
Published as a conference paper at ICLR 2024

EFFICIENT EPISODIC MEMORY UTILIZATION OF COOP-
ERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Hyungho Na1, Yunkyeong Seo1 & Il-Chul Moon1,2

1Korea Advanced Institute of Science and Technology (KAIST), 2summary.ai
{gudgh723}@gmail.com,{tjdbsrud,icmoon}@kaist.ac.kr

ABSTRACT

In cooperative multi-agent reinforcement learning (MARL), agents aim to achieve
a common goal, such as defeating enemies or scoring a goal. Existing MARL algo-
rithms are effective but still require significant learning time and often get trapped
in local optima by complex tasks, subsequently failing to discover a goal-reaching
policy. To address this, we introduce Efficient episodic Memory Utilization (EMU)
for MARL, with two primary objectives: (a) accelerating reinforcement learning
by leveraging semantically coherent memory from an episodic buffer and (b) selec-
tively promoting desirable transitions to prevent local convergence. To achieve (a),
EMU incorporates a trainable encoder/decoder structure alongside MARL, creating
coherent memory embeddings that facilitate exploratory memory recall. To achieve
(b), EMU introduces a novel reward structure called episodic incentive based on
the desirability of states. This reward improves the TD target in Q-learning and
acts as an additional incentive for desirable transitions. We provide theoretical
support for the proposed incentive and demonstrate the effectiveness of EMU
compared to conventional episodic control. The proposed method is evaluated in
StarCraft II and Google Research Football, and empirical results indicate further
performance improvement over state-of-the-art methods. Our code is available at:
https://github.com/HyunghoNa/EMU.

1 INTRODUCTION

Recently, cooperative MARL has been adopted to many applications, including traffic control (Wier-
ing et al., 2000), resource allocation (Dandanov et al., 2017), robot path planning (Wang et al., 2020a),
and production systems (Dittrich & Fohlmeister, 2020), etc. In spite of these successful applications,
cooperative MARL still faces challenges in learning proper coordination among multiple agents
because of the partial observability and the interaction between agents during training.

To address these challenges, the framework of centralized training and decentralized execution
(CTDE) (Oliehoek et al., 2008; Oliehoek & Amato, 2016; Gupta et al., 2017) has been proposed.
CTDE enables a decentralized execution while fully utilizing global information during centralized
training, so CTDE improves policy learning by accessing to global states at the training phase.
Especially, value factorization approaches (Sunehag et al., 2017; Rashid et al., 2018; Son et al., 2019;
Yang et al., 2020; Rashid et al., 2020; Wang et al., 2020b) maintain the consistency between individual
and joint action selection, achieving the state-of-the-art performance on difficult multi-agent tasks,
such as StarCraft II Multi-agent Challenge (SMAC) (Samvelyan et al., 2019). However, learning
optimal policy in MARL still requires a long convergence time due to the interaction between agents,
and the trained models often fall into local optima, particularly when agents perform complex tasks
(Mahajan et al., 2019). Hence, researchers present a committed exploration mechanism under this
CTDE training practice (Mahajan et al., 2019; Yang et al., 2019; Wang et al., 2019; Liu et al., 2021)
with the expectation to find episodes escaping from the local optima.

Despite the required exploration in MARL with CTDE, recent works on episodic control emphasize
the exploitation of episodic memory to expedite reinforcement learning. Episodic control (Lengyel
& Dayan, 2007; Blundell et al., 2016; Lin et al., 2018; Pritzel et al., 2017) memorizes explored
states and their best returns from experience in the episodic memory, to converge on the best policy.
Recently, this episodic control has been adopted to MARL (Zheng et al., 2021), and this episodic

1

Published as a conference paper at ICLR 2024

control case shows faster convergence than the learning without such memory. Whereas there are
merits from episodic memory and control from its utilization, there exists a problem of determining
which memories to recall and how to use them, to efficiently explore from the memory. According
to Blundell et al. (2016); Lin et al. (2018); Zheng et al. (2021), the previous episodic control
generally utilizes a random projection to embed global states, but this random projection hardly
makes the semantically similar states close to one another in the embedding space. In this case,
exploration will be limited to a narrow distance threshold. However, this small threshold leads to
inefficient memory utilization because the recall of episodic memory under such small thresholds
retrieves only the same state without consideration of semantic similarity from the perspective of
goal achievement. Additionally, the naive utilization of episodic control on complex tasks involves
the risk of converging to local optima by repeatedly revisiting previously explored states, favoring
exploitation over exploration.

Contribution. This paper presents an Efficient episodic Memory Utilization for multi-agent rein-
forcement learning (EMU), a framework to selectively encourage desirable transitions with semantic
memory embeddings.

• Efficient memory embedding: When generating features of a global state for episodic
memory (Figure 1(b)), we adopt an encoder/decoder structure where 1) an encoder embeds
a global state conditioned on timestep into a low-dimensional feature and 2) a decoder takes
this feature as an input conditioned on the timestep to predict the return of the global state.
In addition, to ensure smoother embedding space, we also consider the reconstruction of
the global state when training the decoder to predict its return. To this end, we develop
deterministic Conditional AutoEncoder (dCAE) (Figure 1(c)). With this structure, important
features for overall return can be captured in the embedding space. The proposed embedding
contains semantic meaning and thus guarantees a gradual change of feature space, making the
further exploration on memory space near the given state, i.e., efficient memory utilization.

• Episodic incentive generation: While the semantic embedding provides a space to explore,
we still need to identify promising state transitions to explore. Therefore, we define a
desirable trajectory representing the highest return path, such as destroying all enemies in
SMAC or scoring a goal in Google Research Football (GRF) (Kurach et al., 2020). States
on this trajectory are marked as desirable in episodic memory, so we could incentivize the
exploration on such states according to their desirability. We name this incentive structure
as an episodic incentive (Figure 1(d)), encouraging desirable transitions and preventing
convergence to unsatisfactory local optima. We provide theoretical analyses demonstrating
that this episodic incentive yields a better gradient signal compared to conventional episodic
control.

We evaluate EMU on SMAC and GRF, and empirical results demonstrate that the proposed method
achieves further performance improvement compared to the state-of-art baseline methods. Ablation
studies and qualitative analyses validate the propositions made by this paper.

2 PRELIMINARY

2.1 DECENTRALIZED POMDP

A fully cooperative multi-agent task can be formalized by following the Decentralized Par-
tially Observable Markov Decision Process (Dec-POMDP) (Oliehoek & Amato, 2016), G =
⟨I, S,A, P,R,Ω, O, n, γ⟩, where I is the finite set of n agents; s ∈ S is the true state of the
environment; ai ∈ A is the i-th agent’s action forming the joint action a ∈ An; P (s′|s,a) is the
state transition function; R is a reward function r = R(s,a, s′) ∈ R; Ω is the observation space; O
is the observation function generating an observation for each agent oi ∈ Ω; and finally, γ ∈ [0, 1) is
a discount factor. At each timestep, an agent has its own local observation oi, and the agent selects an
action ai ∈ A. The current state s and the joint action of all agents a lead to a next state s′ according
to P (s′|s,a). The joint variable of s, a, and s′ will determine the identical reward r across the
multi-agent group. In addition, similar to Hausknecht & Stone (2015); Rashid et al. (2018), each
agent utilizes a local action-observation history τi ∈ T ≡ (Ω × A) for its policy πi(a|τi), where
π : T ×A→ [0, 1].

2

Published as a conference paper at ICLR 2024

2.2 DESIRABILITY AND DESIRABLE TRAJECTORY

Definition 1. (Desirability and Desirable Trajectory) For a given threshold returnRthr and a trajectory
T := {s0,a0, r0, s1,a1, r1, ..., sT }, T is considered as a desirable trajectory, denoted as Tξ, when
an episodic return is Rt=0 = ΣT−1

t′=t rt′ ≥ Rthr. A binary indicator ξ(·) denotes the desirability of
state st as ξ(st) = 1 when st ∈ ∀Tξ.

In cooperative MARL tasks, such as SMAC and GRF, the total amount of rewards from the environ-
ment within an episode is often limited as Rmax, which is only given when cooperative agents achieve
a common goal. In such a case, we can set Rthr = Rmax. For further description of cooperative
MARL, please see Appendix A.

2.3 EPISODIC CONTROL IN MARL

Episodic control was introduced from the analogy of a brain’s hippocampus for memory utilization
(Lengyel & Dayan, 2007). After the introduction of deep Q-network, Blundell et al. (2016) adopted
this idea of episodic control to the model-free setting by storing the highest return of a given state,
to efficiently estimate the Q-values of the state. This recalling of the high-reward experiences helps
to increase sample efficiency and thus expedites the overall learning process (Blundell et al., 2016;
Pritzel et al., 2017; Lin et al., 2018). Please see Appendix A for related works and further discussions.

At timestep t, let us define a global state as st. When utilizing episodic control, instead of directly
using st, researchers adopt a state embedding function fϕ(s) : S → Rk to project states toward
a k-dimensional vector space. With this projection, a representation of global state st becomes
xt = fϕ(st). The episodic control memorizes H(fϕ(st)), i.e., the highest return of a given global
state st, in episodic buffer DE (Pritzel et al., 2017; Lin et al., 2018; Zheng et al., 2021). Here, xt is
used as a key to the highest return, H(xt); as a key-value pair in DE . The episodic control in Lin
et al. (2018) updates H(xt) with the following rules.

H(xt) =

{
max{H(x̂t), Rt(st,at)}, if ||x̂t − xt||2 < δ

Rt(st,at), otherwise , (1)

whereRt(st,at) is the return of a given (st,at); δ is a threshold value of state-embedding difference;
and x̂t = fϕ(ŝt) is xt = fϕ(st)’s nearest neighbor inDE . If there is no similar projected state x̂t such
that ||x̂t−xt||2 < δ in the memory, thenH(xt) keeps the currentRt(st,at). Leveraging the episodic
memory, EMC (Zheng et al., 2021) presents the one-step TD memory target QEC(fϕ(st),at) as

QEC(fϕ(st),at) = rt(st,at) + γH(fϕ(st+1)). (2)

Then, the loss function LECθ for training can be expressed as the weighted sum of one-step TD error
and one-step TD memory error, i.e., Monte Carlo (MC) inference error, based on QEC(fϕ(st),at).

LECθ = (y(s,a)−Qtot(s,a; θ))2 + λ(QEC(fϕ(s),a)−Qtot(s,a; θ))2, (3)

where y(s,a) is one-step TD target; Qtot is the joint Q-value function parameterized by θ; and λ is a
scale factor.

Problem of the conventional episodic control with random projection Random projection is
useful for dimensionality reduction as it preserves distance relationships, as demonstrated by the
Johnson-Lindenstrauss lemma (Dasgupta & Gupta, 2003). However, a random projection adopted
for fϕ(s) hardly has a semantic meaning in its embedding xt, as it puts random weights on the
state features without considering the patterns of determining the state returns. Additionally, when
recalling the memory from DE , the projected state xt can abruptly change even with a small change
of st because the embedding is not being regulated by the return. This results in a sparse selection
of semantically similar memories, i.e. similar states with similar or better rewards. As a result,
conventional episodic control using random projection only recalls identical states and relies on its
own Monte-Carlo (MC) return to regulate the one-step TD target inference, limiting exploration of
nearby states on the embedding space.

The problem intensifies when the high-return states in the early training phase are indeed local optima.
In such cases, the naive utilization of episodic control is prone to converge on local minima. As a
result, for the super hard tasks of SMAC, EMC (Zheng et al., 2021) had to decrease the magnitude of
this regularization to almost zero, i.e., not considering episodic memories anymore.

3

Published as a conference paper at ICLR 2024

3 METHODOLOGY

This section introduces Efficient episodic Memory Utilization (EMU) (Figure 1). We begin by
explaining how to construct (1) semantic memory embeddings to better utilize the episodic memory,
which enables memory recall of similar, more promising states. To further improve memory utiliza-
tion, as an alternative to the conventional episodic control, we propose (2) episodic incentive that
selectively encourages desirable transitions while preventing local convergence towards undesirable
trajectories.

(d) Episodic Incentive Generation

𝑟𝑝

𝑥

Environment

Controller
𝑄𝑖(∙; 𝜃)

Mixing Network
𝑄𝑡𝑜𝑡 = 𝑓(𝑄1, 𝑄2,⋯ , 𝑄𝑛; 𝜃)

Mixing

𝑜𝑖
′
𝑖=1
𝑁 , 𝑟𝑖 𝑖=1

𝑁𝑎𝑖 𝑖=1
𝑁

Gradients

(a) Standard Value

Factorization Framework

(𝝉, 𝒂, 𝝉′, 𝑠, 𝑟)
Replay Buffer 𝑫

𝑠

𝐻(𝑠), 𝑡

𝑓𝜙(∙)

(b) Episodic Buffer 𝑫𝑬

𝑠, 𝐻 𝑠 , 𝑡

⋮ ⋮ ⋮ 𝑠, 𝑡

𝑓𝜙(∙)

𝑥𝑠 𝑥

𝑡

𝑡

ҧ𝑠

ഥ𝐻

𝑓𝜙(∙)
𝑓𝜓(∙)

FC

FC

ReLU

ReLU

FC

FC

ReLU

FC

ReLU

FC

(c) State Embedding Structure

𝑥

𝑥′

𝛿

𝜉 = 1

𝜉 = 0

𝑟𝑝

Figure 1: Overview of EMU framework.

3.1 SEMANTIC MEMORY EMBEDDING

Episodic Memory Construction To address the problems of a random projection adopted in episodic
control, we propose a trainable embedding function fϕ(s) to learn the state embedding patterns
affected by the highest return. The problem of a learnable embedding network fϕ is that the match
between H(fϕ(st)) and st breaks whenever fϕ is updated. Hence, we save the global state st as well
as a pair of Ht and xt in DE , so that we can update x = fϕ(s) whenever fϕ is updated. In addition,
we store the desirability ξ of st according to Definition 1. Appendix E.1 illustrates the details of
memory construction proposed by this paper.

Learning framework for State Embedding When training fϕ(st), it is critical to extract important
features of a global state that affect its value, i.e., the highest return. Thus, we additionally adopt
a decoder structure H̄t = fψ(xt) to predict the highest return Ht of st. We call this embedding
function as EmbNet, and its learning objective of fϕ and fψ can be written as

L(ϕ,ψ) = (Ht − fψ(fϕ(st)))2 . (4)

When constructing the embedding space, we found that an additional consideration of reconstruction
of state s conditioned on timestep t improves the quality of feature extraction and constitutes a
smoother embedding space. To this end, we develop the deterministic conditional autoencoder
(dCAE), and the corresponding loss function can be expressed as

L(ϕ,ψ) =
(
Ht − fHψ (fϕ(st|t)|t)

)2
+ λrcon||st − fsψ(fϕ(st|t)|t)||22, (5)

where fHψ predicts the highest return; fsψ reconstructs st; λrcon is a scale factor. Here, fHψ and fsψ
share the lower part of networks as illustrated in Figure 1(c). Appendix C.1 presents the details of
network structure of fϕ and fψ , and Algorithm 1 in Appendix C.1 presents the learning framework for
fϕ and fψ . This training is conducted periodically in parallel to the RL policy learning on Qtot(·; θ).
Figure 2 illustrates the result of t-SNE (Van der Maaten & Hinton, 2008) of 50K samples of x ∈ DE
out of 1M memory data in training for 3s_vs_5z task of SMAC. Unlike supervised learning
with label data, there is no label for each xt. Thus, we mark xt with its pair of the highest return
Ht. Compared to a random projection in Figure 2(a), xt via fϕ is well-clustered, according to the
similarity of the embedded state and its return. This clustering of xt enables us to safely select

4

Published as a conference paper at ICLR 2024

(a) Random Projection (b) EmbNet (c) dCAE

Figure 2: t-SNE of sampled embedding x ∈ DE . Colors from red to purple (rainbow) represent from
low return to high return.

episodic memories around the key state st, which constitutes efficient memory utilization. This
memory utilization expedites learning speed as well as encourages exploration to a more promising
state ŝt near st. Appendix F illustrates how to determine δ of Eq. 1 in a memory-efficient way.

3.2 EPISODIC INCENTIVE

With the learnable memory embedding for an efficient memory recall, how to use the selected
memories still remains a challenge because a naive utilization of episodic memory is prone to
converge on local minima. To solve this issue, we propose a new reward structure called episodic
incentive rp by leveraging the desirability ξ of states in DE . Before deriving the episodic incentive
rp, we first need to understand the characteristics of episodic control. In this section, we denote the
joint Q-function Qtot(·; θ) simply as Qθ for conciseness.

Theorem 1. Given a transition (s,a, r, s′) and H(x′), let Lθ be the Q-learning loss with additional
transition reward, i.e., Lθ := (y(s,a) + rEC(s,a, s′)−Qtot(s,a; θ))2 where rEC(s,a, s′) :=
λ(r(s,a) + γH(x′)−Qθ(s,a)), then ∇θLθ = ∇θLECθ . (Proof in Appendix B.1)

As Theorem 1 suggests, we can generate the same gradient signal as the episodic control by leveraging
the additional transition reward rEC(s,a, s′). However, rEC(s,a, s′) accompanies a risk of local
convergence as discussed in Section 2.3. Therefore, instead of applying rEC(s,a, s′), we propose
the episodic incentive rp := γη̂(s′) that provides an additional reward for the desirable transition
(s,a, r, s′), such that ξ(s′) = 1. Here, η̂(s′) estimates η∗(s′), which represents the difference
between the true value V ∗(s′) of s′ and the predicted value via target network maxa′Qθ−(s

′,a′),
defined as

η∗(s′) := V ∗(s′)−max
a′

Qθ−(s
′,a′). (6)

Note that we do not know V ∗(s′) and subsequently η∗(s′). To accurately estimate η∗(s′) with
η̂(s′), we use the expected value considering the current policy πθ as η̂(s′) := Eπθ

[η(s′)] where
η ∈ [0, ηmax(s

′)] for s′ ∼ P (s′|s,a ∼ πθ). Here, ηmax(s
′) can be reasonably approximated by

using H(fϕ(s
′)) in DE . Then, with the count-based estimation η̂(s′), episodic incentive rp can be

expressed as

rp = γη̂(s′) = γEπθ
[η(s′)] ≃ γ Nξ(s

′)

Ncall(s′)
ηmax(s

′) = γ
Nξ(s

′)

Ncall(s′)
(H(fϕ(s

′))−max
a′
Qθ−(s

′, a′)),

(7)
where Ncall(s′) is the number of visits on x̂′ = NN(fϕ(s

′)) ∈ DE ; and Nξ is the number of
desirable transition from x̂′. Here, NN(·) represents a function for selecting the nearest neighbor.
From Theorem 1, the loss function adopting episodic control with an alternative transition reward rp
instead of rEC can be expressed as

Lpθ = (r(s,a) + rp + γmax
a′

Qθ−(s
′,a′)−Qθ(s,a))2. (8)

Then, the gradient signal of the one-step TD inference loss ∇θLpθ with the episodic reward rp =
γη̂(s′) can be written as

∇θLpθ = −2∇θQθ(s, a)(∆εTD + rp) = −2∇θQθ(s, a)(∆εTD + γ
Nξ(s

′)

Ncall(s′)
ηmax(s

′)), (9)

5

Published as a conference paper at ICLR 2024

where ∆εTD = r(s, a) + γmaxa′Qθ−(s
′, a′)−Qθ(s, a) is one-step inference TD error. Here, the

gradient signal ∇θLpθ with the proposed episodic reward rp can accurately estimate the optimal
gradient signal as follows.
Theorem 2. Let∇θL∗

θ = −2∇θQθ(s, a)(∆ε∗TD) be the optimal gradient signal with the true one
step TD error ∆ε∗TD = r(s, a) + γV ∗(s′) − Qθ(s, a). Then, the gradient signal ∇θLpθ with the
episodic incentive rp converges to the optimal gradient signal as the policy converges to the optimal
policy π∗

θ , i.e., ∇θLpθ → ∇θL∗
θ as πθ → π∗

θ . (Proof in Appendix B.2)

(a) 3s5z (b) MMM2

Figure 3: Episodic incentive. Test trajectories are plotted on
the embedded space with sampled memories in DE , denoted
with dotted markers. Star markers and numbers represent the
desirability of state and timestep in the episode, respectively.
Color represents the same semantics as Figure 2.

Theorem 2 also implies that there ex-
ists a certain bias in ∇θLECθ as de-
scribed in Appendix B.2. Besides the
property of convergence to the opti-
mal gradient signal presented in The-
orem 2, the episodic incentive has
the following additional characteris-
tics. (1) The episodic incentive is
only applied to the desirable transi-
tion. We can simply see that rp =
γη̂ = γEπθ

[η] ≃ γηmaxNξ/Ncall
and if ξ(s′) = 0 then Nξ = 0,
yielding rp → 0. Subsequently, (2)
there is no need to adjust a scale fac-
tor by the task complexity. (3) The
episodic incentive can reduce the risk
of overestimation by considering the
expected value of Eπθ

[η]. Instead of considering the optimistic ηmax, the count-based estimation
rp = γη̂ = γEπθ

[η] can consider the randomness of the policy πθ. Figure 3 illustrates how the
episodic incentive works with the desirability stored in DE constructed by Algorithm 2 presented in
Appendix E.1. In Figure 3 as we intended, high-value states (at small timesteps) are clustered close
to the purple zone, while low-value states (at large timesteps) are located in the red zone.

3.3 OVERALL LEARNING OBJECTIVE

To construct the joint Q-function Qtot from individual Qi of the agent i, any form of mixer can be
used. In this paper, we mainly adopt the mixer presented in QPLEX (Wang et al., 2020b) similar to
Zheng et al. (2021), which guarantees the complete Individual-Global-Max (IGM) condition (Son
et al., 2019; Wang et al., 2020b). Considering any intrinsic reward rc encouraging an exploration
(Zheng et al., 2021) or diversity (Chenghao et al., 2021), the final loss function for the action policy
learning from Eq. 8 can be extended as

Lpθ =
(
r(s,a) + rp + βcr

c + γmaxa′Qtot(s
′,a′; θ−)−Qtot(s,a; θ)

)2
, (10)

where βc is a scale factor. Note that the episodic incentive rp can be used in conjunction with any
form of intrinsic reward rc being properly annealed throughout the training. Again, θ denotes the
parameters of networks related to action policy Qi and the corresponding mixer network to generate
Qtot. For the action selection via Q, we adopt a GRU to encode a local action-observation history τ
presented in 2.1 similar to Sunehag et al. (2017); Rashid et al. (2018); Wang et al. (2020b); but in Eq.
10, we denote equations with s instead of τ for the coherence with derivation in the previous section.
Appendix E.2 presents the overall training algorithm.

4 EXPERIMENTS

In this part, we have formulated our experiments with the intention of addressing the following
inquiries denoted as Q1-3.

• Q1. How does EMU compare to the state-of-the-art MARL frameworks?
• Q2. How does the proposed state embedding change the embedding space and improve the

performance?
• Q3. How does the episodic incentive improve performance?

6

Published as a conference paper at ICLR 2024

We conduct experiments on complex multi-agent tasks such as SMAC (Samvelyan et al., 2019) and
GRF (Kurach et al., 2020). The experiments compare EMU against EMC adopting episodic control
(Zheng et al., 2021). Also, we include notable baselines, such as value-based MARL methods QMIX
(Rashid et al., 2018), QPLEX (Wang et al., 2020b), CDS encouraging individual diversity (Chenghao
et al., 2021). Particularly, we emphasize that EMU can be combined with any MARL framework,
so we present two versions of EMU implemented on original QPLEX and CDS, denoted as EMU
(QPLEX) and EMU (CDS), respectively. Appendix C provides further details of experiment settings
and implementations, and Appendix D.12 provides the applicability of EMU to single-agent tasks,
including pixel-based high-dimensional tasks.

4.1 Q1. COMPARATIVE EVALUATION ON STARCRAFT II (SMAC)

Figure 4: Performance comparison of EMU against baseline algorithms on three easy and hard
SMAC maps: 1c3s5z, 3s_vs_5z, and 5m_vs_6m, and three super hard SMAC maps: MMM2,
6h_vs_8z, and 3s5z_vs_3s6z.

Figure 4 illustrates the overall performance of EMU on various SMAC maps. The map categorization
regarding the level of difficulty follows the practice of Samvelyan et al. (2019). Thanks to the efficient
memory utilization and episodic incentive, both EMU (QPLEX) and EMU (CDS) show significant
performance improvement compared to their original methodologies. Especially, in super hard
SMAC maps, the proposed method markedly expedites convergence on optimal policy.

4.2 Q1. COMPARATIVE EVALUATION ON GOOGLE RESEARCH FOOTBALL (GRF)

Here, we conduct experiments on GRF to further compare the performance of EMU with other
baseline algorithms. In our GRF task, CDS and EMU (CDS) do not utilize the agent’s index on
observation as they contain the prediction networks while other baselines (QMIX, EMC, QPLEX)
use information of the agent’s identity in observations. In addition, we do not utilize any additional
algorithm, such as prioritized experience replay (Schaul et al., 2015), for all baselines and our
method, to expedite learning efficiency. From the experiments, adopting EMU achieves significant
performance improvement, and EMU quickly finds the winning or scoring policy at the early learning
phase by utilizing semantically similar memory.

Figure 5: Performance comparison of EMU against baseline algorithms on Google Research Football.

7

Published as a conference paper at ICLR 2024

4.3 Q2. PARAMETRIC AND ABLATION STUDY

In this section, we examine how the key hyperparameter δ and the choice of design for fϕ affect the
performance. To compare the learning quality and performance more quantitatively, we propose a
new performance index called overall win-rate, µ̄w. The purpose of µ̄w is to consider both training
efficiency (speed) and quality (win-rate) for different seed cases (see Appendix D.1 for details). We
conduct experiments on selected SMAC maps to measure µ̄w according to δ and design choice for fϕ
such as (1) random projection, (2) EmbNet with Eq. 4 and (3) dCAE with Eq. 5.

(a) 3s_vs_5z (b) 5m_vs_6m

Figure 6: µ̄w according to δ and various de-
sign choices for fϕ on SMAC maps.

(a) 3s_vs_5z (b) 5m_vs_6m

Figure 7: Final win-rate according to δ and
various design choices for fϕ on SMAC maps.

Figure 6 and Figure 7 show µ̄w values and test win-rate at the end of training time according to
different δ, presented in log-scale. To see the effect of design choice for fϕ distinctly, we conduct
experiments with the conventional episodic control. More data of µ̄w is presented in Tables 4 and 5 in
Appendix D.2. Figure 6 illustrates that dCAE structure shows the best training efficiency throughout
various δ while achieving the optimal policy as other design choices as presented in Figure 7.

(a) CA_hard (GRF) (b) 6h_vs_8z (SMAC)

Figure 8: Effect of varying δ on complex MARL
tasks.

Interestingly, dCAE structure works well with
a wider range of δ than EmbNet. We conjecture
that EmbNet can select very different states as
exploration if those states have similar return H
during training. This excessive memory recall
adversely affects learning and fails to find an
optimal policy as a result. See Appendix D.2
for detailed analysis and Appendix D.8 for an
ablation study on the loss function of dCAE.

Even though a wide range of δ works well as in
Figures 6 and 7, choosing a proper value of δ in
more difficult MARL tasks significantly improves the overall learning performance. Figure 8 shows
the learning curve of EMU according to δ1 = 1.3e−7, δ2 = 1.3e−5, δ3 = 1.3e−3, and δ4 = 1.3e−2.
In super hard MARL tasks such as 6h_vs_8z in SMAC and CA_hard in GRF, δ3 shows the best
performance compared to other δ values. This is consistent with the value suggested in Appendix
F, where δ is determined in a memory-efficient way. Further parametric study on δ and λrcon are
presented in Appendix D.5 and D.6, respectively.

4.4 Q3. FURTHER ABLATION STUDY

In this section, we carry out further ablation studies to see the effect of episodic incentive rp presented
in Section 3.2. From EMU (QPLEX) and EMU (CDS), we ablate the episodic incentive and denote
them with (No-EI). We additionally ablate embedding network fϕ from EMU and denote them with
(No-SE). In addition, we ablate both parts, yielding EMC (QPLEX-original) and CDS (QPLEX-
original). We evaluate the performance of each model on super hard SMAC maps. Additional ablation
studies on GRF maps are presented in Appendix D.7. Note that EMC (QPLEX-original) utilizes the
conventional episodic control presented in Zheng et al. (2021).

Figure 9 illustrates that the episodic incentive largely affects learning performance. Especially, EMU
(QPLEX-No-EI) and EMU (CDS-No-EI) utilizing the conventional episodic control show a large
performance variation according to different seeds. This demonstrates that a naive utilization of
episodic control could be detrimental to learning an optimal policy. On the other hand, the episodic
incentive selectively encourages transition considering desirability and thus prevents such a local
convergence. Appendix D.9 and D.10 present an additional ablation study on semantic embedding

8

Published as a conference paper at ICLR 2024

(a) 6h_vs_8z SMAC (b) 3s5z_vs_3s6z SMAC (c) 3s5z_vs_3s6z SMAC

Figure 9: Ablation studies on episodic incentive via complex MARL tasks.

and rc, respectively. In addition, Appendix D.11 presents a comparison with an alternative incentive
(Henaff et al., 2022) presented in a single-agent setting.

4.5 QUALITATIVE ANALYSIS AND VISUALIZATION

In this section, we conduct analysis with visualization to check how the desirability ξ is
memorized in DE and whether it conveys correct information. Figure 10 illustrates two test
scenarios with different seeds, and each snapshot is denoted with a corresponding timestep.
In Figure 11, the trajectory of each episode is projected onto the embedded space of DE .

10𝑡 = 6 𝑡 =10 𝑡 =12 𝑡 = 20

(a) Desirable trajectory on 5m_vs_6m SMAC map
𝑡 = 6 𝑡 =10 𝑡 =12 𝑡 = 20

(b) Undesirable trajectory on 5m_vs_6m SMAC map

Figure 10: Visualization of test episodes.

In Figure 10, case (a) successfully de-
feated all enemies, whereas case (b)
lost the engagement. Both cases went
through a similar, desirable trajectory
at the beginning. For example, until
t = 10 agents in both cases focused
on killing one enemy and kept all ally
agents alive at the same time. How-
ever, at t = 12, case (b) lost one agent,
and two trajectories of case (a) and
(b) in embedded space began to bifur-
cate. Case (b) still had a chance to
win around t = 14 ∼ 16. However,
the states became undesirable (denoted without star marker) after losing three ally agents around
t = 20, and case (b) lost the battle as a result. These sequences and characteristics of trajectories are
well captured by desirability ξ in DE as illustrated in Figure 11.

(a) Desirable trajectory (b) Undesirable trajectory

Figure 11: Test trajectories on embedded space of
DE .

Furthermore, the desirable state denoted with
ξ = 1 encourages exploration around it though
it is not directly retrieved during batch sampling.
This occurs through the propagation of its desir-
ability to states currently distinguished as unde-
sirable during memory construction, using Algo-
rithm 2 in Appendix E.1. Consequently, when
the state’s desirability is precisely memorized
in DE , it can encourage desirable transitions
through the episodic incentive rp.

5 CONCLUSION

This paper presents EMU, a new framework to efficiently utilize episodic memory for cooperative
MARL. EMU introduces two major components: 1) a trainable semantic embedding and 2) an
episodic incentive utilizing desirability of state. Semantic memory embedding allows us to safely
utilize similar memory in a wide area, expediting learning via exploratory memory recall. The
proposed episodic incentive selectively encourages desirable transitions and reduces the risk of local
convergence by leveraging the desirability of the state. As a result, there is no need for manual
hyperparameter tuning according to the complexity of tasks, unlike conventional episodic control.
Experiments and ablation studies validate the effectiveness of each component of EMU.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This research was supported by AI Technology Development for Commonsense Extraction, Rea-
soning, and Inference from Heterogeneous Data(IITP) funded by the Ministry of Science and
ICT(2022-0-00077).

REFERENCES

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Li Chenghao, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang.
Celebrating diversity in shared multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 34:3991–4002, 2021.

Nikolay Dandanov, Hussein Al-Shatri, Anja Klein, and Vladimir Poulkov. Dynamic self-optimization
of the antenna tilt for best trade-off between coverage and capacity in mobile networks. Wireless
Personal Communications, 92(1):251–278, 2017.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60–65, 2003.

Marc-André Dittrich and Silas Fohlmeister. Cooperative multi-agent system for production control
using reinforcement learning. CIRP Annals, 69(1):389–392, 2020.

Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. Liir: Learning individual
intrinsic reward in multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International conference on autonomous agents and multiagent
systems, pp. 66–83. Springer, 2017.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
2015 aaai fall symposium series, 2015.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. Advances in Neural Information Processing Systems, 35:37631–37646, 2022.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. Advances in neural information processing
systems, 29, 2016.

Hao Hu, Jianing Ye, Guangxiang Zhu, Zhizhou Ren, and Chongjie Zhang. Generalizable episodic
memory for deep reinforcement learning. International conference on machine learning, 2021.

10

Published as a conference paper at ICLR 2024

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In International conference on machine learning, pp. 3040–3049. PMLR,
2019.

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi:
Exploration with mutual information. arXiv preprint arXiv:1810.01176, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajkc, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 4501–4510, 2020.

Lei Le, Andrew Patterson, and Martha White. Supervised autoencoders: Improving generalization
performance with unsupervised regularizers. Advances in neural information processing systems,
31, 2018.

Máté Lengyel and Peter Dayan. Hippocampal contributions to control: the third way. Advances in
neural information processing systems, 20, 2007.

Zichuan Lin, Tianqi Zhao, Guangwen Yang, and Lintao Zhang. Episodic memory deep q-networks.
arXiv preprint arXiv:1805.07603, 2018.

Iou-Jen Liu, Unnat Jain, Raymond A Yeh, and Alexander Schwing. Cooperative exploration for
multi-agent deep reinforcement learning. In International Conference on Machine Learning, pp.
6826–6836. PMLR, 2021.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in Neural Information Processing Systems, 32, 2019.

David Henry Mguni, Taher Jafferjee, Jianhong Wang, Nicolas Perez-Nieves, Oliver Slumbers, Feifei
Tong, Yang Li, Jiangcheng Zhu, Yaodong Yang, and Jun Wang. Ligs: Learnable intrinsic-reward
generation selection for multi-agent learning. arXiv preprint arXiv:2112.02618, 2021.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. Advances in neural information processing systems, 28, 2015.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs. Springer,
2016.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions
for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
Conference on Machine Learning, pp. 2827–2836. PMLR, 2017.

Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex Clegg, John
Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, et al. Habitat-
matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai. arXiv preprint
arXiv:2109.08238, 2021.

11

Published as a conference paper at ICLR 2024

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In International conference on machine learning, pp. 4295–4304. PMLR, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
conference on machine learning, pp. 5887–5896. PMLR, 2019.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Binyu Wang, Zhe Liu, Qingbiao Li, and Amanda Prorok. Mobile robot path planning in dynamic
environments through globally guided reinforcement learning. IEEE Robotics and Automation
Letters, 5(4):6932–6939, 2020a.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020b.

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent exploration.
arXiv preprint arXiv:1910.05512, 2019.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang. Rode:
Learning roles to decompose multi-agent tasks. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

Marco A Wiering et al. Multi-agent reinforcement learning for traffic light control. In Machine
Learning: Proceedings of the Seventeenth International Conference (ICML’2000), pp. 1151–1158,
2000.

Jiachen Yang, Igor Borovikov, and Hongyuan Zha. Hierarchical cooperative multi-agent reinforce-
ment learning with skill discovery. arXiv preprint arXiv:1912.03558, 2019.

12

Published as a conference paper at ICLR 2024

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao Tang.
Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv preprint
arXiv:2002.03939, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
exploration. Advances in Neural Information Processing Systems, 34:3757–3769, 2021.

Guangxiang Zhu, Zichuan Lin, Guangwen Yang, and Chongjie Zhang. Episodic reinforcement
learning with associative memory. International conference on learning representations, 2020.

13

Published as a conference paper at ICLR 2024

A RELATED WORKS

This section presents the related works regarding incentive generation for exploration, episodic
control, and the characteristics of cooperative MARL.

A.1 INCENTIVE FOR MULTI-AGENT EXPLORATION

Balancing between exploration and exploitation in policy learning is a paramount issue in reinforce-
ment learning. To encourage exploration, modified count-based methods (Bellemare et al., 2016;
Ostrovski et al., 2017; Tang et al., 2017), prediction error-based methods (Stadie et al., 2015; Pathak
et al., 2017; Burda et al., 2018; Kim et al., 2018), and information gain-based methods (Mohamed &
Jimenez Rezende, 2015; Houthooft et al., 2016) have been proposed for a single agent reinforcement
learning. In most cases, an incentive for exploration is introduced as an additional reward to a TD
target in Q-learning; or such an incentive is added as a regularizer for overall loss functions. Recently,
various aforementioned methods to encourage exploration have been adopted to the multi-agent
setting (Mahajan et al., 2019; Wang et al., 2019; Jaques et al., 2019; Mguni et al., 2021) and have
shown their effectiveness. MAVEN (Mahajan et al., 2019) introduces a regularizer maximizing
the mutual information between trajectories and latent variables to learn a diverse set of behaviors.
LIIR (Du et al., 2019) learns a parameterized individual intrinsic reward function by maximizing a
centralized critic. CDS (Chenghao et al., 2021) proposes a novel information-theoretical objective to
maximize the mutual information between agents’ identities and trajectories to encourage diverse
individualized behaviors. EMC (Zheng et al., 2021) proposes a curiosity-driven exploration by
predicting individual Q-values. This individual-based Q-value prediction can capture the influence
among agents as well as the novelty of states.

A.2 EPISODIC CONTROL

Episodic control (Lengyel & Dayan, 2007) was well adopted on model-free setting (Blundell et al.,
2016) by storing the highest return of a given state, to efficiently estimate its values or Q-values.
Given that the sample generation is often limited by simulation executions or real-world observations,
its sample efficiency helps to find an accurate estimation of Q-value (Blundell et al., 2016; Pritzel
et al., 2017; Lin et al., 2018). NEC (Pritzel et al., 2017) uses a differentiable neural dictionary as
an episodic memory to estimate the action value by the weighted sum of the values in the memory.
EMDQN (Lin et al., 2018) utilizes a fixed random matrix to generate a state representation, which
is used as a key to link between the state representation and the highest return of the state in the
episodic memory. ERLAM (Zhu et al., 2020) learns associative memories by building a graphical
representation of states in memory, and GEM (Hu et al., 2021) develops state-action values of episodic
memory in a generalizable manner. Recently, EMC (Zheng et al., 2021) extended the approach
of EMDQN to a deep MARL with curiosity-driven exploration incentives. EMC utilizes episodic
memory to regularize policy learning and shows performance improvement in cooperative MARL
tasks. However, EMC requires a hyperparameter tuning to determine the level of importance of the
one-step TD memory-based target during training, according to the difficulties of tasks. In this paper,
we interpret this regularization as an additional transition reward. Then, we present a novel form of
reward, called episodic incentive, to selectively encourage the transition toward desired states, i.e.,
states toward a common goal in cooperative multi-agent tasks.

A.3 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING (MARL) TASK

In general, there is a common goal in cooperative MARL tasks, which guarantees the maximum
return that can be obtained from the environment. Thus, there could be many local optima with
high returns but not the maximum, which means the agents failed to achieve the common goal in
the end. In other words, there is a distinct difference between the objective of cooperative MARL
tasks and that of a single-agent task, which aims to maximize the return as much as possible without
any boundary determining success or failure. Our desirability definition presented in Definition 1
in MARL setting becomes well justified from this view. Under this characteristic of MARL tasks,
learning optimal policy often takes a long time and even fails, yielding a local convergence. EMU
was designed to alleviate these issues in MARL.

14

Published as a conference paper at ICLR 2024

B MATHEMATICAL PROOF

In this section, we present the omitted proofs of Theorem 1 and Theorem 2 as follows.

B.1 PROOF OF THEOREM 1

Proof. The loss function of a conventional episodic control, LECθ , can be expressed as the weighted
sum of one-step inference TD error ∆εTD = r(s, a) + γmaxa′Qθ−(s

′, a′) − Qθ(s, a) and MC
inference error ∆εEC = QEC(s, a)−Qθ(s, a).

LECθ = (r(s,a) + γmax
a′

Qθ−(s
′,a′)−Qθ(s,a))2 + λ(QEC(s,a)−Qθ(s,a))2, (11)

where QEC(s,a) = r(s,a) + γH(s′) and Qθ− is the target network parameterized by θ−. Then,
the gradient of LECθ can be derived as
∇θLECθ = −2∇θQθ(s,a)[(r(s,a) + γmax

a′
Qθ−(s

′,a′)−Qθ(s,a)) + λ(QEC(s,a)−Qθ(s,a))]

= −2∇θQθ(s,a)(∆εTD + λ∆εEC).
(12)

Now, we consider an additional reward rEC for the transition to a conventional Q-learning objective,
the modified loss function Lθ can be expressed as

Lθ = (r(s,a) + rEC(s,a, s′) + γmax
a′

Qθ−(s
′,a′)−Qθ(s,a))2. (13)

Then, the gradient of Lθ presented in Eq. 13 is computed as
∇θLθ = −2∇θQθ(s,a)(∆εTD + rEC). (14)

Comparing Eq. 12 and Eq. 14, if we set the additional transition reward as rEC(s,a, s′) =
λ(r(s,a) + γH(s′)−Qθ(s,a)), then ∇θLθ = ∇θLECθ holds.

B.2 PROOF OF THEOREM 2

Proof. From Eq. 7, the value of η̂(s′) can be expressed as

η̂(s′) = Eπθ
[η(s′)] ≃ Nξ(s

′)

Ncall(s′)

(
H(fϕ(s

′))−max
a′
Qθ−(s

′, a′)
)
]. (15)

When the joint actions from the current time follow the optimal policy, a ∼ π∗
θ , the cumulative reward

from s′ converges to V ∗(s′), i.e., H(fϕ(s
′)) → V ∗(s′). Then, every recall of x̂′ = NN(fϕ(s

′)) ∈
DE guarantees the desirable transition, i.e., ξ(s′) = 1, where NN(·) represents a function for
selecting the nearest neighbor. As a result, as Ncall(s′) → ∞, Nξ(s

′)
Ncall(s′)

→ 1, yielding η̂(s′) ≃
Nξ(s

′)
Ncall(s′)

(
H(fϕ(s

′))−maxa′Qθ−(s
′, a′)

)
→ V ∗(s′)−maxa′Qθ−(s

′,a′). Then, the gradient signal
with the episodic incentive∇θLpθ becomes
∇θLpθ = −2∇θQθ(s,a)[∆εTD + rp]

= −2∇θQθ(s,a)[∆εTD + γη̂(s′)]

≃ −2∇θQθ(s,a)[∆εTD + γ(V ∗(s′)−max
a′

Qθ−(s
′,a′))]

= −2∇θQθ(s,a)[r(s,a) + γmax
a′

Qθ−(s
′,a′)−Qθ(s,a) + γ(V ∗(s′)−max

a′
Qθ−(s

′,a′))]

= −2∇θQθ(s,a)[r(s,a) + γV ∗(s′)−Qθ(s,a)]
= ∇θL∗

θ,
(16)

which completes the proof.

In addition, when maxa′Qθ−(s
′,a′) accurately estimates V ∗(s′), the original TD-target is preserved

as the episodic incentive becomes zero, i.e., rp → 0. Then with the properly annealed intrinsic reward
rc, the learning objective presented in Eq. 10 degenerates to the original Bellman optimality equation
(Sutton & Barto, 2018). On the other hand, even though the assumption of H(s′)→ V ∗(s′) yields
∆εEC → ∆ε∗TD, ∇θLECθ has an additional bias ∆εTD due to weighted sum structure presented in
Eq. 3. Thus,∇θLECθ can converge to ∇θL∗

θ only when maxa′Qθ−(s
′,a′)→ V ∗(s′) and λ→ 0 at

the same time.

15

Published as a conference paper at ICLR 2024

C IMPLEMENTATION AND EXPERIMENT DETAILS

C.1 DETAILS OF IMPLEMENTATION

Encoder and Decoder Structure
As illustrated in Figure 1(c), we have an encoder and decoder structure. For an encoder fϕ, we
evaluate two types of structure, EmbNet and dCAE. For EmbNet with the learning objective
presented in Eq. 4, two fully connected layers with 64-dimensional hidden state are used with ReLU
activation function between them, followed by layer normalization block at the head. On the other
hand, for dCAE with the learning objective presented in Eq. 5, we utilize a deeper encoder structure
which contains three fully connected layers with ReLU activation function. In addition, dCAE takes
a timestep t as an input as well as a global state st. We set episodic latent dimension dim(x) = 4 as
Zheng et al. (2021).

𝑠 𝑥 ഥ𝐻

𝑓𝜙(∙)

𝑓𝜓(∙)

FC

LayerNorm

ReLU

FC

FC

FC

ReLU

ReLU

FC

(a) EmbNet

𝑠 𝑥

𝑡

𝑡

ҧ𝑠

ഥ𝐻

𝑓𝜙(∙) 𝑓𝜓(∙)

FC

FC

ReLU

ReLU

FC

FC

FC

ReLU

ReLU

FC

FC

ReLU

(b) dCAE

Figure 12: Illustration of network structures.

For a decoder fψ , both EmbNet and dCAE utilize a three-fully connected layer with ReLU activation
functions. Differences are that EmbNet takes only xt as input and utilizes the 128-dimensional
hidden state while dCAE takes xt and t as inputs and adopts the 64-dimensional hidden state. As
illustrated in Figure 1(c), to reconstruct global state st, dCAE has two separate heads while sharing
lower parts of networks; fsϕ to reconstruct st and fHϕ to predict the return of st, denoted as Ht. Figure
12 illustrates network structures of EmbNet and dCAE. The concept of supervised VAE similar to
EMU can be found in (Le et al., 2018).

The reason behind avoiding probabilistic autoencoders such as variational autoencoder (VAE)
(Kingma & Welling, 2013; Sohn et al., 2015) is that the stochastic embedding and the prior distribu-
tion could have an adverse impact on preserving a pair of xt and Ht for given a st. In particular, with
stochastic embedding, a fixed st can generate diverse xt. As a result, it breaks the pair of xt and Ht

for given st, which makes it difficult to select a valid memory from DE .

For training, we periodically update fϕ and fψ with an update interval of temb in parallel to MARL
training. At each training phase, we use Memb samples out of the current capacity of DE , whose
maximum capacity is 1 million (1M), and batch size of memb is used for each training step. After
updating fϕ, every x ∈ DE needs to be updated with updated fϕ. Algorithm 1 shows the details of
learning framework for fϕ and fψ . Details of the training procedure for fϕ and fψ along with MARL
training are presented in Appendix E.2.

Other Network Structure and Hyperparameters
For a mixer structure, we adopt QPLEX (Wang et al., 2020b) in both EMU (QPLEX) and EMU (CDS)
and follow the same hyperparameter settings used in their source codes. Common hyperparameters
related to individual Q-network and MARL training are adopted by the default settings of PyMARL
(Samvelyan et al., 2019).

16

Published as a conference paper at ICLR 2024

Algorithm 1 Training Algorithm for State Embedding
1: Parameter: learning rate α, number of training dataset N , batch size B
2: Sample Training dataset (s(i), H(i), t(i))

N

i=1 ∼ DE ,
3: Initialize weights ϕ,ψ ← 0
4: for i = 1 to ⌊N/B⌋ do
5: Compute (x(j) = fϕ(s

(j)|t(j))iBj=(i−1)B+1

6: Predict return (H̄(j) = fHψ (x(j)|t(i)))iBj=(i−1)B+1

7: Reconstruct state (s̄(j) = fsψ(x
(j))|t(i))iBj=(i−1)B+1

8: Compute Loss L(ϕ,ψ) via Eq. 5
9: Update ϕ← ϕ− α∂L∂ϕ , ψ ← ψ − α ∂L∂ψ

10: end for

C.2 EXPERIMENT DETAILS

We utilize PyMARL (Samvelyan et al., 2019) to execute all of the baseline algorithms with their
open-source codes, and the same hyperparameters are used for experiments if they are presented
either in uploaded codes or in their manuscripts.

For a general performance evaluation, we test our methods on various maps, which require a different
level of coordination according to the map’s difficulties. Win-rate is computed with 160 samples: 32
episodes for each training random seed, and 5 different random seeds unless denoted otherwise.

Both the mean and the variance of the performance are presented for all the figures to show their
overall performance according to different seeds. Especially for a fair comparison, we set ncircle, the
number of training per a sampled batch of 32 episodes during training, as 1 for all baselines since
some of the baselines increase ncircle = 2 as a default setting in their codes.

For performance comparison with baseline methods, we use their codes with fine-tuned algorithm
configuration for hyperparameter settings according to their codes and original paper if available. For
experiments on SMAC, we use the version of starcraft.py presented in RODE (Wang et al.,
2021) adopting some modification for compatibility with QPLEX (Wang et al., 2020b). All SMAC
experiments were conducted on StarCraft II version 4.10.0 in a Linux environment.

For Google research football task, we use the environmental code provided by (Kurach et al.,
2020). In the experiments, we consider three official scenarios such as academy_3_vs_1_with_keeper
(3_vs_1WK), academy_counterattack_easy (CA_easy), and academy_counterattack_hard (CA_hard).

In addition, for controlling rc in Eq. 10, the same hyperparameters related to curiosity-based (Zheng
et al., 2021) or diversity-based exploration Chenghao et al. (2021) are adopted for EMU (QPLEX)
and EMU (CDS) as well as for baselines EMC and CDS. After further experiments, we found that
the curiosity-based rc from (Zheng et al., 2021) adversely influenced super hard SMAC task, with
the exception of corridor scenario. Furthermore, the diversity-based exploration from Chenghao
et al. (2021) led to a decrease in performance on both easy and hard SMAC maps. Thus, we decided
to exclude the use of rc for EMU (QPLEX) on the super hard SMAC task and for EMU (CDS) on
the easy/hard SMAC maps. EMU set task-dependent δ values as presented in Table 1. For other
hyperparameters introduced by EMU, the same values presented in Table 8 are used throughout all
tasks. For EMU (QPLEX) in corridor, δ = 1.3e− 5 is used instead of δ = 1.3e− 3.

Table 1: Task-dependent hyperparameter of EMU.

Category δ

easy/hard SMAC maps 1.3e−5

super hard SMAC maps 1.3e−3

GRF 1.3e−3

17

Published as a conference paper at ICLR 2024

C.3 DETAILS OF MARL TASKS

In this section, we specify the dimension of the state space, the action space, the episodic length, and
the reward of SMAC (Samvelyan et al., 2019) and GRF (Kurach et al., 2020).

In SMAC, the global state of each task of SMAC includes the information of the coordinates of all
agents, and features of both allied and enemy units. The action space of each agent consists of the
moving actions and attacking enemies, and thus it increases according to the number of enemies.
The dimensions of the state and action space and the episodic length vary according to the tasks as
shown in Table 2. For reward structure, we used the shaped reward, i.e., the default reward settings of
SMAC, for all scenarios. The reward is given when dealing damage to the enemies and get bonuses
for winning the scenario. The reward is scaled so that the maximum cumulative reward, Rmax, that
can be obtained from the episode, becomes around 20 (Samvelyan et al., 2019).

Table 2: Dimension of the state space and the action space and the episodic length of SMAC

Task Dimension of state space Dimension of action space Episodic length

1c3s5z 270 15 180
3s5z 216 14 150

3s_vs_5z 68 11 250
5m_vs_6m 98 12 70

MMM2 322 18 180
6h_vs_8z 140 14 150

3s5z_vs_3s6z 230 15 170
corridor 282 30 400

In GRF, the state of each task includes information on coordinates, ball possession, and the direction
of players, etc. The dimension of the state space differs among the tasks as in Table 3. The action
of each agent consists of moving directions, different ways to kick the ball, sprinting, intercepting
the ball and dribbling. The dimensions of the action spaces for each task are the same. Table 3
summarizes the dimension of the action space and the episodic length. In GRF, there can be two
reward modes: one is "sparse reward" and the other is "dense reward." In sparse reward mode, agents
get a positive reward +1 when scoring a goal and get -1 when conceding one to the opponents. In
dense reward mode, agents can get positive rewards when they approach to opponent’s goal, but the
maximum cumulative reward is up to +1. In our experiments, we adopt sparse reward mode, and thus
the maximum reward, Rmax is +1 for GRF.

Table 3: Dimension of the state space and the action space and the episodic length of GRF

Task Dimension of state space Dimension of action space Episodic length

3_vs_1WK 26 19 150
CA_easy 30 19 150
CA_hard 34 19 150

C.4 INFRASTRUCTURE

Experiments for SMAC (Samvelyan et al., 2019) are mainly carried out on NVIDIA GeForce RTX
3090 GPU, and training for the longest experiment such as corridor via EMU (CDS) took less
than 18 hours. Note that when training is conducted with ncircle = 2, it takes more than one and a
half times longer. Training encoder/decoder structure and updating DE with updated fϕ together
only took less than 2 seconds at most in corridor task. As we update fϕ and fψ periodically with
temb, the additional time required for a trainable embedder is certainly negligible compared to MARL
training.

18

Published as a conference paper at ICLR 2024

D FURTHER EXPERIMENT RESULTS

D.1 NEW PERFORMANCE INDEX

In this section, we present the details of a new performance index called overall win-rate, µ̄w. For
example, let f iw(s) be the test win-rate at training time s of ith seed run and µiw(t) represents the
time integration of f iw(s) until t. Then, a normalized overall win-rate, µ̄w, can be expressed as

µ̄w(t) =
1

µmax

1

n

∑n

i=1
µiw(t) =

1

µmax

1

n

∑n

i=1

∫ t

0

f iw(s)ds, (17)

where µmax = t and µ̄w ∈ [0, 1].

T
es

t
W

in
 [

-]

𝑠

𝑓𝑤
𝑖=1(𝑠)

𝑓𝑤
𝑖=2(𝑠)

𝜇𝑤
𝑖 (𝑡)

Figure 13: Illustration of µiw(t).

Figure 13 illustrates the concept of time integration of win-rate, i.e., µiw(t), to construct the overall
win-rate, µ̄w. By considering the integration of win-rate of each seed case, the performance variance
can be considered, and thus µ̄w shows the training efficiency (speed) as well as the training quality
(win-rate).

D.2 ADDITIONAL EXPERIMENT RESULTS

In Section 4.3, we present the summary of parametric studies on δ with respect to various choices
of fϕ. To see the training efficiency and performance at the same time, Table 4 and 5 present the
overall win-rate µ̄w according to training time. We conduct the experiments for 5 different seed cases
and at each test phase 32 samples were used to evaluate the win-rate [%]. Note that we discard the
component of episodic incentive rp to see the performance variations according to δ and types of fϕ
more clearly.

Table 4: µ̄w according to δ and design choice of embedding function on hard SMAC map,
3s_vs_5z.

Training time
[mil] 0.69 1.37 2.00

δ random EmbNet dCAE random EmbNet dCAE random EmbNet dCAE

1.3e-7 0.033 0.051 0.075 0.245 0.279 0.343 0.413 0.443 0.514
1.3e-5 0.010 0.044 0.063 0.171 0.270 0.325 0.320 0.441 0.491
1.3e-3 0.034 0.043 0.078 0.226 0.270 0.357 0.381 0.439 0.525
1.3e-2 0.019 0.005 0.079 0.205 0.059 0.346 0.348 0.101 0.518

Table 5: µ̄w according to δ and design choice of embedding function on hard SMAC map,
5m_vs_6m.

Training time
[mil] 0.69 1.37 2.00

δ random EmbNet dCAE random EmbNet dCAE random EmbNet dCAE

1.3e-7 0.040 0.117 0.110 0.287 0.397 0.397 0.577 0.690 0.701
1.3e-5 0.064 0.107 0.131 0.334 0.402 0.436 0.634 0.714 0.749
1.3e-3 0.040 0.080 0.064 0.333 0.377 0.363 0.646 0.687 0.677
1.3e-2 0.038 0.000 0.048 0.288 0.001 0.332 0.584 0.001 0.643

19

Published as a conference paper at ICLR 2024

As Table 4 and 5 illustrate that dCAE structure for fϕ, which considers the reconstruction loss of
global state s as in Eq. 5, shows the best training efficiency in most cases. For 5m_vs_6m task with
δ = 1.3e−3, EmbNet achieves the highest value among fϕ choices in terms of µ̄w but fails to find
optimal policy at δ = 1.3e−2 unlike other design choices. This implies that the reconstruction loss
of dCAE facilitates the construction of a smoother embedding space for DE , enabling the retrieval
of memories within a broader range of δ values from the key state. Figure 15 and 16 show the
corresponding learning curves of each encoder structure for different δ values. A large δ value results
in a higher performance variance than the cases with smaller δ, according to different seed cases.

Figure 14: N̄call of all memories in DE when
δ = 0.013 according to design choice for fϕ.

This is because a high value of δ encourages
exploratory memory recall. In other words, by
adjusting δ, we can control the level of explo-
ration since it controls whether to recall its own
MC return or the highest value of other simi-
lar states within δ. Thus, without constructing
smoother embedding space as in dCAE, learn-
ing with exploratory memory recall within large
δ can converge to sub-optimality as illustrated
by the case of EmbNet in Figure 16(d).

In Figure 14 which shows the averaged number
of memory recall (N̄call) of all memories inDE ,
N̄call of EmbNet significantly increases as training proceeds. On the other hand, dCAE was able to
prevent this problem and recalled the proper memories in the early learning phase, achieving good
training efficiency. Thus, embedding with dCAE can leverage a wide area of memory in DE and
becomes robust to hyperparameter δ.

(a) δ = 1.3e−7 (b) δ = 1.3e−5 (c) δ = 1.3e−3 (d) δ = 1.3e−2

Figure 15: Parametric studies for δ on 3s_vs_5z SMAC map.

(a) δ = 1.3e−7 (b) δ = 1.3e−5 (c) δ = 1.3e−3 (d) δ = 1.3e−2

Figure 16: Parametric studies for δ on 5m_vs_6m SMAC map.

20

Published as a conference paper at ICLR 2024

D.3 COMPARATIVE EVALUATION ON ADDITIONAL STARCRAFT II MAPS

Figure 17 presents a comparative evaluation of EMU with baseline algorithms on additional SMAC
maps. Adopting EMU shows performance gain in various tasks.

Figure 17: Performance comparison of EMU against baseline algorithms on additional SMAC maps.

D.4 COMPARISON OF EMU WITH MAPPO ON SMAC

In this subsection, we compare the EMU with MAPPO (Yu et al., 2022) on selected SMAC maps.
Figure 18 shows the performance in six SMAC maps: 1c3s5z, 3s_vs_5z, 5m_vs_6m, MMM2,
6h_vs_8z and 3s5z_vs_3s6z. Similar to the previous performance evaluation in Figure 4,
Win-rate is computed with 160 samples: 32 episodes for each training random seed and 5 different
random seeds. Also, for MAPPO, scenario-dependent hyperparameters are adopted from their original
settings in the uploaded source code.

From Figure 18, we can see that EMU performs better than MAPPO with an evident gap. Although
after extensive training MAPPO showed a comparable performance against off-policy algorithm
in its original paper (Yu et al., 2022), within the same training timestep used for our experiments,
we found that MAPPO suffers from local convergence in super hard SMAC tasks such as MMM2
and 3s5z_vs_3s6z as shown in Figure 18. Only in 6h_vs_8z, MAPPO shows comparable
performance to EMU (QPLEX) with higher performance variance across different seeds.

Figure 18: Performance comparison with MAPPO on selected SMAC maps.

21

Published as a conference paper at ICLR 2024

D.5 ADDITIONAL PARAMETRIC STUDY

In this subsection, we conduct an additional parametric study to see the effect of key hyperpa-
rameter δ. Unlike the previous parametric study on Appendix D.2, we adopt both dCAE em-
bedding network for fϕ and episodic reward. For evaluation, we consider three GRF tasks such
as academy_3_vs_1_with_keeper (3_vs_1WK), academy_counterattack_easy
(CA-easy), and academy_counterattack_hard (CA-hard); and one super hard SMAC
map such as 6h_vs_8z. For each task to evaluate EMU, four δ values, such as δ1 = 1.3e−7,
δ2 = 1.3e−5, δ3 = 1.3e−3, and δ4 = 1.3e−2, are considred. Here, to compute the win-rate, 160
samples (32 episodes for each training random seed and 5 different random seeds) are used for
3_vs_1WK and 6h_vs_8z while 100 samples (20 episodes for each training random seed and 5
different random seeds) are used for CA-easy and CA-hard. Note that CDS and EMU (CDS)
utilize the same hyperparameters, and EMC and EMU (QPLEX) use the same hyperparameters
without a curiosity incentive presented in Zheng et al. (2021) as the model without it showed the
better performance when utilizing episodic control.

(a) 3_vs_1WK (GRF) (b) CA-easy (GRF) (c) CA-hard (GRF) (d) 6h_vs_8z (SMAC)

Figure 19: Parametric studies for δ on various GRF maps and super hard SMAC map.

In all cases, EMU with δ3 = 1.3e−3 shows the best performance. The tasks considered here are all
complex multi-agent tasks, and thus adopting a proper value of δ benefits the overall performance
and achieves the balance between exploration and exploitation by recalling the semantically similar
memories from episodic memory. The optimal value of δ3 is consistent with the determination logic
on δ in a memory efficient way presented in Appendix F.

D.6 ADDITIONAL PARAMETRIC STUDY ON λrcon

Additionally, we conduct a parametric study for λrcon in Eq. 5. For each task, EMU with five λrcon
values, such as λrcon,0 = 0.01, λrcon,1 = 0.1, λrcon,2 = 0.5, λrcon,3 = 1.0 and λrcon,4 = 10, are
evaluated. Here, to compute the win-rate of each case, 160 samples (32 episodes for each training
random seed and 5 different random seeds) are used. From Figure 20, we can see that broad range of

(a) 3s5z (SMAC) (b) 3s_vs_5z (SMAC)

Figure 20: Parametric study for λrcon.

λrcon ∈
{
0.1, 0.5, 1.0

}
work well in general. However, with large λrcon as λrcon,4 = 10, we can

observe that some performance degradation at the early learning phase in 3s5z task. This result is
in line with the learning trends of Case 1 and Case 2 of 3s5z in Figure 23, which do not consider
prediction loss and only take into account the reconstruction loss. Thus, considering both prediction
loss and reconstruction loss as Case 4 in Eq. 5 with proper λrcon is essential to optimize the overall
learning performance.

22

Published as a conference paper at ICLR 2024

D.7 ADDITIONAL ABLATION STUDY IN GRF

(a) 3_vs_1WK (GRF) (b) CA-easy (GRF)

Figure 21: Ablation studies on episodic incentive on GRF tasks.

In this subsection, we conduct additional ablation studies via GRF tasks to see the effect of episodic
incentive. Again, EMU (CDS-No-EI) ablates episodic incentive from EMU (CDS) and utilizes the
conventional episodic control presented in Eq. 3 instead. Again, EMU (CDS-No-SE) ablates semantic
embedding by dCAE and adopts random projection with episodic incentive rp. In both tasks, utilizing
episodic memory with the proposed embedding function improves the overall performance compared
to the original CDS algorithm. By adopting episodic incentives instead of conventional episodic
control, EMU (CDS) achieves better learning efficiency and rapidly converges to optimal policies
compared to EMU (CDS-No-EI).

D.8 ADDITIONAL ABLATION STUDY ON EMBEDDING LOSS

In our case, the autoencoder uses the reconstruction loss to enforce the embedded representation x
to contain the full information of the original feature, s. We are adding (Ht − fHψ (fϕ(st|t)|t))2 to
guide the embedded representation to be consistent to Ht, as well, which works as a regularizer to
the autoencoder. Therefore, fHψ is used in Eq. 5 to predict the observed Ht from DE as a part of the
semantic regularization effort.

BecauseHt is different from fHψ (xt), the effort of minimizing their difference becomes the regularizer
creating a gradient signal to learn ψ and ϕ. The update of ϕ results in the updated x influenced by the
regularization. Note that we update ϕ through the backpropagation of ψ.

The case of L(ϕ, ψ) = ||st − fsψ(fϕ(st|t)|t)||22 occurs when λrcon becomes relatively much higher
than 1, which makes (Ht − fHψ (fϕ(st|t)|t))2 becomes ineffective. In other words, when λrcon in Eq.
5 becomes relatively much higher than 1, (Ht − fHψ (fϕ(st|t)|t))2 becomes ineffective.

The case of L(ϕ, ψ) = (Ht−fHψ (fϕ(st|t)|t))2 occurs when the scale factor λrcon becomes relatively
much smaller than 1, which makes (Ht − fHψ (fϕ(st|t)|t))2 become a dominant factor. We conduct
ablation studies considering four cases as follows:

• Case 1: L(ϕ, ψ) = ||st − fsψ(fϕ(st))||22, presented in Figure 22(a)

• Case 2: L(ϕ, ψ) = ||st − fsψ(fϕ(st|t)|t)||22, presented in Figure 22(b)

• Case 3: L(ϕ, ψ) = (Ht − fHψ (fϕ(st|t)|t))2, presented in Figure 22(c)

• Case 4: L(ϕ, ψ) = (Ht − fHψ (fϕ(st|t)|t))2 + λrcon||st − fsψ(fϕ(st|t)|t)||22, i.e., Eq. 5,
presented in Figure 22(d)

We visualize the result of t-SNE of 50K samples x ∈ DE out of 1M memory data trained by various
loss functions: The task was 3s_vs_5z of SMAC as in Figure 2 and the training for all models
proceeds for 1.5mil training steps. Case 1 and Case 2 showed irregular return distribution across the
embedding space. In those two cases, there was no consistent pattern in the reward distribution. Case
3 with only return prediction in the loss showed better patterns compared to Case 1 and 2 but some
features are not clustered well. We suspect that the consistent state representation also contributes
to the return prediction. Case 4 of our suggested loss showed the most regular pattern in the return
distribution arranging the low-return states as a cluster and the states with desirable returns as another

23

Published as a conference paper at ICLR 2024

(a) Loss (case 1) (b) Loss (case 2) (c) Loss (case 3) (d) Loss (case 4)

Figure 22: t-SNE of sampled embedding x ∈ DE trained by dCAE with various loss functions in
3s_vs_5z SMAC map. Colors from red to purple represent from low return to high return.

cluster. In Figure 23, Case 4 shows the best performance in terms of both learning efficiency and
terminal win-rate.

(a) 3s5z (SMAC) (b) 3s_vs_5z (SMAC)

Figure 23: Performance comparison of various loss functions
for dCAE.

24

Published as a conference paper at ICLR 2024

D.9 ADDITIONAL ABLATION STUDY ON SEMANTIC EMBEDDING

To further understand the role of semantic embedding, we conduct additional ablation studies and
present them with the general performance of other baseline methods. Again, EMU (CDS-No-SE)
ablates semantic embedding by dCAE and adopts random projection instead, along with episodic
incentive rp.

Figure 24: Performance comparison of EMU against baseline algorithms on three easy and hard
SMAC maps: 1c3s5z, 3s_vs_5z, and 5m_vs_6m, and three super hard SMAC maps: MMM2,
6h_vs_8z, and 3s5z_vs_3s6z.

Figure 25: Performance comparison of EMU against baseline algorithms on Google Research
Football.

For relatively easy tasks, EMU (QPLEX-No-SE) and EMU (CDS-No-SE) show comparable perfor-
mance at first but they converge on sub-optimal policy in most tasks. Especially, this characteristic is
well observed in the case of EMU (CDS-No-SE). As large size of memories are stored in an episodic
buffer as training goes on, the probability of recalling similar memories increases. However, with
random projection, semantically incoherent memories can be recalled and thus it can adversely affect
the value estimation. We deem this is the reason for the convergence on suboptimal policy in the case
of EMU (No-SE). Thus we can conclude that recalling semantically coherent memory is an essential
component of EMU.

25

Published as a conference paper at ICLR 2024

D.10 ADDITIONAL ABLATION ON rc

In Eq.10, we introduce rc as an additional reward which may encourage exploratory behavior or
coordination. The reason we introduce rc is to show that EMU can be used in conjunction with
any form of incentive encouraging further exploration. Our method may not be strongly effective
until some desired states are found, although it has exploratory behavior via the proposed semantic
embeddings, controlled by δ. Until then, such incentives could be beneficial to find desired or goal
states. Figures 26-27 show the ablation study of with and without rc, and the contribution of rc is
limited compared to rp.

(a) 3s_vs_5z (b) 5m_vs_6m (c) 3s5z_vs_3s6z

Figure 26: Ablation studies on rc in SMAC tasks.

(a) 3s_vs_5z (b) 5m_vs_6m (c) 3s5z_vs_3s6z

Figure 27: Ablation studies on rc in SMAC tasks.

D.11 COMPARISON OF EPISODIC INCENTIVE WITH EXPLORATORY INCENTIVE

In this subsection, we replace the episodic incentive with another exploratory incentive, introduced
by (Henaff et al., 2022). In (Henaff et al., 2022), the authors extend the count-based episodic bonuses
to continuous spaces by introducing episodic elliptical bonuses for exploration. In this concept, a
high reward is given when the state projected in the embedding space is different from the previous
states within the same episode. In detail, with a given feature encoder ϕ, the elliptical bonus bt at
timestep t is computed as follows:

bt = ϕ(st)
TC−1

t ϕ(st) (18)

where C−1
t is an inverse covariance matrix with an initial value of C−1

t=0 = 1/λe3bI . Here, λe3b is
a covariance regularizer. For update inverse covariance, the authors suggested a computationally
efficient update as

C−1
t+1 = C−1

t −
1

1 + bt+1
uuT (19)

where u = C−1
t ϕ(st+1). Then, the final reward r̄t with episodic elliptical bonuses bt is expressed as

r̄t = rt + βe3bbt (20)

where βe3b and rt are a corresponding scale factor and external reward given by the environment,
respectively.

For this comparison, we utilize the dCAE structure as a state embedding function ϕ. For a mixer,
QPLEX (Wang et al., 2020b) is adopted for all cases, and we denote the case with an elliptical
incentive instead of the proposed episodic incentive as QPLEX (SE+E3B). Figure 28 illustrates

26

Published as a conference paper at ICLR 2024

Figure 28: Performance comparison with elliptical incentive on selected SMAC maps.

the performance of adopting an elliptical incentive for exploration instead of the proposed episodic
incentive. QPLEX (SE+E3B) uses the same hyperparameters with EMU (SE+EI) and we set
λe3b = 0.1 according to Henaff et al. (2022).

As illustrated by Figure 28, adopting an elliptical incentive presented by (Henaff et al., 2022) instead
of an episodic incentive does not give any performance gain and even adversely influences the
performance compared to QPLEX. It seems that adding excessive surprise-based incentives can be a
disturbance in MARL tasks since finding a new state itself does not guarantee better coordination
among agents. In MARL, agents need to find the proper combination of joint action in a given
similar observations when finding an optimal policy. On the other hand, in high-dimensional pixel-
based single-agent tasks such as Habitat (Ramakrishnan et al., 2021), finding a new state itself
can be beneficial in policy optimization. From this, we can note that adopting a certain algorithm
from a single-agent RL case to MARL case may require a modification or adjustment with domain
knowledge.

As a simple tuning, we conduct parametric study for βe3b = {0.01, 0.1} to adjust magnitude of
incentive of E3B. Figure 29 illustrates the results. In Figure 29, QPLEX (SE+E3B) with βe3b = 0.01
shows a better performance than the case with βe3b = 0.1 and comparable performance to EMC
in 5m_vs_6m. However, EMU with the proposed episodic incentive shows the best performance.
From this comparison, we can see that incentives proposed by previous work need to be adjusted

Figure 29: Performance comparison with an elliptical incentive on selected SMAC maps.

according to the type of tasks, as it was done in EMC (Zheng et al., 2021). On the other hand, with
the proposed episodic incentive we do not need such hyperparameter-scaling, allowing much more
flexible application across various tasks.

27

Published as a conference paper at ICLR 2024

D.12 ADDITIONAL TOY EXPERIMENT AND APPLICABILITY TESTS

In this section, we conduct additional experiments on the didactic example presented by (Zheng et al.,
2021) to see how the proposed method would behave in a simple but complex coordination task.
Additionally, by defining Rthr to define the desirability presented in Definition 1, we can extend
EMU to a single-agent RL task, where a strict goal is not defined in general.

Didactic experiment on Gridworld We adopt the didactic example such as gridworld environment
from (Zheng et al., 2021) to demonstrate the motivation and how the proposed method can overcome
the existing limitations of the conventional episodic control. In this task, two agents in gridworld (see
Figure 30(a)) need to reach their goal states at the same time to get a reward r = 10 and if only one
arrives first, they get a penalty with the amount of −p. Please refer to (Zheng et al., 2021) for further
details.

Visible Zone

GG

Wall

(a) Gridworld (b) Performance evaluation (p = 2)

Figure 30: Didactic experiments on gridworld.

To see the sole effect of the episodic control, we discard the curiosity incentive part of EMC, and for
a fair comparison, we set the same exploration rate of ϵ-greedy with Tϵ = 200K for all algorithms.
We evaluate the win-rate with 180 samples (30 episodes for each training random seed and 6 different
random seeds) at each training time. Notably, adopting episodic control with a naive utilization
suffers from local convergence (see QPLEX and EMC (QPLEX) in Figure 30(b)), even though it
expedites learning efficiency at the early training phase. On the other hand, EMU shows more robust
performance under different seed cases and achieves the best performance by an efficient and discreet
utilization of episodic memories.

Applicability test to single agent RL task We first need to define Rthr value to effectively apply
EMU to a single-agent task where a goal of an episode is generally not strictly defined, unlike
cooperative multi-agent tasks with a shared common goal.

In a single-agent task where the action space is continuous such as MuJoCo (Todorov et al., 2012),
the actor-critic method is often adopted. Efficient memory utilization of EMU can be used to train
the critic network and thus indirectly influence policy learning, unlike general cooperative MARL
tasks where value-based RL is often considered.

We implement EMU on top of TD3 and use the open-source code presented in (Fujimoto et al., 2018).
We begin to train the model after sufficient data is stored in the replay buffer and conduct 6 times of
training per episode with 256 mini-batches. Note that this is different from the default settings of
RL training, which conducts training at each timestep. Our modified setting aims to see the effect on
the sample efficiency of the proposed model. The performance of the trained model is evaluated at
every 50k timesteps.

We use the same hyperparameter settings as in MARL task presented in Table 8 except for the
update interval, temb = 100K according to large episodic timestep in single-RL compared to
MARL tasks. It is worth mentioning that additional customized parameter settings for single-agent
tasks may further improve the performance. In our evaluation, three single-agent tasks such as
Hopper-v4, Walker2D-v4 and Humanoid-v4 are considered, and Figure 32 illustrates each
task. Here, δ2 = 1.3e − 5 is used for Hopper-v4 and Walker2D-v4, and δ3 = 1.3e − 3 is
used for Humanoid-v4 as Humanoid-v4 task contains much higher state dimension space as
376-dimension. Please refer to Todorov et al. (2012) for a detailed description of tasks.

28

Published as a conference paper at ICLR 2024

(a) Hopper-v4 (b) Walker2D-v4 (c) Humanoid-v4

Figure 31: Illustration of MuJoCo scenarios.

(a) Performance (Hopper) (b) Performance (Walker2D) (c) Performance (Humanoid)

Figure 32: Applicability test to single agent task (Rthr = 500).

In Figure 32, EMU (TD3) shows the performance improvement compared to the original TD3.
Thanks to semantically similar memory recall and episodic incentive, states deemed desirable could
have high values, and trained policy is encouraged to visit them more frequently. As a result, EMU
(TD3) shows the better performance. Interestingly, under state dimension as Humanoid-v4 task,
TD3 and EMU (TD3) show a distinct performance gap in the early training phase. This is because,
in a task with a high-dimensional state space, it is hard for a critic network to capture important
features determining the value of a given state. Thus, it takes longer to estimate state value accurately.
However, with the help of semantically similar memory recall and error compensation through
episodic incentive, a critic network in EMU (TD3) can accurately estimate the value of the state much
faster than the original TD3, leading to faster policy optimization.

Unlike cooperative MARL tasks, single-RL tasks normally do not have a desirability threshold. Thus,
one may need to determine Rthr based on domain knowledge or a preference for the level of return
to be deemed successful. Figure 33 presents a performance variation according to Rthr.

(a) Hopper-v4 (b) Walker2d-v4

Figure 33: Parametric study on Rthr.
When we set Rthr = 1000 in Walker2d task, desirability signal is rarely obtained compared to the
case with Rthr = 500 in the early training phase. Thus, EMU with Rthr = 500 shows the better
performance. However, both cases of EMU show better performance compared to the original TD3.
In Hopper task, both cases of Rthr = 500 and Rthr = 1000 show the similar performance. Thus,

29

Published as a conference paper at ICLR 2024

when determining Rthr, it can be beneficial to set a small value rather than a large one that can be
hardly obtained.

Although setting a small Rthr does not require much domain knowledge, a possible option to detour
this is a periodic update of desirability based on the average return value H(s) in all s ∈ DE . In this
way, a certain state with low return which was originally deemed as desirable can be reevaluated as
undesirable as training proceeds. The episodic incentive is not further given to those undesirable
states.

Scalability to image-based single-agent RL task Although MARL tasks already contain high-
dimension state space such as 322-dimension in MMM2 and 282-dimension in corridor, image-
based single RL tasks, such as Atari Bellemare et al. (2013) game, often accompany higher state
spaces such as [210x160x3] for "RGB" and [210x160] for "grayscale". We use the "grayscale" type
for the following experiments. For the details of the state space in MARL task, please see Appendix
C.3.

In an image-based task, storing all state values to update all the key values inDE as fϕ updates can be
memory-inefficient, and a semantic embedding from original states may become overhead compared
to the case without it. In such case, one may resort to a pre-trained feature extraction model such
as ResNet model provided by torch-vision in a certain amount for dimension reduction only, before
passing through the proposed semantic embedding. The feature extraction model above is not an
object of training.

As an example, we implement EMU on the top of DQN model and compare it with the original
DQN on Atari task. For the EMU (DQN), we adopt some part of pre-trained ResNet18 presented
by torch-vision for dimensionality reduction, before passing an input image to semantic embedding.
At each epoch, 320 random samples are used for training in Breakout task, and 640 random
samples are used in Alien task. The same mini-batch size of 32 is used for both cases. For
fϕ training, the same parameters presented in Table 8 are adopted except for the temb = 10K
considering the timestep of single RL task. We also use the same δ2 = 1.3e− 5 and set Rthr = 50
for Breakout and Rthr = 40 for Alien, respectively. Please refer to Bellemare et al. (2013) and
https://gymnasium.farama.org/environments/atari for task details. As in Figure
34, we found a performance gain by adopting EMU on high-dimensional image-based tasks.

(a) Breakout (b) Performance (Breakout) (c) Alien (d) Performance (Alien)

Figure 34: Image-based single-RL task example.

30

Published as a conference paper at ICLR 2024

E TRAINING ALGORITHM

E.1 MEMORY CONSTRUCTION

During the centralized training, we can access the information on whether the episodic return reaches
the highest return Rmax or threshold Rthr, i.e., defeating all enemies in SMAC or scoring a goal in
GRF. When storing information to DE , by the definition presented Definition. 1, we set ξ(s) = 1 for
∀s ∈ Tξ.
For efficient memory construction, we propagate the desirability of the state to a similar state within
the threshold δ. With this desirability propagation, similar states have an incentive for a visit. In
addition, once a memory is saved inDE , the memory is preserved until it becomes obsolete (the oldest
memory to be recalled). When a desirable state is found near the existing suboptimal memory within
δ, we replace the suboptimal memory with the desirable one, which gives the effect of a memory shift
to the desirable state. Algorithm 2 presents the memory construction with the desirability propagation
and memory shift.

Algorithm 2 Episodic memory construction
1: ξT : Optimality of trajectory
2: T = {s0,a0, r0, s1, ..., sT }: Episodic trajectory
3: Initialize Rt = 0
4: for t = T to 0 do
5: Compute xt = fϕ(st) and yt = (xt − µ̂x)/σ̂x
6: pick the nearest neighbor x̂t ∈ DE and get ŷt.
7: if ||ŷt − yt||2 < δ then
8: Ncall(x̂t)← Ncall(x̂t) + 1
9: if ξT == 1 then

10: Nξ(x̂t)← Nξ(x̂t) + 1
11: end if
12: if ξt == 0 and ξT == 1 then
13: ξt ← ξT ▷ desirability propagation
14: x̂t ← xt, ŷt ← yt, ŝt ← st ▷ memory shift
15: Ĥt ← Rt
16: else
17: if Ĥt < Rt then Ĥt ← Rt
18: end if
19: end if
20: else
21: Add memory DE ← (xt, yt, Rt, st, ξt)
22: end if
23: end for

For memory capacity and latent dimension, we used the same values as Zheng et al. (2021), and
Table 6 shows the summary of hyperparameter related to episodic memory.

Table 6: Configuration of Episodic Memory.

Configuration Value

episodic latent dimension, dim(x) 4
episodic memory capacity 1M

a scale factor, λ
(for conventional episodic control only) 0.1

The memory construction for EMU seems to require a significantly large memory space, especially
for saving global states s. However, DE uses CPU memory instead of GPU memory, and the memory
required for the proposed embedder structure is minimal compared to the memory usage of original

31

Published as a conference paper at ICLR 2024

Table 7: Additional CPU memory usage to save global states.

SMAC task CPU memory usage (1M data)
(GiB)

5m_vs_6m 0.4
3s5z_vs_3s6z 0.9

MMM2 1.2

RL training (<1%). Thus, a memory burden due to a trainable embedding structure is negligible.
Table 7 presents examples of CPU memory usage to save global states s ∈ DE .

E.2 OVERALL TRAINING ALGORITHM

In this section, we present details of the overall MARL training algorithm including training of
fϕ. Additional hyperparameters related to Algorithm 1 to update encoder fϕ and decoder fψ are
presented in Table 8. Note that variables N and B are consistent with Algorithm 1.

Table 8: EMU Hyperparameters for fϕ and fψ training.

Configuration Value

a scale factor of reconstruction loss, λrcon 0.1
update interval, temb 1K
training samples, N 102.4K
batch size of training, B 1024

Algorithm 3 presents the pseudo-code of overall training for EMU. In Algorithm 3, network parame-
ters related to a mixer and individual Q-network are denoted as θ, and double Q-learning with target
network is adopted as other baseline methods (Rashid et al., 2018; 2020; Wang et al., 2020b; Zheng
et al., 2021; Chenghao et al., 2021).

Algorithm 3 EMU: Efficient episodic Memory Utilization for MARL
1: D: Replay buffer
2: DE : Episodic buffer
3: Qiθ: Individual Q-network of n agents
4: M : Batch size of RL training
5: Initialize network parameters θ, ϕ, ψ
6: while tenv ≤ tmax do
7: Interact with the environment via ϵ-greedy policy based on [Qiθ]

n
i=1 and get a trajectory T .

8: Run Algorithm 2 to update DE with T
9: Append T to D

10: for k = 1 to ncircle do
11: Get M sample trajectories [T]Mi=1 ∼ D
12: Run MARL training algorithm using [T]Mi=1 and DE , to update θ with Eq.10
13: end for
14: if tenv mod temb == 0 then
15: Run Algorithm 1 to update ϕ, ψ
16: Update all x ∈ DE with updated fϕ
17: end if
18: end while

Here, any CTDE training algorithm can be adopted for MARL training algorithm in line 12 in
Algorithm 3. As we mentioned in Section C.4, training of fϕ and fψ and updating all x ∈ DE only

32

Published as a conference paper at ICLR 2024

takes less than two seconds at most under the task with largest state dimension such as corridor.
Thus, the computation burden for trainable embedder is negligible compared to the original MARL
training.

F MEMORY UTILIZATION

A remaining issue in utilizing episodic memory is how to determine a proper threshold value δ in
Eq. 1. Note that this δ is used for both updating the memory and recalling the memory. One simple
option is determining δ based on prior knowledge or experience, such as hyperparameter tuning.
Instead, in this section, we present a more memory-efficient way for δ selection. When computing
||x̂ − x||2 < δ, the similarity is compared elementwisely. However, this similarity measure puts
a different weight on each dimension of x since each dimension of x could have a different range
of distribution. Thus, instead of x, we utilize the normalized value. Let us define a normalized
embedding y with the statistical mean (µx) and variance (σx) of x as

y = (x− µx)/σx. (21)

Here, the normalization is conducted for each dimension of x. Then, the similarity measure via
||ŷ − y||2 < δ with Eq. 21 puts an equal weight to each dimension, as y has a similar range of
distribution in each dimension. In addition, an affine projection of Eq. 21 maintains the closeness
of original x-distribution, and thus we can safely utilize y-distribution instead of x-distribution to
measure the similarity.

In addition, y defined in Eq. 21 nearly follows the normal distribution, although it does not strictly
follow it. This is due to the fact that the memorized samples x in DE do not originate from the same
distribution, nor are they uncorrelated, as they can stem from the same episode. However, we can
achieve an approximate coverage of the majority of the distribution, specifically 3σy in both positive
and negative directions of y, by setting δ as

δ ≤ (2× 3σy)
dim(y)

M
. (22)

For example, when M = 1e6 and dim(y) = 4, if σy ≈ 1 then δ ≤ 0.0013. This is the reason we
select δ = 0.0013 for the exploratory memory recall.

33

	Introduction
	Preliminary
	Decentralized POMDP
	Desirability and Desirable Trajectory
	Episodic control in MARL

	Methodology
	Semantic Memory Embedding
	Episodic Incentive
	Overall Learning Objective

	Experiments
	Q1. Comparative Evaluation on StarCraft II (SMAC)
	Q1. Comparative Evaluation on Google Research Football (GRF)
	Q2. Parametric and Ablation Study
	Q3. Further Ablation Study
	Qualitative Analysis and Visualization

	Conclusion
	Related Works
	Incentive for Multi-agent Exploration
	Episodic Control
	Cooperative Multi-agent Reinforcement Learning (MARL) task

	Mathematical Proof
	Proof of Theorem 1
	Proof of Theorem 2

	Implementation and Experiment Details
	Details of Implementation
	Experiment Details
	Details of MARL tasks
	Infrastructure

	Further Experiment Results
	New Performance Index
	Additional Experiment Results
	Comparative Evaluation on Additional Starcraft II Maps
	Comparison of EMU with MAPPO on SMAC
	Additional Parametric Study
	Additional Parametric Study on rcon
	Additional Ablation Study in GRF
	Additional Ablation Study on Embedding Loss
	Additional Ablation Study on Semantic Embedding
	Additional Ablation on rc
	Comparison of Episodic Incentive with Exploratory Incentive
	Additional Toy Experiment and Applicability Tests

	Training Algorithm
	Memory Construction
	Overall Training Algorithm

	Memory Utilization

