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Abstract001

Agent self-improvement, where agents au-002
tonomously train their underlying Large Lan-003
guage Model (LLM) on self-sampled trajec-004
tories, shows promising results but often stag-005
nates in web environments due to limited explo-006
ration and under-utilization of pretrained web007
knowledge. To improve the performance of008
self-improvement, we propose a novel frame-009
work that introduces a co-evolving World010
Model LLM. This world model predicts the011
next observation based on the current obser-012
vation and action within the web environment.013
The World Model serves dual roles: (1) as a014
virtual web server generating self-instructed015
training data to continuously refine the agent’s016
policy, and (2) as an imagination engine dur-017
ing inference, enabling look-ahead simulation018
to guide action selection for the agent LLM.019
Experiments in real-world web environments020
(Mind2Web-Live, WebVoyager, and GAIA-021
web) show a 10% performance gain over ex-022
isting self-evolving agents, demonstrating the023
efficacy and generalizability of our approach,024
without using any distillation from more pow-025
erful close-sourced models.026

1 Introduction027

Autonomous agents, especially Web agents operat-028

ing in online environments, play a crucial role in029

automating complex tasks, advancing progress to-030

wards artificial general intelligence (OpenAI, 2025;031

Monica.Im, 2025; Qin et al., 2025; Liang et al.,032

2025). The capabilities of these agents stem from033

two key components, the design of the system,034

which facilitates accessing and processing abun-035

dant information from the web, and the agent foun-036

dation language model itself, which is typically a037

(Multimodal) Large Language Model (LLM) that038

generates actions based on the provide context.039

Recent work in agent self-improvement re-040

fines LLM-based agents through iterative cycles041
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Figure 1: Overview of WebEvolver – A Self-Improving
Framework with World-Model Look-Ahead. Our frame-
work co-trains a world model with the agent to predict
next-step observations based on current states and ac-
tions. The world model serves as a virtual web engine,
which generates synthetic trajectories for policy train-
ing and enables look-ahead planning to select optimal
actions during inference.

of autonomous interaction: agents generate ac- 042

tions, collect behavioral trajectories, and are fine- 043

tuned on this self-collected data after rejection sam- 044

pling (Yin et al., 2024; Murty et al., 2024; Patel 045

et al., 2024; Aksitov et al., 2023; He et al., 2024b; 046

Xi et al., 2024). While this bootstrapping reduces 047

reliance on human-labeled data, performance even- 048

tually plateaus (Zeng et al., 2024). 049

This stagnation arises from two main bottlenecks. 050

First, exploration diversity declines as the agent 051

overfits to familiar trajectories, limiting discovery 052

of novel states (He et al., 2024b). Second, although 053

inference-time exploration methods (Koh et al., 054
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2024b; Zhang et al., 2024b; Zhou et al., 2024a;055

Putta et al., 2024; Yu et al., 2024) have the po-056

tential to provide diverse trajectories, they require057

costly real-world interactions for marginal gains.058

On the other hand, simulation or imagination-based059

approaches (Gu et al., 2024; Qiao et al., 2024) typ-060

ically offer only one/two-step look-ahead, lacking061

coherent multi-step rollouts.062

To address these limitations, we propose inte-063

grating a Co-evolving World Model into the self-064

improvement loop to enable better multi-step tra-065

jectory synthesis and look-ahead. Our world model066

is a language model trained to predict the next ob-067

servation (web page) given the current state and an068

attempted action. Our key insight is that LLMs, pre-069

trained on vast web content (e.g., Llama-3; Dubey070

et al., 2024), inherently encode a structured under-071

standing of website dynamics, user intents, and task072

workflows. We fine-tune it on trajectories collected073

during agent-environment interactions, allowing074

it to evolve alongside the agent to provide better075

simulation results.076

As a virtual web server, The World Model serves077

two roles : (1) it generates diverse, self-instructed078

training trajectories by simulating interactions with079

unseen web environments, mitigating exploration080

bottlenecks by exposing the agent to a wider range081

of scenarios than real interactions alone. While the082

World Model may produce some hallucinated (i.e.,083

non-realistic) web states, this is not critical during084

training, as the agent’s goal is to learn flexible ac-085

tion prediction, even under noisy circumstances.086

(2) during inference, the World Model performs087

multi-step look-ahead simulations (Zhang et al.,088

2025a), allowing the agent to evaluate possible ac-089

tions without costly real-world trials. This dual090

mechanism grounds self-improvement in both real091

and model-based interactions, ensuring sustained092

adaptability while reducing reliance on expensive093

environment interactions.094

We validate our framework on real-world, open-095

domain web environments, including Mind2Web-096

Live (Pan et al., 2024), WebVoyager (He et al.,097

2024a), GAIA-web (Mialon et al., 2024), and Sim-098

pleQA (Wei et al., 2024)1. Experiments show099

a 10% performance improvement over the self-100

evolving baseline OpenWebVoyager (He et al.,101

2024b), with notable gains on complex and unseen102

tasks.103

Our main contributions are:104

1We adapt this dataset to search queries on the internet

1. Introducing the co-evolving world model for 105

self-improving web agents, enabling diverse 106

training data generation and low-cost multi- 107

step action search. 108

2. Providing empirical evidence that world- 109

model-guided self-improvement enhances 110

agent performance and adaptability in open- 111

domain settings, with minimal human supervi- 112

sion and no distillation from stronger LLMs. 113

This work highlights the importance of integrat- 114

ing dynamic world models into agent frameworks 115

to overcome the limitations of purely data-driven 116

self-training. 117

2 Related Work 118

Web Agent Recent advances in web agents lever- 119

age (multimodal) large language models as their 120

backbone (Dubey et al., 2024; Jia et al., 2024; 121

OpenAI, 2023; Anthropic, 2025), enabling reason- 122

ing through frameworks like ReAct (Yao et al., 123

2023), MCP (Anthropic, 2024), and cognitive 124

kernel (Zhang et al., 2024a). These agents are 125

evaluated on benchmarks such as WebShop (Yao 126

et al., 2022), Mind2Web (Deng et al., 2023), We- 127

bArena (Zhou et al., 2024b), VisualWebArena (Koh 128

et al., 2024a), WebVoyager (He et al., 2024a), Web- 129

Walker (Wu et al., 2025), and MMInA (Zhang et al., 130

2024c). Besides applying off-the-shelf LLMs, 131

there are data scaling efforts like Explorer (Pahuja 132

et al., 2025), NNetNav (Murty et al., 2025), and 133

InSTA (Trabucco et al., 2025) enhance the training 134

of LLMs. Inference-time optimization techniques, 135

including AgentTreeSearch (Koh et al., 2024b), 136

Monte-Carlo Tree Search (Putta et al., 2024; Yu 137

et al., 2024; Zhou et al., 2024a; Zhang et al., 2024b), 138

and Reflexion (Shinn et al., 2023), further improve 139

decision-making. 140

Agent Self-Improvement Beyond using off- 141

the-shelf LLMs as policy models or fine-tuning 142

via imitation learning from powerful LLM tra- 143

jectories, recent work explores bootstrapping 144

agent LLMs with open-source models (Aksitov 145

et al., 2023; Patel et al., 2024), building on ad- 146

vances in self-improving LLM reasoning (Wang 147

et al., 2023; Zelikman et al., 2022; Zeng et al., 148

2024). BAGEL (Murty et al., 2024), OpenWe- 149

bVoyager (He et al., 2024b), and Self-Improved 150

Agents (Patel et al., 2024) explored iterative 151

exploration-feedback-optimization cycles, where 152
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World Model as Synthetic Web Server: Generating Synthetic Trajectories

World Model Look-Ahead for Inference-time Action Selection

Figure 2: An illustration of the World Model trajectory synthesizing process and World Model Look-ahead for
inference-time action selection.

agents refine their policies by learning from high-153

quality trajectories in real-world or simulated154

web environments. To enhance self-improvement,155

G"odel Agent (Yin et al., 2024) enables agents156

to dynamically modify their logic and accumulate157

skills across diverse tasks. (Zhang et al., 2025b)158

explores bootstrapping the ability of backtracking159

in web agent tasks. AgentQ (Putta et al., 2024) and160

ReST+ReAct (Aksitov et al., 2023) combine re-161

inforcement learning and preference optimization,162

enabling agents to learn from both successes and163

failures and improving robustness in multi-step rea-164

soning. While reinforcement learning is promising165

for self-improvement, real-world, evolving web-166

sites pose challenges: environmental uncertainty167

can lead to inconsistent evaluations of the same ac-168

tion, making it difficult for agents to reliably assess169

and improve their performance.170

World Models World models have evolved171

from their reinforcement learning origins (Ha and172

Schmidhuber, 2018) to become powerful tools for173

agent reasoning (Valevski et al., 2024; Alonso174

et al., 2024; Smith and Wellman, 2023). Recent ap-175

proaches leverage large language models (LLMs)176

as implicit world models, enabling agents to simu-177

late and plan through complex tasks. For general178

reasoning, RAP (Hao et al., 2023) demonstrates179

how LLMs can serve dual roles as both world180

models and reasoning agents, using Monte Carlo181

Tree Search to explore future states. Similarly,182

WKM (Qiao et al., 2024) shows that structured183

world knowledge can be distilled from trajectories 184

to guide agent planning. In web environments, 185

methods like WebDreamer (Gu et al., 2024) and 186

WMA (Chae et al., 2024) adapt this paradigm by 187

using LLMs to predict action outcomes through 188

natural language simulations. However, these ap- 189

proaches remain limited by their reliance on off- 190

the-shelf LLMs, functioning more like sophisti- 191

cated chain-of-thought reasoning than true multi- 192

step simulation. 193

Our work advances beyond these limitations by 194

co-learning a dedicated world model during agent 195

self-improvement. This enables genuine multi- 196

step trajectory synthesis and look-ahead planning, 197

providing a more robust foundation for interac- 198

tive decision-making than current prompt-based 199

approaches. 200

3 Method 201

In this section, we introduce the WebEvolver, a 202

co-learning framework of World Model and Agent 203

Policy model (Figure 2). 204

3.1 Problem Formulation 205

The web agent task is formulated as a Partially 206

Observable Markov Decision Process (POMDP) 207

(S,A,O, T ,R), where the agent receives a natural 208

language query q requiring multi-step web inter- 209

action under the environment. The state space S 210

represents the complete web environment, while 211

the observation space O is limited to visible ele- 212

ments. At each time step t: ot = Ω(st), where 213
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Ω is a function extracting visible contents like214

(URL,Web Elements) from the current state st. A215

represents the whole action space, which, in our216

case we include click, type, goback, scroll217

down/up, and stop, as the atomic web opera-218

tions. T represents the deterministic transition219

function that executes browser operations to ad-220

vance the state. The agent’s policy π(ot, q) → at221

generates actions that produce trajectories τ =222

{(o1, a1), . . . , (ot, at)}, with final rewards com-223

puted through self-assessment r̂(τ, q) ∈ [0, 1].224

Given a task query q and target website w, we ini-225

tialize the web environment and get the first obser-226

vation o1 ∈ O. We follow the settings in Cognitive227

Kernel (Zhang et al., 2024a) and use accessibility228

tree to represent the elements in ot. Using an LLM229

as agent policy model parameterized by θ, we gen-230

erate chain-of-thoughts ht and actions at at time231

step t:232

(ht, at) ∼ πθ(·|I, q, o1:t, h1:t−1, a1:t−1) (1)233

where I contains system instructions. The tran-234

sition function T executes actions on the environ-235

ment:236

st+1 = T (st, at), ot+1 = Ω(st+1) (2)237

The complete trajectory is τ =238

(o1, h1, a1, . . . , oT , hT , aT ), where T denotes the239

total number of navigation steps.240

3.2 Agent Self-Improvement241

In this subsection, we introduce the self-242

improvement of a backbone agent foundation243

model, denoted as M, and the corresponding pol-244

icy function is denoted as πM.245

Trajectories Collection We employ M to sam-246

ple actions based on an input query q, which are247

then used to collect web navigation trajectories.248

We use M as the agent foundation model to power249

Cognitive Kernel, which interacts with web envi-250

ronments. The agent observes the last k steps, rep-251

resented as webpage accessibility trees, to inform252

its actions.253

For each query q ∈ Q, a trajectory τi is sampled254

from the policy πθM (τ | I, q). To prevent perfor-255

mance degradation from too long contexts, we clip256

the trajectory history ct when t − 1 > k by keep-257

ing only the latest observations. The thoughts and258

actions are kept as they contain some compressed259

information about the history.260

c
clip
t =(h1, a1, h2, a2, . . . , ht−k, at−k, 261

ot−k+1, ht−k+1, at−k+1, . . . , ot−1), (3) 262

such that the new actions are generated with the 263

following function: 264

(ht, at) ∼ πθM (· | I, q, cclip
t ). (4) 265

Notably, we retain the thought and action at 266

each step to preserve the full reasoning chain while 267

avoiding context overload. Then, rejection sam- 268

pling is conducted to keep those trajectories that 269

are successfully finished, using an automatic evalu- 270

ation method r̂(τ, q). 271

Iterative Optimization At the i-th iteration of 272

the self-improvement, we denote the collected tra- 273

jectories after rejection sampling as Di. We aim to 274

maximize the following objective function: 275

J (θ) = E(q,τ)∼Di

T∑
t=1

[
log πθ(at|q, cclip′

t , ht) 276

+ log πθ(ht|q, cclip′
t )

]
,

(5)

277

After acquiring the new policy model Mi, it is 278

used to sample trajectories from the query set Q 279

again. The newly successful trajectories are then 280

appended to Di to form a new training dataset Di+1 281

to perform the next round of optimization. 282

3.3 WebEvolver 283

In this subsection we introduce the co-learning 284

world model, and how to use it for trajectory syn- 285

thesizing and inference-time look-ahead. An illus- 286

tration figure is presented in Figure 2. 287

Co-learning World Model The world model is a 288

language model that simulates the next observation 289

ôt+1 conditioned on both the current webpage’s 290

accessibility tree (ot) and a formatted action string 291

(at−1), thereby predicting state transitions. We 292

learn a world model LLM Mw using the collected 293

trajectory during self-improvement. 294

From the a collected trajectory 295

τ = {(o0, a0), . . . , (ot, at)}, we can con- 296

vert it to a world modeling trajectory 297

τw = {o0, (a0, o1), . . . , (at−1, ot)}, such that the 298

objective of world model is to predict the next 299

observation ot conditioned on the scheduled action 300
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at−1 and previous observations. Similar with the301

trajectories in agent policy model, we truncate302

the history observations to avoid performance303

degrade on long contexts. Here, we simply use the304

latest observation as history. Besides, we distill305

some rationales using the original base LLM M306

about the logic of the transition function T to307

help the generation of the next webpage. Such308

chain-of-thoughts at step t is denoted as hwt . We do309

not omit the action and thoughts to make the world310

model aware of some of the previous information311

and the depth of the trajectory.312

cwt = (a1, h
w
1 , . . . , at−2, h

w
t−2, ot−1, at−1), (6)313

Such that the next webpage observation ot is314

generated with the following function, where θw is315

the parameters of Mw.316

ot ∼ πθw(·|Iw, cwt ) (7)317

The world model is then optimized using the318

latest iteration of collected trajectories.319

J (θw) = Eτw∼Di

T∑
t=1

[
log πθw(at|cwt , hwt )320

+ log πθw(h
w
t |cwt )

]
, (8)321

Trajectory Synthesis We can use an agent pol-322

icy model Mi and a world model Mw to perform323

synthetic trajectory generation, enabling us to scale324

up the training data without interacting with the325

real web server, which can be very costly. Here, we326

directly replace the transition function T with the327

world model Mw. Specifically, the next synthetic328

observation is generated with:329

ôt ∼ πθw(·|Iw, cwt ) (9)330

Then, in the next step, the policy model gener-331

ates next action conditioned on the synthetic obser-332

vation:333

(ĥt, ât) ∼ πθM (· | I, q, ĉclip
t ). (10)334

Those collected trajectory is thus τ̂ =335

{(o0, a0), (ô1, â1), . . . , (ôt, ât)}, which ultimately336

forms a trajectory dataset Dw after rejection sam-337

pling. By combining Di from self-improvement338

and Dw, we can get an augmented new training339

dataset to train a new policy model, WebEvolver.340

Inference-time Look-ahead To enhance 341

decision-making during inference, we propose 342

a look-ahead mechanism that simulates d-step 343

trajectories using both the agent policy model Mi 344

and the world model Mw. We call this method 345

World Model Look-Ahead (WMLA). For each 346

candidate action at at step t, we first simulate 347

trajectories by generating d-step rollouts τ̂w 348

through iterative application of: 349

ôt+j ∼ πθw(·|Iw, cwt+j), 350

(ĥt+j , ât+j) ∼ πθM (·|I, q, ĉclip
t+j), (11) 351

where j ∈ {1, . . . , d}, cwt+j and ĉ
clip
t+j are trun- 352

cated histories from the world model and policy 353

model, respectively. 354

Next, we evaluate trajectories by employing an 355

LLM-based evaluator to score each rollout τ̂w. Fol- 356

lowing Koh et al. (2024b); Gu et al. (2024), the 357

evaluator assigns a scalar from {0, 0.5, 1.0} (incor- 358

rect, on track, or complete) based on the trajectory’s 359

alignment with task completion. Finally, we select 360

the optimal action a∗t = argmaxat Score(at) that 361

maximizes expected progress. 362

4 Experiments 363

4.1 Setup 364

We use the Cognitive Kernel (Zhang et al., 2024a) 365

as the foundation agent framework, specifically its 366

Web Agent Module for autonomous Web interac- 367

tion. Here, the state space S is the whole Inter- 368

net, powered by Playwright2 in the Web docker in 369

Cognitive Kernel. The action space include type, 370

click, scroll, goback, stop, and restart. At 371

each time step t, the observation ot is the acces- 372

sibility tree of the visible components in the vir- 373

tual browser, simulating what humans can perceive 374

when browsing online. The transition function T 375

executes atomic browser actions based on the cur- 376

rent webpage state, updates the webpage, and thus 377

the observation accordingly, and handles execution 378

errors by feeding them back to the reasoning sys- 379

tem until task completion or step limit is reached. 380

Regarding the evaluation protocol R, we address 381

potential false negatives in human-annotated step- 382

wise comparisons (Pan et al., 2024) by employing 383

GPT-4o for end-to-end task completion assessment, 384

following the methodology of He et al. (2024a). 385

This method accommodates the existence of multi- 386

ple distinct trajectories that can each successfully 387

2A Javascript version https://playwright.dev
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AllRe-
cipes

Apple ArXiv BBC
Cam
Dict

Cour-
sera

ESPN
Git
Hub

Google
Map

HF Wolfram
Alpha

WV
All

M2W
Live

GPT-4o-mini 44.44 39.53 23.26 21.43 30.23 35.71 27.27 31.71 41.46 25.58 36.96 32.55 16.98
GPT-4o 31.11 41.86 27.91 32.56 41.86 47.62 27.27 36.59 36.58 46.51 56.52 38.83 20.75
Self-Improving
Llama-3.3 70B 35.56 39.53 9.30 28.57 37.21 38.10 50.00 24.39 34.15 23.26 41.30 32.98 18.86
self-improve (1) 55.56 39.53 27.91 45.24 20.93 61.90 34.09 39.02 39.02 23.26 39.13 38.68 15.09
self-improve (2) 40.00 30.23 27.91 30.95 32.56 59.52 29.55 43.90 46.34 41.46 39.13 38.23 16.98
self-improve (3) 44.44 30.23 32.25 33.33 32.56 47.62 31.81 43.90 48.78 34.89 45.65 38.65 16.98
Synthetic Traj. 55.56 41.86 32.25 35.71 34.89 46.51 31.81 34.14 36.59 34.89 43.47 38.98 18.86
WebEvolver 62.22 30.23 37.21 47.62 53.49 59.52 34.09 26.83 46.34 23.26 45.65 42.49 22.64
Inference-time Look-ahead
+ WebDreamer 64.44 41.86 44.19 57.14 30.23 59.52 20.45 41.46 46.34 41.86 43.48 44.61 22.64
+ WMLA (d=1) 66.67 46.51 39.53 42.86 32.56 69.05 22.73 43.90 68.29 37.21 41.46 46.24 28.30
+ WMLA (d=2) 64.44 41.86 46.51 42.86 62.79 66.67 40.91 46.34 43.90 53.49 54.34 51.37 24.53

Table 1: Task success rate on Text-only WebVoyager test set (WV; 473 queries) and Mind2Web-Live-filtered test
set (M2W Live; 53 queries). WebEvolver and WMLA are our approaches. For Inference-time Look-ahead, the
backbone policy model we use is WebEvolver. We leave more inference-time look-ahead results on different policy
models in Figure 3. Underline indicates the best among self-improving, and bold indicates the best performance
when inference-look ahead is applied.

accomplish the same task objective, other than the388

human-annotated ones. GPT-4o will be provided389

the full trajectory of the task and asked to evaluate390

whether the original query q is completed or not,391

yielding a binary score of 0 or 1.392

Regarding self-improvement, the back-393

bone agent foundation model M we use is394

Llama-3.3-70b, and subsequently the self-395

improving experiments are also based on396

Llama-3.3-70b. During rejection sampling,397

Llama-3.3-70b instead of GPT-4o is used to eval-398

uate whether the task has successfully completed399

or not. More details regarding the agent system,400

including definitions of the atomic operations,401

system prompts, are detailed in Appendix A.402

We select two live web navigation benchmarks403

for experiments, WebVoyager (He et al., 2024a)404

and Mind2Web-Live (Pan et al., 2024). Here, the405

web agent is expected to interact with the real-406

world web environment to complete the task. Since407

some websites are not accessible in our experimen-408

tal web environment, either due to geographical409

locations or IP blocks, we filter out some websites410

for our experiments3. To ensure robustness, we411

conduct our experiments roughly at the same time412

window twice and report the average results.413

4.2 Self-Improvement414

We use Llama3.3-70B as the backbone LLM M415

for sampling and self-improving. For the train-416

ing query, we follow OpenWebVoyager (He et al.,417

3Details about the websites are presented in Appendix B

2024b)4 to use the training set of Mind2web and 418

self-instructed queries from both the websites in 419

WebVoyager and Mind2web, in total 1,516 queries. 420

We first use Llama3.3-70B as the backbone agent 421

policy model for sampling queries, and conduct a 422

round of rejection sampling using Llama3.3-70B 423

itself as the backbone for evaluation function r̂5, 424

using the evaluation prompt in Appendix A. The tra- 425

jectories are then used to fine-tune Llama3.3-70B 426

to acquire the model named self-improve (iter 1). 427

Then, we use the improved model to conduct an- 428

other round of trajectory sampling, where the newly 429

sampled finished trajectories are added to the train- 430

ing data in the first round, to train a new model 431

named self-improve (iter 2). In the meantime, we 432

convert the trajectories to the form of training a 433

world model, meaning predicting the next obser- 434

vation ot based on the scheduled observation at−1 435

and the histories of the observations. 436

World Model We adopt a Llama3.3-70B to fine- 437

tune the world model, alongside the self-improving 438

of policy model, to get world model (iter 1) and 439

world model (iter 2). For synthetic trajectory gen- 440

eration, we use the world model Mw (at iteration 441

2) and policy model M1 (at iteration 1, which has 442

a better performance). For each query q, beginning 443

with an initial observation-action pair (o0, a0), we 444

4https://github.com/MinorJerry/OpenWebVoyager/
tree/main/WebVoyager/data_for_training/IL

5In the original OpenWebVoyager paper, GPT-4o serves as
the backbone for the scoring function. In this work, to ensure
a purely self-improving process, we only employ Llama3-70B
within the self-improvement loop.
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Figure 3: Visual illustration of overall success rate evolv-
ing on WebVoyager and Mind2Web-Live.

alternate between world model prediction and pol-445

icy decisions: at each timestep t, the world model446

generates the next synthetic observation ôt accord-447

ing to Equation (9), which the policy model then448

uses to produce the subsequent action ât via Equa-449

tion (10). This interaction forms complete synthetic450

multi-step trajectories τ̂ of length T = 7 steps, with451

early termination if the world model generates a452

terminal state. An example if presented in Figure 4.453

To have a more diverse training set, we only use454

the queries that are not successfully executed in455

self-improving iterations to acquire synthetic tra-456

jectories. We apply another round of rejection sam-457

pling using the evaluation protocol R, while using458

zero-shot Llama3.3-70B as the backbone language459

model to follow the setting of self-improving. In460

the end, the world-model-synthesized data are com-461

bined with the SFT data in self-improvement, to462

train Llama3.3-70B to acquire the final model of463

WebEvolver.464

4.3 Inference-time World Model Look-ahead465

(WMLA)466

To perform WMLA, we use the policy model M467

to sample up to 3 actions. At time step t, with ob-468

servation ot, we use the original policy model with469

temperature equal to 0 to generate the first action,470

a
(1)
t . Since the fine-tuned policy model will have a471

sharp output distribution, making it hard to directly472

sample different actions during decoding, besides473

setting the decoding temperature to 0.7, we add a474

sentence of additional prompt to guide the policy475

model to generate the k-th action: Please generate476

actions different from {a(j)t , j ∈ {1, . . . , k − 1}}.477

Then, we use the final world model world model478

(iter 2) and the policy agent model to iteratively479

sample future look-ahead trajectories based on480

Equation (11), with a look-ahead depth of 1, 2,481

and 3. Then, following WebDreamer, we use GPT-482

4o as the scoring function to rate each action based483

on the look-ahead results and choose the action484

with the highest score for execution. 485

4.4 Results and Analysis 486

In this subsection, we provide results of self- 487

improvements, the effect of WMLA, the intrinsic 488

evaluation of world models, and additional experi- 489

ments on GAIA. 490

WebEvolver and WMLA Main Results Our 491

key findings are presented in Table 1, with the 492

progression of self-improvement across iterations 493

visualized in Figure 3. The first two rows of the ta- 494

ble establish reference performance using GPT-4o 495

and GPT-4o-mini as foundation models. In terms 496

of self-improvement, the initial self-improvement 497

iteration yields a 6% success rate increase over 498

the zero-shot baseline on WebVoyager, due to en- 499

hanced format compliance and task familiarity. Per- 500

formance plateaus at iteration 2, suggesting limited 501

gains from additional similar trajectories. However, 502

incorporating world-model-synthesized data with 503

iteration 1’s supervised fine-tuning (SFT) data pro- 504

duces a further 4% improvement. This has better 505

improvement compared to the baseline approach 506

adapted from Patel et al. (2024) that generates syn- 507

thetic trajectories without world modeling. 508

For inference-time action selection with WebE- 509

volver, we benchmark against WebDreamer using 510

GPT-4o for both outcome prediction and action 511

evaluation. Our World Model-based Look-ahead 512

(WMLA) demonstrates optimal performance at 513

depth d = 2, balancing prediction accuracy against 514

computational overhead. Notably, increasing to 515

d = 3 provides diminishing returns, consistent 516

with our world model’s performance characteris- 517

tics (see Table 2). 518

World Model Intrinsic Evaluation We evalu- 519

ate our world model’s ability to generate plausible 520

next webpages through three metrics: Structural 521

correctness (STR) measuring syntactic validity of 522

the generated accessibility tree, Similarity (Sim.) 523

assessing alignment with ground-truth webpage 524

content, and Overall assessment (O/A) evaluat- 525

ing functional and semantic coherence. While real- 526

time information (e.g., from BBC or Hugging Face) 527

inevitably causes hallucinations during generation, 528

we do not directly evaluate the degree of hallucina- 529

tion. Hallucinations are implicitly captured through 530

Sim. and O/A scores, yet they pose minimal risk 531

in our framework. In fact, they may enhance di- 532

versity and knowledge in synthesized trajectories, 533

with benefits empirically validated by downstream 534
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Model All Depth=1 Depth=2 Depth=3 Depth≥4
STR Sim. O/A STR Sim. O/A STR Sim. O/A STR Sim. O/A STR Sim. O/A

gpt-4o 40.62 33.26 37.85 41.24 35.73 40.21 38.20 32.58 36.70 36.99 31.96 37.44 42.41 32.91 37.45
Llama-3.3-70b 39.04 32.25 38.77 43.64 39.51 34.83 39.33 34.83 41.95 39.73 33.33 41.55 36.85 27.99 35.16
iter-1 49.23 37.83 43.15 55.44 44.91 50.52 53.03 39.77 46.59 53.70 40.28 46.30 43.76 33.33 37.73
iter-2 56.79 44.77 51.82 75.96 63.56 72.86 57.80 45.14 52.32 51.24 35.82 45.27 50.54 39.94 45.31

Table 2: Performance of intrinsic evaluation of world modeling. Structural correctness (STR) measures syntactic
validity of the generated accessibility tree, Similarity (Sim.) assesses alignment with ground-truth webpage content,
and Overall assessment (O/A) evaluates functional and semantic coherence. All values are percentages (range
0-100). Details of the evaluation metrics ae presented in Section 4.4.

Model GAIA
Level 1

GAIA
Level 2 SimpleQA

Llama 3.3-70b 19.2 10.9 36
iter 1 26.9 15.6 44
iter 2 26.9 12.5 45
WebEvolver 30.7 17.2 48
+ WMLA 34.6 17.2 58

Table 3: GAIA-web and SimpleQA performance.

performance gains. We use GPT-4o to perform an535

automatic evaluation of all three metrics and nor-536

malize the scores to 0∼ 1. The prompt we used537

is presented in Appendix A. The results are pre-538

sented in Table 2. We can see that the performance539

degrades sharply (scores < 0.50) for generation540

depths > 2, which is in line with the experiments541

in WMLA that the performance gain diminishes542

when WMLA depths ≥ 3.543

Out-of-domain Generalization We evaluate our544

improved agent foundation model on GAIA (Mi-545

alon et al., 2024), focusing on the web-dependent546

query subset (GAIA-web)6, and also Sim-547

pleQA (Wei et al., 2024), where we use web agent548

to explore the answers. Since GAIA typically re-549

quire multi-step web navigation combined with550

arithmetic/logical reasoning. and the self-improved551

agent LLM focuses solely on action generation, we552

adopt a hybrid approach: we use GPT-4o to de-553

compose queries into sub-tasks that web agents can554

address, and also leverage GPT-4o for result gener-555

ation and calculation. The web agent component556

is based on Llama-based models including WebE-557

volver. We use bing.com instead of Google due558

to CAPTCHA challenges, which can also demon-559

strating our method’s out-of-domain generalization560

since the training data does not contain trajecto-561

ries in bing.com. Results on Table 3 show con-562

sistent improvement on Level 1 and SimpleQA563

6https://github.com/MinorJerry/WebVoyager/
blob/main/data/GAIA_web.jsonl

queries through self-improvement and world model 564

augmentation, mirroring trends observed in Web- 565

Voyager and Mind2web-live. However, Level 2 566

queries, which demand deeper reasoning and ex- 567

tended multi-step interactions, show limited gains, 568

as these capabilities lie beyond our current train- 569

ing scope. This limitation highlights an important 570

direction for future work in developing agents for 571

complex, real-world web tasks. 572

Analysis of World-Model Synthesized Trajecto- 573

ries We provide two cases on the world-model 574

synthesized trajectories, indicating that LLM itself 575

contains useful knowledge about the common struc- 576

tures of the web and has the potential to provide 577

diverse trajectories. It is provided in Figure 4. This 578

case demonstrates an operation involving a click 579

on the ‘sort by‘ menu in the GitHub search console. 580

Although the world model has not been further fine- 581

tuned on trajectories that include clicking the ‘sort 582

by‘ button, it is still able to accurately generate the 583

menu items for GitHub Search, such as sorting by 584

best match, most stars, and so on. This capability 585

arises from the commonsense knowledge inher- 586

ently encoded in the LLM. We find that this feature 587

is highly beneficial for improving the diversity of 588

interactions with previously unseen websites. 589

5 Conclusion 590

In this paper, we present WebEvolver, a frame- 591

work for agent foundation model self-improvement 592

through co-learning with a world model, which en- 593

hances the effectiveness of the self-improvement 594

cycle. The co-learned world model can also be 595

utilized for inference-time look-ahead, aiding in 596

the selection among different sampled actions. Ex- 597

periments on WebVoyager, Mind2Web-Live, and 598

GAIA-web demonstrate the effectiveness of boost- 599

ing the performance of self-improving agent. 600
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Limitations601

First, the agent system we use includes only an602

action generation module, whereas recent stud-603

ies have shown that incorporating a standalone604

planning module can further enhance agent per-605

formance. However, planning is orthogonal to our606

research focus. Second, because we focus on open-607

domain, real-world web environments, websites608

may change over time, making it difficult for future609

work to exactly replicate the same web conditions.610

To ensure fair comparisons in our experiments, we611

complete all tasks within approximately the same612

time frame. Additionally, we include GAIA-web613

and SimpleQA as two supplementary evaluation614

datasets, as they primarily focus on factual ques-615

tions and are less susceptible to significant changes616

over time.617
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AGENT SYSTEM PROMPT

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given
web-based tasks. These tasks will be accomplished through the use of specific actions you can
issue.

Here’s the information you’ll have:

• The user’s objective: This is the task you’re trying to complete.

• The current observation (web page’s accessibility tree): This is a simplified representation
of the webpage, providing key information. Optionally, you may be provided with a screenshot
of the webpage. You should pay close attention to the screesnhot to make decisions.

• The open tabs: These are the tabs you have open.

• The previous actions: You can refer to the conversation history with the user to see the
actions you have taken. It may be helpful to track your progress.

The actions you can perform are the following:

• ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

• ‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the Ënterk̈ey is pressed after typing unless press_enter_after is set to
0.

• ‘wait‘: Wait for the page to load, with a duration of 5 seconds.

• ‘goback‘: Navigate to the previously viewed page.

• ‘restart‘: Navigate to the Google search homepage. When you can’t find information in some
websites, try starting over from Google search.

• ‘stop [answer]‘: Issue this action when you believe the task is complete. If the objective is
to find a text-based answer, provide the answer in the bracket. If you believe the task is
impossible to complete, provide the answer as "N/A" in the bracket.

To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation. For example,
you should NOT type into buttons or click on statictext.

2. You should only issue one action at a time.

3. STRICTLY Avoid repeating the same action if the webpage remains unchanged. You may have
selected the wrong web element or numerical label. Continuous use of the Wait is also NOT allowed.

4. Issue stop action when you think you have achieved the objective. Don’t generate anything
after stop.

Your reply should strictly follow the format: Thought: {{Your brief thoughts (briefly summarize
the info that will help complete the task)}} Action: “‘{{the next action you choose to take}}“‘

889

The system prompt for using world model as a web server, by generating the next observation based on890

current observation and the scheduled action. We present two variation of world model objectives, the first891

one is to only predict an abstract short description of what the next observation is (denoted as Abstract892

Description), and the second one is to predict the structured accessibility tree of the next observation893

(denoted as Accessibility Tree).894

WORLD MODEL LOOK-AHEAD (ABSTRACT DESCRIPTION)

You are a web server. You are given the current observed accessibility tree of the web page,
and an action to perform.

895
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The expected output is a short description on what the next observation is, in the form of free
text.
The definitions of the actions are as follows: The actions you can perform are the following:

• ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

• ‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the Ënterk̈ey is pressed after typing unless press_enter_after is set to
0.

• ‘scroll [direction=down|up]‘: Scroll the page up or down.

• ‘goback‘: Navigate to the previously viewed page.

• ‘restart‘: Navigate to the original home page and restart the action.

896

WORLD MODEL LOOK-AHEAD (ACCESSIBILITY TREE)

You are an intelligent assistant designed to interact with web pages through an accessibility
tree. Your task is to predict the accessibility tree of the next web page based on the given
starting accessibility tree and a specified action. The format of accessibility tree:

Tab 0 (current): Google \n \n[1] RootWebArea ’Google’ focused: true\n�[2] link ’Gmail ’\n�[3]
link ’Search Image ’\n�[4] button ’Google Apps’ expanded: false\n�[5] link ’Log in’\n�[6] image
’2024’\n�[7] combobox ’Search’ focused: true autocomplete: both hasPopup: listbox required:
false expanded: false\n�[8] button ’Share’

The format of action:

type [7] [JQuery selector for elements with specific class] [1]

which indicates typing "JQuery selector for elements with specific class" into the field with
id 7, corresponding to the combobox (search box) on the Google homepage.

The definitions of the actions are as follows: The actions you can perform are the following:

• ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

• ‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the Ënterk̈ey is pressed after typing unless press_enter_after is set to
0.

• ‘scroll [direction=down|up]‘: Scroll the page up or down.

• ‘goback‘: Navigate to the previously viewed page.

• ‘restart‘: Navigate to the Google search homepage. When you can’t find information in some
websites, try starting over from Google search.

897

The system prompt for automatic evaluation of a web agent task. 898

AUTOMATIC EVALUATION

As an evaluator, you will be presented with three primary components to assist you in your role:

1. Web Task Instruction: This is a clear and specific directive provided in natural language,
detailing the online activity to be carried out. These requirements may include conducting
searches, verifying information, comparing prices, checking availability, or any other action
relevant to the specified web service (such as Amazon, Apple, ArXiv, BBC News, Booking etc).

2. Result Webpage Accessibility Tree: This is a representation of the web page showing the
result or intermediate state of performing a web task. It serves as proof of the actions taken
in response to the instruction.

3. Result Response: This is a textual response obtained after the execution of the web task. It
serves as textual result in response to the instruction.

899
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• You DO NOT NEED to interact with web pages or perform actions such as booking flights or
conducting searches on websites.

• You SHOULD NOT make assumptions based on information not presented in the webpage when comparing
it to the instructions.

• Your primary responsibility is to conduct a thorough assessment of the web task instruction
against the outcome depicted in the screenshot and in the response, evaluating whether the
actions taken align with the given instructions.

• NOTE that the instruction may involve more than one task, for example, locating the garage
and summarizing the review. Failing to complete either task, such as not providing a summary,
should be considered unsuccessful.

• NOTE that the screenshot is authentic, but the response provided by LLM is generated at the
end of web browsing, and there may be discrepancies between the text and the screenshots.

• Note the difference: 1) Result response may contradict the screenshot, then the content of the
screenshot prevails, 2) The content in the Result response is not mentioned on the screenshot,
choose to believe the content.

You should elaborate on how you arrived at your final evaluation and then provide a definitive
verdict on whether the task has been successfully accomplished, either as ’SUCCESS’ or ’NOT
SUCCESS’.

900

The system prompt for automatic evaluation of world modeling.901

WORLD MODEL INTRINSIC EVALUATION

You are tasked with evaluating the accuracy of ntnerated accessibility tree against a ground
truth accessibility tree obtained from an actual web server. Your evaluation should focus on
three main criteria: structure correctness, element correctness, and similarity. Follow the
instructions below to perform a detailed comparison:

Criteria for Evaluation:
1. **Structure Correctness**:

• Ensure that the basic hierarchy and relationships between elements in the generated tree match
the ground truth.

• Ensure that interactive elements (like buttons, links, forms) are correctly represented and
maintain their intended functionality.

2. **Similarity (GPT-score)**:

• Assess how similar the generated content is compared to the ground truth.

• Provide a similarity score based on the overall content and structure comparison.

3. **Overall Functionality Assessment**:

• Compare the functional coherence of the generated tree to the ground truth tree, focusing on
the representation and functionality of interactive elements.

• Evaluate the semantic coherence of the generated tree, ensuring that it conveys the same
meaning and purpose as the ground truth.

For example, if if the webpage is on Allrecipe, as long as the generated tree contain
necessary recipe, no matter hallucination, it can be considered as success. For example,
if the webpage is on google, in searching for some information, then only consider whether
the generated tree contain roughly necessary information without the need to check the factuality.

1. **Input Trees**:

• You will be provided with two accessibility trees: one generated by a language model simulating
a web browser, and one obtained from an actual web server.

2. **Output Format**:
- Provide rationale of your findings, including:

902
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• Structural discrepancies

• Similarity score with an explanation

• Scores should be selected from [0, 1, 2, 3]. 3 means exactly the same and 0 means a total
failure of generation.

### Example Output
Structure Correctness: [THOUGHT]\n Score: [score]\n
Similarity: [THOUGHT]\n Score: [score]\n
Overall Functionality Assessment: [THOUGHT]\nScore: [score]\n

903

B Additional Details on Mind2web-live and WebVoyager Dataset 904

We conduct our evaluations using a subset of the testing portion of Mind2Web-Live7 and WebVoyager8. 905

Here is a list of the websites that are excluded: 906

EXCLUDED WEBSITES

EXCLUDED_WEBSITES_MIND2WEB = { ’exploretock’, ’kohls’, ’united’, ’parking’, ’viator’,
’delta’, ’redbox’, ’soundcloud’, ’gamestop’, ’travelzoo’, ’amctheatres’, ’ryanair’,
’cargurus’, ’resy’, ’rentalcars’, ’kbb’, ’cabelas’, ’menards’, ’yellowpages’, ’tripadvisor’,
’tiktok.music’, ’stubhub’, ’thumbtack’, ’weather’, ’uhaul’, ’health.usnews’, ’healthgrades’,
’theweathernetwork’, ’zocdoc’, ’usnews.education’, ’epicurious’, ’osu.edu’, ’ups’,
’dmv.virginia.gov’, ’extraspace’, ’finance.yahoo’, ’pinterest’, ’sixflags’, ’spothero’,
’justice.gov’, ’foxsports’, ’ign’, ’koa’, ’tvguide’, ’webmd’, ’sports.yahoo’, ’babycenter’,
’tesla’, }
EXCLUDED_WEBSITES_WEBVOYAGER = { ’booking’, ’espn’, ’amazon’, ’google’, ’googleflight’ }

907

7https://huggingface.co/datasets/iMeanAI/Mind2Web-Live/blob/main/mind2web-live_test_20241024.json
8https://github.com/MinorJerry/WebVoyager/blob/main/data/WebVoyager_data.jsonl
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Tab 0 (current): GitHub 

[1] RootWebArea 'Repository search results · GitHub’ 

…

  [104] menu 'Sort by: Best match' orientation: vertical

  [105] menuitemradio 'Best match' focused: true checked: true 

[106] menuitemradio 'Most stars' checked: false keyshortcuts: m

  [107] menuitemradio 'Fewest stars' checked: false keyshortcuts: f

  [108] menuitemradio 'Most forks' checked: false keyshortcuts: m

  [109] menuitemradio 'Fewest forks' checked: false keyshortcuts: f

  [110] menuitemradio 'Recently updated' checked: false

[47] heading ‘mlabonne/llm-course'

[48] link ‘mlabonne/llm-course’

… 

[59] link '48.9k stars'

[64] heading ‘modular/max’

[65] link ‘modular/max’

…

[76] link '23.8k stars’

…

[81] ‘heading pathwaycom/llm-app 

…

Tab 0 (current): GitHub

[1] RootWebArea 'Repository search results · GitHub’ 

…

[37] button 'Sort by: Best match’     hasPopup: menu 

expanded: true

[38] StaticText 'Best match’

[39] menuitem 'Sort by: Best match’ 

[40] menuitem 'Sort by: Most stars‘

[41] menuitem 'Sort by: Fewest stars‘

[42] menuitem 'Sort by: Most forks’

…

[84] link 'google/ml-metadata’

[85] heading 'google/ml-metadata’

[98] link '1.5k stars'\n\t

…

[103] link 'sayak-paul/awesome-machine-

learning-in-rust'

…

[115] link '573 stars’\n\t

[119] link 'google-research/google-

research.github.io

[127] link '144 stars’

…

Actual Web Page

Actual Accessibility Tree

World Model-Synthesized Accessibility Tree

Click [106]

Click [40]

What are the most starred repos related to machine learning 

that was created after 2023-01-01, on www.github.com? 

CallWeb(query=machine-learning created:>2023-01-01 

stars:>1, target_url=www.github,com)

mlabonne/

llm-course

'google/

ml-metadata

Actual 

Response

Synthesized 

Response

Open www.github.com

Type machine-learning created:>2023-01-01 stars:>1

Initial State

clicking `sort by`

Figure 4: An example of world model-synthesized trajectory.
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