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Abstract

Protein foundation models, particularly protein
language models, have shown strong success in
learning meaningful protein representations us-
ing transformer architectures pretrained on large-
scale datasets through self-supervised learning.
These representations have proven effective for
downstream tasks such as predicting protein func-
tions and properties. However, most existing mod-
els focus solely on amino acid sequences, over-
looking other informative modalities such as 3D
structures and literature text. While some recent
efforts incorporate multiple modalities, they of-
ten suffer from limitations in modality coverage
or training strategy. To address this gap, we pro-
pose a multimodal pretraining framework that in-
tegrates three complementary modalities — pro-
tein sequences, structures, and literature text. Our
method uses the sequence modality as an anchor
and aligns the other two modalities to it via con-
trastive learning, enabling the model to capture
richer and more holistic protein representations.
Across a diverse set of downstream tasks, Pro-
teinAligner outperforms state-of-the-art founda-
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tion models in predicting protein functions and
properties.

1. Introduction

Proteins play a fundamental role in virtually all biological
processes. Understanding their functions and properties is
central to advancing fields such as drug discovery (Wells
& McClendon, 2007), diagnostics (Borrebaeck, 2017), and
biotechnology (Nobeli et al., 2009). Recent advances in
artificial intelligence, particularly in transformer-based mod-
els (Vaswani et al., 2017), have led to the development of
protein foundation models capable of learning rich represen-
tations from large-scale protein datasets (Rives et al., 2021;
Jumper et al., 2021; Elnaggar et al., 2021; Bepler & Berger,
2021; Jumper et al., 2021; Hsu et al., 2022; Brandes et al.,
2022; Zhang et al., 2022; Xu et al., 2023; Chen et al., 2024;
Shanker et al., 2024; Wu et al., 2024). These models, partic-
ularly protein language models (PLMs) (Rives et al., 2021;
Elnaggar et al., 2021; Bepler & Berger, 2021; Brandes et al.,
2022; Chen et al., 2024), have shown remarkable success in
performing various downstream tasks such as protein func-
tion prediction (Unsal et al., 2022; Yu et al., 2023), property
prediction (Flamholz et al., 2024; Teufel et al., 2022), struc-
ture prediction (Lin et al., 2023; Chowdhury et al., 2022),
and protein design (Madani et al., 2023; Ferruz et al., 2022).

Despite these successes, current PLMs predominantly fo-
cus on amino acid sequences while overlooking the wealth
of complementary information available in other modali-
ties. Protein structures, for example, provide critical three-
dimensional information that is essential for understand-
ing how proteins fold and interact with other molecules,
directly influencing their biological functions (Petsko &
Ringe, 2004). The spatial arrangement of amino acids,
which governs interactions such as binding affinities and
functional sites, cannot be readily inferred from sequence
data alone (Zhang et al., 2012; Mosca et al., 2013), making
the integration of structural data crucial for a more compre-
hensive understanding of protein behavior. Similarly, the
vast amount of biological literature contains experimentally
validated insights into protein mechanisms, behavior, and
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interactions that are often context-specific and difficult to
infer from sequences or structures alone (Lee et al., 2020;
Xu et al., 2023). Literature captures critical information
about post-translational modifications, protein dynamics in
various environments, and interaction networks - details
accumulated from years of experimental studies. By in-
corporating these additional modalities - protein structures
and related literature - protein foundation models can move
beyond sequence prediction to a more robust, context-aware
understanding of protein biology. This multimodal integra-
tion has the potential to greatly enhance the representational
power of these models, enabling more accurate predictions
of protein functions and behaviors in diverse biological sce-
narios. More detailed discussions about related works can
be found in Appendix A.

To address these limitations, we introduce ProteinAligner,
a multimodal pretraining framework that combines protein
sequences, structures, and literature text. Our framework
aligns these modalities with the protein sequence as the
anchor, enabling the model to learn richer and more compre-
hensive representations of proteins. By integrating diverse
protein-related data, ProteinAligner improves the model’s
ability to capture intricate biological phenomena, paving
the way for more accurate predictions of protein functions
and properties. ProteinAligner utilizes three specialized
encoders - a sequence encoder, a structure encoder, and a
text encoder - to learn representations for each modality.
These distinct representations are projected into a shared
latent space, enabling direct comparison across modalities.
By employing a contrastive alignment strategy (Oord et al.,
2018), ProteinAligner uses protein sequences as the anchor
to align corresponding structures and textual descriptions,
encouraging similar representations for the same protein
and dissimilar representations for different proteins. This
approach not only maximizes data utilization by allowing
pretraining on incomplete modality data but also captures
the biological insights provided by each modality.

ProteinAligner offers several advantages over existing multi-
modal protein foundation models. While models such as
ProtST, ESM-IF1, ESM-S, ProteinCLIP, and ProtCLIP are
limited to two modalities, ProteinAligner simultaneously
integrates three: sequence, structure, and functional text.
In contrast to ESM-3, which relies on masked token pre-
diction that emphasizes local reconstruction without ex-
plicit cross-modal alignment, and ProTrek, which employs
a multi-task learning framework prone to task interference,
ProteinAligner uses a unified contrastive learning objective
that promotes global semantic alignment across modalities
and avoids task conflict. Additionally, unlike ESM-3 and
ProTrek, which discretize protein structures into tokens and
incur quantization errors, ProteinAligner retains continuous
structural representations, enabling more precise encoding
of geometric features.

ProteinAligner demonstrated superior performance com-
pared to state-of-the-art baselines across various down-
stream prediction tasks, including predicting pathogenic
missense variants, predicting protein thermostability, de-
tecting type I anti-CRISPR activities, identifying potent
bioactive peptides, estimating the minimum inhibitory con-
centration of antimicrobial peptides, and protein fitness pre-
diction. An detailed overview of ProteinAligner can be
found in Appendix B.

2. Results

ProteinAligner predicts pathogenic missense variants.
Pathogenic missense variants refer to specific types of ge-
netic mutations where a single nucleotide change in a DNA
sequence results in the substitution of one amino acid for
another in the corresponding protein (Cheng et al., 2023).
This change can disrupt the protein’s normal function, po-
tentially leading to diseases or disorders. In the context of
pathogenicity, these variants are considered harmful because
they alter the protein’s structure or function in a way that
impairs biological processes. Depending on the protein’s
role, this can lead to a variety of outcomes, from minor
effects to severe genetic disorders, such as cystic fibrosis,
sickle cell disease, or certain forms of cancer. Identifying
and characterizing pathogenic missense variants is crucial in
genetic research and clinical diagnostics for understanding
inherited diseases and developing targeted treatments.

The inputs for this task are two protein sequences: the wild-
type sequence and the mutant sequence. We employed the
sequence encoder in ProteinAligner to extract representation
vectors for both proteins. These vectors were then concate-
nated and passed through a multi-layer perceptron to predict
whether the mutant protein is pathogenic (Fig. 2a). We used
200 labeled examples from the VariPred (Lin et al., 2024)
dataset, with 100 examples allocated for training and the
remaining 100 for testing.

We benchmarked ProteinAligner against five state-of-the-art
protein foundation models: (1) ESM-2 (650M) (Lin et al.,
2023), a protein language model pretrained solely on amino
acid sequences; (2) ProtST (Xu et al., 2023), which uses con-
trastive learning to align protein sequences with functional
texts; (3) ESM-3 (1.4B) (Hayes et al., 2025), pretrained
jointly on sequences, structures, and functional annotations
using a masked language modeling objective across all three
modalities; (4) ProTrek (Su et al., 2024), trained on se-
quences, structures, and texts via a multi-task framework
combining masked modeling and contrastive learning; and
(5) ESM-S (Zhang et al., 2024), which incorporates 3D
structural priors into the ESM-2 model via remote homol-
ogy supervision. We did not include direct comparisons
with ProteinCLIP (Wu et al., 2024) and ProtCLIP (Zhou
et al., 2025), as both follow a similar two-modality con-
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trastive framework as ProtST. Model performance was as-
sessed using F1-score, precision, and recall. For this and all
other downstream tasks, we retrained every model five times
using different random initializations of the task-specific
prediction head. We then reported the mean and standard
deviation of the evaluation metrics across the five runs.

ProteinAligner outperformed all baseline methods across
F1 score, precision, and recall (Fig. 2b). The corresponding
p-values from two-sided 7-tests — computed based on five
repeated runs under identical settings with variation only
in random seed initialization — comparing ProteinAligner
to ESM-S, ESM-3, and ProTrek on F1 score are 0.045,
< 0.01, and 0.037, respectively. All p-values fall below the
0.05 threshold, indicating that the F1 score improvements
achieved by ProteinAligner are statistically significant. De-
spite ESM-3’s substantially larger scale — with 1.4 billion
parameters and a pretraining corpus comprising 2.78 billion
natural protein sequences, which are augmented to over 771
billion sequence tokens, in addition to 236 million structure
tokens and 539 million function annotation tokens — its
performance remains markedly below that of ProteinAligner.
ESM-3 achieves only 0.53 precision, 0.58 recall, and 0.47
F1 score, compared to ProteinAligner’s scores of 0.72, 0.72,
and 0.72, respectively, despite ProteinAligner’s considerably
smaller model size and pretraining dataset.

ProteinAligner predicts protein thermostability. Pro-
tein thermostability refers to a protein’s ability to maintain
its structure and function when exposed to elevated temper-
atures (Modarres et al., 2016). This characteristic is critical
because proteins typically lose their functional shape, or
denature, at high temperatures, rendering them ineffective.
Thermostability is an important factor in various biological
processes and industrial applications. For instance, enzymes
with high thermostability are essential in industries such as
biotechnology and pharmaceuticals, where reactions often
require high temperatures for optimal efficiency. Predicting
protein thermostability allows researchers to design or en-
gineer proteins that can withstand challenging conditions,
improving their functionality and longevity. Additionally,
thermostable proteins are valuable in drug design, as they
tend to have better shelf lives and performance under physi-
ological conditions. Accurate predictions of thermostability
are crucial for advancing protein engineering and enhancing
the reliability of proteins in various applications.

Unlike the previous task, this task takes the 3D structures
of proteins, specifically their atomic coordinates, as input.
The 3D structure of each protein was processed through
ProteinAligner’s structure encoder, generating a represen-
tation vector. This vector was then passed through a multi-
layer perceptron to predict the protein’s thermostability class
(Fig. 3a). We employed the HP-S*C5 dataset (Chen et al.,
2023b), which comprises 1,040 proteins spanning five ther-

mostability classes: Hyperthermophilic (above 75°C), Ther-
mophilic (45-75°C), Mesophilic (25-45°C), Psychrophilic
(5-25°C), and Cryophilic (—20-5°C). 936 proteins were
used for training and 104 for testing. We compared Pro-
teinAligner with ESM-IF1 (Hsu et al., 2022), a protein
structure encoder pretrained on both protein structures and
sequences. We used accuracy, F1 score, and area under ROC
curve as evaluation metrics. ProteinAligner remarkably out-
performed ESM-IF1 (Fig. 3b), achieving an F1 score of
0.608 compared to 0.559, and an accuracy of 0.577 com-
pared to 0.542.

ProteinAligner detects type I anti-CRISPR activities.
We evaluated the effectiveness of ProteinAligner in detect-
ing type I anti-CRISPR (Acr) activities. Acr proteins are
produced by certain viruses, such as bacteriophages, or
mobile genetic elements to inhibit the type I CRISPR-Cas
immune system in bacteria and archaea (Hasani et al., 2023).
The CRISPR-Cas system functions as an adaptive immune
mechanism in these microorganisms, recognizing and cleav-
ing foreign DNA from viral invaders. In type I systems
that involve multi-subunit Cas proteins, Acr proteins disrupt
this defense by preventing Cas proteins from binding to
target DNA or carrying out their cleavage functions. Un-
derstanding and detecting these Acr activities is crucial for
controlling CRISPR-Cas systems in genetic engineering and
applying bacteriophages to combat antimicrobial resistance.

Given the amino acid sequences of an Arc protein and a set
of Cas proteins from a CRISPR-Cas system, we employed
ProteinAligner’s pretrained sequence encoder to extract rep-
resentation vectors for each protein. These vectors were
then input into a convolutional neural network (CNN) based
classification module to predict whether the Arc protein
could inhibit the CRISPR-Cas system (Fig. 4a). We utilized
the Acr-CRISPR-Cas inhibition dataset (Hasani et al., 2023)
for experiments, which comprises 227 pairs of Acr proteins
and CRISPR-Cas systems, including 132 experimentally
verified positive pairs (Acr inhibits CRISPR-Cas) and 95
negative pairs (Acr does not inhibit CRISPR-Cas). It was
randomly split into training and test sets in an 8:2 ratio.

ProteinAligner outperformed all baselines in terms of ac-
curacy. For area under the ROC curve (AUC), it achieved
the second-highest performance, slightly trailing ESM-3
(1.4B). For F1 score, the p-values for comparisons between
ProteinAligner and ESM-S, ESM-3, and ProTrek are 0.018,
0.011, and 0.033. All values fall below the 0.05 threshold, in-
dicating that the improvements achieved by ProteinAligner
over these baselines are statistically significant.

ProteinAligner identifies potent bioactive peptides.
Bioactive peptides are short chains of amino acids with
specific biological activities (Bahar & Ren, 2013). They
play critical roles in regulating physiological processes, in-
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cluding immune function, metabolism, and cardiovascular
health. Identifying bioactive peptides is important because
they offer significant potential for developing new therapeu-
tic agents and functional foods. These peptides can serve
as natural, targeted treatments with fewer side effects com-
pared to traditional drugs, and their discovery can lead to
advancements in both medical applications and nutrition,
benefiting public health and disease prevention efforts.

Given the amino acid sequence of a peptide, we employed
ProteinAligner’s protein sequence encoder to extract a rep-
resentation vector, which was subsequently input into a
convolutional neural network (CNN)-based classification
head to predict whether the peptide has a specific bioac-
tivity. We examined seven distinct bioactivities, including
inhibition of dipeptidyl peptidase IV (DPP-IV) (Rasmussen
et al., 2003), modulation of brain activity (Bin et al., 2020),
antiviral properties (Vilas Boas et al., 2019), antioxidant ac-
tivity (Zou et al., 2016), umami taste induction (Zhang et al.,
2017), blood-brain barrier penetration (Dai et al., 2021),
and T-cell immune response induction (Charoenkwan et al.,
2020b). Given that a peptide can exhibit multiple bioactiv-
ities concurrently, we approached each bioactivity predic-
tion as a binary classification task, avoiding the use of a
multi-class model that would assign the peptide to a single
category. Separate datasets were used for each bioactivity
(Methods). The evaluation metrics for this task included
accuracy (ACC), balanced accuracy (BACC) (He & Garcia,
2009), sensitivity (SN), specificity (SP), Matthews corre-
lation coefficient (MCC) (Matthews, 1975), and the area
under the ROC curve (AUC). ProteinAligner outperformed
the baselines in most cases (Figs. 5 and 6). For example, in
terms of average performance, ProteinAligner outperformed
ESM-2, ProtST, and ESM-S in all seven tasks, outperformed
ProTrek in six of the seven tasks, and outperformed ESM-3
in five out of the seven tasks.

ProteinAligner predicts the minimum inhibitory concen-
tration (MIC) of antimicrobial peptides. Antimicrobial
peptides (AMPs) are short chains of amino acids that serve
as a crucial part of the innate immune response in many
organisms, exhibiting broad-spectrum activity against bacte-
ria, viruses, fungi, and even cancer cells (Pandi et al., 2023).
They function by disrupting microbial membranes, leading
to cell death, and are considered potential alternatives to
conventional antibiotics, especially in the face of rising an-
tibiotic resistance. The minimum inhibitory concentration
(MIC) is the lowest concentration of an antimicrobial agent,
such as an AMP, that prevents visible microbial growth. Ac-
curately predicting the MIC values of AMPs is essential as
it allows for the optimization of peptide design for thera-
peutic use, minimizes potential toxicity, and helps in the
early-stage screening of effective peptides before in vitro
or in vivo testing. This predictive capability is vital for

accelerating the development of AMPs as a novel class of
antimicrobial agents in clinical applications.

Given the amino acid sequence of a peptide, we applied
ProteinAligner’s protein sequence encoder to extract a rep-
resentation vector, which was then fed into a multi-layer
perceptron-based regression module to predict the MIC of
the peptide against a specific pathogen (Fig. 7a). We focused
on Escherichia coli (E. coli), a gram-negative bacterium.
We utilized the dataset from (Ledesma-Fernandez et al.,
2023), comprising 3,695 training and 924 testing examples.
Mean squared error was used as the evaluation metric. Pro-
teinAligner achieved lower prediction error compared to
ESM-2, ProtST, ESM-S, ESM-3, and ProTrek (Fig. 7b).
ESM-3 had the highest error among all methods, with a
value of 1.1 — substantially higher than ProteinAligner’s
error of 0.449. This observation aligns with the findings
reported in (Zhao et al., 2025).

3. Discussions

ProteinAligner introduces a comprehensive approach to pro-
tein representation learning by integrating sequences, struc-
tures, and literature texts into a unified framework. This
multimodal design allows the model to capture complemen-
tary information from each modality, providing a richer
and more holistic understanding of proteins. By employing
contrastive alignment, ProteinAligner learns representations
that incorporate structural and functional attributes along-
side contextual knowledge from experimental literature, en-
abling superior performance across a range of challenging
protein-related tasks. Its ability to bridge critical gaps in
existing models demonstrates its potential for advancing
research in protein biology, drug development, and biotech-
nology, highlighting the importance of multimodal frame-
works in addressing complex biological challenges. More
detailed discussions can be found in Appendix E.

Software and Data

The FASTA and PDB datasets are publicly available in
UniProtKB Swiss-Prot and RCSB PDB, respectively. The
FASTA and PDB entries for protein sequences and struc-
tures in the pretraining data, along with their textual descrip-
tions, are available at repository All data used in downstream
tasks is also publicly available. The data for predicting the
pathogenicity of missense variants is available at VariPred.
The data used in thermostability prediction is available at
HotProtein. The data used in type I anti-CRISPR activity de-
tection is available at AcrTransAct. The data used in peptide
bioactivity prediction is available at UniDL4BioPep. The
data for predicting the minimum inhibitory concentration
(MIC) of antimicrobial peptides is available at DeepAMP.
See Appendix G for code availability.
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Impact Statement

Proteins are vital to nearly all biological functions, and
understanding their roles is critical for advancements in
medicine and biotechnology. ProteinAligner introduces a
multimodal framework integrating protein sequences, 3D
structures, and scientific literature, enabling comprehen-
sive protein representation learning. This approach en-
hances the ability to predict protein functions, thermostabil-
ity, pathogenic mutations, and so on.
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A. Related works

Several prior studies (Xu et al., 2023; Zhang et al., 2024; Hayes et al., 2025; Wu et al., 2024; Su et al., 2024) have explored
pretraining protein foundation models using pairs of modalities — for example, combining protein sequences with literature
texts (Xu et al., 2023), or protein sequences with structural information (Zhang et al., 2024). ProteinCLIP (Wu et al., 2024)
adopts a dual-encoder architecture, aligning protein sequences with functional annotations via contrastive learning in a
shared latent space, using a pretrained sequence encoder and a transformer-based text encoder. ProtCLIP (Zhou et al.,
2025) builds upon this by introducing three types of contrastive objectives: (i) sequence-text alignment, (ii) intra-sequence
consistency across overlapping fragments, and (iii) prototype-based alignment for known functional regions. ProtST (Xu
et al., 2023) also uses contrastive learning between sequences and texts, incorporating curriculum-based negative sampling
and a margin-based loss. ESM-S (Zhang et al., 2024) extends ESM-2 (Lin et al., 2023) by injecting structural information
through fine-tuning on a remote homology detection task. It predicts fold classes directly from sequence embeddings,
thereby enriching the model with implicit structural knowledge. However, pretraining on all three modalities remains largely
underexplored.

Recently, two works — ESM-3 (Hayes et al., 2025) and ProTrek (Su et al., 2024) — conducted independently and
concurrently with ours, leverage all three modalities for pretraining. ESM-3 (Hayes et al., 2025) integrates amino acid
sequences, 3D structural coordinates, and textual annotations by converting each modality into a unified token track
processed jointly by a transformer backbone. During pretraining, it employs a masked language modeling objective in which
tokens across all modalities are randomly masked, and the model is trained to predict the missing elements, thereby learning
cross-modal representations. ProTrek (Su et al., 2024) encodes sequences, structures, and functional text using three separate
encoders whose outputs are projected into a shared latent space. Its training strategy combines bidirectional InfoNCE (Oord
et al., 2018) losses with masked language modeling objectives applied separately to the sequence and structure modalities.

ESM-3 has two major limitations. First, its pretraining relies exclusively on masked token prediction and does not incorporate
contrastive learning (He et al., 2020; Hermosilla & Ropinski, 2022; Oord et al., 2018), which limits its ability to align
biologically equivalent inputs such as protein sequences, structures, and functional annotations. This absence of contrastive
supervision can lead to fragmented and less transferable representations that perform poorly on tasks requiring integrated
biological reasoning. Second, ESM-3 compresses structural information into discrete tokens using a VQ-VAE (Razavi et al.,
2019) encoder, introducing quantization noise that discards fine-grained biophysical details such as side-chain orientations,
solvent accessibility, and subtle backbone perturbations. Similarly, ProTrek also exhibits key limitations. Although it
combines masked token prediction and contrastive learning during pretraining, this multitask setup can create optimization
conflicts due to competing training signals (Kendall et al., 2018; Liu et al., 2021; Sener & Koltun, 2018; Yu et al., 2020),
leading to unstable convergence and suboptimal alignment across modalities. In addition, ProTrek discretizes protein
structures into tokens using Foldseek (Van Kempen et al., 2024), resulting in the loss of detailed geometric information
critical for capturing functionally relevant structural features.

B. ProteinAligner overview

ProteinAligner is a multimodal foundation model for protein representation learning, integrating three distinct modalities:
amino acid (AA) sequences, 3D structures, and textual descriptions of proteins. ProteinAligner contains three encoders - a
protein sequence encoder, a protein structure encoder, and a text encoder - each dedicated to learning representations for
its corresponding modality (Fig. 1a). The protein sequence encoder is a protein language model that uses the transformer
architecture (Vaswani et al., 2017) to extract a representation for the input AA sequence. It represents each AA as a
token and employs self-attention (Vaswani et al., 2017) to capture long-range dependencies among AAs. The protein
structure encoder utilizes Geometric Vector Perceptron Graph Neural Network (GVP-GNN) (Jing et al., 2020) layers for
geometric representation learning of the input protein structure, followed by transformer layers that capture long-range
interactions between atomic coordinates. The text encoder employs a transformer architecture, utilizing self-attention to
capture long-range dependencies between language tokens. Specifically, we employed ESM-2 (650M) (Lin et al., 2023), a
leading protein language model, as the protein sequence encoder, and ESM-IF1 (Hsu et al., 2022) as the protein structure
encoder. ESM-2 (650M) consists of 33 transformer layers and 650 million parameters, pretrained on 65 million protein
sequences. ESM-IF1 features 20 layers and 124 million parameters, pretrained on 12 million computed protein structures
and 16,000 experimentally verified structures. The text encoder includes eight transformer layers with a total of 78 million
parameters. ProteinAligner uses modality-specific linear projection modules to map the representations extracted by different
encoders into a shared latent space with matching dimensions, ensuring that representations from different modalities are
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directly comparable. ProteinAligner consists of 867 million model parameters in total.

ProteinAligner performs joint pretraining of the three encoders by leveraging a modality alignment strategy, using protein
sequences as the anchor modality to align the other two modalities (Fig. 1a). Specifically, given a protein sequence and a
protein structure, if they correspond to the same protein, ProteinAligner encourages their representations to be similar, and
dissimilar otherwise. The same principle applies for protein text and protein sequences, with representations aligned if they
refer to the same protein and separated if not. This alignment is accomplished by minimizing contrastive losses (He et al.,
2020; Oord et al., 2018) defined on the representations of sequence-structure pairs and sequence-text pairs. ProteinAligner
does not require all three modalities to be present simultaneously for each protein in the pretraining data. The alignment can
be performed as long as the protein sequence and at least one additional modality - either structure or text - are available. We
chose protein sequences as the anchor for alignment because they are the most prevalent data modality in protein databases;
nearly every protein has an associated amino acid sequence, whereas information on structures or textual descriptions is
often incomplete. By using sequences as the anchor, we can maximize data utilization, ensuring the inclusion of as many
proteins as possible in the alignment process. With pretrained encoders in place, they can be fine-tuned on task-specific
data to handle a variety of downstream tasks. During this process, the encoders are integrated with task-specific modules,
creating models that are customized for specific prediction tasks.

We curated a large-scale pretraining dataset for ProteinAligner by integrating data from the UniProtKB/Swiss-Prot (Consor-
tium, 2019) and RCSB PDB (Burley et al., 2023) databases. The dataset consists of 290,480 proteins, each with an amino
acid sequence and a corresponding textual description. 133,726 of them are also associated with protein structures. In total,
the dataset contains 133,726 sequence-structure pairs and 290,480 sequence-text pairs. The textual descriptions provide
information about the proteins’ functions. Both the structures and the functional descriptions were experimentally validated
and reviewed by domain experts. Fig. 1b shows the distribution of protein taxonomy, functions, and types in the dataset.

C. More tasks

C.1. Zero-shot prediction of pathogenic missense variants and thermostability

To assess the generalization capability of ProteinAligner without task-specific fine-tuning, we conducted zero-shot evalu-
ations on two representative tasks: pathogenic missense variant prediction and protein thermostability prediction. These
tasks evaluate the model’s ability to reason about the effects of single amino acid substitutions in a biologically meaningful
manner.

For zero-shot pathogenic missense variant prediction, we followed the protocol of Meier et al. (Meier et al., 2021). Given
a wild-type and a mutant sequence differing by a single amino acid substitution at a specific site, we used each protein
foundation model to encode both sequences and extract the representation vectors at the mutation site. These vectors
were passed through the pretrained ESM-2 prediction head, which outputs a probability distribution over the amino acid
vocabulary. We then computed the log-probabilities of the wild-type and mutant residues at the mutation site, and used their
difference (log-prob(mutant) — log-prob(wild-type)) as a pathogenicity score. A mutation was classified as pathogenic if this
score exceeded a fixed threshold.

As shown in Fig. 9a, ProteinAligner achieved the highest area under the ROC curve (AUC = 0.240), outperforming ESM-2
650M (0.175), ProtST (0.215), ESM-S (0.212), and ProTrek (0.100). Notably, in the low false-positive rate regime (FPR
< 5%), which is especially relevant for clinical screening applications, ProteinAligner attained a substantially higher true
positive rate than all baselines.

For zero-shot thermostability prediction, we adopted the evaluation strategy of Jiang et al. (Jiang et al., 2024), using mutation
data from MPTherm (Kulandaisamy et al., 2021), FireProtDB (Stourac et al., 2021), and ProThermDB (Nikam et al., 2021),
totaling 66 single-site mutation assays. As with the pathogenicity task, we calculated the log-probability difference between
mutant and wild-type amino acids at the mutation site using the ESM-2 prediction head. This score was used as a proxy for
the mutation’s impact on melting temperature. The predicted scores were ranked and compared to experimentally measured
rankings using Spearman’s rank correlation. Fig. 9b shows that ProteinAligner achieved a Spearman correlation of 0.418,
comparable to ESM-2 (0.433), ESM-S (0.433), ProtST (0.429), and ProTrek (0.408).

Together, these results demonstrate that ProteinAligner generalizes well to both functional and biophysical mutation effect
prediction tasks in a zero-shot setting, highlighting the benefits of its contrastive tri-modal pretraining on sequence, structure,
and function text.
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C.2. Effect of prediction head on downstream performance

To assess the influence of prediction heads on downstream task performance, we conducted additional experiments on two
representative tasks: pathogenic missense variant prediction and minimum inhibitory concentration (MIC) regression for
antimicrobial peptides. These tasks were selected to reflect both classification and regression settings. For the pathogenicity
prediction task, we compared two prediction head configurations: (1) a multi-layer perceptron (MLP) and (2) a linear Elastic
Net (Zou & Hastie, 2005) model applied to protein embeddings after dimensionality reduction using principal component
analysis (PCA), following the methodology in (Fan et al., 2023). PCA was employed to project the high-dimensional
residue-level embeddings produced by protein language models into a lower-dimensional space, which was then used as
input to the Elastic Net classifier. For the MIC regression task, we evaluated: (1) an MLP head, and (2) a multi-branch
convolutional neural network (CNN) architecture proposed by (Yan et al., 2023; 2022), which has demonstrated strong
performance in peptide-related predictions.

Results of these comparisons are shown in Fig. 10. Across all prediction head configurations, ProteinAligner consistently
outperformed baseline models, indicating that its performance gains are robust to the choice of prediction head. While the
architecture of the prediction head can affect the absolute level of performance, the improvements provided by ProteinAligner
persisted regardless of the prediction head used.

C.3. ProteinAligner predicts protein fitness.

Protein fitness prediction aims to assign quantitative scores to single-mutation variants of a reference protein, reflecting
changes in biochemical activity, stability, or binding. Such measurements are typically obtained through large-scale deep
mutational scanning (DMS) assays, which combine systematic mutagenesis with high-throughput functional screening to
map the sequence—function landscape (Chen et al., 2023a; Livesey & Marsh, 2022).

To predict fitness, we encoded each mutant sequence using ProteinAligner’s sequence encoder and passed the resulting
embeddings to a convolutional neural network (CNN) head (Notin et al., 2023b), followed by an independent multilayer
perceptron (MLP) regressor for each mutation site (Fig. 8a). Experiments were conducted on a subset of the ProteinGym
benchmark (Notin et al., 2023a), consisting of 15 randomly selected single-substitution DMS assays from a total of 217.
The selected assays are listed in Table 2, with an average of 3,402 fitness measurements per assay. Each assay was evaluated
using Spearman’s rank correlation coefficient (Spearman), Pearson correlation coefficient (Pearson), and coefficient of
determination (R?), with higher values indicating better performance. All experiments were repeated five times to account
for variability. ProteinAligner outperformed all baselines across all metrics, except for a slight decrease compared to ESM-3
in R? (Fig. 8b). These results indicate that ProteinAligner generalizes well to protein fitness prediction tasks.

D. Materials and methods
D.1. Dataset preprocessing

The pretraining data for ProteinAligner was sourced from the UniProtKB/Swiss-Prot (Consortium, 2019) and RCSB
PDB (Burley et al., 2023) databases. UniProtKB/Swiss-Prot is a well-curated repository containing high-quality protein
sequences across a wide variety of organisms, along with detailed annotations on protein functions and properties. We
utilized version UniProt 2023_02, which was released on May 2, 2023. The RCSB PDB database offers a comprehensive
collection of experimentally determined 3D protein structures, derived from methods such as X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM). It includes protein structures from a
wide range of proteins, such as enzymes, receptors, and antibodies, originating from diverse organisms.

From these databases, we collected sequence-text pairs and sequence-structure pairs. The sequence-text pairs were sourced
from UniProtKB/Swiss-Prot. We first obtained a collection of protein entries from Swiss-Prot that included textual
descriptions of their functions, by filtering for entries where the comment Type field was set to ‘Function’. We then
retrieved the corresponding sequence for each protein in this collection. Specifically, we accessed the UniProt ID from the
primaryAccession field and used it to retrieve the corresponding protein FASTA file from the UniProt website, which
contains the protein’s sequence. We downloaded all available PDB files from the May 2, 2023 dataset release (Burley et al.,
2023), comprising 200,734 experimentally determined protein structures. We then employed the UniProt ID mapping tool!
to link the structures in the PDB files to their corresponding amino acid sequences in the FASTA files. To address memory

"https://www.uniprot.org/id-mapping
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Table 1. Data split for bioactive peptide identification

Bioactive peptides Train (Pos./Neg.) Test (Pos./Neg.)
DPP IV inhibitory peptides 532/532 133/133
Neuropeptide 1,940/ 1,940 485 /485
Antiviral peptides 2,321/2,321 623 /623
Antioxidant peptides 582 /541 146 /135
Umami peptides 112 /241 28/61
Blood-brain barrier peptides 100/ 100 19/19
TTCA peptides 4707318 122775

constraints during pretraining, we excluded protein sequences longer than 300 residues, yielding 133,726 sequence-structure
pairs and 290,480 sequence-text pairs.

For datasets used in downstream tasks, we followed the train—test split strategies specified in the original papers from which
the datasets were obtained whenever applicable. In cases where no predefined split was available, we adopted a standard
80:20 random split. Below, we provide a detailed description of the data splitting procedures for each dataset. For type I
anti-CRISPR activity detection, we used a dataset (Hasani et al., 2023) comprising 227 Acr—CRISPR-Cas system pairs,
including 132 positive (inhibitory) and 95 negative (non-inhibitory) examples. Following the setup in (Hasani et al., 2023),
we applied a random 80:20 split. For peptide bioactivity prediction, we used the train—test splits provided by (Du et al.,
2023), who curated and partitioned the datasets for each specific bioactivity task. These datasets include a range of short
peptides annotated with diverse functional labels. Table 1 summarizes the distribution of examples across training and
test sets for each task. For minimum inhibitory concentration (MIC) prediction of antimicrobial peptides, the original
dataset (Pandi et al., 2023) for Gram-negative AMPs included only a training set. We therefore performed an 80:20 random
split, yielding 3,695 peptides for training and 924 for testing. For pathogenic missense variant prediction, we followed the
predefined balanced 50:50 split from the original source (Lin et al., 2024), consisting of 100 mutations in the training set
and 100 in the test set. Finally, for thermostability prediction, we used the same train—test split as in (Liu et al., 2023), which
contains 936 proteins for training and 104 for testing.

D.2. Encoders in ProteinAligner

ProteinAligner utilizes ESM-2 (650M) (Lin et al., 2023) to learn representations for protein sequences. ESM-2 (650M), a
protein language model, was pretrained on 65 million protein sequences from UniRef50 (Suzek et al., 2015) by predicting
masked amino acids. The model features 33 transformer layers and an embedding dimension of 1280, allowing it to
effectively capture the complexities inherent in protein sequences. To encode protein structures, ProteinAligner employs
ESM-IF1 (Hsu et al., 2022), a model trained to address the inverse folding problem - predicting the amino acid sequence
from a protein’s backbone atom coordinates. ESM-IF1 comprises an encoder and a decoder, where the encoder extracts a
representation vector from the input structure, which is then fed into the decoder to generate the corresponding sequence.
ProteinAligner utilizes only the encoder from ESM-IF1, omitting the decoder component. The encoder is composed of four
Geometric Vector Perceptron Graph Neural Network (GVP-GNN) (Jing et al., 2020) layers for geometric feature extraction,
followed by eight transformer encoder layers to capture long-range interactions between these features. ESM-IF1 was
trained on 12 million AlphaFold2 (Jumper et al., 2021) computed protein structures and 16,000 experimentally verified
structures, along with their associated sequences from the UniRef50 dataset (Suzek et al., 2015). The text encoder is a
transformer model comprising eight layers and a total of 78 million parameters.

To aggregate per-position embeddings into a single representation for the entire protein sequence, we use the output
embedding of the beginning-of-sequence (BOS) token from the ESM-2 encoder. The BOS token is prepended to each input
sequence and attends to all positions during encoding, thereby serving as a global summary that captures information across
the full sequence. For structure-based representations extracted by the ESM-IF1 encoder, we compute the mean of the
per-residue embeddings across all positions, providing an overall summary of the 3D structural context. For functional text,
following (Cherti et al., 2023), we use the embedding of the end-of-sequence (EOS) token, which is appended to the end
of the tokenized input, to summarize the textual information. Each modality-specific summary is then passed through a
lightweight projection head consisting of a LayerNorm (Ba et al., 2016) and a single-layer multi-layer perceptron, yielding a
fixed-size representation vector. These vectors are used for contrastive learning across modalities.
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D.3. ProteinAligner pretraining

Given a protein sequence .S and a protein structure R, we employ the sequence encoder E(+) and structure encoder E.(-)
to extract representation vectors s = F(S) andr = E,.(R) for S and R, respectively. To ensure that the representations are
similar when S and R belong to the same protein, and dissimilar when they do not, we minimize the InfoNCE (Oord et al.,
2018) contrastive learning loss:

exp (s; r;/7)
exp (s/1i/7) + 3, exp (s r;/7)’

Ls,’r = - IOg (1)

where s; and r; represent the sequence and structure representations of the same protein ¢, while s; and r; represent the
representations of different proteins ¢ and j. This loss function encourages the alignment of s; and r; and discourages the
similarity between s; and r;. The temperature parameter 7 controls the sharpness of the softmax distribution.

Similarly, given a protein sequence S and a protein text description 7', we use the sequence encoder F(-) and the text
encoder E;(-) to obtain representation vectors s = F(S) and t = E;(T) for S and T, respectively. To ensure that the
representations are similar when S and 7" correspond to the same protein, and dissimilar when they do not, we minimize the
following InfoNCE contrastive learning loss:

. exp (s{ ;/7)
st = —108 exp (s t;/7) + i €XP (s t/7)

@

For specific experimental settings, we minimized the sum of the two loss functions with equal weights. The temperature
parameter 7 was configured to 0.07. Pretraining was carried out over 20 epochs with a total batch size of 80 using 40
A100 GPUs. For distributed training, we employed Distributed Data Parallel (DDP) (Li et al., 2020) rather than Fully
Sharded Data Parallel (FSDP) (Zhao et al., 2023), due to the increased inter-device communication overhead associated
with FSDP. In our experiments, DDP offered a favorable trade-off between performance and scalability. On the other hand,
our framework is fully compatible with FSDP and can be adapted to it if larger-scale protein encoders are used. During
pretraining, each batch contains both sequence—structure and sequence—text pairs. For example, when the batch size is set to
80, we sample 80 sequence—structure pairs and 80 sequence—text pairs per iteration. The InfoNCE loss is then computed
separately for each modality pair and averaged. The sampling of pairs is performed uniformly at random from the available
paired data. We optimized the model weights using the AdamW optimizer (Loshchilov et al., 2017), with an initial learning
rate of 5 x 1075, weight decay of 1 x 10~%, and betas of (0.9,0.95). The learning rate was dynamically adjusted throughout
pretraining via the CosineAnnealingL.R scheduler (Loshchilov & Hutter, 2022). Figure 12 illustrates the training dynamics
of the contrastive learning losses for sequence—structure pairs, sequence—text pairs, and their combined loss. The combined
loss decreases smoothly and stabilizes around 0.1, indicating stable convergence. The sequence—structure loss shows a rapid
and consistent decline, reaching approximately 0.05 within the first 20,000 training steps. The sequence—text loss exhibits
moderate fluctuations in the early stages, which gradually diminish and stabilize near 0.15.

D.4. Pathogenic missense variants prediction

The overall model architecture is depicted in Fig. 11a. For this task, the sequence encoder pretrained by ProteinAligner was
fine-tuned. The classification module was based on a multi-layer perceptron, which comprises a fully connected layer with
a hidden state size of 1280, a dropout layer with a probability of 0.5, a leaky ReLU activation (Maas et al., 2013), and a
second fully connected layer with a softmax activation function. We employed the Adam optimizer with a learning rate of
1 x 10~ and a weight decay of 1 x 1073, training the model for a maximum of 200 epochs with a batch size of 32. To
mitigate overfitting, we applied an early stopping strategy: if validation performance did not improve over 10 consecutive
epochs, training was halted, and the model checkpoint with the best validation performance was retained as the final model.
The metrics used to evaluate model performance in this task include precision, recall rate, and F1 score.

D.5. Thermostability prediction

The overall model architecture is depicted in Fig. 11b. The structure encoder, pretrained using ProteinAligner, was fine-tuned
for this task. The classification module, implemented as a multi-layer perceptron (MLP), includes a fully connected layer
with a hidden dimension of 128, followed by layer normalization (Xu et al., 2019), a ReLU activation, and a second fully
connected layer to produce the classification logits.
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D.6. Type I anti-CRISPR activity detection

The overall model architecture for this task is illustrated in Fig. 11c. The sequence encoder pretrained by ProteinAligner
was fine-tuned using data specific to this task. The classification module was based on a CNN, which was composed of two
1D convolutional layers, each with a stride of 1 and a kernel size of 7. The first convolutional layer takes an input of 1280
channels and outputs 4 channels. The second convolutional layer maintains the same input and output dimensions. Batch
normalization (Ioffe & Szegedy, 2015) and ReLU activation (Nair & Hinton, 2010) are applied after each convolutional
layer. Following the convolutional layers, two fully connected layers, each with a hidden size of 4, are employed for final
classification.

During training, we optimized model weights using the Adam (Kingma, 2014) optimizer with an initial learning rate of
3 x 1073, over a maximum of 250 epochs with a batch size of 32. To prevent overfitting, we employed early stopping when
the decrease in training loss fell below 0.005 and applied weight decay, starting at 0.01 and gradually reducing to 0.001.
We also performed a hyperparameter sweep on the dropout rate (Srivastava et al., 2014), exploring values between 0.3 and
0.5. Additionally, we implemented a learning rate reduction strategy, decreasing the rate by a factor of 0.9 if validation
performance did not improve for 10 consecutive epochs. The model’s performance was evaluated using accuracy and F1
score.

D.7. Identification of potent bioactive peptides

The overall model architecture is illustrated in Fig. 11d. The sequence encoder, pretrained by ProteinAligner, was fine-tuned
for each of the eight tasks. The classification module employs a convolutional neural network (CNN) with six layers,
structured as follows: a 1D convolutional layer (kernel size = 3, stride = 1, padding = 2), followed by BatchNorm and ReLU
activation; a max pooling layer (kernel size = 2, padding = 1) and a dropout layer with a probability of 0.15; another 1D
convolutional layer (kernel size = 3, stride = 1, padding = 2), followed by BatchNorm and ReL.U activation; a max pooling
layer (kernel size = 2, padding = 1) and a dropout layer with a probability of 0.15; a fully connected layer with a hidden
state size of 64, followed by ReLU activation and a dropout layer (probability = 0.15); and finally, a fully connected binary
classification layer with sigmoid activation.

For the dipeptidyl peptidase IV (DPP-IV) inhibitory peptide prediction task, the goal is to identify peptides that inhibit
DPP-1V activity (Charoenkwan et al., 2020a). We used the iDPPIV-SCM dataset (Charoenkwan et al., 2020a), containing
532 inhibitory peptides and 532 non-inhibitory peptides for training, and 133 inhibitory peptides and 133 non-inhibitory
peptides for testing. In the neuropeptide (NP) prediction task, the aim is to classify peptides as neuropeptides or non-
neuropeptides (Bin et al., 2020). We used the PredNeuroP dataset (Bin et al., 2020), containing 1940 neuropeptides and
1940 non-neuropeptides for training, and 485 neuropeptides and 485 non-neuropeptides for testing. For the antiviral peptide
prediction task, the objective is to predict whether a peptide has antiviral activity (preventative and therapeutic against
viral infections) (Vilas Boas et al., 2019). We utilized the ABPDiscover dataset (Pinacho-Castellanos et al., 2021), which
includes 2321 antiviral peptides and 2321 non-antiviral peptides for training, and 623 antiviral peptides and 623 non-antiviral
peptides for testing. In the antioxidant peptide prediction task, the aim is to classify peptides based on their antioxidant
properties (Zou et al., 2016). We used the AnOxPePred dataset (Olsen et al., 2020), containing 582 antioxidative peptides
and 241 non-antioxidative peptides for training, with a test set comprising 28 antioxidative peptides and 61 non-antioxidative
peptides. In the umami peptide prediction task, the goal is to determine whether a peptide elicits an umami taste (Zhang
et al., 2017). For this task, we used the iUmami-SCM dataset (Charoenkwan et al., 2020c), with a training set of 112
umami peptides and 241 non-umami peptides, and a test set of 28 umami peptides and 61 non-umami peptides. In the
blood-brain barrier peptide (BBP) prediction task, the objective is to classify whether a peptide can penetrate the blood—-brain
barrier (i.e., BBP) (Dai et al., 2021). We employed the BBPpred dataset (Dai et al., 2021), consisting of 100 BBPs and
100 non-BBPs for training, and 19 BBPs and 19 non-BBPs for testing. The tumor T cell antigen prediction task aims to
classify peptides capable of inducing a T-cell immune response (Charoenkwan et al., 2020b). We used the iTTCA-Hybrid
dataset (Charoenkwan et al., 2020b), including 470 antigenic peptides and 318 non-antigenic peptides for training, with 122
antigenic peptides and 75 non-antigenic peptides for testing.

During training, we optimized the model using stochastic gradient descent (SGD) with a learning rate of 1 x 1072,
momentum of 0.5, and no weight decay, over 200 epochs. Additionally, we applied step decay for learning rate adjustment
and utilized early stopping based on validation accuracy, halting training if no improvement was observed for 40 consecutive
epochs. Model performance was assessed using several metrics, including accuracy (ACC), balanced accuracy (BACC) (He
& Garcia, 2009), sensitivity (SN), specificity (SP), Matthews correlation coefficient (MCC) (Matthews, 1975), and area
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Table 2. List of assays randomly selected from the ProteinGym benchmark (15 out of 217 total assays).

Data source Num of observed fitness
AO0A140D2T1_ZIKV _Sourisseau_2019 9576
A0A247D711_LISMN_Stadelmann_2021 1653
A4D664_9INFA_Soh_2019 14421
CAS9_STRP1 _Spencer_2017_positive 8117
D7PMO05_CLYGR_Somermeyer_2022 1169
ENV_HV1B9_DuenasDecamp_2016 375
GLPA_HUMAN _Elazar 2016 245
KCNE1_HUMAN _Muhammad_2023_function 2315
ODP2_GEOSE_Tsuboyama_2023_1W4G 669
PKN1_HUMAN _Tsuboyama_2023_1URF 1301
Q59976_STRSQ-Romero_2015 2999
REV_HV1H2 Fernandes_2016 2147
SBI_STAAM _Tsuboyama_2023_2JVG 1025
TNKS2_HUMAN _Tsuboyama_2023_5JRT 1118
TPK1_HUMAN_Weile 2017 3181
YNZC_BACSU _Tsuboyama_2023_2JVD 714

under the ROC curve (AUC).

D.8. Minimum inhibitory concentration (MIC) value prediction

The model architecture is illustrated in Fig. 11e. The sequence encoder, pretrained with ProteinAligner, was fine-tuned to
address this task. The classification module is a multi-layer perceptron (MLP) consisting of two fully connected layers,
with a hidden size of 256 and a ReLU activation function. We employed the Adam optimizer with an initial learning rate of
1 x 10~%, training the model for 200 epochs. Throughout the training process, the learning rate was dynamically adjusted at
each epoch using the LambdalLR (Smith, 2017) scheduler. To assess the model’s performance, we used mean squared error
(MSE) as the evaluation metric.

D.9. Supervised protein fitness prediction

We evaluated ProteinAligner and baseline models on the ProteinGym Deep Mutational Scanning (DMS) benchmark, which
comprises 217 assays with quantitative fitness measurements (Notin et al., 2023a). In the supervised setting, each model
was trained on a subset of variants from each assay and evaluated on held-out single-mutation variants from the same assay.
Predictive performance on unseen variants was assessed using Spearman’s rank correlation coefficient(Spearman), Pearson
correlation coefficient (Pearson), and coefficient of determination (R?). To reduce computational cost, we randomly selected
15 single-substitution assays (listed in Table 2). The model architecture used for this task is shown in Fig. 11f: the sequence
embedding produced by ProteinAligner is passed through a one-dimensional convolutional layer (kernel size 7, stride 1,
same padding), followed by dropout (rate 0.1), a ReLU activation, and a single-layer multilayer perceptron. Fine-tuning
was performed using the AdamW optimizer (learning rate 3 x 10~4, weight decay 5 x 102, batch size 64) with a cosine
annealing schedule and 100 warm-up steps, for a total of 10,000 training steps.

E. Discussions

ProteinAligner introduces a comprehensive approach to protein representation learning by integrating amino acid sequences,
continuous 3D structures, and literature texts into a unified framework. This multimodal design allows the model to
capture complementary information from each modality, providing a richer and more holistic understanding of proteins. By
employing contrastive alignment, ProteinAligner learns representations that incorporate structural and functional attributes
alongside contextual knowledge from experimental literature, enabling superior performance across a range of challenging
protein-related tasks (Figs. 2, 3,4, 5, 6,7, 8,9, and 10). Its ability to bridge critical gaps in existing models demonstrates its
potential for advancing research in protein biology, drug development, and biotechnology, highlighting the importance of
multimodal frameworks in addressing complex biological challenges.

The superior performance of ProteinAligner over ESM-2 (Figs. 2, 4, 5, 6, 7, 8, 9, and 10) can be primarily attributed to the
differences in their pretraining strategies. ESM-2 is pretrained exclusively on large-scale protein sequences using a masked
language modeling objective, which allows it to capture local and global sequence patterns but lacks exposure to structural
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or functional context. In contrast, ProteinAligner adopts a multi-modal pretraining framework that jointly leverages protein
sequences, protein 3D structures, and textual descriptions of protein function. This integration of multiple biologically
relevant modalities enables ProteinAligner to learn richer and more biologically grounded representations. Structural
data encode critical spatial and physicochemical properties, such as residue-residue proximity, binding pocket geometry,
and overall protein folding, which are not directly inferable from sequence alone. Additionally, functional text provides
high-level semantic information about biological roles, molecular mechanisms, and cellular processes, complementing the
syntactic patterns learned from sequence and the geometric insights from structure. By aligning representations across
sequence, structure, and function during pretraining, ProteinAligner is able to internalize correspondences between syntax,
shape, and semantics in protein biology. This cross-modal alignment enhances its ability to generalize across a broad
range of downstream prediction tasks, including those requiring inference of higher-order biological properties. As a result,
ProteinAligner consistently outperforms ESM-2, especially in tasks where structural context or functional semantics are
essential for accurate prediction. This highlights the advantage of incorporating multimodal biological knowledge during
pretraining and underscores the importance of moving beyond sequence-only approaches when modeling protein function
and behavior.

ProteinAligner outperforms ProtST (Figs. 2,4, 5, 6,7, 8,9, and 10) largely due to the incorporation of structural information
during pretraining. While both models utilize protein sequences and functional text, ProtST does not leverage 3D structural
data, limiting its ability to capture the spatial and physicochemical context critical to understanding protein function.
ProteinAligner’s multi-modal framework integrates sequence, structure, and function, enabling it to align these three
complementary modalities and learn more holistic protein representations. Structural information provides key insights into
residue interactions, conformational flexibility, and binding site geometry — factors that often underpin functional behavior
but are not readily apparent from sequence or text alone. By incorporating this additional modality, ProteinAligner can
better generalize to tasks that require nuanced understanding of protein conformation or interactions. Moreover, the joint
modeling of structure with sequence and text enables the model to associate semantic functional descriptors with both linear
and spatial features of proteins, which enhances interpretability and predictive power. This comprehensive representation
explains ProteinAligner’s consistent advantage over ProtST across a range of downstream tasks.

The performance advantage of ProteinAligner over ESM-IF1 and ESM-S (Figs. 2, 4, 5, 6, 7, 8,9, and 10) can be attributed to
its incorporation of functional text during pretraining, in addition to protein sequences and structures. While ESM-IF1 and
ESM-S capture rich structural and sequential patterns, they are not exposed to explicit functional semantics, which limits
their ability to align molecular features with biological meaning. In contrast, ProteinAligner leverages textual descriptions
of protein function as an additional modality, enabling it to associate structural and sequence features with high-level
functional attributes described in natural language. This grounding in functional text enhances the model’s ability to
recognize biologically relevant patterns that may not be evident from sequence or structure alone. For instance, two proteins
with divergent sequences or conformations may share a similar function — a relationship that functional text helps to bridge.
By jointly pretraining on sequence, structure, and function, ProteinAligner develops semantically informed representations
that improve generalization across diverse downstream tasks, particularly those involving function prediction or annotation
transfer. This integrated approach gives ProteinAligner an edge over structure-sequence-only models like ESM-IF1 and
ESM-S, which lack direct exposure to the linguistic and conceptual framing of protein function.

ProteinAligner outperforms ESM-3 in most downstream tasks and across most evaluation metrics (Figs. 2, 5, 6, and 7),
which can be primarily attributed to two key factors. First, ESM-3’s pretraining strategy relies exclusively on masked
token prediction and does not incorporate a contrastive learning objective. Without contrastive supervision, the model
is not explicitly encouraged to bring representations of biologically equivalent inputs — such as a protein’s sequence
and its corresponding structure or functional annotation — closer together in the embedding space. As a result, ESM-3
may fail to establish coherent cross-modal alignments, leading to fragmented and less transferable representations that
underperform on tasks requiring integrated biological reasoning, such as pathogenic variant classification (Fig. 2) and
minimum inhibitory concentration (MIC) prediction (Fig. 7). In contrast, our method employs contrastive learning to
align modalities explicitly, encouraging the model to capture shared semantics and fine-grained relations between different
modalities, which significantly enhances generalization to downstream tasks. Second, the representational fidelity of ESM-3
is further limited by quantization noise introduced by its compression of each residue’s continuous 3D neighborhood into
a single discrete ‘structure token’ using a VQ-VAE (Razavi et al., 2019) encoder. This discretization process discards
critical biophysical information — such as side-chain orientations (Lima et al., 2021), solvent accessibility (Ramakrishnan
et al., 2023), and sub—f\ngstrijm backbone perturbations (McBride et al., 2023; Smith & Kortemme, 2008) — that are
essential for capturing fine structural determinants of protein behavior. In contrast, our method’s structure encoder, based
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on the inverse-folding model ESM-IF1 (Hsu et al., 2022), operates directly on full backbone atomic coordinates without
quantization. By leveraging rotation- and translation-equivariant geometric vector perceptron (GVP) graph layers (Jing et al.,
2020), ProteinAligner inherits a strong geometric inductive bias that faithfully captures the spatial symmetries of protein
folds (Jing et al., 2020). Aligning these geometry-aware structural embeddings with protein sequence embeddings propagates
physically meaningful constraints that ESM-3 is unable to exploit, as its quantized structure consists of discretized tokens
lacking built-in equivariance.

ProteinAligner also outperforms ProTrek in most tasks (Figs. 2, 4, 5, 6, 7, 8, 9, and 10), likely due to two main factors. First,
while ProTrek employs a combination of masked token prediction and contrastive learning during pretraining, this multitask
setup introduces inherent optimization conflicts. Masked language modeling (ML.M) encourages the model to focus on local
contextual reconstruction, optimizing for token-level accuracy. In contrast, contrastive learning promotes global alignment
between modalities by pulling together semantically related representations and pushing apart unrelated ones. These two
objectives often operate at different granularities and may impose competing gradient signals during training, which can
lead to unstable convergence, diminished alignment quality, and suboptimal representation learning. Empirical studies have
shown that when multitask objectives are not carefully balanced, they can interfere with each other, reducing the effectiveness
of both (Yu et al., 2020; Liu et al., 2021; Kendall et al., 2018; Sener & Koltun, 2018). ProteinAligner avoids this issue by
adopting a streamlined pretraining objective based solely on contrastive learning. This choice allows the model to concentrate
on learning globally consistent, modality-aligned representations without the interference of reconstruction-based losses,
resulting in more coherent and transferable embeddings for downstream tasks. Second, ProteinAligner’s structural encoder
preserves continuous 3D geometry using a geometric vector perceptron (GVP) (Jing et al., 2020) based architecture, whereas
ProTrek represents protein structures by discretizing them into tokens using Foldseek (Van Kempen et al., 2024). This
discretization introduces a loss of fine-grained spatial information — such as torsion angles, side-chain orientation, and
atomic-level packing — that are crucial for modeling functionally relevant features.

ProteinAligner’s ability to perform a wide range of prediction tasks presents promising applications across biology, drug
discovery, and medicine. In drug discovery, ProteinAligner’s accurate identification of bioactive peptides, such as DPP-IV
inhibitors (Fig. 5a), is particularly relevant for developing treatments for metabolic disorders like diabetes. Its capability to
predict antimicrobial peptide properties, such as minimum inhibitory concentration (MIC) (Fig. 7b), is critical for advancing
new antimicrobial therapies, especially in addressing the challenge of antibiotic-resistant pathogens. This has important
implications for the global fight against antimicrobial resistance. The model’s ability to detect type I anti-CRISPR activities
supports the design of more efficient and precise CRISPR-based tools for both research and therapeutic applications (Fig. 4b).
Anti-CRISPR systems could be used to enhance the safety of gene editing by mitigating off-target effects or enabling
reversible gene modifications. In precision medicine, the prediction of pathogenic missense variants aids in the early
detection and diagnosis of genetic disorders. By identifying harmful mutations that may lead to diseases, ProteinAligner can
contribute to personalized treatment strategies, improving patient outcomes (Fig. 2b). Protein fitness prediction accelerates
enzyme engineering and therapeutic protein design by pinpointing mutations that enhance catalytic efficiency, stability,
or specificity (Fig. 8b). Additionally, ProteinAligner’s accurate prediction of protein thermostability is vital for protein
engineering, biopharmaceutical development, and industrial biotechnology, where stable proteins are necessary for drug
formulations and biocatalysts (Fig. 3b). Overall, ProteinAligner’s diverse prediction capabilities position it as a valuable
tool that can accelerate innovation in multiple fields, enabling faster therapeutic discoveries, more precise gene-editing tools,
and advancements in personalized medicine and protein engineering.

Despite the advantages of ProteinAligner, the model has several limitations. One of the key challenges is the dependency on
high-quality structural and textual data, which is not always available for all proteins. While ProteinAligner can perform
pretraining even when only sequences and one additional modality (either structure or text) are present, the absence of
full multimodal data for many proteins can limit the model’s ability to learn comprehensive representations. Additionally,
ProteinAligner’s reliance on contrastive loss for modality alignment may not fully capture subtle biological nuances in cases
where sequence, structure, and text data are not perfectly aligned. Another limitation is the computational cost associated
with training multimodal models, especially when dealing with large-scale protein datasets that involve high-dimensional
structural information and large text corpora. Finally, while ProteinAligner improves upon previous models by integrating
structure, sequence, and text, it still does not account for other potentially informative modalities, such as protein-protein
interactions or functional annotations from various databases, which could further enhance its predictive capabilities.

Future work on ProteinAligner could focus on several key directions to further enhance its performance and applicability.
One promising area is the incorporation of additional modalities, such as protein-protein interaction networks and post-
translational modifications. These additional data sources could provide deeper insights into protein behavior and interactions,
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leading to even more robust and comprehensive protein representations. Another direction for future work is to improve the
model’s ability to handle incomplete or noisy data by developing more sophisticated alignment strategies that better tolerate
inconsistencies between modalities. Enhancing the interpretability of ProteinAligner’s predictions is also a critical area for
future research, which could involve incorporating explainability techniques to make the model’s decision-making process
more transparent, particularly in cases where sequence, structure, and text data converge. Lastly, expanding ProteinAligner’s
applications beyond protein function and property prediction - such as protein design and structure prediction - could
broaden its impact across a wide range of biological and biomedical challenges.

F. Figures

Due to the space limitation, all the figures are presented in the Appendix.

G. Code availability

The source code for ProteinAligner pretraining, along with the pretrained checkpoints, is available at
https://github.com/Alexiland/ProteinAligner. Additionally, links to the code for downstream tasks can be found in the
README file.
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Figure 1. ProteinAligner facilitates multimodal pretraining of protein foundation models by integrating diverse modalities including
amino acid sequences, 3D structures, and textual data. a, ProteinAligner consists of three encoders: a protein sequence encoder
based on ESM-2 (650M), a protein structure encoder based on ESM-IF1, and a transformer-based protein text encoder. These encoders
learn representations for protein sequences, structures, and text, respectively. Modality-specific projection modules then transform
these representations into a shared latent space, enabling direct comparison across modalities. Using protein sequences as the anchor,
ProteinAligner aligns the other two modalities by minimizing contrastive losses. After pretraining, the encoders can be fine-tuned with
task-specific data for various downstream applications. b, Our curated pretraining data for ProteinAligner spans a diverse range of proteins
from various taxonomic groups, functions, and types. The upper chart displays the distribution of protein taxonomy, with the inner ring
representing superkingdoms and the outer ring representing kingdoms. The lower chart illustrates the distribution of protein functions and

types.
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Figure 2. ProteinAligner excels in predicting pathogenic missense variants compared to existing protein foundation models. a,
Model architecture used to fine-tune the pretrained ProteinAligner sequence encoder for this task. b, ProteinAligner achieves higher
performance than ESM-2 (650M), ProtST, ESM-S, ESM-3 (1.4B), and ProTrek
, as measured by F1 score, precision, and recall. Error bars in all result figures indicate the standard deviation over five
independent runs.
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Figure 3. ProteinAligner demonstrates superior performance in predicting protein thermostability compared to existing protein
foundation models. a, Model architecture used for fine-tuning the pretrained ProteinAligner structure encoder for this task. b,
ProteinAligner outperforms ESM-IF1, achieving higher accuracy, F1 score, and area under ROC curve.
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Figure 4. ProteinAligner demonstrates strong performance in detecting type I anti-CRISPR activities. a, Model architecture for
fine-tuning the pretrained ProteinAligner sequence encoder for predicting type I anti-CRISPR activities. b, ProteinAligner outperformed
all baselines in terms of F1 score and accuracy. For area under the ROC curve (AUC), it achieved the second-highest performance, slightly
trailing ESM-3 (1.4B).

22



ProteinAligner: A Tri-Modal Contrastive Learning Framework for Protein Representation Learning

a ESM-2 (650M) ProtST [ ESM-S W ESM-3(1.4B) W ProTrek W ProteinAligner
Identificatioin of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides
87% 7 88% 88% 1 92% 1 T7% A 97%
86% 7 87% 87% - 90% 1 90% 1 75% - 05%
b
85% 88% - 88% - I
86% 86% 73%
84% - 86% 86% 93% 1=
85% 85% 71%
83% 84% 84%
84% 84% - 69% - 91% 7
82% ° ° 82% 82% °
81% - 83% 83% - 80% - 80% - 67% - 89% -
Average ACC BACC SN mMcc AUC
b
Identification of neuropeptide
90% 7 90% 90% 1 92% 1 90% 1 80% 1 96%
o/
89% 89% 89% 90% - 89% 78%
68 94% - I ]
b
88% - I 88% I 88% - 88% 76%
87% - I
92%
86% - I I 87% 87% 86% - 87% 74%
85% - 86% - 86% - 84% - 86% - 72% - 90% -
Average ACC BACC SN mMcc AUC
c Identification of antiviral peptides
85% 86% 87% 1 90% 84% 1 72% A 92%
o, 83%
84% 85% 86% 91%
85% 88% - 82% 70% I
b -
83% 84% 81% 90% -
84%
86% - 80% 68%
82% 83% 89% -
83% A 79% -
81% - 82% 82% - 84% - 78% - 66% - 88% -
Average ACC BACC SN McC AUC
d Identification of antioxidant peptides
81% 81% 1 83% 70% A 87%
80% 81%
’ 81% ’ 86% -
65%
78% 79% 79% 79%
79% 85%
60%
76% 77% 77% 84%
77% 77% 4
74% - 75% - 75% 1 %7 83% 7
72% - 75% - 75% - 73% - 73% - 50% - 82% -

BACC

Average

Figure 5. ProteinAligner demonstrates superior performance in identifying potent bioactive peptides. Across four tasks — predicting
inhibition of dipeptidyl peptidase IV (DPP-IV) (a), modulation of brain activity (b), antiviral properties (c), and antioxidant activity (d) —
ProteinAligner outperformed ESM-2 (650M), ProtST, and ESM-S in all tasks, and surpassed ESM-3 (1.4B) and ProTrek in three out
of four tasks. Model performance was evaluated using accuracy (ACC), balanced accuracy (BACC), sensitivity (SN), specificity (SP),
Matthews correlation coefficient (MCC), and the area under the ROC curve (AUC). “Average” refers to the mean value across these six
metrics.



ProteinAligner: A Tri-Modal Contrastive Learning Framework for Protein Representation Learning

a ESM-2 (650M) ProtST [ ESM-S W ESM-3(1.4B) WM ProTrek W ProteinAligner
Identification of umami peptides
87% 7 88% - 87% 85% - 92% 71% 7 96% -
() 0, 0,
85% 85% - 81% - 90% 68% 93% -
86% -
83% 88% 65%
83% 77% 90% -
81% 64 I 86% 62%
b
79% 81% 1 73% 1 84% 59% 87% 1
77% 82% - 79% - 69% - 82% 56% 84% -
Average BACC SN AUC
b Identification of blood-brain barrier peptides
89% 7 _ 89% 1+ 92% 99% 100% A 84% 96% -
87% o/
87% 93% - 93% 78% 93%
85% 85% 88% -
b
83% 87% - 86% - 72% 90%
83%
81% - ° 84% -
. 0/ - 0/ - 0o/ -
79% - 81% 81% 79% 66% 87%
77% = 79% - 80% - 75% - 2% - 60% - 84% -
Average BACC SN
c Identification of TTCA peptides
74% 74% A 78% 1 76% 46% - 76% 1
68%
73%
72% 76%
66% - 70% - I 70% 4 41% - 73%
J
70% 74% J
o 67%
64% i . I 64% 1 36% I 70%
62% - 68% 1 66% 72% - I
’ 61% 1 31% 67%
60% - 66% - 70% A 58%
b -
58% - 64% - 62% - 68% - 55% - 26% - 64% -
Average BACC SN SP MCC AUC

Figure 6. ProteinAligner also demonstrates superior performance in three additional tasks related to bioactive peptide identification.
Specifically, in predicting umami taste induction (a), blood-brain barrier penetration (b), and T-cell immune response induction (c),
ProteinAligner outperformed ESM-2 (650M), ProtST, ESM-S, and ProTrek across all tasks, and exceeded ESM-3 (1.4B) in two out of
the three tasks. Model performance was assessed using accuracy (ACC), balanced accuracy (BACC), sensitivity (SN), specificity (SP),
Matthews correlation coefficient (MCC), and the area under the ROC curve (AUC). “Average” refers to the mean value across these six
metrics.
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Figure 7. ProteinAligner outperforms existing protein foundation models in predicting the minimum inhibitory concentration
(MIC) of antimicrobial peptides. a, Model architecture designed for this prediction task. b, ProteinAligner achieved a lower mean
squared error than ESM-2 (650M), ProtST, ESM-S, ESM-3 (1.4B), and ProTrek.
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Figure 8. ProteinAligner demonstrates competitive performance in protein fitness prediction. a, Fine-tuning architecture for using
the pretrained ProteinAligner sequence encoder to predict protein fitness. b, ProteinAligner outperformed all baselines across all evaluation
metrics — including Spearman’s rank correlation coefficient (Spearman), Pearson correlation coefficient (Pearson), and coefficient of
determination (R?) — with the exception of a slight deficit to ESM-3 in R.
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Figure 9. ProteinAligner achieves competitive performance in zero-shot prediction settings. a, ProteinAligner outperformed all
baseline methods in zero-shot pathogenic missense variant prediction, as measured by area under the ROC curve (AUC). b, ProteinAligner
achieved Spearman correlation scores comparable to those of baseline methods in zero-shot protein thermostability prediction.
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Figure 10. ProteinAligner demonstrates robust performance across different prediction head architectures. a, ProteinAligner
achieved higher precision, recall, and F1 score than baseline models in pathogenic missense variant prediction when using either a
multi-layer perceptron (MLP) or an Elastic Net (EN) classifier as the prediction head. b, ProteinAligner yielded lower prediction errors
than baselines in minimum inhibitory concentration (MIC) regression for antimicrobial peptides when using either a multi-layer perceptron

(MLP) or a multi-branch convolutional neural network (MBCNN) as the prediction head.
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Figure 11. Model architectures used in downstream tasks. a, Model architecture used in pathogenic missense variants prediction. b,
Model architecture used in thermostability prediction. ¢, Model architecture used in type I anti-CRISPR activity detection. d, Model
architecture used for identifying potent bioactive peptides. e, Model architecture used for predicting minimum inhibitory concentration
values. f, Model architecture used for supervised protein fitness prediction.

27



ProteinAligner: A Tri-Modal Contrastive Learning Framework for Protein Representation Learning

a Overall training loss

0.8

0.6

0.4

0.2

T T T T T T
0 20 k 40 k 60 k 80 k 100 k 120 k
Training step
b
Sequence - text training loss

0.6 i

0.5 1

0.4 | 'l ||

0.3 4 | s I [ |||ll

0.2

0.1

0.0 |

T T T T T T
0 20 k 40 k 60 k 80 k 100 k 120 k
Training step
c -
Sequence - structure training loss

0.3

0.2

0.1

0.0

Training step

Figure 12. Training dynamics of ProteinAligner. a, Overall loss curve during pretraining. b, Sequence-text loss curve during pretraining.
¢, Sequence-structure loss curve during pretraining.
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