

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PREDNEXT: EXPLICIT CROSS-VIEW TEMPORAL PREDICTION FOR UNSUPERVISED LEARNING IN SPIKING NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs), with their temporal processing capabilities and biologically plausible dynamics, offer a natural platform for unsupervised representation learning. However, current unsupervised SNNs predominantly employ shallow architectures or localized plasticity rules, limiting their ability to model long-range temporal dependencies and maintain temporal feature consistency. This results in semantically unstable representations, thereby impeding the development of deep unsupervised SNNs for large-scale temporal video data. We propose PredNext, which explicitly models temporal relationships through cross-view future Step Prediction and Clip Prediction. This plug-and-play module seamlessly integrates with diverse self-supervised objectives. We firstly establish standard benchmarks for SNN self-supervised learning on UCF101, HMDB51, and MiniKinetics, which are substantially larger than conventional DVS datasets. PredNext delivers significant performance improvements across different tasks and self-supervised methods. PredNext achieves performance comparable to ImageNet-pretrained supervised weights through unsupervised training solely on UCF101. Additional experiments demonstrate that PredNext, distinct from forced consistency constraints, substantially improves temporal feature consistency while enhancing network generalization capabilities. This work provides a effective foundation for unsupervised deep SNNs on large-scale temporal video data.

1 INTRODUCTION

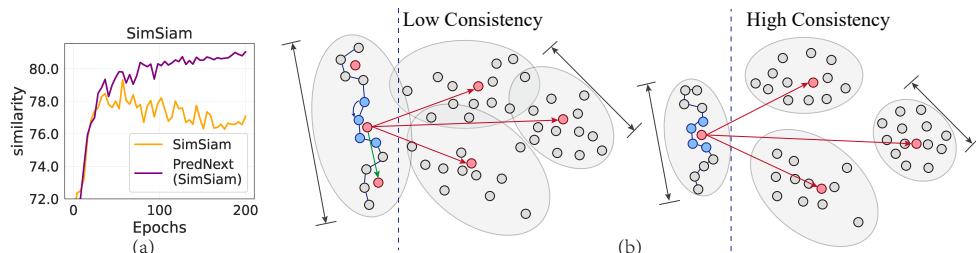


Figure 1: **Analysis of temporal consistency.** (a) Evolution of inter-frame feature similarity during SNN training. (b) Distribution of video features in high-dimensional space, demonstrating more concentrated clustering for high-consistency temporal representations. Blue points represent features from different timesteps of the same video, while red points indicate cluster centers in nearby feature space locations. Green and red arrows denote intra-video feature attraction across frames and inter-video feature repulsion respectively

Unsupervised learning has garnered significant attention in artificial intelligence for its capacity to extract meaningful representations from unlabeled data (Barlow, 1989; Bengio et al., 2012; Liu et al., 2021), substantially reducing dependence on extensive manual annotation. By revealing inherent structures and patterns in unlabeled data, this approach more accurately reflects natural human learning processes (Hinton & Sejnowski, 1999; Chen et al., 2020; He et al., 2020). Spiking neural networks (SNNs), with their characteristics of simulating brain functioning principles (Maass, 1997;

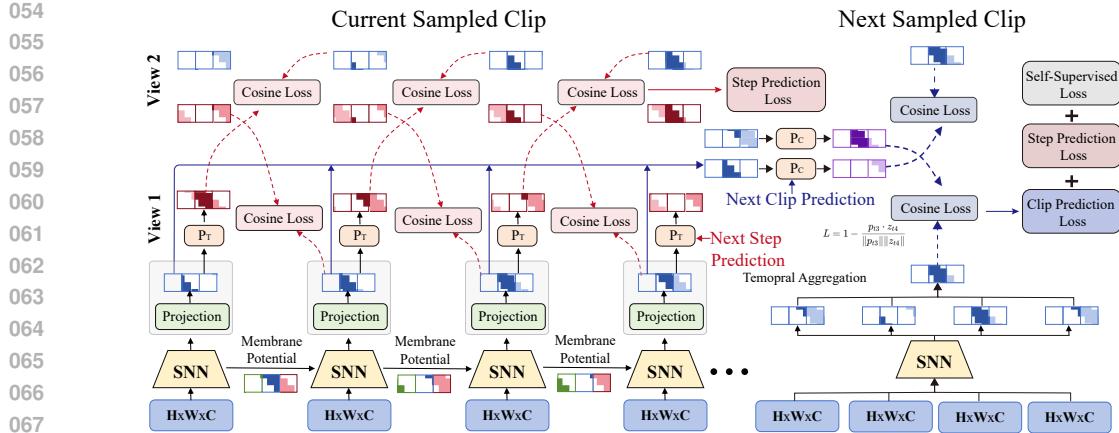


Figure 2: **PredNext algorithmic framework.** PredNext incorporates **Step Prediction** and **Clip Prediction** components for predicting features at the next step and in subsequent sampled clips from the same video, respectively. As an auxiliary module, PredNext can be seamlessly integrated into existing self-supervised learning methods. **Red arrows** indicate the Step Prediction pathway, while **Blue arrows** denote the Clip Prediction pathway.

Diehl & Cook, 2015; Wu et al., 2018), constitute an ideal framework for unsupervised learning research (Gerstner & Kistler, 2002; Tavanaei et al., 2019). Nevertheless, current research on unsupervised learning in SNNs has primarily concentrated on shallow architectures or synaptic plasticity-based methods (Diehl & Cook, 2015; Kheradpisheh et al., 2018; Dong et al., 2023). The challenges in extending these approaches to deep architectures, particularly when processing complex temporal data, predominantly arise from the limited capacity of current deep SNN models to effectively capture and leverage long-term temporal dependencies (Wu et al., 2018; Fang et al., 2021b). Efficient processing of large-scale, temporally rich data, especially video, is essential for developing robust unsupervised learning systems capable of generating richer, more semantically meaningful feature representations for downstream applications.

The temporal processing capability of spiking neural networks stems from the intrinsic dynamics of spiking neurons, which serve as information carriers across timesteps. (Zenke & Vogels, 2021; Neftci et al., 2019). Standard LIF neurons accumulate membrane potential to retain temporal information and emit discrete spikes when the potential exceeds a threshold. However, this elementary integrate-and-fire mechanism proves inadequate for processing large-scale video data with complex temporal dependencies. Additionally, Unlike ANNs employing temporal downsampling (Tran et al., 2015; Carreira & Zisserman, 2017), SNNs typically preserve original temporal resolution, potentially resulting in feature instability without appropriate temporal aggregation. Consequently, we suggest that intrinsic neuronal dynamics alone are insufficient for complex temporal information processing, necessitating the integration of explicit temporal modeling mechanisms to enhance the temporal processing capabilities of SNNs.

Furthermore, we argue that effective temporal modeling should enhance consistency among features extracted across different timesteps. To illustrate this point, Figure 1(a) illustrates the evolution of feature consistency on UCF101 (Soomro et al., 2012) as training progresses. The results demonstrate that as models converge, semantic extraction capability improves significantly while feature distributions across timesteps become increasingly consistent. Ideally, as shown in Figure 1(b), high-consistency SNNs should extract stable high-level semantic features (action types, object categories) that remain invariant to temporal fluctuations (Pan et al., 2021; Han et al., 2020b). While directly constraining temporal consistency might seem intuitive, however, our experiments reveal that such enforced consistency constraints actually impair performance.

Based on the preceding analysis, we propose **PredNext**, that explicitly models temporal relationships and enhances feature consistency in unsupervised spiking neural networks by predicting future fea-

Table 1: **Summary of commonly used DVS and video datasets.**

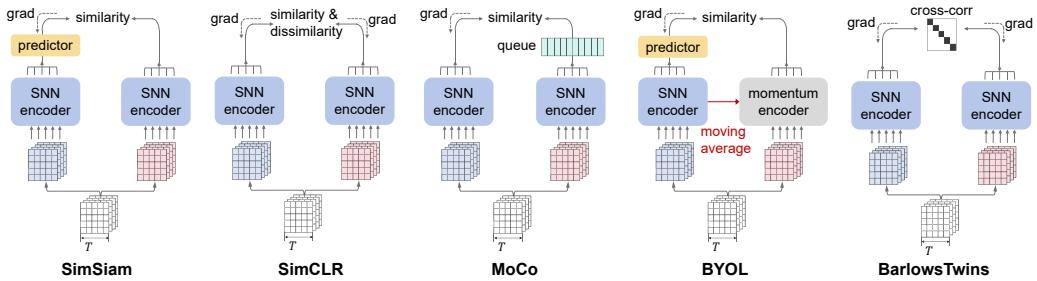
#dataset	#classes	#object	#temporal	#scale
DVS-Gesture	$1.3K \times 10s$	action	Real Scene	Small
CIFAR10-DVS	$10K \times 1.2s$	images	Camera Shift	Small
N-Caltech101	$9K \times 0.3s$	images	Camera Shift	Small
UCF101	$13K \times 4s$	action	Real Scene	Medium
HMDB51	$6.7K \times 7s$	action	Real Scene	Medium
miniKinetics	$80K \times 10s$	action	Real Scene	Large

108 tures across contrastive views. As illustrated in Figure 2, PredNext operates as a plug-and-play
 109 module that seamlessly integrates with existing self-supervised learning algorithms. The framework
 110 comprises two complementary mechanisms: Step Prediction, which predicts representations at sub-
 111 sequent timesteps, and Clip Prediction, which predicts features from future temporal clips, while
 112 cross-view prediction enhances feature discrimination. PredNext is based on the hypothesis that
 113 by explicitly modeling temporal relationships both within and between clips, features with higher
 114 semantic density should better predict future representations while excluding low-level dynamic
 115 information, thus naturally improving cross-temporal feature consistency.

116 Due to the scarcity of unsupervised methods for SNNs, we adapted established self-supervised ap-
 117 proaches to SNN architectures as benchmarks and reproduced some video unsupervised learning
 118 methods. We conducted experiments using UCF101(Soomro et al., 2012) and MiniKinetics(Carreira
 119 & Zisserman, 2017) for pre-training, which offer greater scale and richer temporal dependencies
 120 than conventional DVS datasets(Li et al., 2017; Orchard et al., 2015)(as shown in Table 1). Re-
 121 sults demonstrate that PredNext yields significant performance gains across self-supervised methods
 122 while substantially enhancing temporal consistency of extracted features. Our empirical study con-
 123 firms that superior feature extraction capability corresponds to higher temporal feature consistency,
 124 while forcibly imposing consistency constraints degrades performance. Furthermore, experiments
 125 show that SNNs, like ANNs, benefit from larger-scale datasets in video processing tasks.

2 METHODS

2.1 SELF-SUPERVISED LEARNING IN SNNs



141 Figure 3: Implementation for self-supervised learning in SNNs, encompassing SimCLR, MoCo,
 142 SimSiam, BYOL, BarlowTwins. Temporal features are aggregated following SNN encoder.
 143

144 Given the absence of systematic investigations into self-supervised learning for deep spiking neu-
 145 ral networks, we first adapted prevailing self-supervised methods to SNN architectures to establish
 146 comparative baselines for our proposed PredNext approach. As depicted in Figure 3, we imple-
 147 mented SNN variants of both contrastive methods (SimCLR(Chen et al., 2020), MoCo(He et al.,
 148 2020), BarlowTwins(Zbontar et al., 2021)) and negative-sample-free approaches (SimSiam(Chen &
 149 He, 2021), BYOL(Grill et al., 2020)).

150 Formally, let $x \in D$ denote a clip of length t sampled from dataset D . **Through data augmen-**
 151 **tation $\tilde{H}(x)$, we obtain two views x_i^t and x_j^t .** These views, processed through feature extractors
 152 and MLP projection heads, yield representations z_i^t and z_j^t . Self-supervised learning aims to mini-
 153 mize distances between representations from different views of the same sample while maxi-
 154 mizing distances between representations from different samples. **For SNNs, we follow convention by com-**
 155 **puting the time-averaged representation $z_i = \sum_{t=1}^T z_i^t / T$ as the final feature.** SimCLR and MoCo
 156 implementations utilize the InfoNCE loss function:

$$L = -\log \frac{\exp(\text{sim}(z_i, z_j) / \tau)}{\sum_{k=1}^N \exp(\text{sim}(z_i, z_k) / \tau)} \quad (1)$$

161 Here, $\text{sim}(\cdot, \cdot)$ denotes cosine similarity, τ represents the temperature parameter, and N is the batch
 size. SimCLR utilizes in-batch samples as negative examples, whereas MoCo maintains a dynamic

162 feature queue for negative samples with a momentum encoder. SimSiam and BYOL employ a
 163 predictor network h that maps representations between views while minimizing their distance:
 164

$$165 \quad L = 1 - \frac{z_j}{\|z_j\|_2} \cdot \frac{h(z_i)}{\|h(z_i)\|_2} \quad (2)$$

167 where, BYOL employs a momentum encoder for target network updates, while SimSiam utilizes
 168 a weight-shared siamese network with stop-gradient operations to prevent collapse. BarlowTwins,
 169 conversely, minimizes feature redundancy using the following loss function:
 170

$$171 \quad L = \sum_i (1 - C_{ii})^2 + \lambda \sum_i \sum_{j \neq i} C_{ij}^2 \quad (3)$$

173 where C denotes the cross-correlation matrix of batch-normalized features, and λ is the hyperpa-
 174 rameter balancing these competing objectives.
 175

176 Our SNN implementation utilizes a SEW ResNet18 architecture (Fang et al., 2021a) for feature
 177 extraction. Across all experiments, we employ the AdamW optimizer (initial learning rate: 2e-3,
 178 weight decay: 1e-4) with cosine annealing scheduling and a batch size of $b = 256$. For UCF101
 179 and HMDB51, we use 128×128 crops with 200 training epochs, with extracted $T = 16$ frames
 180 with a stride of $\tau = 2$; for MiniKinetics, 114×114 crops with 120 epochs. We extract $T = 8$
 181 frames with a stride of $\tau = 8$. Data augmentation follows protocols established in Feichtenhofer
 182 et al. (2021). Validation employs 3 clips per video for inference. Comprehensive architectural and
 183 hyperparameter details are provided in the appendix.

Algorithm 1 PredNext Training Procedure

185 **Require:** Dataset D , data augmentation function H , feature extractor and projection head F , tem-
 186 poral prediction head P_T, P_C , self-supervised loss function L_{ssl} , weight coefficient α

187 **Ensure:** Trained feature extractor F

188 1: **for** each mini-batch **do**
 189 2: // Get features from two augmented views
 190 3: $x_i = H(x), x_j = H(x)$
 191 4: $z_i^t = F(x_i^t), z_j^t = F(x_j^t)$ for $t = 1 \dots T$
 192 5: // Compute original self-supervised loss
 193 6: L_{ssl} = self-supervised loss based on z_i and z_j
 194 7: // Compute PredNext predicted features
 195 8: $p_i^t = P_T(z_i^t), p_j^t = P_T(z_j^t)$ for $t = 1 \dots T - 1$
 196 9: $c_i = P_C(z_i), c_j = P_C(z_j)$
 197 10: // Compute PredNext loss
 198 11: $L_{pred} = 0.25 \cdot (\sum_t (Q(p_i^t, z_j^{t+m}) + Q(p_j^t, z_i^{t+m})) + M(c_i, z_j^*) + M(c_j, z_i^*))$
 199 12: // Compute total loss and update parameters
 200 13: $L = (1 - \alpha) \cdot L_{ssl} + \alpha \cdot L_{pred}$
 201 14: Update parameters of F and P_T, P_C to minimize L
 202 15: **end for**

2.2 PREDNEXT

203 PredNext serves as a plug-and-play auxiliary module seamlessly integrable with diverse self-
 204 supervised learning frameworks. As depicted in Figure 2, it introduces temporal prediction as an
 205 auxiliary objective while preserving the original self-supervised paradigm. Inspired by Predictive
 206 Coding theory (Huang & Rao, 2011; Spratling, 2017), PredNext explicitly models temporal rela-
 207 tionships through future representation prediction. This approach operates on the principle that
 208 semantically rich features should accurately predict their next semantical feature, whereas features
 209 capturing only low-level dynamics cannot generate effective predictions.
 210

211 PredNext comprises three main components: an SNN feature extractor and a nonlinear MLP pro-
 212 jection head (jointly denoted as F), alongside two temporal prediction heads (P_T and P_C) for next-
 213 timestep and next-clip predictions. The Step Predictor P_T establishes mappings between current
 214 and future timestep features, while the Clip Predictor P_C models relationships between current and
 215 future clip representations. Both predictors employ two-layer MLPs with dimensions matching the

projection head output. For augmented clips x_i^t and x_j^t , we obtain representations $z_i^t = F(x_i^t)$ and $z_j^t = F(x_j^t)$ that serve both the original self-supervised objective and generating predictions through $p_i^t = P_T(F(x_i^t))$, $p_j^t = P_T(F(x_j^t))$ and $c_i = P_C(\frac{1}{T} \sum_t F(x_i^t))$, $c_j = P_C(\frac{1}{T} \sum_t F(x_j^t))$. Step Predictor’s loss function minimizes the divergence between current features and cross-view future features:

$$Q(p_i^t, z_j^{t+m}) = - \sum_t \frac{p_i^t}{|p_i^t|} \cdot \frac{z_j^{t+m}}{|z_j^{t+m}|} \quad (4)$$

where m denotes the prediction time step interval. While Clip Predictor’s loss function is defined as:

$$M(c_i, z_j^*) = - \frac{c_i}{|c_i|} \cdot \frac{z_j^*}{|z_j^*|} \quad (5)$$

Where z_i^* and z_j^* denote temporally aggregated features of the subsequently sampled clip. To enhance learning effectiveness, we employ a symmetric design, with the final loss function:

$$L_{pred} = \sum_t \left(\frac{1}{2} Q(p_i^t, z_j^{t+m}) + \frac{1}{2} Q(p_j^t, z_i^{t+m}) \right) + \frac{1}{2} M(c_i, z_j^*) + \frac{1}{2} M(c_j, z_i^*) \quad (6)$$

We employ cross-view prediction where features from one view (p_i^t, c_i) predict future features of another view (z_j^{t+m}, z_j^*). This design enhances feature discrimination by requiring the model to disregard view-specific noise. Our ablation studies comparing same-view prediction (p_i^t predicting z_i^{t+m}) against cross-view prediction demonstrate that the latter yields superior generalization performance. PredNext’s complete training procedure is outlined in Algorithm 1. The final optimization objective combines both learning targets:

$$L = (1 - \alpha) \cdot L_{ssl} + \alpha \cdot L_{pred} \quad (7)$$

Where weight coefficient α balances their relative importance.

Base settings: As PredNext is model-agnostic and functions as a plug-and-play component across methods, we standardized its parameters throughout our experiments. Following SimSiam (Chen & He, 2021), the temporal prediction head P_T and P_C comprises a 2-layer MLP with batch normalization, using a 128-dimensional hidden layer while maintaining output dimensions consistent with $F(x)$ ’s feature representation.

Comparison with Predictive Coding Methods:

Predictive coding approaches have attracted considerable research interest, particularly for temporal data processing. DPC/MemDPC(Han et al., 2019; 2020a) implement dense predictions on video sequences and utilize dedicated temporal aggregator networks to process intermediate temporal variables. Lorre et al.(Lorre et al., 2020) developed a CPC-like approach for future timestep feature prediction. As shown in Table 2, in contrast, PredNext employs cross-view prediction with a more streamlined architecture that eliminates the need for complex auxiliary structures, functioning as a modular component integrable with existing methodologies.

3 EXPERIMENTS

3.1 DATASET AND IMPLEMENTATION

Datasets details In contrast to traditional DVS datasets, unsupervised learning paradigms necessitate large-scale datasets to extract meaningful representations. UCF101(Soomro et al., 2012) and HMDB51(Kuehne et al., 2011) are medium-scale video benchmarks widely adopted in action recognition research. UCF101 encompasses 13,320 video clips across 101 action classes, while HMDB51 contains 6,766 clips with 51 action classes. miniKinetics(Carreira & Zisserman, 2017), an official subset of Kinetics-400, includes 200 categories with about 400 training and 25 validation instances per class, maintaining diversity and complexity while reducing computational requirements.

Implementation details To ensure experimental rigor and comparative validity, we maintain configurations aligned with established baselines. We employ SEW ResNet18(Fang et al., 2021a) as

Table 2: [Summary of commonly used DVS and video datasets](#).

methods	no additional module needed	step pred	clip pred
DPC	✗	✓	✗
memDPC	✗	✓	✗
CPC-like(Lorre’s)	✗	✓	✗
PredNext	✓	✓	✓

Table 3: Comparative results after fine-tuning under different self-supervised methods. *Top-1* and *Top-5* accuracies are reported. Models were trained using various pre-training datasets and evaluated on different fine-tuning datasets. * indicates results reproduced according to our experimental setup.

method	finetune datasets		ucf101		hmdb51		miniKinetics			
	Initial weights		top-1	top-5	top-1	top-5	top-1	top-5		
Supervised	random init		44.07	70.84	18.04	45.69	40.53	68.59		
Supervised	ImageNet init		64.42	87.36	34.31	67.84	50.48	76.53		
Supervised	ImageNet + miniKinetics init		70.02	91.62	44.97	78.37	-	-		
<i>pre-train</i>		ucf101		miniKinetics						
<i>finetune</i>	ucf101	hmdb51		ucf101		hmdb51		miniKinetics		
		top-1	top-5	top-1	top-5	top-1	top-5	top-1	top-5	
SimCLR	57.04	83.82	30.59	64.97	59.03	85.96	35.42	67.97	50.61	77.16
MoCo	49.70	79.70	28.04	62.22	45.63	76.55	20.72	46.86	42.65	70.23
BYOL	56.41	83.18	29.35	64.58	59.27	86.23	36.74	68.24	51.23	77.69
BarlowTwins	56.15	84.25	30.33	64.12	58.04	85.83	36.53	68.17	51.28	77.61
SimSiam	50.81	81.07	28.10	63.46	43.77	74.89	19.08	45.75	41.52	69.75
SimSiam (ImageNet)	70.32	91.56	39.65	74.35	68.70	91.91	36.67	73.53	-	-
ρ SimSiam ($\rho = 1$)	52.05*	81.75*	28.56*	64.30*	-	-	-	-	-	-
CVRL(SimSiam-based)	52.81*	82.15*	29.22*	64.38*	-	-	-	-	-	-
PredNext _{SimCLR}	59.47	85.28	31.58	66.19	61.06	87.21	36.80	68.37	53.61	78.59
PredNext _{MoCo}	54.98	82.87	29.60	64.31	51.60	79.65	25.69	51.37	46.51	73.64
PredNext _{BYOL}	58.58	83.82	31.57	64.51	62.01	88.26	37.25	69.28	54.37	79.61
PredNext _{BarlowTwins}	59.76	84.85	31.18	66.01	62.75	88.66	37.65	69.35	54.68	79.85
PredNext _{SimSiam}	54.93	82.77	30.00	64.37	50.65	79.01	25.03	51.04	46.31	73.68
PredNext _{SimSiam} (ImageNet)	72.24	91.81	41.50	75.42	71.66	92.07	38.63	74.25	-	-

the feature extraction backbone across all experimental conditions. For UCF101 and HMDB51, we crop video frames at 128×128 resolution, sampling 16 frames with a stride of 2. MiniKinetics processing utilizes 112×112 resolution with 8 frames with a stride of 8. During evaluation, we perform inference on 3 uniformly sampled clips per test video. Optimizer hyper-parameters remain consistent with baseline model configurations. More experimental parameters details are included in the appendix. While optical flow typically enhances performance in video understanding tasks(Han et al., 2020b; Carreira & Zisserman, 2017), we exclude this modality as our investigation primarily focuses on temporal feature consistency in SNNs under unsupervised learning paradigms. We reserve multimodal integration for subsequent research endeavors.

3.2 RESULTS OF UNSUPERVISED REPRESENTATION EVALUATION

We first evaluated the performance of various self-supervised learning methods in baseline spiking neural network implementations, then incorporating PredNext as an auxiliary module to quantify performance enhancements. Following the experimental protocol established in (Han et al., 2019), we utilized UCF101 and MiniKinetics as pre-training datasets and report performance after fine-tuning on different target datasets.

Table 3 presents performance across pretraining and fine-tuning configurations. Even basic SNN self-supervised methods achieve substantial results on action recognition tasks. PredNext consistently yields significant improvements across all methods, demonstrating its effectiveness in enhancing temporal representation learning. Notably, PredNext achieves performance comparable to ImageNet-pretrained supervised weights through unsupervised training solely on UCF101. Moreover, models trained on larger pretraining datasets consistently show superior performance, confirming that SNNs, like ANNs, benefit significantly from data scale (without MoCo, SimSiam). Interestingly, even trained with same datasets, unsupervised models outperformed those trained with supervision (SimSiam on UCF101), highlighting the research significance of video unsupervised learning in providing stronger generalization. Furthermore, larger datasets provide more effective parameter initialization—models initialized with ImageNet weights and pre-trained solely on UCF101 achieve performance (SimSiam(ImageNet) on UCF101) comparable to supervised learning on MiniKinetics.

We observe that SimSiam and MoCo exhibit relatively lower performance compared to the other three methods. We attribute this to the following reasons: SimSiam lacks negative samples compared to other approaches, leading to relatively unstable training, whereas BYOL enhances stability

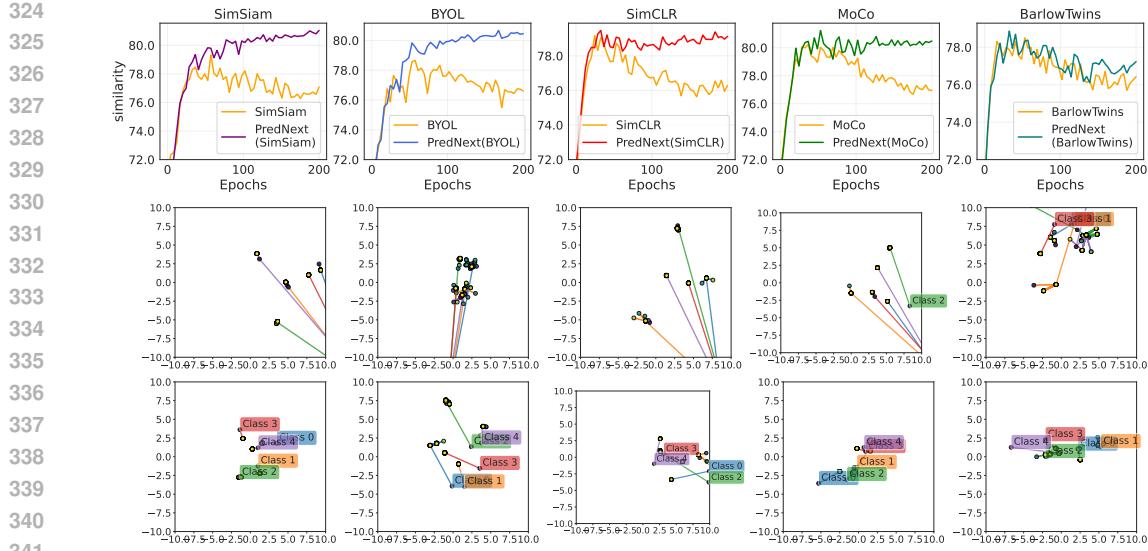


Figure 4: Analysis of temporal feature visualization. **Top row:** evolution of temporal consistency error during training across methods. **Middle and bottom rows:** UMAP visualizations of video features from baseline self-supervised methods and their PredNext-enhanced variants, respectively.

through a momentum encoder. On the other hand, MoCo requires maintaining a memory bank as a negative sample repository, which proves challenging for datasets like UCF101 to sustain a large and consistent bank for effective training.

3.3 CONSISTENCY CURVES AND MANIFOLD

To examine PredNext’s influence on SNN temporal feature representations, we analyzed feature consistency across methods. Figure 4 illustrates the evolution of feature consistency during training. We define feature consistency error as the average cosine distance between representations from different time steps of the same video:

$$E_{consistency} = \frac{1}{N} \frac{1}{T(T-1)} \sum_{i=1}^N \sum_{t=1}^T \sum_{s=1, s \neq t}^T (1 - \cos(f_i^t, f_i^s)) \quad (8)$$

where f_i^t represents video i ’s feature at time t , N denotes the sample count, and T indicates time steps per video. Lower values indicate lower temporal feature consistency.

Consistency Visualization

As Figure 4(top row) demonstrates, consistency errors decrease during training across all methods, indicating progressive learning of stable temporal features before eventual saturation or deterioration. Methods incorporating PredNext maintain comparable early-stage convergence rates to baselines but avoid the post-saturation decline, ultimately achieving significantly lower consistency errors. This confirms our hypothesis that explicit temporal prediction modeling guides networks toward semantically richer, temporally consistent representations.

To further visualize learned representations, we applied UMAP (McInnes et al., 2018) for dimensionality reduction on test set samples, as shown in Figure 4 (middle and bottom rows). Original self-supervised methods generate temporally dispersed features, with representations from different time steps often widely separated. In contrast, PredNext-enhanced methods significantly improve feature clustering, with same-video feature points exhibiting substantially tighter grouping.

Table 4: Comparative results of forced consistency constraint experiments. β denotes constraint intensity; error represents temporal feature consistency deviation.

UCF101	SimSiam (ImageNet)	SimSiam		Forced Consistency		
		PredNext	(ImageNet)	0.1	0.5	0.8
top-1	70.32	72.24 _{+1.92}	70.45 _{+0.13}	65.69 _{-4.63}	60.35 _{-9.97}	
consistency	0.773	0.819 _{+0.046}	0.803 _{+0.03}	0.852 _{+0.08}	0.884 _{+0.11}	

378

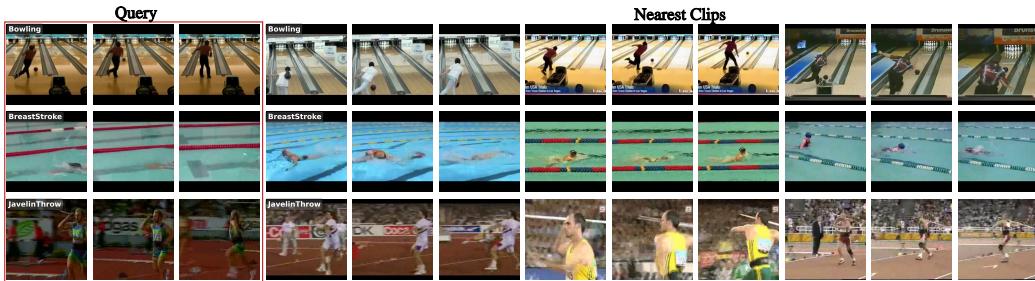
379
380
381
Table 5: Video retrieval performance comparison. R@1, 5, 10, 20 denote recall rates at corre-
sponding rank thresholds. Evaluations performed on UCF101 and HMDB51 datasets. All models
pretrained on UCF101 split 1.

UCF101 pretrain		UCF101				HMDB51			
methods		R@1	R@5	R@10	R@20	R@1	R@5	R@10	R@20
SimCLR		34.58	55.72	65.50	74.70	12.22	34.71	49.67	64.71
SimCLR _{PredNext}		37.09	56.01	66.38	75.20	13.60	35.36	50.32	66.86
SimSiam		27.84	48.53	59.79	71.56	11.70	32.68	45.95	60.98
SimSiam _{PredNext}		36.27	55.70	65.13	74.15	13.20	35.16	47.32	64.05
SimSiam _{PredNext} (ImageNet)		53.19	69.39	76.53	83.11	15.95	40.46	53.53	68.43

390
391
392
Forced Consistency Constraints Furthermore, we conducted a control experiment with forced
393
consistency constraints by directly adding an explicit constraint to the loss function, compelling feature
similarity across different time steps of the same video:

394
$$L_{forced} = L_{ssl} + \beta \cdot \mathbb{E}_{i,t,s} [1 - \cos(f_i^t, f_i^s)] \quad (9)$$

395

396
This approach diverges from PreNext by eliminating prediction heads and prediction processing.
397
As shown in Table 4, this direct constraint indeed rapidly reduces consistency errors, even faster
398
than PredNext. However, analysis of the relationship between feature consistency and downstream
399
task performance reveals that despite generating more consistent features, forced constraints yield
400
inferior fine-tuning performance compared to PredNext’s representations.401
Therefore, these findings demonstrate that superior feature extraction capability corresponds with
402
higher temporal feature consistency and stability. However, simply enforcing consistency through
403
constraints does not necessarily lead to better feature extraction capabilities. High-quality features
404
capture semantic information in videos (such as action types, object categories), which should natu-
405
rally remain relatively stable over time periods. Forced consistency constraints potentially suppress
406
critical temporal dynamics, yielding oversimplified representations with low discriminative capacity.407
3.4 VIDEO RETRIEVAL418
Figure 5: Visualization of retrieval results. Query videos (in red frame) with corresponding Top-3
419
retrieval results. Results for three query samples shown, with one sample per row.420
Retrieval Results To further evaluate the semantic representation capabilities, we conducted video
421
retrieval evaluations following (Han et al., 2019). Using UCF101’s split 1 validation set as queries
422
and the corresponding training split as retrieval candidates, we uniformly sampled 10 frames per
423
video and extracted temporally aggregated features from pretrained models. The retrieval process
424
employed a Nearest Neighbor(NN) search. we identified the K closest videos to each query and cal-
425
culated category matching performance (Recall@K). Table 5 presents video retrieval performance
426
across self-supervised methods using Recall@1,5,10,20 metrics. Results demonstrate that PredNext
427
integration yields significant improvements across all retrieval benchmarks, confirming its capacity
428
to facilitate more precise semantic representations.429
NN Visualization Figure 5 provides visualization examples retrieval from PredNext’s features.
430
Query (Figure 5 (left)) videos with their corresponding Top-3 retrieval results (Figure 5 (right))
431
illustrate that PredNext can retrieve semantically consistent videos despite significant visual varia-
tions in varied camera angles, player appearances, and visual contexts.

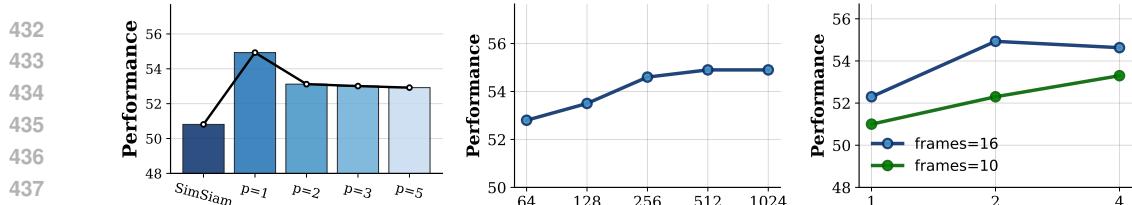


Figure 6: (a) Impact of prediction step length on model performance. (b) Influence of prediction head hidden layer dimensionality on model efficacy. (c) Effects of temporal length and sampling rate on performance metrics.

Table 6: Ablation studies. Performance comparison following removal of step prediction and clip prediction components. Experiments conducted on SimSiam and SimCLR. All models pretrained on UCF101 split1.

		SimSiam				SimCLR			
step	clip	ucf101		hmdb51		ucf101		hmdb51	
prediction	prediction	top-1	top-5	top-1	top-5	top-1	top-5	top-1	top-5
✗	✗	50.81	81.07	28.10	63.46	57.04	83.82	30.59	64.97
✓	✗	51.33	81.26	28.76	63.73	57.86	84.14	30.65	65.03
✗	✓	54.40	82.37	29.54	64.12	59.21	84.96	31.18	66.01
✓	✓	54.93	82.77	30.00	64.37	59.48	85.28	31.57	66.34

4 ABLATION STUDIES

Impact of Prediction Head P_T, P_C Table 6 illustrates the impact of Prediction Heads P_T and P_C on model performance. Both prediction components independently enhance performance, while their combination in PredNext yields further improvements. Clip prediction demonstrates more substantial effects than step prediction, which we attribute to its coverage of temporal information across a longer time range, facilitating acquisition of richer temporal representations.

Impact of Prediction Step Length Prediction step length determines the temporal distance for feature prediction. Figure 6(a) illustrates performance across varying step lengths. Optimal performance typically occurs at step length 1, with declining performance at longer intervals. We analyze that when $m > 1$, adjacent timesteps lose the ability to interact for prediction, as larger m values cause the model to skip nearby temporal moments, resulting in significantly sparser predictive interactions compared to $m = 1$ and consequently leading to performance degradation.

Impact of Cross-view Prediction Table 7 compares four prediction strategies: cross-view prediction, same-view prediction, and their standalone implementations without original self-supervised objectives. Cross-view prediction consistently outperforms alternatives across all methods. By predicting features across different augmentations, models must isolate semantically meaningful features, while same-view-only prediction leads to representation collapse.

Impact of Prediction Head Size Figure 6(b) illustrates how prediction head P_T, P_C hidden dimensionality affects model performance. Testing dimensions from 64 to 1024 reveals that performance improves with increasing dimensionality but stabilizes beyond 256 dimensions. This indicates that the prediction head requires sufficient representational capacity for effective temporal modeling but becomes parameter-inefficient beyond certain thresholds. We selected 512 dimensions as the optimal configuration, balancing performance with computational efficiency. Notably, the prediction head introduces minimal additional parameters compared to the feature extraction backbone and is utilized exclusively during training, introducing no computational overhead during inference.

Table 7: Comparative results between same-view and cross-view prediction. "only" indicates training without original self-supervised objectives.

dataset	cross-view	same-view	cross-view	same-view
	only	only	only	only
UCF101	54.93	53.66 _{-1.27}	52.37 _{-2.56}	5.03 _{-49.90}
HMDB51	30.00	29.67 _{-0.33}	29.41 _{-0.59}	3.07 _{-26.93}

Impact of Time Lengths and Sampling Stride Figure 6 (c) illustrates how clip length and sampling stride influence model performance. Evaluating combinations of sequence lengths (10, 16 frames) and sampling intervals (1, 2, 4) reveals consistent performance improvements with both increased sequence length and wider sampling intervals. This pattern suggests that sequences span-

486
 487
 488
 489
 Table 9: **Comparison with other SNN/ANN methods on UCF101.** * denotes stronger data aug-
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1

540 ETHICS STATEMENT
541542 Our paper does not involve any ethical issues. Our methods and experiments adhere to academic
543 ethical standards without involving any sensitive data or privacy concerns.
544545 REPRODUCIBILITY STATEMENT
546548 We provide detailed experimental settings and hyperparameter configurations in the appendix to
549 ensure that other researchers can reproduce our results. We have also submitted our code in the
550 supplementary materials to guarantee reproducibility. We plan to publicly release our code and
551 pretrained models to facilitate further research and applications within the community.
552553 REFERENCES
554

555 Unaiza Ahsan, Rishi Madhok, and Irfan Essa. Video jigsaw: Unsupervised learning of spatiotem-
556 poral context for video action recognition. In *2019 IEEE Winter Conference on Applications of*
557 *Computer Vision (WACV)*, pp. 179–189. IEEE, 2019.

558 Yeganeh Bahariasl and Saeed Reza Kheradpisheh. Self-supervised contrastive learning in spiking
559 neural networks. In *2024 13th Iranian/3rd International Machine Vision and Image Processing*
560 *Conference (MVIP)*, pp. 1–5. IEEE, 2024.

561 Horace B Barlow. Unsupervised learning. *Neural computation*, 1(3):295–311, 1989.

562

563 Yoshua Bengio, Aaron C Courville, and Pascal Vincent. Unsupervised feature learning and deep
564 learning: A review and new perspectives. *CoRR, abs/1206.5538*, 1(2665):2012, 2012.

565

566 Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neurons: depen-
567 dence on spike timing, synaptic strength, and postsynaptic cell type. *Journal of neuroscience*, 18
568 (24):10464–10472, 1998.

569

570 Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
571 dataset. In *proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
572 6299–6308, 2017.

573

574 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
575 contrastive learning of visual representations. In *International conference on machine learning*,
576 pp. 1597–1607. PMLR, 2020.

577

578 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of*
579 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15750–15758, 2021.

580

581 Jinwoo Choi, Chen Gao, Joseph CE Messou, and Jia-Bin Huang. Why can’t i dance in the mall?
582 learning to mitigate scene bias in action recognition. *Advances in Neural Information Processing*
583 *Systems*, 32, 2019.

584

585 Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
586 dependent plasticity. *Frontiers in computational neuroscience*, 9:99, 2015.

587

588 Yiting Dong, Dongcheng Zhao, Yang Li, and Yi Zeng. An unsupervised stdp-based spiking neural
589 network inspired by biologically plausible learning rules and connections. *Neural Networks*, 165:
590 799–808, 2023.

591

592 Yiting Dong, Dongcheng Zhao, and Yi Zeng. Temporal knowledge sharing enable spiking neural
593 network learning from past and future. *IEEE Transactions on Artificial Intelligence*, 5(7):3524–
594 3534, 2024.

595

596 Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
597 residual learning in spiking neural networks. *Advances in Neural Information Processing Systems*,
598 34:21056–21069, 2021a.

594 Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
 595 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2661–2671,
 596 2021b.

598 Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross Girshick, and Kaiming He. A large-scale
 599 study on unsupervised spatiotemporal representation learning. In *Proceedings of the IEEE/CVF*
 600 *conference on computer vision and pattern recognition*, pp. 3299–3309, 2021.

602 Wulfram Gerstner and Werner M Kistler. *Spiking neuron models: Single neurons, populations,*
 603 *plasticity*. Cambridge university press, 2002.

604

605 Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
 606 phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
 607 The “something something” video database for learning and evaluating visual common sense. In
 608 *Proceedings of the IEEE international conference on computer vision*, pp. 5842–5850, 2017.

609

610 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 611 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 612 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural*
 613 *information processing systems*, 33:21271–21284, 2020.

614

615 Jesse Hagenaars, Federico Paredes-Vallés, and Guido De Croon. Self-supervised learning of event-
 616 based optical flow with spiking neural networks. *Advances in Neural Information Processing*
 617 *Systems*, 34:7167–7179, 2021.

618

619 Tengda Han, Weidi Xie, and Andrew Zisserman. Video representation learning by dense predictive
 620 coding. In *Proceedings of the IEEE/CVF international conference on computer vision workshops*,
 621 pp. 0–0, 2019.

622

623 Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-augmented dense predictive coding for
 624 video representation learning. In *European conference on computer vision*, pp. 312–329. Springer,
 625 2020a.

626

627 Tengda Han, Weidi Xie, and Andrew Zisserman. Self-supervised co-training for video representa-
 628 tion learning. *Advances in neural information processing systems*, 33:5679–5690, 2020b.

629

630 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 631 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 632 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

633

634 Geoffrey Hinton and Terrence J Sejnowski. *Unsupervised learning: foundations of neural compu-*
 635 *tation*. MIT press, 1999.

636

637 Yanping Huang and Rajesh PN Rao. Predictive coding. *Wiley Interdisciplinary Reviews: Cognitive*
 638 *Science*, 2(5):580–593, 2011.

639

640 Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J Thorpe, and Timothée Masquelier.
 641 Stdp-based spiking deep convolutional neural networks for object recognition. *Neural Networks*,
 642 99:56–67, 2018.

643

644 Hildegarde Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a
 645 large video database for human motion recognition. In *2011 International conference on computer*
 646 *vision*, pp. 2556–2563. IEEE, 2011.

647

648 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
 649 dataset for object classification. *Frontiers in neuroscience*, 11:244131, 2017.

650

651 Tianlong Li, Wenhao Liu, Changze Lv, Yufei Gu, Jianhan Xu, Cenyuan Zhang, Muling Wu, Xiao-
 652 qing Zheng, and Xuanjing Huang. Spikeclip: A contrastive language-image pretrained spiking
 653 neural network. *arXiv preprint arXiv:2310.06488*, 2023.

648 Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
 649 supervised learning: Generative or contrastive. *IEEE transactions on knowledge and data engi-*
 650 *neering*, 35(1):857–876, 2021.

651 Guillaume Lorre, Jaonary Rabarisoa, Astrid Orcesi, Samia Ainouz, and Stephane Canu. Temporal
 652 contrastive pretraining for video action recognition. In *Proceedings of the IEEE/CVF winter*
 653 *conference on applications of computer vision*, pp. 662–670, 2020.

654 Yuqi Ma, Huamin Wang, Hangchi Shen, Xuemei Chen, Shukai Duan, and Shiping Wen. Neuro-
 655 moco: a neuromorphic momentum contrast learning method for spiking neural networks. *Applied*
 656 *Intelligence*, 55(2):97, 2025.

657 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 658 *Neural networks*, 10(9):1659–1671, 1997.

659 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 660 projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

661 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
 662 neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
 663 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.

664 Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
 665 datasets to spiking neuromorphic datasets using saccades. *Frontiers in neuroscience*, 9:437, 2015.

666 Alexander G Ororbia. Contrastive signal-dependent plasticity: Self-supervised learning in spiking
 667 neural circuits. *Science Advances*, 10(43):eadn6076, 2024.

668 Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei Liu. Videomoco: Contrastive video
 669 representation learning with temporally adversarial examples. In *Proceedings of the IEEE/CVF*
 670 *conference on computer vision and pattern recognition*, pp. 11205–11214, 2021.

671 Priyadarshini Panda and Narayan Srinivasa. Learning to recognize actions from limited training
 672 examples using a recurrent spiking neural model. *Frontiers in neuroscience*, 12:126, 2018.

673 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
 674 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

675 Daniel Ruderman and William Bialek. Statistics of natural images: Scaling in the woods. *Advances*
 676 *in neural information processing systems*, 6, 1993.

677 Ali Samadzadeh, Fatemeh Sadat Tabatabaei Far, Ali Javadi, Ahmad Nickabadi, and Morteza Haghir
 678 Chehreghani. Convolutional spiking neural networks for spatio-temporal feature extraction. *Neu-*
 679 *ral Processing Letters*, 55(6):6979–6995, 2023.

680 Daniel J Saunders, Devdhar Patel, Hananel Hazan, Hava T Siegelmann, and Robert Kozma. Locally
 681 connected spiking neural networks for unsupervised feature learning. *Neural Networks*, 119:
 682 332–340, 2019.

683 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 684 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

685 Michael W Spratling. A review of predictive coding algorithms. *Brain and cognition*, 112:92–97,
 686 2017.

687 Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and
 688 Anthony Maida. Deep learning in spiking neural networks. *Neural networks*, 111:47–63, 2019.

689 Graham W Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convolutional learning of
 690 spatio-temporal features. In *European conference on computer vision*, pp. 140–153. Springer,
 691 2010.

692 Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
 693 tiotemporal features with 3d convolutional networks. In *Proceedings of the IEEE international*
 694 *conference on computer vision*, pp. 4489–4497, 2015.

702 Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Yu-Gang
703 Jiang, Luowei Zhou, and Lu Yuan. Bevt: Bert pretraining of video transformers. In *Proceedings*
704 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14733–14743, 2022.
705

706 Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichten-
707 hofer. Masked feature prediction for self-supervised visual pre-training. In *Proceedings of the*
708 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 14668–14678, 2022.

709 Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of invari-
710 ances. *Neural computation*, 14(4):715–770, 2002.

711

712 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
713 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

714 Shiting Xiao, Yuhang Li, Youngeun Kim, Donghyun Lee, and Priyadarshini Panda. Respike: resid-
715 ual frames-based hybrid spiking neural networks for efficient action recognition. *Neuromorphic*
716 *Computing and Engineering*, 5(1):014009, 2025.

717

718 Liutao Yu, Liwei Huang, Chenlin Zhou, Han Zhang, Zhengyu Ma, Huihui Zhou, and Yonghong
719 Tian. Svformer: a direct training spiking transformer for efficient video action recognition. In
720 *International Workshop on Human Brain and Artificial Intelligence*, pp. 161–180. Springer, 2024.

721 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
722 learning via redundancy reduction. In *International conference on machine learning*, pp. 12310–
723 12320. PMLR, 2021.

724 Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
725 for instilling complex function in spiking neural networks. *Neural computation*, 33(4):899–925,
726 2021.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

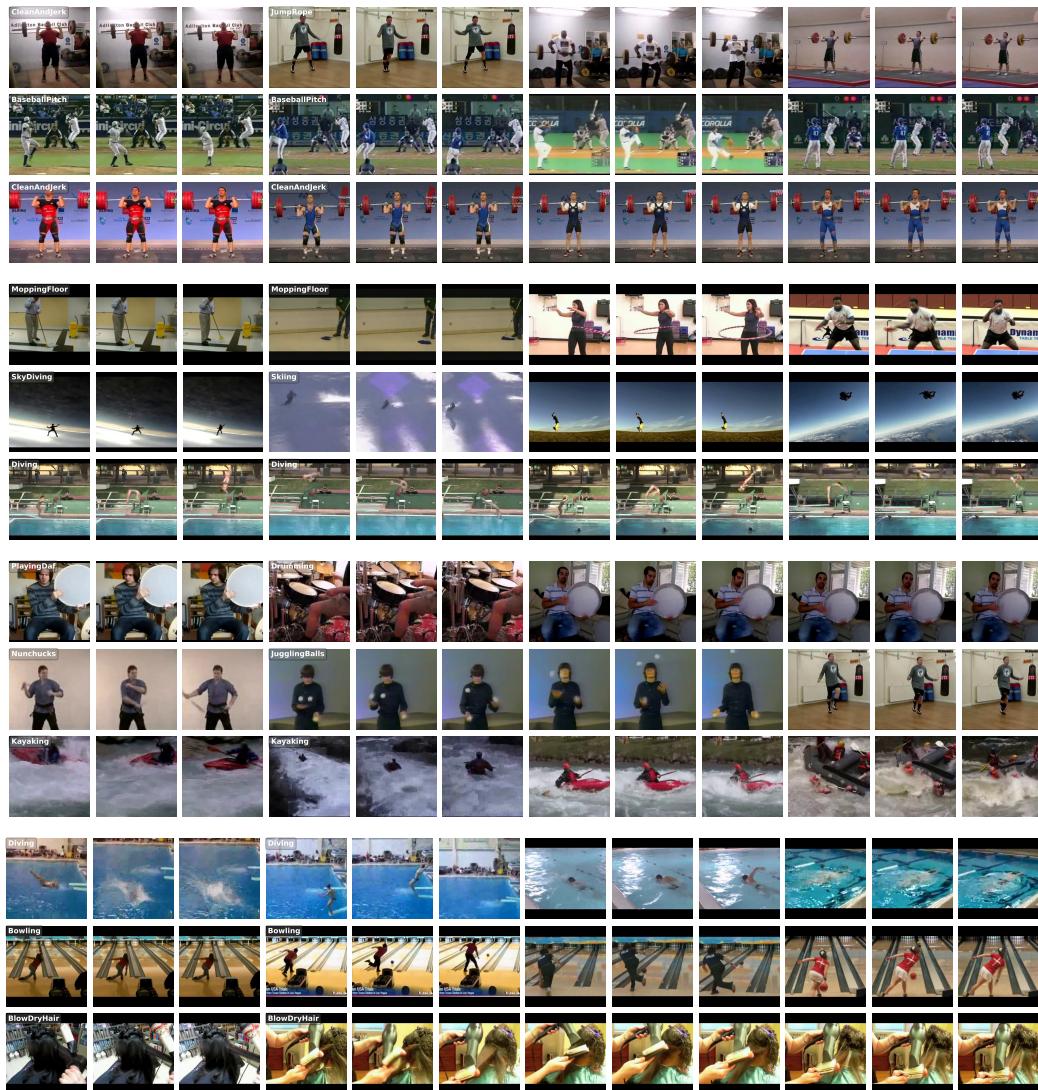
752

753

754

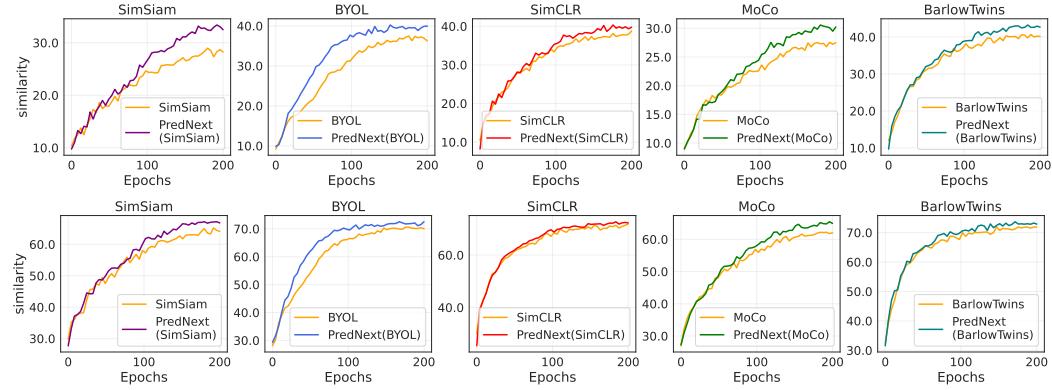
755

756 **A LLM USAGE**
757758 In this paper, we restricted the use of LLMs solely for language refinement, without employing these
759 models for paper composition, experimental design, or conceptual development. All core scientific
760 contributions were independently developed by the authors without LLM assistance.
761762 **B RELATED WORK**
763764 **B.1 SPIKING NEURAL NETWORKS**
765766 Spiking neural networks (SNNs) are novel neural network models that simulate information processing
767 mechanisms in biological neural systems. Unlike traditional artificial neural networks (ANNs),
768 SNNs transmit and process information through discrete spike signals, offering higher biological
769 interpretability and temporal processing capabilities (Maass, 1997; Gerstner & Kistler, 2002; Roy
770 et al., 2019). In recent years, with advances in hardware technology and algorithmic innovations,
771 SNNs have made progress in image recognition, speech processing, and robotic control (Tavanaei
772 et al., 2019; Wu et al., 2018). However, due to their discontinuous nature, SNNs face challenges
773 in training and optimization, particularly evident in complex tasks such as video understanding.
774 Especially in video understanding tasks, SNNs must process substantial temporal information and
775 complex spatial structures, placing higher demands on their temporal feature learning capabilities
776 (Dong et al., 2024; Fang et al., 2021b). Consequently, enhancing SNN performance in video under-
777 standing has emerged as a significant research focus.
778779 **B.2 VIDEO UNSUPERVISED LEARNING**780 Video unsupervised learning aims to learn meaningful temporal and spatial feature representations
781 from unlabeled video data. In recent years, contrastive learning-based methods have achieved sig-
782 nificant progress in video unsupervised learning (Han et al., 2019; Ahsan et al., 2019; Feichtenhofer
783 et al., 2021). These approaches optimize models through contrastive loss functions using constructed
784 positive and negative sample pairs, enabling capture of temporal dynamics and spatial structural in-
785 formation in videos. DPC (Han et al., 2019) iteratively predicts future features by inputting each
786 timestep’s features into an external temporal processing module. VideoJigsaw (Ahsan et al., 2019)
787 learns temporal information through video block reorganization. CoCLR (Han et al., 2020b) learns
788 video representations by aligning optical flow with video content. Lorre et al. (Lorre et al., 2020)
789 employ CPC-like methods that predict future features. The ρ series models Feichtenhofer et al.
790 (2021) introduce contrastive methods to the video domain with temporal correlation components.
791 VideoMoCo (Pan et al., 2021) learns through adversarial samples using the MoCo method. Addi-
792 tionally, generative models have been widely applied in video unsupervised learning, learning latent
793 video representations by reconstructing video frames or generating future frames (Wei et al., 2022;
794 Wang et al., 2022). However, most existing video unsupervised learning methods are designed pri-
795 marily for ANNs, leaving the effective application of these methods to SNNs an urgent problem
796 requiring resolution.
797798 **B.3 UNSUPERVISED LEARNING IN SNNs**799 Research on unsupervised learning in spiking neural networks (SNNs) has been relatively limited,
800 though it has begun attracting attention in recent years (Diehl & Cook, 2015; Dong et al., 2023;
801 Ma et al., 2025). Existing work primarily focuses on implementing unsupervised learning in SNNs
802 through plasticity rules and local learning algorithms (Diehl & Cook, 2015; Dong et al., 2023; Oror-
803 bia, 2024; Saunders et al., 2019). For instance, Spike-Timing-Dependent Plasticity (STDP), a learn-
804 ing rule based on biological neuronal plasticity, has been widely applied in unsupervised learning
805 with SNNs (Bi & Poo, 1998). Additionally, some studies have attempted to apply unsupervised
806 learning methods such as contrastive learning to SNNs (Ma et al., 2025; Bahariasl & Kheradpisheh,
807 2024), or adapt deep methods originally developed for ANNs (Li et al., 2023). Other approaches
808 focus on relationships between events and images (Hagenaars et al., 2021). However, existing re-
809 search primarily concentrates on shallow networks without a systematic benchmark methodology,
while focusing on image data rather than addressing temporal video data processing.

810
811
C MORE RETRIEVAL VISUALIZATION RESULTS812
813
814
815
We provide additional video retrieval visualization examples here. As observed, PredNext successfully retrieves semantically consistent videos even when significant variations exist in camera angles, athlete appearances, and visual environments. Even in instances of retrieval errors, the retrieved results typically maintain some semantic relevance to the query video.851
852
Figure 7: Visualization of more retrieval results. Query videos with corresponding Top-3 retrieval
853
854
855
856
857
858
859
860
861
862
863
results. Results for three query samples shown, with one sample per row.

864 **D KNN TRAINING CURVE**
865

866 To demonstrate the pretraining process, we evaluated the feature representation capability of our
867 models during pretraining using KNN classifiers, which can assess features without downstream
868 task fine-tuning. We conducted evaluations on UCF101 split1. Figure 8 shows the top1/5 accuracy
869 curves of KNN classifiers throughout the pretraining process. As observed, PredNext significantly
870 enhances the model’s feature representation capabilities.



884 Figure 8: Visualization of KNN training Curve, showing Top1 (top) and Top5 (bottom) accuracy
885 curves, respectively.

886 **E COMPUTATIONAL ANALYSIS**
887

888 We provide device resource comparison of PredNext on SimSiam and SimCLR base methods in Ta-
889 ble 10. PredNext introduces only marginal increases in training time, GPU memory usage, Memory,
890 GPU Memory and FLOPs. This demonstrates that PredNext maintains low computational overhead
891 while improving performance, making it suitable for large-scale training in practical applications.

892 Table 10: Computational Analysis of PredNext on SimSiam and SimCLR base methods. T denotes
893 the total number of input frames.

	<i>SimSiam</i>	<i>SimSiam PredNext</i>	<i>SimCLR</i>	<i>SimCLR PredNext</i>
GPU devices	4	4	4	4
Training Time	1.39min/epoch	1.43min/epoch	1.20min/epoch	1.36min/epoch
GPU Memory	12.2G \times 4	12.4G \times 4	12.1G \times 4	12.4G \times 4
Memory Peak	40GB	43GB	37GB	47GB
FLOPs	1.188G \times T	1.193G \times T	1.188G \times T	1.193G \times T
Data Workers	16	16	16	16
Throughput	114.3frames/s	111.1frames/s	132.5frames/s	116.9frames/s

918 F DISSCUSSION ON TEMPORAL DYNAMICS IN SNNs
919

920 The temporal dynamics in spiking neurons are crucial for the entire network. However, we argue
921 that solely relying on neuronal dynamics to implicitly learn temporal characteristics does not
922 fully exploit the potential of spiking neurons. On one hand, SNN architectures typically borrow
923 from ANN image recognition network designs, which makes networks more prone to spatial bias.
924 Similar observations have been made in ANN-based video models(Goyal et al., 2017; Choi et al.,
925 2019). On the other hand, SNNs lack the progressive temporal aggregation mechanisms present
926 in ANN 3D(Carreira & Zisserman, 2017) convolutional networks, preventing temporal dimensions
927 from undergoing gradual downsampling through pooling layers or larger-stride convolutions as
928 spatial dimensions do, thereby limiting sufficient temporal information extraction. Therefore, we aim
929 to explicitly enhance temporal consistency through architectural design, thereby alleviating the net-
930 work’s spatial bias while improving temporal aggregation capability to more fully leverage the tem-
931 poral processing capacity of spiking neurons.

932 G THEORETICAL ANALYSIS
933

934 In the original method, computation focuses on modeling relationships between sample instances.
935 In this work, we further attend to computational interactions between frames and clips, which are
936 unique characteristics of temporal data.

937 Video data contains two types of information:

938 (i) **semantic content** \mathcal{S} , such as action categories and object identities, which remains relatively
939 stable over time;
940
(ii) **low-level noise** \mathcal{N} , such as illumination variations and camera shake, whose temporal correlation
941 decays rapidly.

942 These two information types exhibit fundamentally different temporal correlation characteris-
943 tics(Taylor et al., 2010; Goyal et al., 2017): semantic content demonstrates long-range correlation
944 $\rho_{\mathcal{S}}(m) \approx e^{-\epsilon_{\mathcal{S}} m}$, while noise exhibits exponential decay $\rho_{\mathcal{N}}(m) \approx e^{-\lambda_{\mathcal{N}} \cdot m}$ Wiskott & Sejnowski
945 (2002), where $\epsilon_{\mathcal{S}} \ll \lambda_{\mathcal{N}}$. This implies that a ”sport action” persists across multiple frames, whereas
946 ”instantaneous glare at a particular moment” quickly disappears.

947 PredNext’s temporal prediction objective $\mathcal{L}_{\text{pred}}$ is equivalent to maximizing mutual information
948 $I(z^t; z^{t+m})$ or $I(z; z^*)$. z^* denotes the temporally aggregated representation of next clip. As-
949 suming semantic and noise statistics are approximately independent. This assumption is generally
950 reasonable for video data, as short-term noise and long-term semantics occupy separated signal fre-
951 quency spectra(Ruderman & Bialek, 1993): $\mathcal{Z} = \rho_{\mathcal{S}}(m) + \rho_{\mathcal{N}}(m)$. For prediction step m , the noise
952 mutual information $I(n^t; n^{t+m}) \propto e^{-2\lambda_{\mathcal{N}} m}$ approaches zero, while the semantic mutual informa-
953 tion $I(s^t; s^{t+m})$ remains substantial. Consequently, the optimization process naturally prioritizes
954 encoding predictable semantic content while filtering unpredictable noise. Predictability serves as
955 an implicit regularizer that filters out unpredictable noise. This also explains why enforced consis-
956 tency proves detrimental: the forced constraint $\mathcal{L}_{\text{forced}} = \mathbb{E}_{i,t,s}[1 - \cos(f_i^t, f_i^s)]$ indiscriminately
957 suppresses all temporal variations.

958
959
960
961
962
963
964
965
966
967
968
969
970
971

972

H SETTING DETAILS

973
974 We provide detailed experimental specifications to facilitate the reproduction of our work.
975976

H.1 EXPERIMENTAL DETAILS

977978 For all experiments, we employed SEW ResNet18 as the feature extraction backbone network and
979 implemented models using the PyTorch framework. Synchronized batch normalization layers were
980 utilized across all experiments due to multi-GPU training. Automatic mixed precision (AMP) train-
981 ing was employed across all experiments to enhance training efficiency.982 **Pre-training** We used the AdamW optimizer with an initial learning rate of **0.002** and weight de-
983 cay of **1e-6**, applying **cosine annealing** learning rate scheduling. For UCF101, we conducted **200**
984 epochs of training with a **20-epoch** warmup process; for MiniKinetics, **120** epochs with a **12-epoch**
985 warmup. Training utilized mini-batches of size **128**. Data augmentation included random cropping
986 (scale: **(0.2, 0.766)**, ratio: **(0.75, 1.3333)**), horizontal flipping(**p: 0.5**), color jittering(brightness:
987 **0.6**, contrast: **0.6**, saturation: **0.6**, hue: **0.1**), and random gray(**p: 0.2**). For UCF101, videos were
988 cropped to 128×128 resolution with **16** frames randomly sampled at a stride of **2**; for MiniKinetics,
989 videos were cropped to 112×112 resolution with **8** frames randomly sampled at a stride of **8**.990 **Fine-tuning** We employed the AdamW optimizer with an initial learning rate of **0.0003** without
991 weight decay, applying cosine annealing scheduling. For UCF101 and HMDB51, videos were
992 cropped to 128×128 resolution with **16** frames randomly sampled at stride **2**; for MiniKinetics,
993 videos were cropped to 112×112 resolution with **8** frames randomly sampled at stride **8**. Training
994 used mini-batches of size **128** for **100** epochs on UCF101 and HMDB51, and **50** epochs on
995 MiniKinetics. Evaluation uniformly sampled **3** clips per sample.996

H.2 MODEL DETAILS

997998 For SimCLR, projection layer output dimension was 256 with temperature coefficient 0.5. For
999 MoCo, projection layer output dimension was 256, momentum coefficient 0.99, queue size 4096,
1000 and temperature parameter 0.5. For BYOL, projection/prediction layer output dimension was 2048,
1001 with prediction layer hidden dimension 512 and momentum coefficient 0.99. For BarlowTwins,
1002 projection layer output dimension was 1024. For SimSiam, projection/prediction layer output di-
1003 mension was 2048, with prediction layer hidden dimension 512. PredNext’s prediction heads P_T
1004 and P_C both used hidden layer dimension 512, with output dimensions matching the projection layer
1005 output dimensions of their respective base self-supervised methods.1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025