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Abstract

Diffusion models can generate highly realistic samples, but do they learn the latent
rules that govern a distribution, and if so, what kind of rule can they learn? We
address this question using a controlled group-parity benchmark on 6x6 binary im-
ages, where each group of G bits must satisfy an even-parity constraint. This setup
allows us to precisely tune rule complexity via G and measure both correctness and
memorization at the group and sample levels. Using EDM-parameterized Diffusion
Transformers of varying depth, we find that: (i) learnability depends jointly on
G and depth, with deeper models extending—but not eliminating—the range of
learnable rules; (ii) successful rule learning exhibits a sharp early transition in ac-
curacy that precedes memorization, creating a temporal window for generalization;
(iii)) memorization onset follows a steps-per-sample scaling law and is delayed by
larger datasets. Further, we analyze the energy/score to relate learning difficulty to
the group size G and the model depth. Together, these results offer a principled
testbed and new insights into the interplay between rule complexity, rule learning,
and memorization in diffusion models.

1 Motivation

Recent diffusion models generate strikingly realistic samples across images, audio, and video data.
Yet beyond perceptual quality lies a scientific question: do these models internalize latent rules
that govern a data distribution and generate accordingly, if so, what kind of rule can they learn?
Answering this requires tasks where the underlying structure is precise, verifiable, and tunable.

We study this question through the lens of parity, a canonical discrete rule that couples many variables
multiplicatively and is known to be challenging to learn. Concretely, we construct a controlled
benchmark of 6x6 binary images, where each image is partitioned into D/G disjoint groups of
size G and each group must satisfy even parity. This setting lets us probe whether unconditional
diffusion models can (i) learn and enforce a global, non-local rule; (ii) recombine valid parts into
novel solutions; and (iii) avoid overfitting individual training examples.

Two features make this benchmark especially revealing. First, rule complexity is tunable via the group
size G: small G requires only local interactions, whereas large G demands long-range multiplicative
dependencies across many bits. Second, we can cleanly separate correctness from memorization. We
evaluate both per-group and per-sample parity accuracy, and we measure memorization at the group
and sample levels by exact match against the training set. This enables a direct view of “creativity”
as correct but novel generations that were not seen during training.

Using EDM-parameterized diffusion transformers (DiT) with controlled depth and capacity, we
uncover three consistent phenomena. (1) Learnability depends jointly on rule complexity and
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model depth. Small G is learned robustly, while accuracy collapses as G increases; deeper DiTs push
the frontier of learnable GG but do not eliminate the barrier. (2) There is a sharp, early rule-learning
transition that precedes memorization. When rule learning succeeds, accuracy rises abruptly well
before memorization begins, yielding a clear temporal separation that supports early stopping to
preserve generalization. (3) Memorization follows a steps-per-sample law. Its onset is largely
invariant with respect to rule complexity G and aligns when time is measured as gradient updates
per example; namely, memorization step scales linearly with dataset size, while rule acquisition step
does not. We end with an analysis on the energy/score function to clarify the role of G and model
depth: the score of a higher G rule involves the more challenging higher-order polynomials, whereas
a greater model depth facilitates learning of more complex functions but is also prone memorization.

2 Backgrounds

Rule learning in Diffusion models There have been several works along this direction. [Wang et al.
(2024)) showed that unconditional diffusion models can learn to generate according to some of the
rules in RAVEN’s progression matrices encoded as integer arrays, but not all of them. In particular,
rules such as the logical operation (AND, OR, XOR) over sets of attribute have been shown to be
hard to learn. Similarly, Han et al.|(2025) examined rule learning in the pixel space, showing that
diffusion models can learn the coarse proportional relationship between bars and shadows length but
no the precise rule specified in the training set, often with nonzero error. These prior works prompt
this study, where examines what kind of rules can be learned. We focus on the case of discrete and
abstract rules.

Memorization and Creativity in Diffusion models The question of when diffusion models are
able to generate genuinely novel samples matters both scientifically and for mitigating data leakage.
From the rule learning perspective, the model that truly learn the rule should not simply recapitulate
the training set, but learn the data manifold underlying it. From the score-matching perspective, if
the learned score exactly matches that of the empirical data distribution, then the reverse process
reproduces that empirical distribution, and thus does not create new samples beyond the training
set (Kamb & Ganguli, [2024; [Li et al., [2024; Wang & Vastola, [2024)). Yet high-quality diffusion
models routinely generate images that are not identical copies of images from the training set. [Kamb
& Ganguli| (2024) take an important step toward reconciling this: when the score network is a
simple CNN, its inductive biases (locality and translation equivariance) favor patch wise composition,
enabling global samples that are novel while remaining locally consistent “mosaics.” Similarly, in
Wang & Pehlevan| (2025)), they noticed score networks with different architectural constraints will
learn various approximation of the dataset, and therefore generalize: e.g. linear networks learn the
Gaussian approximation, and circular convolutional networks learn the stationary Gaussian process
approximation. In Finn et al.|(2025)), they analyze attention-based diffusion and provide evidence
that adding a final self-attention layer promotes global consistency across distant regions, organizing
locally plausible features into coherent layouts that move beyond purely patch-level mosaics. Related
theoretical work further probes why well-trained diffusion models can generalize despite apparent
memorization pressures (Biroli et al., 2024} J. Vastola, [2025} |Chen, |2025)). These results suggest that
departures from exact empirical-score fitting—mediated by inductive biases (both architectural and
training dynamics) can explain how diffusion models avoid pure memorization while maintaining
visual plausibility (Ambrogioni,|2023)). In this work, we study the memorization and generalization
dynamics when we have access to the underlying distribution is tractable.

Learning parity We focus on parity learning, a versatile testbed that has been widely adopted
for understanding both the representational and learning aspects of neural networks (Hahn, [2020;
Bhattamishra et al., 2022} \Glasgow, 2024} |Abbe et al., 20244, 2025} |Shoshani & Shamir, [2025]).
The hardness of parity depends on the number of bits that the parity is defined over, where more
bits require a higher boolean sensitivity or larger weight norms in the case of neural networks. For
Transformers specifically, learning parity requires growing the MLP norms (Liu et al., 2022; Hahn &
Rofin, 2024) and the use of normalization layers (Hahnl 2020; Yao et al.,|2021};|Chiang & Cholak]
2022). Even when a network is sufficiently expressive, parity is computationally challenging to
learn (Kearns, [1998; Barak et al.l|2022; [Edelman et al.l 2023} |Wen et al.| 2024; [Kim & Suzuki, 2025)).
In this work, we explore parity learning from a generative modeling perspective, leveraging this well



studied problem to characterize how much modern generative modeling framework, in particular
diffusion, can learn these underlying structures.
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Figure 1: Schematics of the task and performance evaluation. A. Structure of the Group Parity
dataset and evaluation setup. Each D-dim binary image is divided into GG equal-sized groups (here
D =36 = 6 x 6, G = 6), with each group sufficing even parity (i.e., even number of black pixels).
DiT models are trained on this dataset (size /N = 4096), where the generated samples are evaluated
by the accuracy and memorization ratio, at both group and sample level. B. Per-group parity accuracy
as a function of group size for DiT models with 3, 6, or 12 layers (6 heads, 384 dim), compared to a
random baseline (dashed line). C. Sample-level parity accuracy for the same models and group sizes.

Notation Define S; = {x | H‘;:l x; = l,x; € {—1,1}} to be the set of bit strings with
even parity in a d-dimensional boolean cube {—1,1}%; note that |SJ| = 297!, For example,
ST ={(1,1,1),(-1,-11),(=1,1,-1),(1, ~1, ~1)}. Define P} (x) = S5 | 3, c 5+ d(x~y)
to be the mixture of delta measures at all points of the set S;. Further, we define (S;])™ =

ST x .. x 8§ C {—1,1}4, where the d bits in each of the m groups satisfy even parity, with

|(SF)™| = (2¢-1)™. We denote by (P, )™ the uniform measure over (S; )™, and define U, as the
uniform measure on d-dimensional Boolean cube.

Dataset Design We construct samples x € R with D = 36. Each x is divided into D/G groups
of size G that each satisfies even parity, i.e., X € (Sg;' )P /G To generate x, we first sample each group

ii.d. from ~ 772; , and then concatenate the D /G groups to form x (Fig). We generate NV samples
as our training set, where the training samples are ensured to be unique by rejection sampling, though
individual groups could repeat. The key design parameter for the dataset are hence D, G, N. For
diffusion training, we reshape each sample to a 6 x 6 single channel image.

Model Architecture As a generative modeling problem, we consider the dataset in the continuous
space R”, and solve it with Gaussian diffusion models. Specifically, we used the continuous-time
EDM diffusion framework (Karras et al., 2022)), and used diffusion transformer (DiT) (Peebles
& Xie, [2023)) as our function approximator with EDM preconditioning. We started with baseline
version DiT-mini with 6 layers, 6 heads and hidden dimension 384, and we later varied the depth (in
{3, 6,12}) of the model to examine and effect of model capacity. We use patch size 1 to maximize
the capacity of attention to model the relation between bits.

Training The DiTs are trained with Adam for 10° steps, with a constant learning rate 10~* and
batch size 256.

Evaluation Throughout training, we generate samples with Heun’s 2nd order deterministic sampler
(Karras et al., [2022), and evaluate them according to the following criterion. First, we evaluate how
far the samples are from the boolean cube {—1,1}7, as measured by the /., distance dy__(x) =
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Figure 2: Memorization and Creativity in Parity Learning. Memorization ratio overlay on
accuracy, for different group size and DiT depth, at group level (A.) and sample level (B.), with
underlying bar plot the same as Fig[I|B.C. Red dashed line shows the memorization ratio of the
ground truth distribution (P, for groups, and (P)?/¢ for samples); and blue dashed line shows
the memorization ratio of the chance distribution (g for groups, and {/p for samples).

max; ||x;| — 1|. We call a sample invalid when dy__ (x) > €, and calculated the invalid fraction for
various thresholds ¢ € {0.1,0.01}.

Next, we binarize each element of the sample to {—1,1} and evaluate the parity of the binarized
sample X, at both group and sample level (Fig. [T]A). The group parity accuracy is defined over a
group of G elements, with chance level 2. For the sample parity accuracy, a prediction is correct
only if the parities of all D/G groups are correct, for which the chance level is 2~ /¢,

Further, we examine the memorization ratios of groups and samples, which are the fractions of
generated groups or samples that coincide with those in the training dataset. If the model learns the
true distribution (i.e., the uniform measure) on (SZ;)D /G then the sample memorization ratio will be

N/(26-1)P/G = N .2~ €&*D_If the model learns the uniform measure on the entire boolean cube,
then the sample memorization will be N - 277,

4 Results

4.1 Parity learning depends on both rule complexity and model depth

Effect of rule complexity. For small group sizes (G = 2, 3, 4), all DiT variants achieve near-perfect
parity accuracy, indicating that parity rules among few bits are readily captured. However, as G
exceeds 6, both per-group and sample-level accuracies (Figure [IB,C) decline sharply, with the
per-group accuracy deteriorates towards chance level 0.5, and the sample level accuracy degrades
towards chance performance at (1/2)P/¢. This aligns with prior work highlighting the inherent
difficulty of learning high-degree parity (Kearns| 1998} |Barak et al., [2022; |Abbe et al.,|2024a)).

Effect of model depth. Model depth eases the learning of high-degree parity: across GG, deeper
DiTs consistently surpass shallower ones in accuracy of both group and sample levels, when the head
number 6 and latent dimension 384 are kept the same. Notably, a 12-layer DiT consistently achieves
near-perfect sample and per-group accuracy for G = 6, while 3- and 6-layer models only learns
parity rules up to G = 4 and degrade substantially beyond that. Even for large G, deeper networks
remain above chance, whereas shallower ones collapse to the chance level of U{p. These results
suggest limitations of shallow transformer in learning parity rules of many bits, and that greater depth
enhances the ability to integrate more global information required for large-G parity rules.

4.2 Memorization and creativity of parity learning

When a model trained on finite data succeeds in generating samples consistent with a given parity
rule, an immediate follow-up question is: how many of these samples are exact reproductions from
the training set, and how many are genuinely novel? This relates directly to the notion of creativity
and generalization in generative models (Kamb & Ganguli, 2024} |[Niedoba et al.,[2024). Given the



hierarchical nature of our data, novelty can be evaluated at two levels: (1) the fraction of samples
reproduced from the training set, and (2) the fraction of bit groups reproduced from the training set.

At our standard dataset size of N = 4096, for G < 12, the training set contains all valid even-parity
groups. In this regime, novelty at the group level is impossible—any correct group must have
appeared in training. The only possible form of creativity is combinatorial: assembling previously
seen valid groups into novel combinations to form new valid samples.

Combinatorial creativity when rule learning succeeds For small group sizes (G = 2,3,4),
all model variants achieve near-perfect sample accuracy while generating a substantial fraction of
novel correct samples via recombination (Figure 2JB). Similarly, when trained on G = 6 dataset,
over 50% of the 12-layer DiT’s generations are novel and correct, indicating strong generalization
through recombination rather than pure memorization. On the other hand, the memorization ratio
of generated samples is still much higher than the ground truth distribution (P})P/¢ (recall that
D = 36), showing that the learned distribution still bias towards the combinations encountered in
training set.

Deeper models memorize more. Across all datasets and group sizes, deeper models consistently
exhibit higher memorization ratios at both the group and sample levels. For G = 2, 3,4, this
means that, at matched sample accuracy, deeper models are less creative—generating fewer novel
combinations—despite achieving the same correctness. This aligns with the broader observation
that larger-capacity models tend to memorize more easily (Carlini et al., 2022} Tirumala et al., 2022}
Morris et al., [2025).

Memorization under partial rule learning. For G = 6,9, 12, the training set still contains all
valid groups, yet models fail to memorize them all—resulting in imperfect per-group accuracy (with
the exception of the 12-layer DiT at G = 6, which learns the rule fully). This gap is possibly due to
the sheer number of valid patterns (2¢~1) can exceed the model’s memorization capacity for groups.

For G = 18, 36, the training set covers only a small fraction of all valid groups, so even an optimal
generalizing distribution would have group-level memorization ratios well below 1. Nonetheless, we
observe ratios substantially above baseline, indicating a preference for groups seen in training-set
over unseen valid ones. The residual gap between parity accuracy and memorization ratio at group
level is consistent with chance-level correctness (i.e., &~ 50% parity accuracy in that subset). In other
words, the learned distribution over bit groups can be explained as a mixture of memorization of a
subset of training groups and effectively random sampling over the remainder. This suggests little
evidence of group-level “creativity”: the diffusion models do not generate novel, rule-conforming
group patterns beyond what would be expected by chance.

4.3 Learning dynamics of generalization and memorization

Next, we examined the learning dynamics of generalization and memorization.

Sharp Rule-Learning Transition Precedes Memorization. Across all datasets where the parity
rule is successfully acquired (small to moderate G), we observe a clear temporal separation between
the onset of learning parity rule and memorization (Fig.3]A). Initially, the fraction of invalid samples
drops rapidly, and sample- and group-level parity accuracies undergo an abrupt, early transition from
chance level to near-perfect performance. During this early phase, memorization ratios remain near
baseline, indicating that the model has learned to produce valid, rule-conforming samples without
simply reproducing training examples. Only much later in training does memorization begin to
increase, suggesting that the model first discovers a generative rule-consistent model (735 )P/G and
subsequently drifts toward reproducing specific training samples within it. This clear separation in
timescales reinforces prior suggestions that early stopping during diffusion training can preserve the
generalizing solution before memorization dominates (Bonnaire et al., 2025).

Higher-bit parity delays rule-learning transition When the group size G increases, the sharp
accuracy transition is systematically delayed (Fig.[3B). For small G (< 4), this jump in accuracy
occurs within the first few thousand steps. In contrast, for large G, accuracy remains at chance for
an extended period (10* — 10° steps) before eventually rising. In extreme cases (e.g., G > 18),



A. Sample evaluation B
) DiT_mini_parity_N4096_D36_G4_even :
DIT 6L6H 4096 samples, 36 bits per sample, 4 bits per groups

Rule learning speed as a function of group size  C.  Memorization speed as a function of group size
DiT-mini 6L6H, 4096 train samples DiT-mini 6L6H, 4096 train samples

N4096_D36_G2

1.0 U — 1.0 N4096,D36,63 % W 10 Na096,03%6.62
N4096_D36_G4 2 N4096_D36_G3
08 Per group parity correctness 0.8 ::g:?g;zg: \1 E 0.8 N4096_D36_G4
Sample correctness > N40%6 D36 G12 o N4096_D36_G6
Per group accuracy baseline © 220 ® N4096_D36_G9
sample accuracy baseline 3 N4036 D36 G18| | o N4096_D36_G12
5061 | Exceed EPS ratio (eps=1e-1) g 06 N4096 036 G36 goe N4096_D36_G18
B | Exceed EPS ratio (eps=1e-2) s | Rand Baseline & N4096_D36_G36
© Sample memorization ratio H E | |- Groundtruth Baseline
Y04 Bit group memorization ratio 04 Toa
| a g
It 5 3
02{ |1 Vo2 go2
3 il /.
i o ‘*sf LY B
0,04 AL o 0.0 ! 00 J—

0.0 0.2 04 6 0.8 1.0 10° 10t 102 10° 104 10° 10° 10° 10t 102 10° 104 10° 10°

0
step 1le6 step step

Figure 3: Learning dynamics of rule acquisition and memorization across parity complexities.
A. Training-time evaluation for DiT-mini (6L6H) on the G = 4, N = 4096 dataset. Invalid-sample
ratios decay rapidly, followed by an early, sharp rise in parity accuracy to near-perfect levels. Much
later, sample memorization ratio grows steadily until the end of training, following a small bump in
invalid ratio (“EPS” € = 0.01). B. Sample-level accuracy during training for datasets with group sizes
G€2,3,4,6,9,12,18,36 (/N = 4096, DiT-mini). Dashed lines indicate random-chance baselines
2-P/G For small G, rule learning occurs via a sharp transition, with the transition point shifting
later as (G increases. For larger GG, accuracy rises above chance only at a much later stage, following
a gradual process driven primarily by memorization. C. Sample-level memorization ratio during
training for the same datasets, with dashed lines showing the expected memorization ratio under the
ground-truth distribution. Memorization emerges late in training, at similar time across group size G.

this increase is not due to genuine rule learning but rather to a slow, memorization-driven accuracy
improvement at late training stages. This pattern highlights the increased difficulty of learning high-
order parity relations, which require integrating information across many bits, from the perspective of
learning dynamics.

Sample memorization emerges at similar times across G. Interestingly, the onset of sample-
level memorization is largely independent of G (Fig.[3[C). Across all datasets, memorization begins
only after a prolonged period of stable accuracy—whether that accuracy was achieved through
genuine rule learning (small ) or remains near chance (large G). The synchronized late rise in
memorization suggests that it is governed more by total optimization steps and model capacity than
by rule complexity, consistent with a overfitting process that gradually unfolds after the model has
stabilized its score estimates for the training distribution.
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Figure 4: Learning dynamics of rule acquisition and memorization across dataset size. A.
Dynamics of sample parity accuracy across dataset scale, at G = 2, DiT-mini. B. C. Dynamics
of sample memorization ratio across dataset scales, the dynamics are plotted as a function of step
(B.) and step per sample (step x batch size/ dataset size) (C.). Colored dashed lines denotes the
memorization ratio expected from the ground truth distribution.



4.4 Scaling law of generalization and memorization

Is the difficulty of rule learning due to limited dataset size? We next investigate how dataset size N
affects the dynamics of rule learning and memorization (Fig. {] Fig.[3).

Rule learning dynamics are relatively invariant to dataset size. Across dataset scales ranging
from N = 1,024 to N = 65,536, sample-level accuracy follows a similar trajectory as a function of
training step (esp. nearly identical for G = 2,3, Fig.[@A). All curves exhibit the same early, sharp
transition from chance to near-perfect accuracy, indicating that the onset and speed of rule acquisition
are essentially independent of the number of training samples—at least for small G where the rule is
consistently learnable (see Fig. [6][7] for all group sizes G). When rule complexity is on the edge of
learnability (G = 6), increasing dataset scale can help or hinder rule learning (Fig. [6).

Memorization is delayed by larger datasets. In contrast, sample-level memorization shows a
strong dependence on dataset size (Fig. @B). Across rule complexity G, larger datasets consistently
postpone the onset of memorization to later training steps, Specifically, at our largest dataset scales
(IV = 16384, 65536), excessive memorization do not happen, and the memorization ratio stays at the
expected level from ground truth. When we rescaled the x-axes, and plot as a function of “steps per
sample” (i.e. step x batch size /N), (Fing), the memorization curves align well with each other.
This alignment suggests that the key parameter governing sample memorization is the number of
gradient steps per training example rather than the raw step count. On our dataset, this memorization
happens around ~ 10% steps per example.

Implications for training strategy. These results suggest that, for learnable rules, increasing dataset
size does not hinder the model’s ability to acquire the underlying structure but can substantially delay
the memorization phase, thus extending the generalization phase before overfitting begins. This
reinforces the view—also supported by our temporal scale separation results—that early stopping
can preserve a generalizing solution, and that larger datasets naturally widen the safe window before
memorization dominates.

5 Why Diffusion Transformers Struggle with Parity
We explored this question through the corresponding energy of parity.

Continuous-space Energy model of Parity Consider the following energy,

d d
1 2
Ed(x)ziz:(xf—n? + M([[zi-1)7 . A>0 1)
i=1 i=1

The first term encourages x to be on the boolean cube, and the second term encourages the parity to
be 1.The set of all energy minima are the bit sequence with correct parity arg miny Eq(x) = S;.
Further, for the density corresponding to the energy pq(x; 3) o< exp(—SE;4(x)), one can show that
when 8 — 00, pa(x) — P (x), as the distribution converged to a uniform distribution over the
minima.

Thus, at low noise regime (5 — o0), the optimal score network in the diffusion model should
approximate the gradient of the energy, i.e. the score reads

Vlogpa(x; 8) = —fVxEa(x), ()
d d
Ve, Ba(x) = 2z (2? — 1) + ), H xj(H zj—1). 3)
i=Lg#i =1

Notably, the first term is a function local to the bit, while the second term depends on the product of

all d bits, which requires global information. For DiT, the local term can be easily learned by the

MLPs which operates on individual bits in parallel. Learning the local term effectively push samples

onto the boolean hypercube, thus minimize the invalid samples. As we showed empirically (Fig.[3]A),

the deviation from the boolean hypercube decays rapidly, indicating that learning this local term is

efficient and easy. However, the 2nd term requires multiplication of all G bits, which poses the main
challenge for learning.



Larger group size complicates learning It is well known that higher-degree polynomials (i.e.,
larger (7) is more computationally challenging to learn, where the required number of steps grows
exponentially in the polynomial degree (Barak et al.| 2022} |Abbe et al. 2023} |Damian et al., [2025).
We observe similar phenomenon in our experiments (Fig.[3B), where rules with higher G tend to
require more gradient steps to learn. For transformer specifically, it has also been observed that
higher-degree or more global functions are harder to learn (Bhattamishra et al.| 2022; |Abbe et al.,
2024b; Hahn & Rofinl [2024; |Vasudeva et al., [2024).

More depth eases learning Although one layer suffices to express the parity function for a fixed
G (Hahn, [2020; |Liu et al., [2022)), we observe that a greater depth leads to better learning empirically.
One intuition is that representing the optimal score function of the ground-truth parity distribution
requires the network to reach certain Lipschitzness (Hahn| [2020), and using more layers means that
the required per-layer Lipschitzness E] is smaller, which can be easier to reach in learning. This
intuition is also consistent with our finding that rule learning often precedes memorization, since the
Lipschitzness of the memorizing score function is usually higher than that of the score function of the
ground truth rule distribution; the former requires a larger weight norm, as also noted in [Montanari
& Urbani| (2025). Further, it is consistent with our observation that deeper DiTs tend to memorize
more (Fig. [2)), as depth facilitates the growth of Lipschitzness.

6 Discussion

We introduced a controlled group-parity testbed to probe whether diffusion models can learn and
generalize precise rules at different global levels. Across variations in model depth, dataset size,
and rule complexity (G), we found a clear learnability threshold that shifts with depth, and a
consistent temporal separation between an early rule-learning transition and later memorization.
Moreover, before memorization start, models learning with a small G exhibit combinatorial creativity
and discover the ground truth distribution, and the memorization onset time scale linearly with
dataset size. Our energy/score analysis further ties the observed depth dependence to the degree-G
multiplicative interaction term in the parity score and difficulty of learning.

Score complexity and spectral bias. The parity score naturally decomposes into a local term and a
global multiplicative term H?’;l x;, whose polynomial degree grows with G In the Fourier/Walsh-
Hadamard basis, higher-degree interactions correspond to higher-frequency components, and it is
well established that neural networks exhibit a spectral bias, fitting low-frequency components before
high-frequency ones (Canatar et al.||2021;|Wang & Pehlevanl [2025). This framework offers a natural
explanation for our learning dynamics: small-G components emerge early in training, while large-G
components appear only much later—if they appear at all. When the latter are not learned from data,
accuracy improvements in late training tend to come from memorization rather than genuine rule
acquisition. A more formal score-complexity analysis could help predict the point at which models
shift from generalizing to overfitting, and explain how architectural constraints shape this transition.

Implications for natural data. Our findings suggest that relations involving many-way interactions
are inherently difficult for current diffusion architectures. In naturalistic settings, this may underlie
the difficulty of learning certain abstract reasoning rules. For example, prior studies on the RAVEN
progression matrices found that XOR-type relations over multiple attributes are especially hard for
diffusion models (Wang et al., 2024); our results indicate that the same complexity—spectral-bias
bottleneck may be responsible. The broader implication is that scientific or physical constraints
depending on large-scale multiplicative structure—such as conservation laws involving many coupled
quantities—may not be faithfully learned without targeted architectural or training interventions.

Pathways to improved rule learning. The gap between theoretical capacity and observed per-
formance invites several possible remedies. One is to modify the architecture to enable global
broadcasting of information—through dedicated register tokens, global memory units, or structured
multiplicative interactions—so that the model can aggregate and disseminate the features required for
large-G parity in a single step. Another is to enrich training with auxiliary objectives that explicitly

’The Lipschitzness comes from both the weight norms and the scaling introduced by normalization layers (Yao
et al.,[2021}; |Hahn & Rofin} [2024).



require detecting and representing parity-like dependencies, such as masked group-parity prediction,
to encourage the formation of suitable internal representations. Finally, a curriculum that gradually
increases GG during training could scaffold the acquisition of higher-order rules, allowing the network
to build on simpler cases before tackling more complex ones.

Broader outlook. Although parity is synthetic, it isolates a fundamental limitation: global rules with
high interaction order are not well aligned with the inductive biases of current diffusion transformers.
Addressing this limitation is critical for applications where rule adherence is as important as perceptual
fidelity, including symbolic reasoning, structured design, and scientific modeling. Our group-parity
testbed provides a controlled setting in which to explore both the failure modes and potential solutions,
and offers a stepping stone toward architectures that can internalize and apply abstract, combinatorial
rules from data.
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A Extended Results

A. Per Group Memorization Ratio and Accuracy B. Sample Memorization Ratio and Accuracy DiT-mini 6L6H
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Figure 5: Memorization and Creativity in Parity Learning across dataset scales. Memorization
ratio overlay on accuracy, for different group size and training dataset scale, at group level (A.) and
sample level (B.), with similar format as Fig. 2| Red solid line shows the memorization ratio of the
ground truth distribution (PZ; for groups, and (’P(J;r )P/G for samples); and blue solid line shows the
memorization ratio of the chance distribution (Ug for groups and U for samples). Black dashed line
shows the chance level accuracy.
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Figure 6: Learning dynamics of rule acquisition and memorization across dataset size, G =
2,3,4,6. Left. Dynamics of sample parity accuracy across dataset scale, DiT-mini. Mid. Right.
Dynamics of sample memorization ratio across dataset scales, the dynamics are plotted as a function
of step (Mid.) and step per sample (step x batch size/ dataset size) (Right.). Colored dashed lines
denotes the memorization ratio expected from the ground truth distribution. Similar format as Fig[4]
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Figure 7: Learning dynamics of rule acquisition and memorization across dataset size, G =

9,12, 18, 36. Similar format as FigJ6|and 4]
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