in the dimension d1
(or d2) and can be parallelized on GPUs. In contrast, the unregularized problem, which is also
commonly referred to as the Earth-Mover’s Distance (EMD; Rubner et al. (2000)), scales cubically in
the dimension.

A.2 OTFUSION

OTFusion (Singh & Jaggi, 2020) first aligns several models: B,C, . . . , to an anchor model A. Then,
the aligned models are averaged. Alignment is implemented through transportation maps, obtained
by calculating the minimal transport cost between activations or weights of the neurons that should be
aligned, giving rise to two different approaches, namely activations- and weights-based respectively.
The OTFusion process works in a sequential fashion; assuming models with a specific depth L, each
of the models’ layers, at layer ℓ, are aligned before moving to the next layer ℓ+1. First, the transpose
of the transportation map of the previous layer is pre-multiplied with the weight matrix of the current
layer: Ŵ(l,l-1)

B ← T(l-1)⊤W(l,l-1)
B . The current layer can then be aligned by post-multiplying with the

transportation map of the current layer: W̃(l,l-1)
B ← Ŵ(l,l-1)

B T(l).

B CROSS-HEAD ALIGNMENT VISUALISATION

Fig. 6 visualizes the cross-head alignment algorithm for a tiny multi-head self-attention block. The
aligned weights can then be averaged with the corresponding weights of the anchor model to get the
weights for the OTFused model.

C EXPERIMENTAL SETUP

C.1 VISION TRANSFORMER - CIFAR10, CIFAR100, Tiny ImageNet AND ImageNet-1k

Model Details We use the ViT implementation available on Hugging Face3 and we train it from
scratch, without using any pre-trained weights. The architectural details of the model can be seen in
Table 5.

3https://huggingface.co/docs/transformers/model_doc/vit

13

https://huggingface.co/docs/transformers/model_doc/vit

Published as a conference paper at ICLR 2024

Figure 6: Visualization of the cross-head alignment algorithm for a multi-head attention block with
h = 2, dhead = 2, dmodel = 4, where h is the number of heads, dhead is the head dimension and
dmodel is the model dimension.

Table 5: Parameters for the ViT models.

Input image size
CIFAR10/100 32x32x3

Tiny ImageNet 64x64x3

Patch extraction Convolutional

Patch dimension 4x4

Number of layers 7

Number of heads 12

Size of embeddings 384

Intermediate size 1536

Non-linearity GELU

14

Published as a conference paper at ICLR 2024

Image Augmentation We applied two different image augmentation policies on the CIFAR 10/100
and Tiny ImageNet datasets to achieve satisfactory training performance. For the CIFAR datasets, the
augmentations have been adapted from an open-source implementation4, while for Tiny ImageNet the
Autoaugment5 class from Pytorch has been used.

Training Details Training details are reported in Table 6. Figures 7, 8, 9 show the training curves
for the CIFAR10, CIFAR100, and Tiny ImageNet respectively.

Table 6: Training details for the ViT models trained on CIFAR and Tiny ImageNet models.

Optimizer AdamW

Weight decay 5 · 10−5

Learning Rate Maximum value of 1 · 10−3

LR Scheduler Cosine scheduling

Warmup 0.025% epochs of warmup

Training Epochs
CIFAR 2500

Tiny ImageNet 250

Batch size
CIFAR 1024

Tiny ImageNet 256

Gradient accumulation
CIFAR 2

Tiny ImageNet 8

Random seed 0-4

0 500 1000 1500 2000 2500

Epoch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L
os

s

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

(a)

0 500 1000 1500 2000 2500

Epoch

30

40

50

60

70

80

90

A
cc

u
ra

cy
[%

]

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

(b)

Figure 7: Training curves for the CIFAR10 dataset over five different seeds. (a) Validation loss; (b)
validation accuracy.

C.2 VISION TRANSFORMER - IMAGENET

Model Details We use the SimpleViT class from vit-pytorch6 and we train it from scratch, without
using any pre-trained weights. The architectural details of the model can be seen in Table 7.

4https://github.com/DeepVoltaire/AutoAugment
5https://pytorch.org/vision/main/generated/torchvision.transforms.

AutoAugment.html
6https://github.com/lucidrains/vit-pytorch

15

https://github.com/DeepVoltaire/AutoAugment
https://pytorch.org/vision/main/generated/torchvision.transforms.AutoAugment.html
https://pytorch.org/vision/main/generated/torchvision.transforms.AutoAugment.html
https://github.com/lucidrains/vit-pytorch

Published as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500

Epoch

2.5

3.0

3.5

4.0

4.5

L
os

s

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

(a)

0 500 1000 1500 2000 2500

Epoch

10

20

30

40

50

60

A
cc

u
ra

cy
[%

]

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

(b)

Figure 8: Training curves for the CIFAR100 dataset over five different seeds. (a) validation loss; (b)
validation accuracy.

0 50 100 150 200 250

Epoch

3.5

4.0

4.5

5.0

L
os

s

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

(a)

0 50 100 150 200 250

Epoch

10

20

30

40

A
cc

u
ra

cy
[%

]

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

(b)

Figure 9: Training curves for the Tiny ImageNet dataset over five different seeds. (a) validation loss;
(b) validation accuracy.

Table 7: Parameters for the ViT models.

Input image size 224x224x3

Patch extraction Linear

Patch dimension 16x16

Number of layers 12

Number of heads 6

Size of embeddings 384

Intermediate size 1536

Non-linearity GELU

16

Published as a conference paper at ICLR 2024

Image Augmentation We first applied RandomResizedCrop() and RandomHorizontalFlip() to
the input image form Pytorch transforms sub-package 7. Then we applied the Autoaugment class
from the same Pytorch sub-package. Images are then normalized with µ = [0.485, 0.456, 0.406] and
σ = [0.229, 0.224, 0.225].

Training Details Training details are reported in Table 8.

Table 8: Training details for the ViT models trained on Imagenet.

Optimizer AdamW

Weight decay 1 · 10−4

Learning Rate Maximum value of 1 · 10−3

LR Scheduler Cosine scheduling

Training Epochs 90

Batch size 1000

Random seed 2,4

C.3 PROFILING INFORMATION

In Tab. 9 we provide profiling information for our most used ViT configuration.
Table 9: Profiling information for our most used ViT configuration. The experiments were run
on an RTX 4090. We count one fused-multiply accumulate instructions as one FLOP. Different
datasets have different image resolutions, leading to different sequence lengths propagating through
the transformer, which affects the computational expense of a forward pass.

MODEL #PARAMS DATASET #PATCHES FLOPS TP

MODEL DIM. (M) (B) (IMAGE/S)

VIT 12.4 CIFAR100 65 0.8 13.2 K

(384/1536/7) Tiny ImageNet 257 3.5 2.4 K

C.4 BERT

Model Details We use the BERT implementation available on Hugging Face8 together with the
pre-trained bert-base-uncased tokenizer 9. Our BERT model has the architectural details
presented in Tab. 10.

Training Details We train the BERT models, from scratch, over five different seeds. Training
details are shown in Tab. 11.

We use a MLM task on a subset of the Wikipedia dataset, available on Hugging Face 10, with an
MLM probability of 0.15.

The training curve of the loss, for one seed, is presented in Fig. 10.
7https://pytorch.org/vision/stable/transforms.html
8https://huggingface.co/docs/transformers/model_doc/bert
9https://huggingface.co/docs/transformers/main_classes/tokenizer

10https://huggingface.co/datasets/wikipedia/viewer/20220301.simple

17

https://pytorch.org/vision/stable/transforms.html
https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/main_classes/tokenizer
https://huggingface.co/datasets/wikipedia/viewer/20220301.simple

Published as a conference paper at ICLR 2024

Table 10: Parameters of the architecture for the BERT models.

Number of encoders 6

Number of heads 12

Size of embeddings 768

Intermediate size 3072

Maximum position embedding 512

Attention dropout probability 0.1

Hidden dropout probability 0.1

Non-linearity GELU

Table 11: Training details for the BERT models.

Optimizer AdamW

Learning Rate cosine scheduling with 4 epochs of warmup; maximum value of 5 · 10−5

Training Epochs 40

Batch size 16

Random seed(s) 0-4

0 5 10 15 20 25 30 35 40

Epoch

2

3

4

5

6

7

8

L
os

s

Seed 0

Figure 10: BERT pre-training validation loss for random seed 0.

18

Published as a conference paper at ICLR 2024

D SINKHORN REGULARIZER ABLATIONS

The Sinkhorn algorithm, and in general the soft alignment paradigm, has been heavily underused
in literature and therefore there is little information about its impact on OTFusion. As presented
above, we uncover intriguing behaviors, that require reconsidering its use. In the following Sections,
we extend our findings related to soft alignment, in particular with the role of the regularization
parameter.

D.1 ABLATION ON RESNET

To compare the findings for the transformer architecture, we also investigate the effect of the Sinkhorn
regularizer on the ResNet architecture (Fig. 11a). In agreement with the findings of Singh & Jaggi
(2020), the best result is achieved with EMD, and a small regularizer is preferred as it approaches the
hard alignment. This result is thus suggesting an opposite behavior when it comes to soft alignment
since the transformer benefits from a soft alignment.

D.2 ABLATIONS ON CIFAR100, Tiny ImageNet, BERT MLM TASK

In Fig. 11 we present the effect of the Sinkhorn regularizer on the other considered datasets, namely
CIFAR100 (Fig. 11b) and Tiny ImageNet (Fig. 11c) for the ViT, and the MLM task on the Wikipedia
subset, for BERT (Fig. 11d).

The outcomes for CIFAR100 and Tiny ImageNet are in line with the results of the CIFAR10 case,
namely a non-zero regularizer achieves the optimal performance.

As hinted in Sec. 5.2, we have observed some differences in the regularization effect on the BERT
model. This difference can be observed in Fig. 11d, where we plot the effect of the regularization
parameter on the validation loss. We observe that, in contrast to the observations for the ViT, the loss
curve shows no inverted bell curve, suggesting that there is no finite optimal regularizer, i.e. that a
completely soft alignment is best suited for this model.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Sinkhorn Regularizer

30

40

50

60

70

O
n

e-
sh

ot
A

cc
u

ra
cy

[%
]

Sinkhorn

EMD

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Sinkhorn Regularizer

2

4

6

8

10

12

O
n

e-
sh

ot
A

cc
u

ra
cy

[%
] Sinkhorn

EMD

(b)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Sinkhorn Regularizer

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

O
n

e-
sh

ot
A

cc
u

ra
cy

[%
] Sinkhorn

EMD

(c)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Sinkhorn Regularizer

6.50

6.75

7.00

7.25

7.50

7.75

L
os

s

Sinkhorn

EMD

(d)

Figure 11: Sinkhorn regularizer effect on one-shot performance. EMD-fusion performance is shown
as a reference. (a) Accuracy for ResNet on CIFAR10 (higher is better); (b) accuracy for ViT on
CIFAR100 (higher is better); (c) accuracy for ViT on Tiny ImageNet (higher is better); (d) loss for
BERT on MLM task (lower is better).

19

Published as a conference paper at ICLR 2024

D.3 WHAT HAPPENS AT THE EXTREME EDGE OF SINKHORN REGULARIZATION?

As presented above, the softness of the alignment is impacted by the Sinkhorn regularizer. If the
regularizer is close to zero, the algorithm converges to a permutation matrix (i.e. hard alignment);
in contrast, if the regularizer is very large, the algorithm converges to a unit-matrix divided by the
dimension of itself.

D.3.1 SINKHORN REGULARIZER TO ZERO

In general, we have observed that the smaller the regularizer becomes, the harder the alignment gets.
However, for very small Sinkhorn regularizer values the algorithm breaks down. This is especially
visible in Fig. 11b and 11c where for the smallest regularizer the one-shot accuracy falls below the
one-shot accuracy of EMD. We found that normalizing the cost matrix and the activations/weights to
calculate the cost matrix, pushes the breakdown closer to zero and thus improving stability.

D.3.2 SINKHORN REGULARIZER TO INFINITY

We conducted an experiment to show that even in the case of extreme regularization (i.e. completely
soft alignment) information is transferred from model B to the anchor model. In this experiment, we
fuse a randomly initialized model (10% accuracy on CIFAR10) with a model at convergence (92%
accuracy on CIFAR10). The one-shot accuracy for this experiment is 10%. On the other hand, if we
fuse two converged models, we get a one-shot accuracy of 47% for a completely soft alignment. This
suggests that, even in the highly regularized case, our algorithm allows knowledge transfer.

20

Published as a conference paper at ICLR 2024

E FURTHER RESULTS

In this section, we provide more results from our experiments. We report both one-shot and finetuned
accuracies over the datasets of choice.

E.1 One-shot

Tab. 12 and Tab. 13 report the one-shot accuracies for Tiny ImageNet and CIFAR100 datasets,
respectively.

Table 12: One-shot accuracies on the Tiny ImageNet dataset for the individual parent models, their
ensemble, VF, weights-based soft-alignment fusion, and activations-based soft alignment fusion. The
last column shows the highest finetuned performance as a comparison. Activations-based is reported
with mean and standard deviations over different data seeds. The figure beneath the test accuracies
signifies how much more computation is required by the model ensemble with respect to our fusion
technique.

DATASET INDIVIDUAL ENS. VF OT-WTS OT-ACTS FT. OT-WTS

MODELS (OURS) (OURS) (OURS)

Tiny ImageNet [45.30, 45.22, 44.50, 51.28 0.44 1.64 3.03 ± 0.27 45.90

44.36, 43.78] ×5 ×1 ×1 ×1 X1

Table 13: One-shot accuracies on the CIFAR100 dataset for the individual parent models, their
ensemble, VF, weights-based soft-alignment fusion, and activations-based soft alignment fusion. The
last column shows the highest finetuned performance as a comparison. Activations-based is reported
with mean and standard deviations over different data seeds. The figure beneath the test accuracies
signifies how much more computation is required by the model ensemble with respect to our fusion
technique.

DATASET INDIVIDUAL ENS. VF OT-WTS OT-ACTS FT. OT-WTS

MODELS (OURS) (OURS) (OURS)

CIFAR100 [64.94, 64.66] 68.04 0.77 13.32 11.70 ± 0.13 65.80

×2 ×1 ×1

CIFAR100 [64.94, 64.66, 64.44, 70.71 0.98 11.16 7.45 ± 0.25 65.98

64.38, 64.34, 64.07] ×6 ×1 ×1

E.2 FINETUNING

After fusing the models, we finetune them. Finetuning parameters and results are reported in the
subsections below.

21

Published as a conference paper at ICLR 2024

E.2.1 FINETUNING DETAILS - VIT

As mentioned in Sec. 5, we finetune VF and our fused models separately on a common set of
hyperparameters. In the following paragraph the subset used over the different datasets and models:

• ViT - CIFAR100: LR in {10−3, 10−4, 10−5}, number of epochs in {10, 20, 100, 200}
• ViT - Tiny ImageNet: LR in {10−3, 10−4, 10−5}, number of epochs in {1, 2, 10, 20}

Finetuning on the ImageNet-1k dataset is inherently expensive. We have thus finetuned for just 8 to
10 epochs the fused models, with an LR of 10−4. The boost in performance presented in Tab. 2 is
thus even more noteworthy given the limited capacity to exhaustively find suitable hyper-parameters
for finetuning.

E.2.2 RESULTS

Vision Transformer In Tab. 14 we report the finetuning results for the fusion and ensemble of
two and six models on the CIFAR100 dataset. The results show how weight-based soft alignment
outperforms both weight-based hard alignment and activation-based soft alignment. Furthermore, in
Tab. 15 we present further results on the Tiny ImageNet dataset.

Table 14: Accuracies on the CIFAR100 dataset after finetuning for the individual parent models, their
ensemble, VF, weights-based soft alignment, weight-based hard alignment, and activations-based
soft-alignment. The figure beneath the test accuracies signifies how much more computation is
required by the model ensemble with respect to our fusion technique.

FT. FT. FT. FT.

DATASET INDIVIDUAL MODELS ENS. VANILLA OT-WTS OT-WTS OT-ACTS

(OURS) EMD (OURS) (OURS)

CIFAR100 [64.94, 64.66] 68.04 64.91 65.80 64.72 65.35

×2 ×1 ×1 ×1 ×1

CIFAR100 [64.94, 64.66, 64.44, 70.71 63.19 65.98 65.42 65.25

64.38, 64.34, 64.07] ×6 ×1 ×1 ×1 ×1

25 50 75 100 125 150 175 200

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
rr

or

10 Epochs VF - 10 Epochs

VF - 200 Epochs

OT-WTS (ours) - 200 Epochs

OT-WTS (ours) - 10 Epochs

Figure 12: Finetuning curves on the validation set. Cosine scheduling is used. Validation error on the
CIFAR100 dataset.

BERT The results after finetuning for the BERT model are presented in Tab. 16 and Tab 17.

22

Published as a conference paper at ICLR 2024

Table 15: Accuracies on the Tiny ImageNet dataset after finetuning for the individual parent models,
their ensemble, VF, weights-based soft alignment, and activations-based soft alignment. Model
dimension is encoded as (hidden-layer dimension/intermediate-layer dimension/number of encoders).
The figure beneath the accuracies indicates the relative computational burden (latency and FLOPs) of
the model(s).

FT. FT. FT.

DATASET IND. MODELS DIMENSION ENS. VF OT-WTS OT-ACTS

Tiny ImageNet [45.30, 45.22, 44.50, (384/1536/7) 51.28 38.82 45.44 45.90

44.36, 43.78]

×1 ×5 ×1 ×1 ×1

Table 16: Loss values for BERT on the MLM task after finetuning for the individual parent models,
their ensemble, VF, and weights-based alignment fusion. Both VF and our fused model are trained
with a LR of 5 ·10−5 for only 2 epochs. This shows the much faster speed of recovery of our approach,
compared to VF. The figure beneath the test accuracies signifies how much more computation is
required by the model ensemble with respect to our fusion technique.

FT. FT.

DATASET INDIVIDUAL MODELS ENS. VANILLA OT-WTS

(OURS)

MASKED WIKI [1.612, 1.761, 1.776, 1.665 2.946 2.224

1.794, 1.807] ×5 ×1 ×1

23

Published as a conference paper at ICLR 2024

Table 17: Results for BERT evaluation on GLUE benchmark, after finetuning for 14 epochs. Ac-
curacy is the metric for SST2, QNLI, RTE and WNLI. Matthews corr. is the metric for COLA.
F1/Accuracy is the metric for MRPC and QQP. Pearson/Spearman corr. is the metric for STSB.
Matched acc./Mismatched acc. is the metric for MNLI.

TASK PARENT OT VF

MRPC 0.852/78.2 0.853/77.7 0.807/72.1

STSB 0.828/0.827 0.841/0.838 0.771/0.771

QQP 0.844/88.2 0.847/88.5 0.840/88.1

MNLI 76.1/76.4 75.9/76.1 74.1/74.6

COLA 0.263 0.275 0.236

QNLI 84.1 85.1 83.0

WNLI 26.8 29.4 27.6

SST2 85.6 86.5 84.9

RTE 62.1 63.4 51.6

24

	Introduction
	Related Work
	Background
	Methodology and Implementation
	Transportation Map Flow Graph
	Transformer Fusion
	Residual Connections
	Multi-Head Attention
	Layer Normalization, Embeddings and Bias

	Alignment Strategies

	Experiments and Results
	One-shot Experiments
	Finetuned Performance

	Discussion
	Background on Optimal Transport and OTFusion
	Optimal Transport Theory
	OTFusion

	Cross-Head Alignment Visualisation
	Experimental Setup
	Vision Transformer - CIFAR10, CIFAR100, Tiny ImageNet and ImageNet-1k
	Vision Transformer - Imagenet
	Profiling Information
	BERT

	Sinkhorn Regularizer Ablations
	Ablation on ResNet
	Ablations on CIFAR100, Tiny ImageNet, BERT MLM task
	What Happens at the Extreme Edge of Sinkhorn Regularization?
	Sinkhorn Regularizer to Zero
	Sinkhorn Regularizer to Infinity

	Further results
	One-shot
	Finetuning
	Finetuning Details - ViT
	Results

