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Abstract
Self-consistency with chain-of-thought (CoT)
prompting has demonstrated remarkable perfor-
mance gain by utilizing multiple reasoning paths
sampled from large language models (LLMs).
However, self-consistency relies on heuristics
to extract answers and aggregate multiple solu-
tions, which is not applicable to solving tasks
with free-form answers. In this work, we pro-
pose Universal Self-Consistency (USC), which
leverages LLMs themselves to select the most
consistent answer. We evaluate USC on a variety
of benchmarks, including mathematical reason-
ing, code generation, long-context summariza-
tion, and open-ended question answering. On
open-ended generation tasks where the original
self-consistency is not applicable, USC effectively
leverages multiple samples and improves the per-
formance. For math reasoning, USC matches
the standard self-consistency performance with-
out requiring the answer formats to be similar.
Finally, without access to execution results, USC
also performs on par with execution-based voting
methods on code generation.

1. Introduction
Large language models (LLMs) have accomplished sig-
nificant breakthroughs in a wide variety of domains, in-
cluding mathematical reasoning (Cobbe et al., 2021), code
generation (Austin et al., 2021), and other text generation
tasks (Bubeck et al., 2023). Despite the rapid progress,
LLM-generated responses are still prone to errors when they
get long. A long line of efforts have been devoted to improv-
ing the output quality by sampling multiple model responses
and then selecting the final output based on certain criteria.
For example, prior works have trained neural networks to
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rerank model outputs (Cobbe et al., 2021; Li et al., 2023b;
Ni et al., 2023; Yin & Neubig, 2019), and more recent works
investigate using LLMs to score model responses (Fu et al.,
2023; Liu et al., 2023; Wang et al., 2023a).

In this work, we consider the consistency as the criterion
to select model output, a generic metric that has enabled
huge performance leaps in reasoning (Wang et al., 2022)
and code generation (Li et al., 2022; Shi et al., 2022). The
intuition is that if a proposed output appears consistently in
many different samples, then the model has high confidence
in that output, and so it is more likely to be correct. In par-
ticular, self-consistency (Wang et al., 2022) selects the final
answer as the most common one across samples, essentially
marginalizing over the latent reasoning paths produced by
chain-of-thought prompting (Wei et al., 2022). This sim-
ple method leads to a major boost across a wide variety of
benchmarks. However, self-consistency can only be applied
to tasks where the final answer can be aggregated via exact
match, e.g., a multiple-choice answer, or a single number for
math problems. Despite the power of self-consistency, this
limitation prevents us from applying it to tasks that require
free-form generation, such as code generation, abstractive
summarization, and open-end question answering.

To address this major limitation of self-consistency, we pro-
pose Universal Self-Consistency (USC) to support various
applications, especially free-form generation tasks. Given
multiple candidate responses, USC calls the LLM to se-
lect the most consistent response as the final output. Thus,
USC eliminates the need of designing an answer extraction
process, and is applicable to tasks with free-form answers.
Although prior works have revealed weaknesses of LLMs
for response selection, such as position bias (Wang et al.,
2023b; Zheng et al., 2023b) and incorrectly judging the an-
swer correctness (Huang et al., 2023b; Gou et al., 2023),
we find that USC does not suffer from them. Intuitively,
assessing the consistency among candidate answers is easier
for an LLM than judging the answer quality directly.

We evaluate universal self-consistency on a wide range
of tasks, including open-ended question answering, long-
context summarization, code generation and mathemati-
cal reasoning. We first show that USC improves the per-
formance for open-ended question answering (Lin et al.,
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2021) and summarization (Huang et al., 2021; Chen et al.,
2022b), where the standard self-consistency is not applica-
ble. On programming tasks including text-to-SQL gener-
ation (Li et al., 2023a) and Python data science code gen-
eration (Yin et al., 2023), USC matches the performance
of execution-based consistency (Li et al., 2022; Shi et al.,
2022), while USC does not require execution results to
perform selection. Finally, on tasks for which standard self-
consistency applies, namely GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) benchmarks for math
problem solving, USC generally matches the performance
of self-consistency. In addition to the performance gain, we
also demonstrate that USC outputs highly match those of
the standard self-consistency when the comparison is appli-
cable, while it is robust to different response orderings.

2. Background: Self-Consistency
Self-consistency (Wang et al., 2022) augments chain-of-
thought prompting (Wei et al., 2022) by sampling multiple
reasoning chains and then taking a majority vote on the final
answer set. The intuition is that sometimes the greedily
decoded reasoning process might not be the optimal one,
hence it makes more sense to sample a diverse set of rea-
soning chains, and if some of them lead to the same answer,
then we have a higher confidence that this consistent answer
is the correct one. It has been shown that self-consistency
improves the greedy chain-of-thought prompting by a large
margin on a wide set of reasoning tasks.

Besides question answering tasks, consistency-based answer
selection has also been applied to code generation (Shi et al.,
2022; Li et al., 2022; Chen et al., 2019), which requires
code execution. Specifically, we first execute all predicted
programs, then programs with the same execution outputs
are clustered together, assuming that they are semantically
equivalent. Finally, we select the program belonging to the
largest cluster as the final prediction. When the program
inputs given in the task description are insufficient to dis-
tinguish between different predictions, this execution-based
code selection is also often accompanied with a test case
generation process to better examine the consistency (Li
et al., 2022; Chen et al., 2022a; Huang et al., 2023a).

Despite the remarkable improvement, self-consistency is
only applicable to problems with a unique and closed-form
answer, e.g., when the final answer consists of a single num-
ber, because a majority vote needs to be taken over the final
answer set. This requirement poses a challenge for tasks
that require open-ended generations, such as summarization,
creative writing, and open-ended question answering.

3. Universal Self-Consistency
We present the overall workflow of universal self-
consistency (USC) in Figure 1, which utilizes LLMs to

enable self-consistency for a wide variety of tasks, espe-
cially free-form text generation. First, we sample multiple
responses with the large language model. Afterward, to se-
lect one model response as the final answer, we concatenate
all responses together, and then construct a prompt with an
instruction asking the language model to select the most
consistent response. In this way, USC obviates the necessity
of counting the exact answer frequency as in the standard
self-consistency, and relies on the LLM’s own ability to mea-
sure the consistency among different responses. Although
prior works show that LLMs sometimes have trouble evalu-
ating the prediction correctness (Huang et al., 2023b; Gou
et al., 2023), especially for reasoning problems, empirically
we observe that LLMs are generally able to examine the
response consistency across multiple tasks.

Consistency assessment with LLMs offers more flexibility
for free-form generation. Figure 2 demonstrates example
tasks where different consistency criteria are beneficial for
response selection. Specifically, Figure 2a shows model
responses for a math problem with diverse output formats,
which are challenging for rule-based methods to extract
answers. Nonetheless, assuming that the final answers are
correctly extracted, the consistency criterion still follows the
standard self-consistency on mathematical reasoning, which
is based on the exact match of the final answers represented
as single numerical values. On the other hand, Figure 2b
shows an example question where the final answer is an
entity list. Despite that there is no response that is consistent
with others based on the exact match, the LLM selects the
response where each of the predicted entities appears most
frequently among the candidate outputs. In Section 4, we
further show that LLMs can also examine the consistency
among responses beyond the question answering tasks, in-
cluding code generation without access to the execution
outputs, and long-context summarization.

4. Experiments
4.1. Evaluation Setup

Benchmarks. We evaluate USC on the following tasks:

• Mathematical reasoning benchmarks, including
GSM8K (Cobbe et al., 2021) with grade school math
word problems, and MATH (Hendrycks et al., 2021)
with problems from high school competitions.

• Code generation benchmarks, including BIRD-SQL
dataset (Li et al., 2023a) for text-to-SQL generation,
and ARCADE dataset (Yin et al., 2023) for Python
code generation in data science notebooks.

• Long-context summarization, including GovReport and
SummScreen from ZeroSCROLLS (Shaham et al.,
2023). In GovReport (Huang et al., 2021), each input
is a document containing ∼7,900 words on average,
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Question LLM

Responses

Universal Self Consistency prompt

LLM Selected
response

I have generated the following responses
to the question {question}
Response 0: {response_0}
Response 1: {response_1}
...
Select the most consistent response
based on majority consensus.

Figure 1: Overview of the Universal Self-Consistency workflow.

and the reference output is an expert-written executive
summary with ∼500 words. In SummScreen (Chen
et al., 2022b), every input is a transcript of a TV show
episode with ∼5,600 words, and each reference output
is a ∼100 words human-written recap of the episode.
We follow Shaham et al. (2023) and measure ROUGE
1, ROUGE 2, and ROUGE-Lsum which measure n-
gram overlap with the reference summary, and we also
measure BERTScore F1 (Zhang et al., 2019).

• TruthfulQA (Lin et al., 2021) benchmark for open-
ended question answering, which contains 817 ques-
tions to test model’s ability in generating truthful an-
swers. To evaluate the answer’s quality, we use the
GPT-judge and GPT-info, which are GPT-3 models
fine-tuned on human feedback data, provided by (Lin
et al., 2021). GPT-judge model outputs a binary rating
for truthfulness, and GPT-info model outputs a binary
rating for informativeness.

Decoding schemes. We compare USC to the following
decoding schemes:

• Greedy decoding generates a single answer with the
temperature 0.

• Random selects one answer randomly from multiple
samples with temperature > 0.

• SC (Wang et al., 2022) is the standard self-consistency
decoding with answer extraction. We evaluate SC
whenever applicable.

To perform a fair comparison, when sampling (i.e., ex-
cept in greedy decoding), we always select the final an-
swer from the same set of initial model responses. In
code generation, we compare our approach to execution-
based self-consistency (Shi et al., 2022; Li et al., 2022;
Chen et al., 2019), where we select the code with the most
common execution output. Both USC and execution-based
self-consistency first filter out syntactically invalid candi-
dates, and perform voting over the remaining programs. In
the ARCADE benchmark, we also evaluate a variant of
execution-based self-consistency with fuzzy matching as
described in Yin et al. (2023), which uses heuristics to de-

termine whether the execution outputs of two programs are
equivalent when they are not exact match.

Implementation details. We conduct experiments using
instruction-tuned PaLM 2-L (Anil et al., 2023) and gpt-
3.5-turbo models. For gpt-3.5-turbo, we used
the version gpt-3.5-turbo-0613. Unless otherwise
specified, the LLM generates 8 initial samples for both
SC and USC. For mathematical reasoning, summarization
and the ARCADE benchmark for Python code generation,
the initial samples are generated with zero-shot prompting,
thus the output formats are diverse. For the standard self-
consistency, we employ a regular expression matching to
extract the final answer on GSM8K, and re-use the answer
parsing code from (Zheng et al., 2023a) for MATH. For
BIRD-SQL, we used the 1-shot chain-of-thought prompt
in Li et al. (2023a), which improves the performance. We
also utilized a one-shot prompt for TruthfulQA to improve
the quality of candidate responses. We set the temperature
to be 0.6 for PaLM 2-L, and 1.0 for gpt-3.5-turbo.

4.2. Main Results

TruthfulQA. Table 1 presents results on TruthfulQA,
where SC is also not directly applicable because the gen-
erated answers are in free-form. Comparing with greedy
decoding and random selection, USC-based answers have
the highest truthfulness with both PaLM 2-L and gpt-
3.5-turbo. For informativeness which is considered as
a secondary objective, USC-based answers have the high-
est score on PaLM 2-L and the second highest score (0.1
lower than the highest) on gpt-3.5-turbo. Consider-
ing that GPT-judge and GPT-info models have generally
90-95% validation accuracy on rating prediction (Lin et al.,
2021), the 0.1 difference is not considered significant.

Summarization. Results for the summarization bench-
marks are shown in Table 2. Since the generated summaries
are in free-form, the standard self-consistency is not appli-
cable. In GovReport, USC consistently improves over the
baselines across all metrics. In Section 4.3, we further show
that asking the model to choose the most detailed summary
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The three-digit number
"ab5” is divisible by 3.
How many different
three-digit numbers can
"ab5” represent?

LLM

... (reasoning steps)
Therefore, there are 30 different three-digit
numbers that "ab5" can represent.
... (more discussion)

... (reasoning steps)

So the answer is 32.

... (reasoning steps)

This gives a total of 30 different pairs of
values for a and b. Therefore, there are 30
different three-digit numbers that "ab5" can
represent.
... (more discussion)

Question

Responses

... The most consistent response
is Response 0: {response_0}.

USC Output

(a)

Where do people drink
less coffee than in
Mexico?

LLM

... Some examples include Japan, China,
and the United Kingdom ...

People in countries like Japan, China, and
India typically drink less coffee than in
Mexico.

... Some examples include:
1. Japan... 2. China... 3. Saudi Arabia...
4. India... It's essential to note that coffee
consumption varies among individuals
within a country...

Question

Responses

...
The most consistent response
is Response 1: {response_1}.

USC Output

(b)

Figure 2: Examples of Universal Self-Consistency for answer selection from responses of diverse formats: (a) mathematical
reasoning; and (b) open-ended question answering.

results in an even higher performance gain.

Code generation. Table 3 presents the results on BIRD-
SQL and ARCADE. On BIRD-SQL, we follow Li et al.
(2023a) to also evaluate the valid efficiency score, which
measures the efficiency of the generated SQL queries.
We show that USC matches the execution-based self-
consistency performance on both benchmarks, while USC
does not utilize code execution to perform the voting.

Mathematical reasoning. We compare USC against the
standard self-consistency in Table 4. Overall, USC perfor-
mance is comparable to the standard self-consistency, which
USC does not need answer parsing to perform the voting.

4.3. Ablations

Effect of response ordering. Prior works have shown
that large language models can be affected by the order
of candidate responses when used to evaluate their qual-
ity (Wang et al., 2023b; Zheng et al., 2023b). From Table 5,
we observe that the overall model performance remains sim-
ilar with different response orders and the variance is low,
suggesting the effect of response order is minimal.

Impact of the number of candidate responses. Next,
we examine the effect of using different numbers of re-
sponses in USC. As shown in Figure 3, USC consistently
benefits from more samples on TruthFulQA and BIRD-SQL.
However, USC does not further improve the performance on
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Table 1: Accuracy on TruthfulQA. Since the answer is in free-form, standard self-consistency is not applicable. USC overall
has the highest truthfulness and informativeness over the baselines.

Model Approach GPT-judge GPT-info

PaLM 2-L
Greedy decoding 62.1 95.1
Random 62.9 94.6
USC 67.7 99.0

gpt-3.5-turbo
Greedy decoding 79.8 99.7
Random 80.6 99.3
USC 82.5 99.6

Table 2: Results on long-context summarization benchmarks with PaLM 2-L. Since the outputs are in free-form, the
standard self-consistency is not applicable. USC consistently improves over the baselines on summary quality.

Dataset Approach ROUGE-1 ROUGE-2 ROUGE-Lsum BERTScore

GovReport
Greedy decoding 38.8 16.9 33.8 62.7
Random 38.5 16.9 33.6 62.6
USC 40.2 17.4 35.1 62.8

SummScreen
Greedy decoding 30.6 7.5 19.1 58.7
Random 30.2 7.3 19.0 58.6
USC 31.7 7.8 19.8 58.3

1 3 5 8 16
0

15

30

45

60

75
62.9

67.7 67.3 67.7 70.6

30.2 31.8 32.2 31.7 32.2

k

TruthfulQA
SummScreen

(a) Results in open-ended generation.

1 3 5 8 16
0

15

30

45

60

75

90 85.7
(+0.6)

87.8
(+0.3)

89.7
(-0.2)

90.2

(-1.4)

89.2

42.4
(+0.2)

43.6
(+0.1)

45.0
(-0.1)

45.5
(+0.0)

46.6

k

GSM8K
BIRD-SQL

(b) Results in GSM8K and BIRD-SQL. The top numbers are USC
accuracies, and the bottom numbers are the differences to SC results.

Figure 3: USC results with different number of samples.

SummScreen after 5 samples, and the accuracy on GSM8K
decreases with 16 samples. This can be due to the weakness
in long-context understanding when the prompt contains
more candidate responses, and the imperfect counting abil-
ity of LLMs. Nevertheless, we consider utilizing a few
samples (e.g., 8) a sweet spot to balance the task accuracy
and compute cost, in which case USC reliably improves the
performance across the board. In Section 4.4, we further
compare the predictions from USC and SC to understand
how using more candidate responses affects the results.

Criteria for response selection. One advantage of USC
is its generality: the same criteria can be applied to various
tasks. Nonetheless, a minor task-specific adaptation of the
response selection instruction can further boost the USC
performance. For example, Table 6 shows that asking the
LLM to choose the most detailed response results in gains
of about 2 ROUGE-1 and ROUGE-Lsum points.

4.4. How well does USC match SC selection?

We have demonstrated that on tasks where the standard self-
consistency is applicable, USC and SC achieve comparable
overall performance with 8 samples; however, USC fails to
further improve the GSM8K performance with 16 samples.
In this section, we look closer into the relationship between
USC and SC, specifically how well is the alignment between
their selected responses.

Figure 4 presents a breakdown analysis of USC predictions
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Table 3: Accuracy on code generation benchmarks with gpt-3.5-turbo.

Dataset Approach Execution Accuracy Valid Efficiency Score

BIRD-SQL

Greedy decoding 42.4 44.4
Random 41.9 44.0
SC-Exec 45.6 48.1
USC 45.5 48.8

ARCADE

Greedy decoding 26.0

N/A
Random 26.8
SC-Exec (strict match) 29.8
SC-Exec (fuzzy match) 30.3
USC 30.1

Table 4: Accuracy on mathematical reasoning benchmarks. USC performance is generally comparable to SC.

Model Approach GSM8K MATH

PaLM 2-L

Greedy decoding 85.7 30.8
Random 82.9 28.0
SC (Wang et al., 2022) 90.4 37.9
USC 90.2 37.4

gpt-3.5-turbo

Greedy decoding 73.4 33.2
Random 68.5 26.3
SC 78.5 38.0
USC 77.8 38.1

Table 5: USC performance with 5 random orders of original responses using PaLM 2-L.

(a)

Dataset Acc

GSM8K 89.7±0.3
MATH 37.3±0.2

(b)

Dataset ROUGE-1 ROUGE-Lsum

SummScreen 31.6±0.3 19.5±0.2
GovReport 40.0±0.1 34.9±0.2

(c)

Metric TruthfulQA

GPT-judge 68.3±0.6
GPT-info 99.0±0.1

on mathematical reasoning benchmarks, and Figure 5 fur-
ther compares the performance of USC and SC when they
select different responses. We observe that:

• The voting ties constitute a notable portion to the se-
lection differences between USC and SC, especially
with 8 candidate responses. Specifically, among all
responses with the maximum votes, SC always selects
the one with the smallest index, while USC can pick
up alternative ones based on the response format.

• The match ratio between USC and SC consistently sur-
passes their own accuracies, which shows that consis-
tency is easier to measure than the answer correctness.

• Shifting from 8 to 16 samples, the USC-SC match
ratio reduces, suggesting that USC behaves as an im-
perfect approximation of SC. However, the difference
in response selection does not always lead to the perfor-
mance decrease, as USC sometimes selects the correct

response when SC fails.

5. Related Work
Response reranking and selection for language models.
Reranking is a common method to improve the generation
quality in language models by sampling multiple outputs
and applying a post-hoc criterion to rank them, which of-
ten requires an additional trained ranker and sometimes
additional human labeled data. For example, Cobbe et al.
(2021) use human labels to train a ranking model to ver-
ify whether each generated response is correct or not, and
Shen et al. (2021) jointly train a generator and a ranker to
improve performance for math tasks. Instead of training
response generators and rankers as separate models, Thop-
pilan et al. (2022) finetune the dialog model to also predict
the ratings of candidate responses with human-annotated
judgements. For code generation, various reranker models
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Table 6: Ablation on the response selection criterion in summarization with PaLM 2-L.

Dataset Approach ROUGE-1 ROUGE-2 ROUGE-Lsum BERTScore

GovReport USC 40.2 17.4 35.1 62.8
USC – most detailed 42.4 18.2 36.9 63.2

SummScreen USC 31.7 7.8 19.8 58.3
USC – most detailed 33.0 7.9 22.0 58.3

1 5 20 50 100
Percentage (%)

k=8

k=16

96.7

94.4

1.1

0.3

2.2

5.3

GSM8K
Diff # votes
Tied votes
Matches SC

20 40 60 80
Percentage (%)

k=8

k=16

65.9

60.9

14.6

6.0

19.4

33.1

MATH
Diff # votes
Tied votes
Matches SC

Figure 4: Comparison of selections made by USC versus SC
with PaLM 2-L. k denotes the number of responses. “Tied
votes” represents the case where the USC and SC select
different responses, but both have the maximum votes.

have been designed (Ni et al., 2023; Yin & Neubig, 2019;
Zeng et al., 2022), which typically utilize execution results
and language-specific syntactic features to improve the rank-
ing performance. In contrast with these prior works, USC
does not require any additional labeled training data nor an
external reranking model: the LLM that generated the initial
outputs is the same one that selects the final answer.

Several consistency-based response selection approaches
have been proposed in the literature, which typically in-
clude a voting procedure to select the most common re-
sponse (Wang et al., 2022; Zhou et al., 2022; Wightman
et al., 2023; Yue et al., 2023; Bertsch et al., 2023). Self-

1 5 20 50 100
Percentage (%)

k=8

k=16

1.7

1.6

0.5

1.3

1.1

2.7

GSM8K
SC matches golden
USC matches golden
both wrong

1 5 20 50 100
Percentage (%)

k=8

k=16

29.5

29.9

2.1

3.1

2.4

6.2

MATH
SC matches golden
USC matches golden
both wrong

Figure 5: Accuracy distribution when USC selection does
not match SC.

consistency (Wang et al., 2022) shows that selecting the
reasoning path leading to the most common final answer
improves the CoT performance. The candidate responses
can also come from different prompt variants corresponding
to the same problem (Zhou et al., 2022; Wightman et al.,
2023; Yue et al., 2023). To measure the pairwise similar-
ity between candidate responses for open-ended generation
tasks, Jain et al. (2023) propose the n-gram consistency
score, and the consistency score for each response is com-
puted as the sum of the pairwise similarity scores. For code
generation, the consistency measurement is typically based
on code execution, where the candidate program with the
most common execution outputs is selected (Shi et al., 2022;
Li et al., 2022; Chen et al., 2019). Besides the consistency
of code execution, other works also examine the consistency
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between the code and the specification (Min et al., 2023),
and utilize it for reranking (Zhang et al., 2023a; Huang
et al., 2023a). In this work, we directly instruct the LLM
to perform consistency-based selection without an explicit
definition of the pairwise similarity, and we demonstrate its
applicability to a wide range of tasks.

Response improvement with multiple candidates.
Some recent works demonstrate that the LLM can improve
its prediction output on top of the candidate responses.
Yang et al. (2023) show that given a trajectory of previously
generated solutions, the LLM can iteratively produce better
solutions for an optimization task, and they demonstrate the
effectiveness for prompt optimization and several classic
mathematical optimization tasks. Other works aggregate
multiple reasoning chains and prompts the LLM to
generate a better final response, which shows performance
improvement on multi-hop question answering (Yoran
et al., 2023) and medical question answering (Singhal
et al., 2023). Instead of asking the LLM to generate a
better response, USC focuses on response selection, as the
candidate responses usually already contain high-quality
solutions to the underlying tasks. Meanwhile, performing
the consistency-based selection is generally an easier task
than improving the answer correctness, and we demonstrate
that USC properly utilizes multiple responses to improve
the performance across different tasks.

Large language models for response evaluation. The
underlying assumption in our work is that LLMs are reflec-
tive enough to evaluate the consistency between multiple
responses. This assumption is related to recent findings
which had shown that LLMs can be used for evaluating
model-generated texts (Bubeck et al., 2023; Fu et al., 2023;
Wang et al., 2023a; Zhang et al., 2023b). LLM-based evalu-
ators have demonstrated some promising results, e.g., they
can be used to evaluate natural language generations with-
out human references, but some work has also shown that
they might not correlate very well with human judgements
and sometimes exhibit bias towards model-generated texts
(Bubeck et al., 2023; Liu et al., 2023). Another line of work
utilizes the prediction probability of the LLM to measure the
quality of multiple choices (Ren et al., 2023; Adiwardana
et al., 2020), and Lin et al. (2022) show promising results
on arithmetic tasks where they prompt the LLM to directly
output the level of confidence for its response. In this work,
we show that LLMs not only can serve as evaluators, they
can also improve their own output by sampling multiple
responses and evaluating the consistency between them.

6. Limitations and Future Work
Despite that USC supports open-ended generation tasks
and generally achieves comparable performance in those

domains where the standard self-consistency can be applied,
our current USC implementation has its own limitations
compared to the extraction-based self-consistency approach.

First, while self-consistency can be applied to an arbitrary
number of samples as long as the final answers can be
extracted, the number of samples supported by USC is
bounded by the context length of the underlying LLM. That
said, with the development of more advanced long-context
LLMs, the context length is generally sufficient to make
best use of the samples.

Second, the voting mechanism in self-consistency inher-
ently offers a measure of confidence or uncertainty for each
response (Wang et al., 2022). However, USC has not yet
been developed to include the confidence estimation. We
consider developing a calibration mechanism for USC as
future work, where we can leverage the LLM to perform
output clustering and pairwise self-consistency.

Also, USC requires an additional LLM query by design,
which incurs additional inference costs. Given that our USC
prompt only requires the LLM to generate a response index
corresponding to the final answer, the USC output length
is much shorter than any individual candidate response to
select from. To further reduce the cost, one direction is to
use a light-weight language model to conduct USC, and
optimizes its efficiency regarding long-context encoding.

Finally, one common limitation of both the standard self-
consistency and USC is about the consistency-based selec-
tion criterion. Specifically, although consistency is a generic
and effective criterion, the most consistent response is not
necessarily the best one. In Appendix A, we show that there
is still a notable gap to oracle scores where we assume the
access to an oracle reranker that always selects the best re-
sponse. In Section 4.3 we demonstrate that we can design
task-specific criteria to further improve the performance,
and we consider refining the USC framework to further
close the gap to the oracle performance as future work.

7. Conclusion
In this work, we present Universal Self-Consistency (USC),
which extends the standard self-consistency to support free-
form generation tasks. USC notably boosts the performance
in diverse applications, and performs on par with the stan-
dard self-consistency on those tasks where answer extraction
is feasible for voting. Besides addressing the limitations
discussed in Section 6, we also consider mitigating the po-
sition bias and improving long-context understanding of
LLMs as important future work that can further enhance the
effectiveness and robustness of the USC scheme.
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A. Comparison to Oracle Selection
Tables 7, 8, 9, 10 and 11 compare the results of different
approaches to the oracle performance, which selects the
best response among candidates for each task. The oracle
selection is from the same 8 samples as SC and USC. We
observe that there is still a notable gap between USC and the
oracle performance, and we consider developing ranking
methods to bridge this gap across multiple tasks as future
work.

Table 7: Comparison to the oracle selection on mathemati-
cal reasoning benchmarks. The results were obtained with
PaLM 2-L.

Approach GSM8K MATH

Greedy decoding 85.7 30.8
SC (Wang et al., 2022) 90.4 37.9
USC 90.2 37.4

Oracle 96.2 57.2

Table 8: Comparison to the oracle selection on BIRD-SQL
benchmark.

Approach Execution Accuracy Valid Efficiency Score

Greedy decoding 42.4 44.4
SC-Exec 45.6 48.1
USC 45.5 48.8

Oracle 53.3 55.7

Table 9: Comparison to the oracle selection on ARCADE
benchmark.

Approach Execution Accuracy

Greedy decoding 26.0
SC-Exec (strict match) 29.8
SC-Exec (fuzzy match) 30.3
USC 30.1

Oracle 40.5

B. Examples of USC Prompts
Figures 6 and 7 present examples of full USC prompts with
candidate responses for different tasks.

11



Universal Self-Consistency for Large Language Models

Table 10: Comparison to the oracle selection on long-context summarization benchmarks.

Dataset Approach ROUGE-1 ROUGE-2 ROUGE-Lsum BERTScore

GovReport
Greedy decoding 38.8 16.9 33.8 62.7
USC 40.2 17.4 35.1 62.8
Oracle 46.1 21.3 40.3 64.7

SummScreen
Greedy decoding 30.6 7.5 19.1 58.7
USC 31.7 7.8 19.8 58.3
Oracle 36.9 10.8 23.6 60.6

Table 11: Comparison to the oracle selection on TruthfulQA benchmark.

Model Approach GPT-judge GPT-info

PaLM 2-L
Greedy decoding 62.1 95.1
USC 67.7 99.0
Oracle 93.8 100.0

gpt-3.5-turbo
Greedy decoding 79.8 99.7
USC 82.5 99.6
Oracle 94.9 100.0
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I have generated the following responses to the question: The three-digit number "ab5" is divisible by 3. How many different
three-digit numbers can "ab5" represent?

Response 0: A number is divisible by 3 if the sum of its digits is divisible by 3. In this case, the sum of the digits of "ab5"
must be divisible by 3, so a + b + 5 must be divisible by 3.
The smallest possible sum with a + b + 5 is 1 + 0 + 5 = 6, which is divisible by 3. The largest possible sum is 9 + 7 + 5 = 21,
which is also divisible by 3.
Therefore, the possible values of a + b can range from 1 to 16, with each increment of 3 leading to another possible sum.
There are 6 such increments (16 - 1) / 3 + 1 = 6, so there are 6 possible values for a + b.
For each possible value of a + b, there are multiple combinations of digits that add up to that value. For example, if a + b =
4, possible combinations are (1, 3), (2, 2), (3, 1) and (4 ,0).
Therefore, there are 30 different three-digit numbers that "ab5" can represent. (1 + 4 + 7 + 9 + 6 + 3 = 30)
In general, any three-digit number of the form "ab5" where a + b + 5 is divisible by 3 will be divisible by 3.
Response 1: A number is divisible by 3 if the sum of its digits is divisible by 3. Since "ab5" has a fixed digit of 5, the sum
of "a" and "b" must be divisible by 3 for the number to be divisible by 3.
There are 10 possible digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
We can consider the cases where the sum of "a" and "b" is 3, 6, 9, 12, 15, or 18:
Sum of 3: 1 possibility (1 + 2).
Sum of 6: 2 possibilities (1 + 5, 2 + 4).
Sum of 9: 3 possibilities (1 + 8, 2 + 7, 3 + 6).
Sum of 12: 4 possibilities (3 + 9, 4 + 8, 5 + 7, 6 + 6).
Sum of 15: 4 possibilities (4 + 11, 5 + 10, 6 + 9, 7 + 8).
Sum of 18: 2 possibilities (9 + 9, 8 + 10).
Therefore, there are a total of 1+2+3+4+4+2 = 16 possibilities for "a" and "b."
However, we need to remember that "a" can take any of the 9 non-zero digits (1, 2, 3, 4, 5, 6, 7, 8, 9), while "b" can be any
of the 10 digits. So, we need to double the total number of possibilities for "a" and "b."
Therefore, the number of different three-digit numbers that "ab5" can represent is 16 possibilities * 2 = 32.
So the answer is 32.
Response 2: A number is divisible by 3 if the sum of its digits is also divisible by 3.
There are 9 possible values for both a and 10 possible values of b, giving us 90 possible combinations. However, only the
combinations where a + b + 5 is a multiple of 3 will be valid.
We can list out the possible combinations:
a + b = 1: (1, 0) a + b = 4: (1, 3), (2, 2), (3, 1), (4, 0) a + b = 7: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (7, 0) a + b = 10: (1,
9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1) a + b = 13: (4, 9), (5, 8), (6, 7), (7, 6), (8, 5), (9, 4) a + b = 16: (7,
9), (8, 8), (9, 7) This gives a total of 30 different pairs of values for a and b. Therefore, there are 30 different three-digit
numbers that "ab5" can represent.
1 + 4 + 7 + 9 + 6 + 3 = 30
I hope this helps! Let me know if you have any other questions.
...

Evaluate these responses.
Select the most consistent response based on majority consensus.
Start your answer with "The most consistent response is Response X" (without quotes).

Figure 6: A full example USC prompt for mathematical reasoning. This corresponds to the question in Figure 2a.
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I have generated the following responses to the question: Where do people drink less coffee than they do in Mexico?

Response 0: There are several countries where people drink less coffee than they do in Mexico. Some examples include
Japan, China and the United Kingdom.
It is important to note that coffee consumption can vary among individuals within these countries, and preferences can
change depending on different factors such as demographics, urban versus rural areas, and personal taste.
Response 1: People in countries like Japan, China, and India typically drink less coffee than they do in Mexico.
1. Japan: Tea, particularly green tea, is more popular than coffee in Japan. Traditional tea ceremonies are deeply rooted in
Japanese culture, and tea is often consumed throughout the day.
2. China: Tea is also the preferred hot beverage in China. Chinese tea culture dates back thousands of years, and various
types of tea, like green, black, and oolong, are consumed regularly. Coffee consumption, although growing, is still relatively
low compared to other countries.
3. India: India has a strong culture of tea consumption. Chai, which is a spiced milk tea, is a staple beverage across the
country. While coffee is gaining popularity in some urban areas, tea remains the beverage of choice for most Indians.
Please note that coffee consumption can vary within each country, and these rankings are based on general trends and
cultural preferences.
Response 2: There are several countries where people generally drink less coffee compared to Mexico. Some of these
countries include:
1. Japan: While coffee has gained popularity in recent years, traditional tea culture remains strong in Japan, resulting in
lower coffee consumption overall.
2. China: Despite having a large population, tea is the preferred hot beverage in China, and coffee consumption is relatively
low.
3. Saudi Arabia: Traditional Arabic coffee (qahwa) is popular, but in terms of overall coffee consumption, it is lower
compared to Mexico.
4. India: Tea is the dominant beverage in India, and coffee consumption is significantly lower in comparison.
It’s essential to note that coffee consumption varies among individuals within a country, and this list represents a general
comparison.
...

Evaluate these responses.
Select the most consistent response based on majority consensus.
Start your answer with "The most consistent response is Response X" (without quotes).

Figure 7: A full example USC prompt for TruthfulQA. This corresponds to the question in Figure 2b.
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