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Abstract

Automatic text simplification aims to reduce001
the linguistic complexity of a text in order to002
make it easier to understand and more acces-003
sible. However, simplified texts are consumed004
by a diverse array of target audiences and what005
may be appropriately simplified for one group006
of readers may differ considerably for another.007
In this work we investigate a novel formulation008
of sentence simplification as paraphrasing with009
controlled decoding, which aims to alleviate the010
major burden of relying on large amounts of in-011
domain parallel training data, while at the same012
time allowing for modular and adaptive sim-013
plification. According to a range of automatic014
metrics, our approach performs competitively015
against baselines that prove more difficult to016
adapt to the needs of different target audiences017
or require complex-simple parallel data.018

1 Introduction019

Sentence simplification (SS) aims to reduce the020

linguistic complexity of a sentence while still pre-021

serving its meaning in order to make a text easier022

to understand and to make texts more accessible023

to a wider array of potential readers (Bingel and024

Søgaard, 2016; Sikka and Mago, 2020). These025

readers may include children and adults with low026

literacy levels, cognitive impairments, or a lack of027

specialist knowledge in certain topics, as well as028

non-native language learners and even downstream029

natural language applications (Stajner, 2021; Sag-030

gion, 2017). However, the notion of exactly what031

constitutes simplified text is highly subjective and032

may differ considerably between different readers.033

Thus it is important to accommodate the needs of034

specific target audiences.035

SS has been spurred on by performance gains in036

neural sequence-to-sequence (seq2seq) language037

generation methods that improve on earlier rule-038

based approaches (Wubben et al., 2012; Zhang and039

Lapata, 2017). However, fully supervised seq2seq040

approaches require a large amount of parallel train- 041

ing data that is both high in quality and diverse 042

in order to derive robust and generalisable models 043

(Koehn and Knowles, 2017). This poses a signif- 044

icant challenge for text simplification across the 045

board as suitable training data is often scarce. 046

For these reasons, much work has focused on 047

reducing the dependence on sentence-level paral- 048

lel training data either by focusing on lexical sim- 049

plification (Glavaš and Štajner, 2015; Kriz et al., 050

2018), structural simplification (Niklaus et al., 051

2019; Garain et al., 2019; Narayan et al., 2017; 052

Gao et al., 2021), or both through text editing 053

(Omelianchuk et al., 2021; Dong et al., 2019). Oth- 054

ers have highlighted the commonality between SS 055

and paraphrasing and aimed to exploit this rela- 056

tionship to bootstrap seq2seq-based simplification 057

(Martin et al., 2020; Maddela et al., 2021). 058

We follow this line of work and investigate an 059

alternative framing of SS as the task of controlled 060

paraphrasing. We train a large-scale paraphrase 061

model capable of producing high-quality and di- 062

verse paraphrases and combine it with FUDGE 063

(Yang and Klein, 2021) for controlled decoding in 064

order to steer the paraphrase generation towards 065

a specific target-level for text simplification. Our 066

experiments show that this proves to be an effec- 067

tive approach for generating simplified sentences 068

for different target audiences without requiring any 069

parallel sentence data. 070

2 Background & Motivation 071

As pointed out by Stajner (2021), text simplifica- 072

tion systems should be developed to support a va- 073

riety of target populations and would thus bene- 074

fit from a modular approach that allows for easy 075

customisation and adaption. Meanwhile, a major 076

hurdle for popular neural-based approaches is the 077

collection of appropriate sentence-aligned parallel 078

training data, which inhibits the development of 079

robust systems (Laban et al., 2021). Recently, how- 080
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ever, large general-purpose text generation mod-081

els have demonstrated impressive performance in082

both conditional and unconditional generation tasks083

(Radford et al., 2019; Lewis et al., 2020). Along084

with this, there has been considerable work done085

exploring ways to better control the outputs of large086

generation models in order to achieve certain com-087

municative goals (Dathathri et al., 2020; Krause088

et al., 2021; Liu et al., 2021; Yang and Klein, 2021;089

Pascual et al., 2021). We see a clear link between090

these recent developments and the challenges as-091

sociated with SS and set out to investigate a mod-092

ular approach suitable for simplifying content for093

different target audiences without requiring any094

complex-simple parallel data for model training.095

3 Method096

Given a complex source sentence, the goal is to097

translate it into a simplified target sequence1 that098

preserves its meaning. Following the seq2seq099

framework, we generate a target sequence X con-100

ditioned on the source sentence I .2 The probability101

of the sequence P (X) is computed as the probabil-102

ity of the ith token conditioned on the input source103

sequence I all previously generated tokens,104

P (X) =
n∏

i=1

P (xi|I, x1:i−1). (1)105

In order to ensure that the generated target se-106

quence is appropriately simplified for a specific107

target-level, we employ the controlled decoding108

method FUDGE (FUture Discriminators for GEn-109

eration) (Yang and Klein, 2021), which has been110

shown to be effective for poetry couplet generation,111

topic-controlled generation and controlling formal-112

ity in machine translation. FUDGE introduces a113

lightweight classifier B into the generation process114

of any autoregressive generation model G, modify-115

ing Equation 1 through a Bayesian factorisation of116

the target sequence:117

P (xi|I, x1:i−1, a) ∝ P (a|x1:i)P (xi|I, x1:i−1),
(2)118

where a is the target attribute being controlled119

for. This factorisation is especially appealing120

given today’s popular pre-trained generation mod-121

els, since, as long as B and G share the same tokeni-122

sation, it only requires access to G’s output logits at123

1Since an appropriate simplified formulation may consist
of multiple shorter sentences we refer to it as a sequence.

2For consistency, we borrow the notation used in Yang and
Klein (2021).

# articles # manually aligned sentences
Simp-1 Simp-2 Simp-3 Simp-4

train 1,862 - - - -

train 35 1,341 1,245 1,042 841
test 10 365 353 309 256

valid 5 180 163 134 87

Table 1: Newsela English corpus articles and their manu-
ally aligned sentences from Jiang et al. (2020) for Simp-
0 to Simp-l.

each timestep, making the system highly modular 124

and adaptable. For further details on FUDGE, we 125

refer the reader to Yang and Klein (2021). 126

4 Experimental Setup 127

4.1 Data 128

We conduct our experiments on the Newsela corpus 129

of simplified news articles3. In its current form, the 130

corpus contains 1,912 English news articles that 131

have been professionally re-written according to 132

readability guidelines for children at multiple grade 133

levels (Xu et al., 2015). Article versions range from 134

Simp-0 to Simp-4, with the former referring to 135

the original unsimplified article, suitable for upper 136

secondary school grades, and the latter indicating 137

the simplest versions, suitable for lower primary 138

school grades. 139

While Newsela provides complex-simple align- 140

ments at the document level, it must be empha- 141

sised that this alignment is not a requirement for 142

our SS approach with FUDGE. That said, we rea- 143

son that it is beneficial as it ensures that examples 144

used to train the attribute classifiers (henceforth 145

FUDGEs) cover the same domain. Consequently, 146

each FUDGE must learn to distinguish between 147

complex and simple text based on relevant charac- 148

teristics such as the vocabulary and grammatical 149

structures used rather than relying on differences in 150

topical content, which could be misleading (Kumar 151

et al., 2019). 152

Evaluation data For automatic evaluation 153

purposes, however, alignments on the sentence 154

level are a must. To this end, we make use of the 155

manually aligned test and validation splits provided 156

by Jiang et al. (2020). Setting aside all sentence 157

pairs from these splits ensures that no unwanted 158

data leakage occurs. An overview of the corpus 159

and manually aligned sentence pairs is provided in 160

Table 1. 161

3https://newsela.com/data/
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4.2 FUDGE for Sentence Simplification162

To apply FUDGE on target-level SS, we train a163

classifier for each target level, i.e., BSimp−l, and164

combine them with the same underlying genera-165

tor model G. Following Yang and Klein (2021),166

each FUDGE is trained as a binary predictor on la-167

belled subsequences of complex (Simp-0) and sim-168

ple (Simp-l) texts. Since SS often involves break-169

ing down a long complex sentence into smaller170

atomic sentences (Honeyfield, 1977), we make use171

of the paragraph structure available in the Newsela172

corpus and train each FUDGE to predict labels173

on subsequences pertaining to consecutive sen-174

tences. This ensures that the FUDGE’s predictions175

do not unduly bias the generation of the end of176

sentence symbol ‘</S>’ after producing sentence-177

final punctuation.178

As the underlying generator, G, we fine-tune179

BART-large on 1.4 million paraphrase sentence180

pairs mined from the web.4 To ensure a fair com-181

parison to previous state-of-the-art, we use the ex-182

act same training data as Martin et al. (2021) and183

aim to keep training hyperparameters as consistent184

as possible (detailed information on the training185

settings and the paraphrase corpus is given in Ap-186

pendix B). Combining the predictions from G and187

B makes use of a single weight parameter λ. For188

our experiments, we derive suitable values for each189

target-level by sweeping over possible whole num-190

ber values in the range [0,10] and select the best191

according to SARI on the held-out validation set192

(see Appendix C).193

4.3 Baselines194

We compare our approach to two recently proposed195

techniques for controlled SS.196

MUSS Martin et al. (2021) leverage large-197

scale paraphrase data to fine-tune BART-large in198

combination with the ACCESS control method for199

simplification (Martin et al., 2020). ACCESS relies200

on four special tokens which are prepended to each201

source sequence indicating length, N-gram similar-202

ity, lexical and syntactic complexity ratios between203

the source and target sequences. At inference time,204

these special tokens act as control knobs for simpli-205

fication. Following Martin et al. (2021), we derive206

the best special token values through a parameter207

4In theory, it could be possible to avoid fine-tuning the
generator all together, but initial experiments showed that the
probability distribution of the off-the-shelf BART model is far
too peaked for FUDGE’s predictions to have any effect.

search on the same held-out validation set as used 208

to set λ for FUDGE models (see Appendix B.4). 209

SUPER Following Scarton and Specia (2018) 210

and Spring et al. (2021), we also train a level-aware 211

supervised baseline with a special token indicating 212

the target level (e.g., <L3> = Simp-3) prepended to 213

each source sentence. For a fair comparison, we ini- 214

tialise this model from the same BART-large check- 215

point as the other two models and fine-tune on the 216

manually aligned sentence pairs for all Newsela lev- 217

els simultaneously. This amounts to a low resource 218

setting with a total of 4,469 training instances. 219

PARA In addition, we also compare to a 220

straight-forward paraphrase generated by our un- 221

derlying generation model G with no control. 222

4.4 Evaluation Metrics 223

Reliably evaluating SS is an open challenge (Alva- 224

Manchego et al., 2021). However, a range of 225

both reference-based and reference-less automatic 226

metrics have been proposed (Martin et al., 2018). 227

We make use of the open-source EASSE package 228

(Alva-Manchego et al., 2019), which implements 229

relevant metrics such as SARI, BERTScore, Flesch- 230

Kincaid Grade Level (FKGL) and a host of quality 231

evaluation measures for more fine-grained analysis 232

of the simplifications generated (see Appendix A 233

for more details). 234

5 Results & Discussion 235

Table 2 presents the results of our experiments on 236

the Newsela corpus. According to SARI, our pri- 237

mary metric, SS with FUDGE outperforms both 238

MUSS and supervised baselines for all simplifi- 239

cation levels except for Simp-4, where the super- 240

vised method performs surprisingly well. This re- 241

sult is consistent with the findings from Spring 242

et al. (2021), where this simple labelling approach 243

proved most effective for simplifying ordinary Ger- 244

man to A1-level German, despite it being the target 245

level with the least amount of parallel data in both 246

studies. At lower simplification levels, this model 247

has a strong tendency to copy the inputs. 248

MUSS produces suitable simplifications accord- 249

ing to FKGL, yet this model also tends to sum- 250

marise the input, as shown by the lower compres- 251

sion ratio scores and a higher proportion of deleted 252

tokens. This information loss causes model out- 253

puts to diverge from the ground truth reference se- 254

quences and appears to be appropriately penalised 255

by BERTScore. Meanwhile, FUDGE achieves 256
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Method SARI BERTScore FKGL Comp. ratio Sent. splits Lev. sim. Copies Add prop. Del prop.

Target Level: Simp-1 7.97 1.01 1.19 0.90 0.44 0.10 0.10

PARA 36.61 81.68 9.15 0.97 1.02 0.89 0.18 0.08 0.11
MUSS 35.69 75.95 7.75 0.81 1.00 0.84 0.01 0.07 0.24
SUPER 32.49 88.19 9.36 0.99 1.04 0.99 0.89 0.01 0.01
BSimp−1 36.10 80.45 8.81 0.94 1.01 0.88 0.13 0.07 0.13

Target Level: Simp-2 6.41 0.98 1.42 0.82 0.23 0.17 0.20

PARA 35.01 73.53 9.12 0.97 1.02 0.89 0.18 0.08 0.11
MUSS 36.57 65.91 7.27 0.78 1.03 0.75 0.00 0.15 0.35
SUPER 31.12 78.22 8.88 0.99 1.10 0.98 0.80 0.02 0.03
BSimp−2 38.32 70.75 7.42 0.96 1.25 0.84 0.08 0.12 0.17

Target Level: Simp-3 4.91 0.92 1.55 0.73 0.13 0.24 0.31

PARA 30.87 65.06 9.09 0.98 1.01 0.89 0.18 0.08 0.11
MUSS 38.05 56.03 5.19 0.62 1.01 0.68 0.00 0.12 0.45
SUPER 37.89 66.60 6.65 0.93 1.34 0.90 0.48 0.06 0.13
BSimp−3 39.56 61.46 6.44 1.00 1.45 0.81 0.02 0.20 0.20

Target Level: Simp-4 3.40 0.85 1.79 0.65 0.09 0.30 0.43

PARA 25.61 56.21 9.41 0.98 1.01 0.89 0.18 0.08 0.11
MUSS 39.63 51.73 5.61 0.65 1.04 0.68 0.00 0.13 0.44
SUPER 43.22 55.00 5.09 0.78 1.45 0.74 0.24 0.12 0.32
BSimp−4 37.03 49.60 4.60 1.02 2.14 0.76 0.00 0.28 0.28

Table 2: Target-level results on the Newsela corpus. For reference-based metrics (SARI, BERTScore), where
higher values are better, we highlight systems according to their performance. For FKGL and reference-less quality
evaluation metrics we embolden the systems which perform closest to the level-specific references (provided in the
intermediary rows).

lower BERTScores than both the supervised and257

paraphrase baselines, where it appears to reward258

outputs that make fewer modifications to the source259

sentence, as indicated by the higher degree of copy-260

ing. In contrast to the baselines, FUDGE demon-261

strates a higher rate of sentence splitting and ad-262

ditions, which is of particular advantage for SS263

for certain target audiences. That said, manual in-264

spection of the model outputs shows that not all265

additions and sentence splits are warranted and266

that these could be degenerative artefacts, such267

as unnecessary repetitions or hallucinations (see268

tables in Appendix F for examples). Comparing269

FUDGE against the paraphrase baseline without270

control clearly shows the strong positive influence271

of FUDGE for SS.272

Since simplifying with FUDGE is performed ac-273

tively during decoding and decisions are informed274

by the currently generated prefix x1:i−1, this ap-275

proach is not guaranteed to transform the input276

text. This is an important consideration for SS as277

oftentimes not all parts of a sentence need to be278

simplified (Garbacea et al., 2021). Thus, given a279

well-trained model, FUDGE performs simplifica-280

tion operations only when appropriate. 281

SS with FUDGE also makes use of a single hy- 282

perparameter λ which controls the contribution 283

from B. In contrast, MUSS requires setting an 284

appropriate continuous value for each of the four 285

control tokens to attain a suitable simplification. 286

These are not only difficult to determine for each 287

target level (see Appendix D), but the way in which 288

these tokens interact with each other is also unclear 289

(Martin et al., 2020). 290

6 Conclusion & Future Work 291

We have explored a modular and adaptable ap- 292

proach to SS by reframing it as a controlled para- 293

phrasing task. We used FUDGE (Yang and Klein, 294

2021) to steer the generation of paraphrastic tar- 295

get sequences toward different target levels. This 296

modular approach to SS is comparable to state-of- 297

the-art methods according to automatic metrics. In 298

future work we aim to conduct a more detailed hu- 299

man evaluation in order to better understand the 300

qualitative differences between these approaches, 301

as well as applying our method to larger textual 302

units beyond sentences. 303
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A Evaluation Metrics for Sentence 563

Simplification 564

Simplicity SARI is intended to measure simplic- 565

ity by considering N-gram overlap between the 566

source sentence, model output and one or more 567

reference sentences. It rewards model outputs that 568

involve edit operations such as deletions, additions 569

and copies which correspond with the provided 570

references. 571

Fluency and meaning preservation BERTScore 572

uses BERT’s contextualised representations to com- 573

pute the similarity between tokens in the model 574

output and one or more references. It has been 575

shown to correlate better than BLEU for assessing 576

meaning preservation and fluency in SS (Scialom 577

et al., 2021). 578

Readability Flesch-Kincaid Grade Level 579

(FKGL) is often used as a proxy for estimating 580

text simplicity without a reference. Originally 581

developed for grading technical materials for 582

military personnel, it considers surface-level 583

statistics such as word and sentence length to 584

provide a single score. However, these scores 585

should be interpreted carefully as it has recently 586

been shown that this metric can be mislead by 587

degenerate and disfluent outputs (Tanprasert and 588

Kauchak, 2021). 589

Quality Evaluation Measures For a more fine- 590

grained analysis of model outputs, we also report 591

quality estimation measures which are computed 592

between the source sentence and the model’s out- 593

put. These include the compression ratio, Leven- 594

shtein similarity, average number of sentence splits 595

performed, exact copies between source and target, 596

and the proportion of added and deleted N-grams. 597

B Settings used for Model Training and 598

Inference 599

B.1 Resources 600

Model training and inference experiments were 601

performed on NVIDIA GeForce GTX TITAN X 602

GPUs (12GB). 603

B.2 Training Generation Models 604

For our underlying generator model G and the level- 605

aware supervised baseline, we fine-tune BART- 606

large using Hugging Face’s Transformers library5 607

5https://github.com/huggingface/
transformers
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(Wolf et al., 2020). Training parameters used for608

G aim to replicate the settings used by Martin et al.609

(2021) who trained their models using Fairseq6.610

For the level-aware supervised baseline, we aim to611

replicate the settings used by Spring et al. (2021)612

who trained their models with Sockeye7. Note,613

in contrast to the paraphrase model, the effective614

batch size and maximum training steps for this615

model are considerably smaller to account for the616

differences in the size of the relevant training data617

(1.4M paraphrase sentence pairs vs. 4k aligned sim-618

plifications).619

Paraphrase Model G
hyperparameter value

max src length 1024
max tgt length 256
eff. batch size 64
learning rate 3e-05
weight decay 0.01
optim adamw_hf
adam betas 0.9 - 0.999
adam epsilon 1e-8
lr scheduler polynomial
warmup steps 500
label smoothing 0.1
max steps 20000
num beams for pred 4
optim metric loss

Level-Aware Supervised Model

hyperparameter value

max src length 256
max tgt length 128
eff. batch size 16
learning rate 3e-05
weight decay 0.01
optim adamw_hf
adam betas 0.9 - 0.999
adam epsilon 1e-8
lr scheduler polynomial
warmup steps 500
label smoothing 0.1
max steps 5000
num beams for pred 4
optim metric rouge1

Table 3: Hyperparameters for training generation mod-
els

B.3 Training FUDGE Classifiers620

Our FUDGE classifiers Bsimp−l are unidirectional621

three-layer LSTM-based RNNs with hidden layer622

dimensionality of 512. These settings differ slightly623

6https://github.com/huggingface/
transformers

7https://github.com/awslabs/sockeye

from the original implementation by Yang and 624

Klein (2021), who learn slightly smaller classi- 625

fiers for their tasks. The embedding matrix is con- 626

structed to cover the vocabulary of the underly- 627

ing generator model and token embeddings are ini- 628

tialised using 300d pre-trained GloVe embeddings 629

(glove-wiki-gigaword-300) (Pennington 630

et al., 2014). For certain wordpieces and rare words 631

that are OOV in GloVe, we initialise their embed- 632

dings randomly. 633

B.4 Inference 634

For all models except MUSS we run inference with 635

beam search (k=5). A manual inspection of the 636

model outputs revealed that our underlying para- 637

phraser G showed a tendency to produce repetitions 638

in the target sequence. To counter this, we set the 639

repetition penalty equal to 1.2 when performing 640

inference with G. All other inference hyperparame- 641

ters use the default values set in Hugging Face. For 642

each source sentence in the test set, we generate the 643

top five model hypotheses according to the model 644

and select the first non-empty string as the final 645

model output. 646

FUDGE has two hyperparameters which need to 647

be set at inference time. The first is a weight λ that 648

controls the strength of B’s contribution, while the 649

second aims to keep the cost associated with classi- 650

fying all possible continuations at each decoding 651

timestep down by limiting the computation to the 652

top-k predictions at each step. Our experiments 653

showed that λ is indeed useful for controlling the 654

degree of simplification and finding a suitable λ 655

is important for getting the best target-level sim- 656

plifications (see Figure 1). Meanwhile using dif- 657

ferent pre-selection top-k values (e.g., [50, 200]) 658

had almost no effect on the resulting generation 659

sequence when using argmax decoding techniques 660

such as beam search. Therefore, we follow the rec- 661

ommendation by Yang and Klein (2021), and fix 662

the pre-selection top-k=200. 663

For MUSS, we kept inference settings the same 664

as the default set by Martin et al. (2021). The only 665

differences are the control token values used for 666

performing inference on each of the Newsela sim- 667

plification levels, which we derive via a parameter 668

sweep over 50 items from the respective develop- 669

ment set. Table 4 shows the relevant values used. 670
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Comp.
Ratio

Leven-
shtein
Sim.

Word
Rank
Ratio

Dep.
Tree
Depth
Ratio

Simp-1 0.30 0.99 0.54 1.45
Simp-2 0.75 0.82 0.94 0.22
Simp-3 0.52 0.85 0.45 0.62
Simp-4 0.47 0.79 0.43 0.42

Table 4: Values used for target-level inference on the
Newsela English corpus with MUSS

C Parameter Sweep for FUDGE671

We search for the optimum λ value for each com-672

bination of Newsela simplification levels and each673

target-level FUDGE on 50 sentences from the man-674

ually aligned validation set (Jiang et al., 2020). Ta-675

ble 2 shows the resulting SARI scores. For our ex-676

periments, we selected the best scoring λs for each677

simplification level and its corresponding FUDGE678

(i.e., plots along the diagonal). For instances where679

more than one possible λ delivers good results, we680

select the lowest λ value > 0 (marked with a verti-681

cal dotted line).682

It is clear from this figure that cross-matching tar-683

get simplification levels with FUDGEs trained on a684

different target level would also yield good, and in685

some cases even better, results according to SARI686

(e.g., target-level Simp-2 with BSimp−3). This is687

likely due to it being easier for the classifier to688

correctly distinguish between the positive (simple)689

and negative (complex) classes when the stylistic690

differences between simplification levels are larger.691

Indeed, ROC-AUC scores for each target-level clas-692

sifier on the respective test sets increase from 0.67693

to 0.96 going from Simp-1 to Simp-4, indicating694

that FUDGEs trained on higher simplification lev-695

els are better at distinguishing between the classes.696

D ACCESS Attributes on Newsela697

Corpus698

Deciding on optimal attribute values for target-level699

simplification with ACCESS is non-trivial. We700

computed the ratio scores on source-target pairs701

from the manually aligned training split from Jiang702

et al. (2020) for all four simplification levels of the703

Newsela English corpus. Figure 2 shows that for704

most attributes, the largest density is on a value of705

1.0, which would indicate no difference between706

the source and target. For many attribute values,707

the distributions are also relatively wide and flat in-708

dicating that there could be many potentially valid709

values, especially for the higher simplification lev- 710

els (e.g., Simp-2 - Simp-4). 711

E Ablation Experiment 712

Unlike a fully-supervised seq2seq approach, 713

FUDGE for SS does not require parallel complex- 714

simple sentence pairs for training. Instead, SS with 715

FUDGE relies on contrastive instances to train its 716

target-level classifiers. Such data is significantly 717

easier to collect from comparable, contrastive, or 718

even ‘monolingual’ corpora, e.g., language learn- 719

ing materials (Vajjala and Lučić, 2018), informa- 720

tion from government websites or news articles pro- 721

duced specifically for certain target groups which 722

are available for in a variety of languages8. 723

However, an open question remains as to how 724

much data is required to train a suitable classifier. 725

While this may depend heavily on the target-level 726

simplified text both in topical and stylistic features, 727

we examined this question for Newsela’s Simp-4 728

target level. In contrast to the main experiments, 729

here, we set FUDGE’s λ = 1.0 (i.e., the minimum 730

amount of influence). Figure 3 depicts the relation- 731

ship between the amount of contrastive data used to 732

train BSimp−l and the resulting automatic metrics. 733

For metrics that consider simplification, a strong 734

positive correlation can be seen, indicating that the 735

amount of contrastive data helps considerably to 736

get the best performance. However, even small 737

amounts of contrastive data can already be effec- 738

tive in steering the generations towards the target 739

attribute. 740

F Output Examples 741

The tables below provide randomly sampled ex- 742

amples of model outputs for each target-level in 743

the Newsela English corpus. We colour parts of 744

the simplified texts based on the edit operations ap- 745

plied to the source text. Blue indicates additions or 746

explanations not in the source text. Green is used 747

to highlight lexical and punctuation substitutions. 748

Yellow shows operations on contractions (either 749

creating or deconstructing). Pink indicates phrases 750

that have been truncated or lexical deletions from 751

the source text. Violet is used for larger paraphras- 752

tic segments or positionally shuffled phrases. Unde- 753

sirable repetitions or hallucinations are italicised. 754

8For example, Ligetil from the Danish Broadcasting Corpo-
ration (https://www.dr.dk/ligetil/) and Japan’s
News Web Easy (https://www3.nhk.or.jp/news/
easy/)
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Figure 1: SARI scores from parameter sweep over different λ values for FUDGE at inference time.
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Figure 2: Density of attribute values for the four control tokens used in the ACCESS simplification method (Martin
et al., 2020) and employed by MUSS (Martin et al., 2021).

Figure 3: Automatic metrics for simplification (implemented in EASSE (Alva-Manchego et al., 2019)) as a function
of the number of contrastive complex-simple paragraphs from the Newsela English corpus used to train a FUDGE
classifier BSimp−4

.
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Target Level: Simp-1

Simp-0 (source) They found that there was indeed a pattern in their motion — though it wasn’t
quite what they expected.

Simp-1 (reference) They found that there was indeed a pattern in their motion — though it was not
quite what they expected.

MUSS They found that there was a pattern in their motion - but it wasn’t what they
expected.

SUPER They found that there was indeed a pattern in their motion — though it wasn’t
quite what they expected.

Bsimp−1 They found that there was a pattern in their movement, though it wasn’t what
they expected.

Simp-0 (source) The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

Simp-1 (reference) The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

MUSS The tribes helped members of the expedition by bringing them food and helping
with navigation.

SUPER The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

Bsimp−1 The tribes helped members of the expedition through the winter, bringing food
and helping with navigation.

Target Level: Simp-2

Simp-0 (source) The feat should be possible based on Einstein’s theory of general relativity, which
describes gravity as the warping of spacetime by energy and matter.

Simp-2 (reference) It should be possible based on Einstein’s theory of general relativity. His famous
theory describes gravity as the bending of space and time, which are one thing
called "spacetime."

MUSS Einstein’s theory, called general relativity, describes gravity as the warping of
spacetime by energy and matter.

SUPER The feat should be possible based on Einstein’s theory of general relativity, which
describes gravity as the warping of spacetime by energy and matter.

Bsimp−2 The feat is based on Einstein’s theory of general relativity. It describes gravity as
the warping of spacetime by matter and energy.

Simp-0 (source) Changes include moving the earliest date from which tribes must provide doc-
umentation of their existence into the 1930s and allowing tribes to reapply for
federal recognition under certain circumstances, something previously prohibited.

Simp-2 (reference) The revisions include establishing the 1930s as the earliest date from which tribes
must provide documentation of their existence. Also, tribes may reapply for
federal recognition under certain situations, something previously prohibited.

MUSS Changes include moving the earliest date for tribes to provide documentation
of existence into the 1930s, and allowing under certain circumstances tribes to
reapply for federal recognition.

SUPER Changes include moving the earliest date from which tribes must provide doc-
umentation of their existence into the 1930s and allowing tribes to reapply for
federal recognition under certain circumstances, something previously prohibited.

Bsimp−2 Changes include moving the earliest date from which tribes must provide docu-
mentation of their existence. Tribes will also be allowed to reapply for federal
recognition.
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Target Level: Simp-3

Simp-0 (source) Cafes, restaurants and bakeries around the nation are feeling the pain from recent
outbreaks of bird flu, or avian influenza, expanding through the Midwest.

Simp-3 (reference) The rising prices is caused by recent outbreaks of bird flu.
MUSS Restaurants and bakeries around the nation are feeling the effects of the recent

bird flu outbreak in the Midwest.
SUPER Cafes, restaurants and bakeries around the nation are feeling the pain from recent

outbreaks of bird flu. The disease is spreading through the Midwest.
Bsimp−3 Cafes, restaurants and bakeries around the nation are feeling the pain of bird flu

outbreaks that have spread in the Midwest.

Simp-0 (source) "That is, a time traveler who emerges from a Deutschian CTC enters a universe
that has nothing to do with the one she exited in the future.

Simp-3 (reference) Lloyd says a time traveler coming from Deutsch’s CTC "enters a universe that
has nothing to do with the one she exited."

MUSS A Deutschian CTC traveler enters a universe that has nothing to do with the one
she left.

SUPER "That is, a time traveler who emerges from a Deutschian CTC enters a universe
that has nothing to do with the one she exited in the future.

Bsimp−3 "That is, a time traveler who emerges from a Deutschian CTC enters a universe.
This universe has nothing to do with the one she exited in the future. The universe
she enters into has nothing to do with the one she exited in the future.

Target Level: Simp-4

Simp-0 (source) If the particle flips the switch, the machine emits a particle—the particle—back
into the CTC; if the switch isn’t flipped, the machine emits nothing.

Simp-4 (reference) If the particle flips the switch, the machine shoots a particle — the particle —
back into the CTC. If the switch isn’t flipped, the machine shoots out nothing.

MUSS If the particle turns, the machine sends a particle back to the CTC. If it doesn’t, it
sends nothing.

SUPER If the particle flips the switch, the machine emits a particle—the particle—back
into the CTC. If the switch isn’t flipped, the machine emits nothing.

Bsimp−4 If the switch is turned, the machine emits a particle-like stateBack into the CTC.
If the switch is not turned, the machine emits nothing.

Simp-0 (source) Deutsch’s insight was to postulate self-consistency in the quantum realm, to insist
that any particle entering one end of a CTC must emerge at the other end with
identical properties.

Simp-4 (reference) Deutsch assumes that tiny quantum particles are stable and fixed.
MUSS In quantum theory, Deutsch insisted that any particle entering one end of a CTC

must emerge at the other end with equal properties.
SUPER Deutsch’s idea was to show that any particle entering one end of a CTC must

emerge at the other end of a CTC must emerge at the other end with identical
properties.

Bsimp−4 Deutsch’s idea was to postulate a very nature. He was claiming that any particle
entering one end of a CTC must emerge at the other end with identical properties.
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