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ABSTRACT

Spiking Neural Networks (SNNs), with their temporal processing capabilities and
biologically plausible dynamics, offer a natural platform for unsupervised rep-
resentation learning. However, current unsupervised SNNs predominantly em-
ploy shallow architectures or localized plasticity rules, limiting their ability to
model long-range temporal dependencies and maintain temporal feature consis-
tency. This results in semantically unstable representations, thereby impeding
the development of deep unsupervised SNNs for large-scale temporal video data.
We propose PredNext, which explicitly models temporal relationships through
cross-view future Step Prediction and Clip Prediction. This plug-and-play module
seamlessly integrates with diverse self-supervised objectives. We firstly establish
standard benchmarks for SNN self-supervised learning on UCF101, HMDB51,
and MiniKinetics, which are substantially larger than conventional DVS datasets.
PredNext delivers significant performance improvements across different tasks
and self-supervised methods. PredNext achieves performance comparable to
ImageNet-pretrained supervised weights through unsupervised training solely on
UCF101. Additional experiments demonstrate that PredNext, distinct from forced
consistency constraints, substantially improves temporal feature consistency while
enhancing network generalization capabilities. This work provides a effective
foundation for unsupervised deep SNNs on large-scale temporal video data.

1 INTRODUCTION

(b)

Low Consistency High Consistency

(a)
Figure 1: Analysis of temporal consistency. (a) Evolution of inter-frame feature similarity during
SNN training. (b) Distribution of video features in high-dimensional space, demonstrating more
concentrated clustering for high-consistency temporal representations. Blue points represent fea-
tures from different timesteps of the same video, while red points indicate cluster centers in nearby
feature space locations. Green and red arrows denote intra-video feature attraction across frames
and inter-video feature repulsion respectively

Unsupervised learning has garnered significant attention in artificial intelligence for its capacity
to extract meaningful representations from unlabeled data (Barlow, 1989; Bengio et al., 2012; Liu
et al., 2021), substantially reducing dependence on extensive manual annotation. By revealing inher-
ent structures and patterns in unlabeled data, this approach more accurately reflects natural human
learning processes (Hinton & Sejnowski, 1999; Chen et al., 2020; He et al., 2020). Spiking neural
networks (SNNs), with their characteristics of simulating brain functioning principles (Maass, 1997;
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Figure 2: PredNext algorithmic framework. PredNext incorporates Step Prediction and
Clip Prediction components for predicting features at the next step and in subsequent sam-
pled clips from the same video, respectively. As an auxiliary module, PredNext can be seamlessly
integrated into existing self-supervised learning methods. Red arrows indicate the Step Prediction
pathway, while Blue arrows denote the Clip Prediction pathway.

Diehl & Cook, 2015; Wu et al., 2018), constitute an ideal framework for unsupervised learning re-
search (Gerstner & Kistler, 2002; Tavanaei et al., 2019). Nevertheless, current research on unsuper-
vised learning in SNNs has primarily concentrated on shallow architectures or synaptic plasticity-
based methods (Diehl & Cook, 2015; Kheradpisheh et al., 2018; Dong et al., 2023). The challenges
in extending these approaches to deep architectures, particularly when processing complex temporal
data, predominantly arise from the limited capacity of current deep SNN models to effectively cap-
ture and leverage long-term temporal dependencies (Wu et al., 2018; Fang et al., 2021b). Efficient
processing of large-scale, temporally rich data, especially video, is essential for developing robust
unsupervised learning systems capable of generating richer, more semantically meaningful feature
representations for downstream applications.

The temporal processing capability of spiking neural networks stems from the intrinsic dynamics
of spiking neurons, which serve as information carriers across timesteps. (Zenke & Vogels, 2021;
Neftci et al., 2019). Standard LIF neurons accumulate membrane potential to retain temporal infor-
mation and emit discrete spikes when the potential exceeds a threshold. However, this elementary
integrate-and-fire mechanism proves inadequate for processing large-scale video data with com-
plex temporal dependencies. Additionally, Unlike ANNs employing temporal downsampling (Tran
et al., 2015; Carreira & Zisserman, 2017), SNNs typically preserve original temporal resolution,
potentially resulting in feature instability without appropriate temporal aggregation. Consequently,
we suggest that intrinsic neuronal dynamics alone are insufficient for complex temporal information
processing, necessitating the integration of explicit temporal modeling mechanisms to enhance the
temporal processing capabilities of SNNs.

Table 1: Summary of commonly used DVS and
video datasets.
#dataset #classes #object #temporal #scale
DVS-Guesture 1.3K × 10s action Real Scene Small
CIFAR10-DVS 10K × 1.2s images Camera Shift Small
N-Caltech101 9K × 0.3s images Camera Shift Small
UCF101 13K × 4s action Real Scene Medium
HMDB51 6.7K × 7s action Real Scene Medium
miniKinetics 80K × 10s action Real Scene Large

Furthermore, we argue that effective temporal
modeling should enhance consistency among
features extracted across different timesteps.
To illustrate this point, Figure 1(a) illus-
trates the evolution of feature consistency on
UCF101(Soomro et al., 2012) as training pro-
gresses. The results demonstrate that as mod-
els converge, semantic extraction capability im-
proves significantly while feature distributions across timesteps become increasingly consistent. Ide-
ally, as shown in Figure 1(b), high-consistency SNNs should extract stable high-level semantic fea-
tures (action types, object categories) that remain invariant to temporal fluctuations(Pan et al., 2021;
Han et al., 2020b). While directly constraining temporal consistency might seem intuitive, however,
our experiments reveal that such enforced consistency constraints actually impair performance.

Based on the preceding analysis, we propose PredNext, that explicitly models temporal relationships
and enhances feature consistency in unsupervised spiking neural networks by predicting future fea-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tures across contrastive views. As illustrated in Figure 2, PredNext operates as a plug-and-play
module that seamlessly integrates with existing self-supervised learning algorithms. The framework
comprises two complementary mechanisms: Step Prediction, which predicts representations at sub-
sequent timesteps, and Clip Prediction, which predicts features from future temporal clips, while
cross-view prediction enhances feature discrimination. PredNext is based on the hypothesis that
by explicitly modeling temporal relationships both within and between clips, features with higher
semantic density should better predict future representations while excluding low-level dynamic
information, thus naturally improving cross-temporal feature consistency.

Due to the scarcity of unsupervised methods for SNNs, we adapted established self-supervised ap-
proaches to SNN architectures as benchmarks and reproduced some video unsupervised learning
methods. We conducted experiments using UCF101(Soomro et al., 2012) and MiniKinetics(Carreira
& Zisserman, 2017) for pre-training, which offer greater scale and richer temporal dependencies
than conventional DVS datasets(Li et al., 2017; Orchard et al., 2015)(as shown in Table 1). Re-
sults demonstrate that PredNext yields significant performance gains across self-supervised methods
while substantially enhancing temporal consistency of extracted features. Our empirical study con-
firms that superior feature extraction capability corresponds to higher temporal feature consistency,
while forcibly imposing consistency constraints degrades performance. Furthermore, experiments
show that SNNs, like ANNs, benefit from larger-scale datasets in video processing tasks.

2 METHODS

2.1 SELF-SUPERVISED LEARNING IN SNNS
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Figure 3: Implementation for self-supervised learning in SNNs, encompassing SimCLR, MoCo,
SimSiam, BYOL, BarlowTwins. Temporal features are aggregated following SNN encoder.

Given the absence of systematic investigations into self-supervised learning for deep spiking neu-
ral networks, we first adapted prevailing self-supervised methods to SNN architectures to establish
comparative baselines for our proposed PredNext approach. As depicted in Figure 3, we imple-
mented SNN variants of both contrastive methods (SimCLR(Chen et al., 2020), MoCo(He et al.,
2020), BarlowTwins(Zbontar et al., 2021)) and negative-sample-free approaches (SimSiam(Chen &
He, 2021), BYOL(Grill et al., 2020)).

Formally, let x ∈ D denote a clip of length t sampled from dataset D. Through data augmen-
tation H(x), we obtain two views xt

i and xt
j . These views, processed through feature extractors

and MLP projection heads, yield representations zti and ztj . Self-supervised learning aims to mini-
mize distances between representations from different views of the same sample while maximizing
distances between representations from different samples. For SNNs, we follow convention by com-
puting the time-averaged representation zi =

∑T
t=1 z

t
i/T as the final feature. SimCLR and MoCo

implementations utilize the InfoNCE loss function:

L = − log
exp(sim(zi, zj)/τ)∑N
k=1 exp(sim(zi, zk)/τ)

(1)

Here, sim(·, ·) denotes cosine similarity, τ represents the temperature parameter, and N is the batch
size. SimCLR utilizes in-batch samples as negative examples, whereas MoCo maintains a dynamic
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feature queue for negative samples with a momentum encoder. SimSiam and BYOL employ a
predictor network h that maps representations between views while minimizing their distance:

L = 1− zj
∥zj∥2

· h(zi)

∥h(zi)∥2
(2)

where, BYOL employs a momentum encoder for target network updates, while SimSiam utilizes
a weight-shared siamese network with stop-gradient operations to prevent collapse. BarlowTwins,
conversely, minimizes feature redundancy using the following loss function:

L =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij (3)

where C denotes the cross-correlation matrix of batch-normalized features, and λ is the hyperpa-
rameter balancing these competing objectives.

Our SNN implementation utilizes a SEW ResNet18 architecture (Fang et al., 2021a) for feature
extraction. Across all experiments, we employ the AdamW optimizer (initial learning rate: 2e-3,
weight decay: 1e-4) with cosine annealing scheduling and a batch size of b = 256. For UCF101
and HMDB51, we use 128 × 128 crops with 200 training epochs, with extracted T = 16 frames
with a stride of τ = 2; for MiniKinetics, 114 × 114 crops with 120 epochs. We extract T = 8
frames with a stride of τ = 8. Data augmentation follows protocols established in Feichtenhofer
et al. (2021). Validation employs 3 clips per video for inference. Comprehensive architectural and
hyperparameter details are provided in the appendix.

Algorithm 1 PredNext Training Procedure
Require: Dataset D, data augmentation function H , feature extractor and projection head F , tem-

poral prediction head PT , PC , self-supervised loss function Lssl, weight coefficient α
Ensure: Trained feature extractor F

1: for each mini-batch do
2: // Get features from two augmented views
3: xi = H(x), xj = H(x)
4: zti = F (xt

i), z
t
j = F (xt

j) for t = 1...T
5: // Compute original self-supervised loss
6: Lssl = self-supervised loss based on zi and zj
7: // Compute PredNext predicted features
8: pti = PT (z

t
i), p

t
j = PT (z

t
j) for t = 1...T − 1

9: ci = PC(zi), cj = PC(zj)
10: // Compute PredNext loss
11: Lpred = 0.25 · (

∑
t (Q(pti, z

t+m
j ) +Q(ptj , z

t+m
i )) +M(ci, z

∗
j ) +M(cj , z

∗
i ))

12: // Compute total loss and update parameters
13: L = (1− α) · Lssl + α · Lpred

14: Update parameters of F and PT , PC to minimize L
15: end for

2.2 PREDNEXT

PredNext serves as a plug-and-play auxiliary module seamlessly integrable with diverse self-
supervised learning frameworks. As depicted in Figure 2, it introduces temporal prediction as an
auxiliary objective while preserving the original self-supervised paradigm. Inspired by Predictive
Coding theory(Huang & Rao, 2011; Spratling, 2017), PredNext explicitly models temporal rela-
tionships through future representation prediction. This approach operates on the principle that
semantically rich features should accurately predict their next semantical feature, whereas features
capturing only low-level dynamics cannot generate effective predictions.

PredNext comprises three main components: an SNN feature extractor and a nonlinear MLP pro-
jection head (jointly denoted as F), alongside two temporal prediction heads (PT and PC) for next-
timestep and next-clip predictions. The Step Predictor PT establishes mappings between current
and future timestep features, while the Clip Predictor PC models relationships between current and
future clip representations. Both predictors employ two-layer MLPs with dimensions matching the
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projection head output. For augmented clips xt
i and xt

j , we obtain representations zti = F (xt
i)

and ztj = F (xt
j) that serve both the original self-supervised objective and generating predictions

through pti = PT (F (xt
i)), p

t
j = PT (F (xt

j)) and ci = PC(
1
T

∑
t F (xt

i)), cj = PC(
1
T

∑
t F (xt

j)).
Step Predictor’s loss function minimizes the divergence between current features and cross-view
future features:

Q(pti, z
t+m
j ) = −

∑
t

pti
|pti|

·
zt+m
j

|zt+m
j |

(4)

where m denotes the prediction time step interval. While Clip Predictor’s loss function is defined
as:

M(ci, z
∗
j ) = − ci

|ci|
·
z∗j
|z∗j |

(5)

Where z∗i and z∗j denote temporally aggregated features of the subsequently sampled clip. To en-
hance learning effectiveness, we employ a symmetric design, with the final loss function:

Lpred =
∑

t
(
1

2
Q(pti, z

t+m
j ) +

1

2
Q(ptj , z

t+m
i )) +

1

2
M(ci, z

∗
j ) +

1

2
M(cj , z

∗
i ) (6)

We employ cross-view prediction where features from one view (pti, ci) predict future features of
another view (zt+m

j , z∗j ). This design enhances feature discrimination by requiring the model to
disregard view-specific noise. Our ablation studies comparing same-view prediction (pti predicting
zt+m
i ) against cross-view prediction demonstrate that the latter yields superior generalization perfor-

mance. PredNext’s complete training procedure is outlined in Algorithm 1. The final optimization
objective combines both learning targets:

L = (1− α) · Lssl + α · Lpred (7)

Where weight coefficient α balances their relative importance.

Base settings: As PredNext is model-agnostic and functions as a plug-and-play component across
methods, we standardized its parameters throughout our experiments. Following SimSiam (Chen &
He, 2021), the temporal prediction head PT and PC comprises a 2-layer MLP with batch normal-
ization, using a 128-dimensional hidden layer while maintaining output dimensions consistent with
F (x)’s feature representation.

Table 2: Summary of commonly used DVS
and video datasets.
methods

no additional
module needed

step pred clip pred

DPC ✗ ✓ ✗

memDPC ✗ ✓ ✗

CPC-like(Lorre’s) ✗ ✓ ✗

PrredNext ✓ ✓ ✓

Comparison with Predictive Coding Methods:

Predictive coding approaches have attracted consid-
erable research interest, particularly for temporal
data processing. DPC/MemDPC(Han et al., 2019;
2020a) implement dense predictions on video se-
quences and utilize dedicated temporal aggregator
networks to process intermediate temporal variables.
Lorre et al.(Lorre et al., 2020) developed a CPC-like
approach for future timestep feature prediction. As shown in Table 2, in contrast, PredNext employs
cross-view prediction with a more streamlined architecture that eliminates the need for complex
auxiliary structures, functioning as a modular component integrable with existing methodologies.

3 EXPERIMENTS

3.1 DATASET AND IMPLEMENTATION

Datasets details In contrast to traditional DVS datasets, unsupervised learning paradigms neces-
sitate large-scale datasets to extract meaningful representations. UCF101(Soomro et al., 2012) and
HMDB51(Kuehne et al., 2011) are medium-scale video benchmarks widely adopted in action recog-
nition research. UCF101 encompasses 13, 320 video clips across 101 action classes, while HMDB51
contains 6, 766 clips with 51 action classes. miniKinetics(Carreira & Zisserman, 2017), an official
subset of Kinetics-400, includes 200 categories with about 400 training and 25 validation instances
per class, maintaining diversity and complexity while reducing computational requirements.

Implementation details To ensure experimental rigor and comparative validity, we maintain con-
figurations aligned with established baselines. We employ SEW ResNet18(Fang et al., 2021a) as
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Table 3: Comparative results after fine-tuning under different self-supervised methods. Top-1 and
Top-5 accuracies are reported. Models were trained using various pre-training datasets and evaluated
on different fine-tuning datasets. * indicates results reproduced according to our experimental setup.

finetune datasets ucf101 hmdb51 miniKinetics
method Initial weights top-1 top-5 top-1 top-5 top-1 top-5

Supervised random init 44.07 70.84 18.04 45.69 40.53 68.59
Supervised ImageNet init 64.42 87.36 34.31 67.84 50.48 76.53
Supervised ImageNet + miniKinetics init 70.02 91.62 44.97 78.37 - -

pre-train ucf101 miniKinetics
finetune ucf101 hmdb51 ucf101 hmdb51 miniKinetics

method (Initial weights) top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
SimCLR 57.04 83.82 30.59 64.97 59.03 85.96 35.42 67.97 50.61 77.16
MoCo 49.70 79.70 28.04 62.22 45.63 76.55 20.72 46.86 42.65 70.23
BYOL 56.41 83.18 29.35 64.58 59.27 86.23 36.74 68.24 51.23 77.69
BarlowTwins 56.15 84.25 30.33 64.12 58.04 85.83 36.53 68.17 51.28 77.61
SimSiam 50.81 81.07 28.10 63.46 43.77 74.89 19.08 45.75 41.52 69.75
SimSiam (ImageNet) 70.32 91.56 39.65 74.35 68.70 91.91 36.67 73.53 - -
ρSimSiam(ρ = 1) 52.05* 81.75* 28.56* 64.30* - - - - - -
CVRL(SimSiam-based) 52.81* 82.15* 29.22* 64.38* - - - - - -
PredNextSimCLR 59.47 85.28 31.58 66.19 61.06 87.21 36.80 68.37 53.61 78.59
PredNextMoCo 54.98 82.87 29.60 64.31 51.60 79.65 25.69 51.37 46.51 73.64
PredNextBY OL 58.58 83.82 31.57 64.51 62.01 88.26 37.25 69.28 54.37 79.61
PredNextBarlowTwins 59.76 84.85 31.18 66.01 62.75 88.66 37.65 69.35 54.68 79.85
PredNextSimSiam 54.93 82.77 30.00 64.37 50.65 79.01 25.03 51.04 46.31 73.68
PredNextSimSiam

(ImageNet)
72.24 91.81 41.50 75.42 71.66 92.07 38.63 74.25 - -

the feature extraction backbone across all experimental conditions. For UCF101 and HMDB51, we
crop video frames at 128 × 128 resolution, sampling 16 frames with a stride of 2. MiniKinetics
processing utilizes 112 × 112 resolution with 8 frames with a stride of 8. During evaluation, we
perform inference on 3 uniformly sampled clips per test video. Optimizer hyper-parameters remain
consistent with baseline model configurations. More experimental parameters details are included in
the appendix. While optical flow typically enhances performance in video understanding tasks(Han
et al., 2020b; Carreira & Zisserman, 2017), we exclude this modality as our investigation primar-
ily focuses on temporal feature consistency in SNNs under unsupervised learning paradigms. We
reserve multimodal integration for subsequent research endeavors.

3.2 RESULTS OF UNSUPERVISED REPRESENTATION EVALUATION

We first evaluated the performance of various self-supervised learning methods in baseline spiking
neural network implementations, then incorporating PredNext as an auxiliary module to quantify
performance enhancements. Following the experimental protocol established in (Han et al., 2019),
we utilized UCF101 and MiniKinetics as pre-training datasets and report performance after fine-
tuning on different target datasets.

Table 3 presents performance across pretraining and fine-tuning configurations. Even basic SNN
self-supervised methods achieve substantial results on action recognition tasks. PredNext consis-
tently yields significant improvements across all methods, demonstrating its effectiveness in en-
hancing temporal representation learning. Notably, PredNext achieves performance comparable to
ImageNet-pretrained supervised weights through unsupervised training solely on UCF101. More-
over, models trained on larger pretraining datasets consistently show superior performance, confirm-
ing that SNNs, like ANNs, benefit significantly from data scale (without MoCo, SimSiam). Interest-
ingly, even trained with same datasets, unsupervised models outperformed those trained with super-
vision (SimSiam on UCF101), highlighting the research significance of video unsupervised learning
in providing stronger generalization. Furthermore, larger datasets provide more effective parameter
initialization—models initialized with ImageNet weights and pre-trained solely on UCF101 achieve
performance (SimSiam(ImageNet) on UCF101) comparable to supervised learning on MiniKinetics.

We observe that SimSiam and MoCo exhibit relatively lower performance compared to the other
three methods. We attribute this to the following reasons: SimSiam lacks negative samples com-
pared to other approaches, leading to relatively unstable training, whereas BYOL enhances stability
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Figure 4: Analysis of temporal feature visualization. Top row: evolution of temporal consistency
error during training across methods. Middle and bottom rows: UMAP visualizations of video
features from baseline self-supervised methods and their PredNext-enhanced variants, respectively.

through a momentum encoder. On the other hand, MoCo requires maintaining a memory bank as
a negative sample repository, which proves challenging for datasets like UCF101 to sustain a large
and consistent bank for effective training.

3.3 CONSISTENCY CURVES AND MANIFOLD

To examine PredNext’s influence on SNN temporal feature representations, we analyzed feature
consistency across methods. Figure 4 illustrates the evolution of feature consistency during training.
We define feature consistency error as the average cosine distance between representations from
different time steps of the same video:

Econsistency =
1

N

1

T (T − 1)

N∑
i=1

T∑
t=1

T∑
s=1,s̸=t

(
1− cos(f t

i , f
s
i )
)

(8)

where f t
i represents video i’s feature at time t, N denotes the sample count, and T in-

dicates time steps per video. Lower values indicate lower temporal feature consistency.

Table 4: Comparative results of forced consistency constraint ex-
periments. β denotes constraint intensity; error represents temporal
feature consistency deviation.

UCF101 SimSiam
(ImageNet)

SimSiam
PredNext

(ImageNet)
Forced Consistency

β - - 0.1 0.5 0.8

top-1 70.32 72.24+1.92 70.45+0.13 65.69−4.63 60.35−9.97

consistency 0.773 0.819+0.046 0.803+0.03 0.852+0.08 0.884+0.11

Consistency Visualization
As Figure 4(top row) demon-
strates, consistency errors
decrease during training
across all methods, indi-
cating progressive learning
of stable temporal features
before eventual saturation
or deterioration. Methods
incorporating PredNext
maintain comparable early-
stage convergence rates to
baselines but avoid the post-saturation decline, ultimately achieving significantly lower consistency
errors. This confirms our hypothesis that explicit temporal prediction modeling guides networks
toward semantically richer, temporally consistent representations.

To further visualize learned representations, we applied UMAP (McInnes et al., 2018) for dimen-
sionality reduction on test set samples, as shown in Figure 4 (middle and bottom rows). Original
self-supervised methods generate temporally dispersed features, with representations from different
time steps often widely separated. In contrast, PredNext-enhanced methods significantly improve
feature clustering, with same-video feature points exhibiting substantially tighter grouping.
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Table 5: Video retrieval performance comparison. R@1, 5, 10, 20 denote recall rates at corre-
sponding rank thresholds. Evaluations performed on UCF101 and HMDB51 datasets. All models
pretrained on UCF101 split 1.

UCF101 pretrain UCF101 HMDB51
methods R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20
SimCLR 34.58 55.72 65.50 74.70 12.22 34.71 49.67 64.71

SimCLRPredNext 37.09 56.01 66.38 75.20 13.60 35.36 50.32 66.86
SimSiam 27.84 48.53 59.79 71.56 11.70 32.68 45.95 60.98

SimSiamPredNext 36.27 55.70 65.13 74.15 13.20 35.16 47.32 64.05
SimSiamPredNext

(ImageNet) 53.19 69.39 76.53 83.11 15.95 40.46 53.53 68.43

Forced Consistency Constraints Furthermore, we conducted a control experiment with forced con-
sistency constraints by directly adding an explicit constraint to the loss function, compelling feature
similarity across different time steps of the same video:

Lforced = Lssl + β · Ei,t,s[1− cos(f t
i , f

s
i )] (9)

This approach diverges from PreNext by eliminating prediction heads and prediction processing.
As shown in Table 4, this direct constraint indeed rapidly reduces consistency errors, even faster
than PredNext. However, analysis of the relationship between feature consistency and downstream
task performance reveals that despite generating more consistent features, forced constraints yield
inferior fine-tuning performance compared to PredNext’s representations.

Therefore, these findings demonstrate that superior feature extraction capability corresponds with
higher temporal feature consistency and stability. However, simply enforcing consistency through
constraints does not necessarily lead to better feature extraction capabilities. High-quality features
capture semantic information in videos (such as action types, object categories), which should natu-
rally remain relatively stable over time periods. Forced consistency constraints potentially suppress
critical temporal dynamics, yielding oversimplified representations with low discriminative capacity.

3.4 VIDEO RETRIEVAL

Bowling Bowling

BreastStroke BreastStroke

JavelinThrow JavelinThrow

Query Nearest Clips

Figure 5: Visualization of retrieval results. Query videos (in red frame) with corresponding Top-3
retrieval results. Results for three query samples shown, with one sample per row.

Retrieval Results To further evaluate the semantic representation capabilities, we conducted video
retrieval evaluations following (Han et al., 2019). Using UCF101’s split 1 validation set as queries
and the corresponding training split as retrieval candidates, we uniformly sampled 10 frames per
video and extracted temporally aggregated features from pretrained models. The retrieval process
employed a Nearest Neighbor(NN) search. we identified the K closest videos to each query and cal-
culated category matching performance (Recall@K). Table 5 presents video retrieval performance
across self-supervised methods using Recall@1,5,10,20 metrics. Results demonstrate that PredNext
integration yields significant improvements across all retrieval benchmarks, confirming its capacity
to facilitate more precise semantic representations.

NN Visualization Figure 5 provides visualization examples retrieval from PredNext’s features.
Query (Figure 5 (left)) videos with their corresponding Top-3 retrieval results (Figure 5 (right))
illustrate that PredNext can retrieve semantically consistent videos despite significant visual varia-
tions in varied camera angles, player appearances, and visual contexts.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

SimSiam
p=1 p=2 p=3 p=5

48

50

52

54

56

Pe
rf

or
m

an
ce

64 128 256 512 1024
50

52

54

56

Pe
rf

or
m

an
ce

1 2 4
48

50

52

54

56

Pe
rf

or
m

an
ce

frames=16
frames=10

Figure 6: (a) Impact of prediction step length on model performance. (b) Influence of prediction
head hidden layer dimensionality on model efficacy. (c) Effects of temporal length and sampling
rate on performance metrics.

Table 6: Ablation studies. Performance comparison following removal of step prediction and clip
prediction components. Experiments conducted on SimSiam and SimCLR. All models pretrained
on UCF101 split1.

SimSiam SimCLR
ucf101 hmdb51 ucf101 hmdb51step

prediction
clip

prediction top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
× × 50.81 81.07 28.10 63.46 57.04 83.82 30.59 64.97
✓ × 51.33 81.26 28.76 63.73 57.86 84.14 30.65 65.03
× ✓ 54.40 82.37 29.54 64.12 59.21 84.96 31.18 66.01
✓ ✓ 54.93 82.77 30.00 64.37 59.48 85.28 31.57 66.34

4 ABLATION STUDIES

Impact of Prediction Head PT , PC Table 6 illustrates the impact of Prediction Heads PT and PC

on model performance. Both prediction components independently enhance performance, while
their combination in PredNext yields further improvements. Clip prediction demonstrates more
substantial effects than step prediction, which we attribute to its coverage of temporal information
across a longer time range, facilitating acquisition of richer temporal representations.

Impact of Prediction Step Length Prediction step length determines the temporal distance for
feature prediction. Figure 6(a) illustrates performance across varying step lengths. Optimal perfor-
mance typically occurs at step length 1, with declining performance at longer intervals. We analyze
that when m > 1, adjacent timesteps lose the ability to interact for prediction, as larger m val-
ues cause the model to skip nearby temporal moments, resulting in significantly sparser predictive
interactions compared to m = 1 and consequently leading to performance degradation.

Impact of Cross-view Prediction Table 7 compares four prediction strategies: cross-view predic-
tion, same-view prediction, and their standalone implementations without original self-supervised
objectives. Cross-view prediction consistently outperforms alternatives across all methods. By pre-
dicting features across different augmentations, models must isolate semantically meaningful fea-
tures, while same-view-only prediction leads to representation collapse.

Table 7: Comparative results between same-view and cross-
view prediction. ”only” indicates training without original
self-supervised objectives.

dataset cross-view same-view
cross-view

only
same-view

only
UCF101 54.93 53.66−1.27 52.37−2.56 5.03−49.90

HMDB51 30.00 29.67−0.33 29.41−0.59 3.07−26.93

Impact of Prediction Head Size
Figure 6 (b) illustrates how prediction
head PT , PC hidden dimensionality
affects model performance. Testing
dimensions from 64 to 1024 reveals
that performance improves with in-
creasing dimensionality but stabilizes
beyond 256 dimensions. This in-
dicates that the prediction head re-
quires sufficient representational capacity for effective temporal modeling but becomes parameter-
inefficient beyond certain thresholds. We selected 512 dimensions as the optimal configuration,
balancing performance with computational efficiency. Notably, the prediction head introduces min-
imal additional parameters compared to the feature extraction backbone and is utilized exclusively
during training, introducing no computational overhead during inference.

Impact of Time Lengths and Sampling Stride Figure 6 (c) illustrates how clip length and sam-
pling stride influence model performance. Evaluating combinations of sequence lengths (10, 16
frames) and sampling intervals (1, 2, 4) reveals consistent performance improvements with both
increased sequence length and wider sampling intervals. This pattern suggests that sequences span-
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Table 9: Comparison with other SNN/ANN methods on UCF101. * denotes stronger data aug-
mentation. pretrain indicates whether ImageNet pretraining is used. Due to varying model capac-
ities, the effectiveness of ImageNet pretrained weights differs. ANN indicates ANN-based models.
† indicates results reported by unofficial split and size.

method Un-/Sup model pretrain pretrain Acc
in ImageNet Top1 Top5

vanilla supervised ResNet 18(ANN) ✗ - 40.7 63.8
vanilla supervised* ResNet 18(ANN) ✗ - 53.2 78.3
vanilla supervised* ResNet 34(ANN) ✗ - 54.2 77.4
vanilla supervised* ResNet 50(ANN) ✗ - 54.3 77.5

ReSpike (Xiao et al. (2025)) supervised ResNet 18(ANN)
+MS-ResNet18 ✓ 73.2 77.5 93.9

SVFormer-st (Yu et al. (2024)) supervised* SVFormer-st ✓ 82.9 80.2 -
LSM+STDP
(Panda & Srinivasa (2018))

hand-crafted
+supervised LSM-16.2M - - 70.2† -

STS ResNet
(Samadzadeh et al. (2023)) supervised STS ResNet ✗ - 42.1 -

SimSiam unsupervised ResNet 18(ANN) ✗ - 49.3 78.6
SimSiamPredNext unsupervised SEW ResNet18 ✗ - 54.9 82.8
SimCLRPredNext unsupervised SEW ResNet18 ✗ - 59.5 85.3
SimSiamPredNext unsupervised SEW ResNet18 ✓ 63.2 72.2 91.8
SimSiamPredNext unsupervised SEW ResNet34 ✓ 67.0 74.1 93.1
SimSiamPredNext unsupervised SEW ResNet50 ✓ 67.8 74.2 93.1

ning broader temporal ranges provide richer contextual information, enabling more comprehensive
semantic understanding of actions.

Table 8: Comparative results between different weight coefficient
α, where α = 0 corresponds to the original SSL method and α = 1
equals the cross-view only setting.

methods dataset 0 0.2 0.4 0.5 0.6 0.8 1.0
SimSiamPredNext UCF101 50.8 52.4 53.4 54.9 53.8 52.2 52.4
SimCLRPredNext UCF101 57.0 57.4 57.9 59.5 58.6 55.5 52.4
SimSiamPredNext HMDB51 28.1 28.3 28.9 30.0 29.4 29.5 29.4

Impact of weighting coef-
ficient α Since our method
jointly optimizes the original
self-supervised loss and pre-
diction loss, we investigate
the impact of varying weight-
ing coefficients α. Table 8
presents the performance of
PredNext on UCF101 and HMDB51 under different α values. Results shows increasing the predic-
tion loss weight(α = 0.5) yields significant performance improvements, excessively high prediction
weights(α = 0.8), result in performance degradation, ultimately converging to the cross-view only
setting at α = 1. Complete reliance on the prediction task may overlook important information
from the original self-supervised task. Given that α = 0.5 consistently exhibits superior perfor-
mance across all experiments, we adopt this value as the default setting throughout our study.

Comparison with other SNN/ANN methods We compare PredNext with other SNN/ANN meth-
ods reporting results on UCF101. Table 9 presents the performance of different methods. We ob-
serve that model performance correlates significantly with pretrained weight effectiveness. Without
ImageNet pretraining, PredNext even outperforms ANN-based supervised baselines (we find that
weak augmentation causes ANN collapse on UCF101, thus we employ stronger augmentation than
reported basic setting). With ImageNet pretraining, PredNext performs lower compared to meth-
ods with larger parameters and ANN supervision, which we contribute to SNN pretrained weights
achieving lower performance (63.2% vs. 73.2%). Meanwhile, PredNext performance scales with
model size, improving from SEW-ResNet18 to ResNet34. However, on SEW-ResNet50, marginal
pretrained weight quality differences prevent further leveraging parameter scale advantages. No-
tably, PredNext without pretraining surpasses self-supervised ANN methods with identical architec-
ture (ResNet-18), demonstrating significant advantages in advancing SNN self-supervised learning
performance.

5 CONCLUSION

We present PredNext, an algorithm enhancing unsupervised spiking neural networks through future
feature prediction that strengthens temporal consistency. Experimental evidence demonstrates that
PredNext delivers significant performance improvements over unsupervised SNN methods while
substantially enhancing temporal coherence in network representations.
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ensure that other researchers can reproduce our results. We have also submitted our code in the
supplementary materials to guarantee reproducibility. We plan to publicly release our code and
pretrained models to facilitate further research and applications within the community.

REFERENCES

Unaiza Ahsan, Rishi Madhok, and Irfan Essa. Video jigsaw: Unsupervised learning of spatiotem-
poral context for video action recognition. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 179–189. IEEE, 2019.

Yeganeh Bahariasl and Saeed Reza Kheradpisheh. Self-supervised contrastive learning in spiking
neural networks. In 2024 13th Iranian/3rd International Machine Vision and Image Processing
Conference (MVIP), pp. 1–5. IEEE, 2024.

Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

Yoshua Bengio, Aaron C Courville, and Pascal Vincent. Unsupervised feature learning and deep
learning: A review and new perspectives. CoRR, abs/1206.5538, 1(2665):2012, 2012.

Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neurons: depen-
dence on spike timing, synaptic strength, and postsynaptic cell type. Journal of neuroscience, 18
(24):10464–10472, 1998.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PmLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

Jinwoo Choi, Chen Gao, Joseph CE Messou, and Jia-Bin Huang. Why can’t i dance in the mall?
learning to mitigate scene bias in action recognition. Advances in Neural Information Processing
Systems, 32, 2019.

Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.

Yiting Dong, Dongcheng Zhao, Yang Li, and Yi Zeng. An unsupervised stdp-based spiking neural
network inspired by biologically plausible learning rules and connections. Neural Networks, 165:
799–808, 2023.

Yiting Dong, Dongcheng Zhao, and Yi Zeng. Temporal knowledge sharing enable spiking neural
network learning from past and future. IEEE Transactions on Artificial Intelligence, 5(7):3524–
3534, 2024.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021b.

Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross Girshick, and Kaiming He. A large-scale
study on unsupervised spatiotemporal representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 3299–3309, 2021.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
The” something something” video database for learning and evaluating visual common sense. In
Proceedings of the IEEE international conference on computer vision, pp. 5842–5850, 2017.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A LLM USAGE

In this paper, we restricted the use of LLMs solely for language refinement, without employing these
models for paper composition , experimental design, or conceptual development. All core scientific
contributions were independently developed by the authors without LLM assistance.

B RELATED WORK

B.1 SPIKING NEURAL NETWORKS

Spiking neural networks (SNNs) are novel neural network models that simulate information process-
ing mechanisms in biological neural systems. Unlike traditional artificial neural networks (ANNs),
SNNs transmit and process information through discrete spike signals, offering higher biological
interpretability and temporal processing capabilities (Maass, 1997; Gerstner & Kistler, 2002; Roy
et al., 2019). In recent years, with advances in hardware technology and algorithmic innovations,
SNNs have made progress in image recognition, speech processing, and robotic control (Tavanaei
et al., 2019; Wu et al., 2018). However, due to their discontinuous nature, SNNs face challenges
in training and optimization, particularly evident in complex tasks such as video understanding.
Especially in video understanding tasks, SNNs must process substantial temporal information and
complex spatial structures, placing higher demands on their temporal feature learning capabilities
(Dong et al., 2024; Fang et al., 2021b). Consequently, enhancing SNN performance in video under-
standing has emerged as a significant research focus.

B.2 VIDEO UNSUPERVISED LEARNING

Video unsupervised learning aims to learn meaningful temporal and spatial feature representations
from unlabeled video data. In recent years, contrastive learning-based methods have achieved sig-
nificant progress in video unsupervised learning (Han et al., 2019; Ahsan et al., 2019; Feichtenhofer
et al., 2021). These approaches optimize models through contrastive loss functions using constructed
positive and negative sample pairs, enabling capture of temporal dynamics and spatial structural in-
formation in videos. DPC (Han et al., 2019) iteratively predicts future features by inputting each
timestep’s features into an external temporal processing module. VideoJigsaw (Ahsan et al., 2019)
learns temporal information through video block reorganization. CoCLR (Han et al., 2020b) learns
video representations by aligning optical flow with video content. Lorre et al. (Lorre et al., 2020)
employ CPC-like methods that predict future features. The ρ series models Feichtenhofer et al.
(2021) introduce contrastive methods to the video domain with temporal correlation components.
VideoMoCo (Pan et al., 2021) learns through adversarial samples using the MoCo method. Addi-
tionally, generative models have been widely applied in video unsupervised learning, learning latent
video representations by reconstructing video frames or generating future frames (Wei et al., 2022;
Wang et al., 2022). However, most existing video unsupervised learning methods are designed pri-
marily for ANNs, leaving the effective application of these methods to SNNs an urgent problem
requiring resolution.

B.3 UNSUPERVISED LEARNING IN SNNS

Research on unsupervised learning in spiking neural networks (SNNs) has been relatively limited,
though it has begun attracting attention in recent years (Diehl & Cook, 2015; Dong et al., 2023;
Ma et al., 2025). Existing work primarily focuses on implementing unsupervised learning in SNNs
through plasticity rules and local learning algorithms (Diehl & Cook, 2015; Dong et al., 2023; Oror-
bia, 2024; Saunders et al., 2019). For instance, Spike-Timing-Dependent Plasticity (STDP), a learn-
ing rule based on biological neuronal plasticity, has been widely applied in unsupervised learning
with SNNs (Bi & Poo, 1998). Additionally, some studies have attempted to apply unsupervised
learning methods such as contrastive learning to SNNs (Ma et al., 2025; Bahariasl & Kheradpisheh,
2024), or adapt deep methods originally developed for ANNs (Li et al., 2023). Other approaches
focus on relationships between events and images (Hagenaars et al., 2021). However, existing re-
search primarily concentrates on shallow networks without a systematic benchmark methodology,
while focusing on image data rather than addressing temporal video data processing.
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C MORE RETRIEVAL VISUALIZATION RESULTS

We provide additional video retrieval visualization examples here. As observed, PredNext success-
fully retrieves semantically consistent videos even when significant variations exist in camera angles,
athlete appearances, and visual environments. Even in instances of retrieval errors, the retrieved re-
sults typically maintain some semantic relevance to the query video.

CleanAndJerk JumpRope

BaseballPitch BaseballPitch

CleanAndJerk CleanAndJerk

MoppingFloor MoppingFloor

SkyDiving Skiing

Diving Diving

PlayingDaf Drumming

Nunchucks JugglingBalls

Kayaking Kayaking

Diving Diving

Bowling Bowling

BlowDryHair BlowDryHair

Figure 7: Visualization of more retrieval results. Query videos with corresponding Top-3 retrieval
results. Results for three query samples shown, with one sample per row.
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D KNN TRAINING CURVE

To demonstrate the pretraining process, we evaluated the feature representation capability of our
models during pretraining using KNN classifiers, which can assess features without downstream
task fine-tuning. We conducted evaluations on UCF101 split1. Figure 8 shows the top1/5 accuracy
curves of KNN classifiers throughout the pretraining process. As observed, PredNext significantly
enhances the model’s feature representation capabilities.
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Figure 8: Visualization of KNN training Curve, showing Top1 (top) and Top5 (bottom) accuracy
curves, respectively.

E COMPUTATIONAL ANALYSIS

We provide device resource comparison of PredNext on SimSiam and SimCLR base methods in Ta-
ble 10. PredNext introduces only marginal increases in training time, GPU memory usage, Memory,
GPU Memory and FLOPs. This demonstrates that PredNext maintains low computational overhead
while improving performance, making it suitable for large-scale training in practical applications.

Table 10: Computational Analysis of PredNext on SimSiam and SimCLR base methods. T denotes
the total number of input frames.

SimSiam
SimSiam
PredNext

SimCLR
SimCLR
PredNext

GPU devices 4 4 4 4
Training Time 1.39min/epoch 1.43min/epoch 1.20min/epoch 1.36min/epoch
GPU Memory 12.2G×4 12.4G×4 12.1G×4 12.4G×4
Memory Peak 40GB 43GB 37GB 47GB
FLOPs 1.188G×T 1.193G×T 1.188G×T 1.193G×T
Data Workers 16 16 16 16
Throughput 114.3frames/s 111.1frames/s 132.5frames/s 116.9frames/s
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F DISSCUSSION ON TEMPORAL DYNAMICS IN SNNS

The temporal dynamics in spiking neurons are crucial for the entire network. However, we ar-
gue that solely relying on neuronal dynamics to implicitly learn temporal characteristics does not
fully exploit the potential of spiking neurons. On one hand, SNN architectures typically borrow
from ANN image recognition network designs, which makes networks more prone to spatial bias.
Similar observations have been made in ANN-based video models(Goyal et al., 2017; Choi et al.,
2019). On the other hand, SNNs lack the progressive temporal aggregation mechanisms present
in ANN 3D(Carreira & Zisserman, 2017) convolutional networks, preventing temporal dimensions
from undergoing gradual downsampling through pooling layers or larger-stride convolutions as spa-
tial dimensions do, thereby limiting sufficient temporal information extraction. Therefore, we aim
to explicitly enhance temporal consistency through architectural design, thereby alleviating the net-
work’s spatial bias while improving temporal aggregation capability to more fully leverage the tem-
poral processing capacity of spiking neurons.

G THEORETICAL ANALYSIS

In the original method, computation focuses on modeling relationships between sample instances.
In this work, we further attend to computational interactions between frames and clips, which are
unique characteristics of temporal data.

Video data contains two types of information:

(i) semantic content S, such as action categories and object identities, which remains relatively
stable over time;

(ii) low-level noise N , such as illumination variations and camera shake, whose temporal correlation
decays rapidly.

These two information types exhibit fundamentally different temporal correlation characteris-
tics(Taylor et al., 2010; Goyal et al., 2017): semantic content demonstrates long-range correlation
ρS(m) ≈ e−ϵSm, while noise exhibits exponential decay ρN (m) ≈ e−λN ·mWiskott & Sejnowski
(2002), where ϵS ≪ λN . This implies that a ”sport action” persists across multiple frames, whereas
”instantaneous glare at a particular moment” quickly disappears.

PredNext’s temporal prediction objective Lpred is equivalent to maximizing mutual information
I(zt; zt+m) or I(z; z∗) . z∗ denotes the temporally aggregated representation of next clip. As-
suming semantic and noise statistics are approximately independent. This assumption is generally
reasonable for video data, as short-term noise and long-term semantics occupy separated signal fre-
quency spectra(Ruderman & Bialek, 1993): Z = ρS(m)+ ρS(m). For prediction step m, the noise
mutual information I(nt;nt+m) ∝ e−2λNm approaches zero, while the semantic mutual informa-
tion I(st; st+m) remains substantial. Consequently, the optimization process naturally prioritizes
encoding predictable semantic content while filtering unpredictable noise. Predictability serves as
an implicit regularizer that filters out unpredictable noise. This also explains why enforced consis-
tency proves detrimental: the forced constraint Lforced = Ei,t,s[1 − cos(f t

i , f
s
i )] indiscriminately

suppresses all temporal variations.
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H SETTING DETAILS

We provide detailed experimental specifications to facilitate the reproduction of our work.

H.1 EXPERIMENTAL DETAILS

For all experiments, we employed SEW ResNet18 as the feature extraction backbone network and
implemented models using the PyTorch framework. Synchronized batch normalization layers were
utilized across all experiments due to multi-GPU training. Automatic mixed precision (AMP) train-
ing was employed across all experiments to enhance training efficiency.

Pre-training We used the AdamW optimizer with an initial learning rate of 0.002 and weight de-
cay of 1e-6, applying cosine annealing learning rate scheduling. For UCF101, we conducted 200
epochs of training with a 20-epoch warmup process; for MiniKinetics, 120 epochs with a 12-epoch
warmup. Training utilized mini-batches of size 128. Data augmentation included random cropping
(scale: (0.2, 0.766), ratio: (0.75, 1.3333)), horizontal flipping( p: 0.5 ), color jittering( brightness:
0.6, contrast: 0.6, saturation: 0.6, hue: 0.1), and random gray( p: 0.2). For UCF101, videos were
cropped to 128×128 resolution with 16 frames randomly sampled at a stride of 2; for MiniKinetics,
videos were cropped to 112× 112 resolution with 8 frames randomly sampled at a stride of 8.

Fine-tuning We employed the AdamW optimizer with an initial learning rate of 0.0003 without
weight decay, applying cosine annealing scheduling. For UCF101 and HMDB51, videos were
cropped to 128 × 128 resolution with 16 frames randomly sampled at stride 2; for MiniKinetics,
videos were cropped to 112 × 112 resolution with 8 frames randomly sampled at stride 8. Train-
ing used mini-batches of size 128 for 100 epochs on UCF101 and HMDB51, and 50 epochs on
MiniKinetics. Evaluation uniformly sampled 3 clips per sample.

H.2 MODEL DETAILS

For SimCLR, projection layer output dimension was 256 with temperature coefficient 0.5. For
MoCo, projection layer output dimension was 256, momentum coefficient 0.99, queue size 4096,
and temperature parameter 0.5. For BYOL, projection/prediction layer output dimension was 2048,
with prediction layer hidden dimension 512 and momentum coefficient 0.99. For BarlowTwins,
projection layer output dimension was 1024. For SimSiam, projection/prediction layer output di-
mension was 2048, with prediction layer hidden dimension 512. PredNext’s prediction heads PT

and PC both used hidden layer dimension 512, with output dimensions matching the projection layer
output dimensions of their respective base self-supervised methods.
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