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ABSTRACT

Vision-and-language navigation (VLN) aims to guide autonomous agents through
real-world environments by integrating visual and linguistic cues. Despite no-
table advancements in ground-level navigation, the exploration of aerial naviga-
tion using these modalities remains limited. This gap primarily arises from a
lack of suitable resources for real-world, city-scale aerial navigation studies. To
remedy this gap, we introduce CityNav, a novel dataset explicitly designed for
language-guided aerial navigation in photorealistic 3D environments of real cities.
CityNav comprises 32k natural language descriptions paired with human demon-
stration trajectories, collected via a newly developed web-based 3D simulator.
Each description identifies a navigation goal, utilizing the names and locations
of landmarks within actual cities. As an initial step toward addressing this chal-
lenge, we provide baseline models of navigation agents that incorporate an internal
2D spatial map representing landmarks referenced in the descriptions. We have
benchmarked the latest aerial navigation methods alongside our proposed base-
line model on the CityNav dataset. The findings are revealing: (i) our aerial agent
model trained on human demonstration trajectories, outperform those trained on
shortest path trajectories by a large margin; (ii) incorporating 2D spatial map in-
formation markedly and robustly enhances navigation performance at a city scale;
(iii) despite the use of map information, our challenging CityNav dataset reveals a
persistent performance gap between our baseline models and human performance.
To foster further research in aerial VLN, we have made the dataset and code avail-
able at https://anonymous.4open.science/w/city-nav-77E3/.

1 INTRODUCTION

In the rapidly evolving field of Vision-and-Language Navigation (VLN) (Anderson et al., 2018b;
Krantz et al., 2020), the integration of linguistic cues with visual data has opened new frontiers in
autonomous navigation systems. Recently, significant progress has been made in the development of
VLN datasets across varied environments from indoor house scenes (Khanna et al., 2024; Ku et al.,
2020; Liu et al., 2021; Qi et al., 2020; Wijmans et al., 2019) to outdoor urban scenes (Chen et al.,
2019; Hermann et al., 2020; Mirowski et al., 2018), including robotics applications (Anderson et al.,
2020; Shah et al., 2023). While existing datasets have been primarily developed for ground-level
navigation applications, such as home-assistance robots and autonomous vehicles, the extension
of VLN to aerial domains has remained relatively unexplored. Aerial navigation presents unique
challenges, including vast 3D spaces and a notable lack of real-world data in existing datasets. This
scarcity has impeded progress in aerial VLN and further advancements in unmanned aerial vehicle
(UAV) applications.

Aerial VLN, which guides UAVs through environments using both visual observations and language
instructions, offers distinct advantages over traditional algorithm-based route planning, especially in
scenarios where the destination is uncertain. For instance, autonomous navigation utilizing simple
language instructions can significantly enhance search and rescue operations for missing persons
or objects in complex terrains, such as mountainous or urban environments (Karaca et al., 2018).
Furthermore, it proves invaluable in monitoring and search activities under adverse conditions, such
as natural disasters or in areas with unreliable Global Navigation Satellite System (GNSS) sig-
nals (Wang et al., 2023; Khan et al., 2021).
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Figure 1: CityNav dataset for language-goal aerial navigation. The aerial agent is randomly
spawned in the city and must find the target object corresponding to a given linguistic description.
The agent’s ground truth trajectory, represented by the green line, was collected via crowd-sourcing
services where participants used both the agent’s first-person view and a 2D map for navigation.
In this case, the participant searched for the target object along the street, guided by geographical
information.

While a few studies have begun to explore aerial navigation, they often rely on less realistic data
sources, which limit their practical application in real-world scenarios. For instance, Fan et al.
(2023) utilized satellite imagery for aerial navigation, which spurred advancements in aerial VLN
agents, yet it overlooked the 3D geometries encountered in actual UAV flights. Similarly, Liu et al.
(2023c) employed data from virtual urban environments created by game engines. This approach
facilitated diverse 3D maneuvers but compromised the complexity and realism found in high-density
point clouds typically scanned in the real world, thus reducing the practical utility of geographic
information. These studies highlight the urgent need for more realistic and comprehensive datasets
that accurately capture the complexities and challenges inherent in aerial VLN.

In this work, we introduce CityNav, a dataset specifically designed for language-guided aerial nav-
igation on a city scale. This dataset is aimed at developing intelligent aerial agents that are capable
of identifying specific geographical objects in real-world cities based on natural language descrip-
tions. It includes descriptions for city-scale point cloud data from SensatUrban (Hu et al., 2022),
along with corresponding trajectories for training aerial agents. To gather a substantial number of
trajectories in photorealistic 3D environments, we developed a novel web-based 3D flight simulator
that is synchronized with world maps and integrated with the Amazon Mechanical Turk (MTurk).

Figure 1 depicts our 3D flight simulator and a collected trajectory as an example. In this simulator,
users control the aerial agent, which possesses six degrees of freedom, through a continuous 3D
state space to reach a destination that corresponds to a language-goal description. Unlike previous
works (Fan et al., 2023; Liu et al., 2023c), we utilized 3D scans of actual cities and their geographic
information to collect human-generated trajectories. These geo-aware trajectories allow the aerial
navigation model to efficiently narrow down the exploration space.

In total, we acquired 32K trajectories corresponding to natural language descriptions approximately
5.8K objects such as buildings and cars. This quantity is about four times greater than that of the
existing aerial VLN dataset (Liu et al., 2023c). Moreover, these instructions are high-level and
lack specific step-by-step guidance, creating a more challenging and realistic setting compared to
existing aerial navigation tasks that feature fine-grained instructions. To the best of our knowledge,
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Table 1: Comparison with existing vision-and-language navigation datasets. Real: whether the
environment is real-world data or not. Ntraj: number of trajectories. Ltraj: total trajectory length.
Instruct.: granularity of instructions (Gu et al., 2022). Geo: availability of geographical data.

Dataset Real Ntraj Ltraj Place Instruct. Environment Geo

G
ro

un
d

REVERIE (2020) ✓ 7,234 72.3K Indoor Coarse Matterport3D (2017) -
R2R (2018b) ✓ 7,189 71.9K Indoor Fine Matterport3D (2017) -
R×R (2020) ✓ 13,992 0.2M Indoor Coarse Matterport3D (2017) -

VLN-CE (2020) ✓ 4,475 49.7K Indoor Coarse Matterport3D (2017) -
TouchDown (2019) ✓ 9,326 2.9M Outdoor Fine Google Street View ✗

A
er

ia
l LANI (2018) ✗ 6,000 0.1M Outdoor Coarse CHALET (2018) ✗

AVDN (2023) ✓ 3,064 0.9M Outdoor Fine xView (2018) ✗
AerialVLN (2023c) ✗ 8,446 5.6M Outdoor Fine Microsoft AirSim (2017) ✗

CityNav (Ours) ✓ 32,637 17.8M Outdoor Coarse SensatUrban (2022) ✓

the CityNav dataset is the first large-scale 3D aerial navigation dataset that utilizes real-world 3D
city data and includes a substantial collection of human-collected geo-aware trajectories paired with
textual descriptions.

Alongside the detailed descriptions and human demonstrations, we provide a map-based baseline
method for city-scale aerial navigation that utilizes a semantic map, which interprets the text and se-
mantic categories of geographic landmarks. In contrast to previous methods, our approach employs
real-world map data to guide the agent toward the target object, augmented by the agent’s observed
images. We benchmarked baseline methods on the CityNav dataset and demonstrated that our map-
based method significantly outperforms the latest aerial VLN approaches (Liu et al., 2023c). The
main contributions can be summarized as follows:

• We developed a novel web-based 3D flight simulator that operates within a browser and integrates
with MTurk to collect large-scale human-generated flight trajectories at city scale.

• We introduce CityNav, a novel aerial navigation dataset featuring 32,637 language-goal descrip-
tions paired with human demonstrations, utilizing 3D scans of real cities and their geographic
information.

• We provide a baseline model for aerial navigation agents that includes an internal 2D spatial map
representing geographical information, tailored to address the extensive search space encountered
over the city.

• We demonstrate that incorporating human-driven strategies and geographical information signifi-
cantly enhances city-scale aerial navigation, both under normal and challenging conditions.

2 RELATED WORK

Vision-and-Language Navigation (VLN) involves guiding an agent to a destination using both lin-
guistic instructions and visual observations. The Embodied AI community has devoted significant
efforts to developing various VLN datasets to benchmark this task. Table 1 presents the representa-
tive VLN datasets, broadly categorized into ground-level and aerial navigation.

Ground-level navigation datasets. Recent advancements in 3D scanning technologies have sig-
nificantly enhanced the ability to create highly accurate and photorealistic datasets of indoor 3D
scenes (Chang et al., 2017; Dai et al., 2017; Ramakrishnan et al., 2021; Savva et al., 2019; Yesh-
wanth et al., 2023). Building on these developments, a wide range of VLN datasets has been pro-
posed, encompassing applications in robotics such as vision-and-language navigation (Anderson
et al., 2018b; Jain et al., 2019; Krantz et al., 2020; Ku et al., 2020; Ramrakhya et al., 2022), embod-
ied referring expressions (Qi et al., 2020; Khanna et al., 2024), embodied question answering (Das
et al., 2018; Wijmans et al., 2019; Yu et al., 2019; Majumdar et al., 2024), vision-and-dialog nav-
igation (Nguyen & Daumé III, 2019; Thomason et al., 2020), and daily-life tasks (Shridhar et al.,
2020; Srivastava et al., 2022). In outdoor environments, images from Google Street View are often
utilized to replace 3D data, capturing a wide variety of roadside views and landscapes from around
the world. For example, the TouchDown (Chen et al., 2019) dataset is designed for studying natural
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language navigation and spatial reasoning in a real-world visual urban environment, consisting of
9,326 examples of instructions paired with human demonstrations to reach a goal within the Google
Street View environment. Additionally, Talk2Nav (Vasudevan et al., 2021) contains verbal navi-
gation instructions for 10,714 trajectories collected in an interactive visual navigation environment
based on Google Street View. In contrast, ground-level navigation in both indoor and outdoor scenes
typically searches a predetermined route, resulting in a narrow search area compared to the aerial
domain.

Aerial navigation datasets. While the majority of Vision-and-Language Navigation (VLN) datasets
primarily focus on ground-level navigation tasks, our work explores the distinct challenges posed
by aerial navigation. This area presents unique challenges, such as indeterminate routes and a vast
3D search space. Initially, aerial navigation relied on GNSS and visual sensors to ensure safe and
efficient flight within expansive aerial spaces (Chambers et al., 2011; Huang et al., 2017; Ross et al.,
2013; Shen et al., 2014). These systems are effective but often struggle in areas where GNSS signals
are unreliable or absent. Progressing from traditional systems, vision-based approaches leverage
machine learning to process visual data, enabling UAVs to swiftly adapt to new weather conditions,
unexpected obstacles, or altered landscapes (Dhiraj et al., 2017; Fraundorfer et al., 2012; Giusti et al.,
2015; Kouris & Bouganis, 2018; Loquercio et al., 2018). The latest advancements integrate natural
language processing with vision, allowing UAVs to understand and execute commands that incorpo-
rate both visual references and linguistic instructions, thus facilitating more complex and interactive
tasks. However, the availability of such datasets in this field remains limited. LANI (Misra et al.,
2018) was the first dataset designed to evaluate UAV operations controlled by linguistic naviga-
tion instructions, consisting of 6,000 trajectories obtained in the virtual environment CHALET (Yan
et al., 2018), which lacks photorealism and offers a relatively small navigation environment. Recent
studies have expanded to outdoor environments, covering broader areas. For instance, the AVDN
dataset (Fan et al., 2023), which includes 3,064 aerial navigation trajectories with human-to-agent
dialogue, utilizes satellite images from the xView dataset (Lam et al., 2018) to depict both urban
and rural scenes. However, these satellite images, not captured by UAVs, lack clarity in geograph-
ical features and fail to simulate realistic environments for aerial navigation. In a more flexible
setting, AerialVLN (Liu et al., 2023c) carries out the aerial VLN task using a 3D simulator of 25
city scenarios, supporting continuous state navigation with 8,446 trajectories collected in virtual
city environments by experienced human UAV pilots. In contrast, our proposed CityNav utilizes 3D
point cloud data from SensatUrban (Hu et al., 2022) as UAV flight environments, representing 3D
scans of real-world urban areas. This study also leverages linguistic annotations and a 3D map with
geographical information from the CityRefer dataset (Miyanishi et al., 2023) as language-goal infor-
mation, and we have collected 32,637 human-generated trajectories, marking a significant increase
over previous aerial VLN datasets.

3 CITYNAV DATASET

Our aerial navigation task is designed to locate target objects based on linguistic descriptions and
the agent’s first-person view images. For this purpose, we utilized the CityRefer dataset (Miyanishi
et al., 2023), filtered to provide textual annotations for geographical objects in urban scenes from
the SensatUrban dataset (Hu et al., 2022). We use two cities: Birmingham, with a total area of
1.30 km2, and Cambridge, with a total area of 3.35 km2. Similar to a prior aerial VLN task (Liu
et al., 2023c), the aerial agent is spawned at a random location within an outdoor environment, either
previously encountered (seen) or new (unseen). The agent’s mission involves continuously exploring
the 3D environment until it successfully locates the target object, whose position is unknown. To
facilitate this, we employed imitation learning to train the navigation policy of the aerial agent. We
developed a web-based 3D flight simulator, integrated with MTurk, to collect a substantial amount
of human demonstrations, as detailed in Section 3.1. Data collection via MTurk and the dataset’s
quality control processes are further outlined in Section 3.2. Finally, we analyze our CityNav dataset
in Section 3.3.

3.1 WEB-BASED 3D FLIGHT SIMULATION

Flight simulator. To facilitate the collection of trajectory data via the web, we developed a web-
based flight simulator that enables users to navigate an aerial agent within 3D environments. This
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Agent

Flight Map

Landmark

3D Map

Agent View 

Figure 2: 3D flight simulator. The user can utilize a flight map displayed in the top-left corner for
efficient navigation, using geographic information from maps as clues.

simulator leverages Potree (Schütz et al., 2016), an open-source WebGL-based point cloud renderer,
to animate large-scale 3D scenes directly in web browsers, as illustrated in Figure 2. Potree is
equipped with a first-person controller, offering intuitive navigation through the 3D space. Users
can control the agent’s movement forward, backward, left, right, up, and down using the keyboard,
while the mouse is used to alter the agent’s direction. Additionally, the simulator integrates a flight
map connected to OpenStreetMap, providing updates on the agent’s real-time location.

Trajectory collection interface. We integrated the flight simulator with an MTurk inter-
face to collect human demonstrations, specifically trajectories for aerial agents. These tra-
jectories consist of a sequence of agent poses represented as [x, y, z, x̂, ŷ, ẑ], where (x, y, z)
denotes the agent’s position and (x̂, ŷ, ẑ) represents a unit vector of the agent’s orientation.
For all episodes, the agents are randomly positioned within a 3D space, specifically on the
XY-axis, and elevated between 100 and 150 meters on the Z-axis to simulate varying flight
heights. Figure 3 illustrates the MTurk interface used to collect trajectories for the aerial VLN
task. Participants were presented with the aerial agent’s first-person view of the environment,

Figure 3: Trajectory collection interface:
Screenshot of the MTurk interface used for
collecting human demonstrations after plac-
ing a marker.

accompanied by a detailed description, such as,
“This is a black car on Chesterton Road on the side
nearest the River Cam. It is near JSG Wine Mer-
chant, has a blue car behind it, and a white car in
front of it.” They were instructed to operate the aerial
agent to search for a specified object (e.g., “car,”
“building,” or “parking lot”) within the 3D scene,
navigate to its location by controlling the agent’s
movements, and place a marker directly above the
target at its center. Navigation was deemed suc-
cessful when the marker was accurately placed near
the destination. Throughout the session, the in-
terface continuously collected data on the agent’s
movements in the background. Upon submission
of their results, participants could view their nav-
igation score (ranging from 0 to 100, with higher
scores indicating better performance) and the dis-
tance to the goal (measured as the distance between
the marker and the target, with shorter distances indi-
cating greater accuracy). This feedback helped par-
ticipants gauge the quality of their navigation.

3.2 DATA COLLECTION

Instruction. We instructed MTurk workers to control the aerial agent with the goal of locating the
target object using the following guidelines:

5
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Split Desc. Scene Easy Medium Hard

Train 22,002 24 - - -
Val Seen 2,498 24 836 807 855
Val Unseen 2,826 4 773 972 1,081
Test Unseen 5,311 6 2,096 1,686 1,529

(a) Dataset split sets
(b) Trajectory length (c) Description length

(d) Distance to goal (e) Episode length. (f) Action histogram

Figure 4: Statistics of the CityNav dataset.

You are the pilot of a flying object. The description of the 3D object will be displayed, and please find
the target object on the 3D map by manipulating the flying object. Once you find the target object, get as
close to the front of the object as you can within your field of vision, and then place a marker.

• Click on the 3D map to enable keyboard control of the flying object.
• Keyboard operation instructions are listed under the CONTROLS section.
• The description of the 3D object is mentioned in the “target object.”
• Your current location is displayed on the 2D map in the top left.
• You can drag, zoom in, and zoom out on the 2D map.
• Place a marker above the center of the target before submitting. Note that you cannot replace the marker.
• The description may contain information about landmarks. Use this in conjunction with the geographic

information on the 2D map to gauge your destination.

In the initial collection round, we gathered trajectories corresponding to each description in the
CityRefer dataset (Miyanishi et al., 2023). This dataset encompasses 35,196 descriptions of 5,866
objects, where each object is annotated with six distinct descriptions across 34 scenes.

Quality control. To ensure the integrity of the aerial navigation data, we implemented a stringent
filtering process and conducted re-collection of trajectories. During the initial data collection phase,
we discontinued assigning tasks to participants who consistently recorded long distances to the goal
or who failed to move their agents from the starting point. As a result, trajectories exceeding a
30 m distance to the goal were excluded, retaining 81.6% of the collected data. We subsequently
re-collected trajectories for the discarded data. However, in this re-collection phase, 39.1% of the
trajectories that still exceeded the 30 m threshold were again removed, ensuring only feasible trajec-
tories were used for evaluation and training of the agent’s navigation policy. Finally, we collected
32,637 pairs of descriptions and trajectories for 5,850 objects via our web-based simulator, repre-
senting 92.8% of the descriptions in the CityRefer dataset. The distribution of target object types
was diverse, comprising 48.3% buildings, 40.7% cars, 7.4% ground, and 3.6% parking lots, each
with varied sizes, shapes, and colors.

Data collection was conducted using MTurk, requiring a total of 711 hours of labor at an estimated
hourly rate of $12.83, resulting in a total expenditure of $9,123. The study involved 171 participants.

3.3 DATASET STATISTICS

Dataset splits. Following previous studies (Fan et al., 2023; Liu et al., 2023c), we divided our
dataset into four distinct sets: ‘Train,’ ‘Validation Seen,’ ‘Validation Unseen,’ and ‘Test Unseen.’
The Validation Seen set shares scenes with the Train set, while the Validation Unseen set comprises
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entirely different scenes. To ensure no overlap in object descriptions, the Validation Seen and Train
sets were carefully curated. Figure 4 (a) presents a summary of the number of scenes and trajectories
within each set. For evaluations, unless specified otherwise, we utilized the Validation Unseen set.

Trajectory and description lengths. Figure 4 (b) illustrates the distributions of the lengths of col-
lected trajectories. Meanwhile, Figure 4 (c) shows the distributions of the lengths of descriptions
corresponding to these trajectories. The figure in the top right corner highlights the frequent words
used in these descriptions, showcasing the wide variety of vocabulary employed in our aerial navi-
gation task.

Difficulty levels. To assess tasks by difficulty level, we further segmented the evaluation data (Val-
idation Unseen, Validation Seen, and Test) into ‘Hard’, ‘Medium’, and ‘Easy’ categories based on
the distance from the start position to the goal. Recognizing that greater distances require more
extensive exploration, we defined task difficulty using distance percentiles derived from the training
set. Specifically, the 33rd percentile for distance was set at 171 meters, and the 66th percentile at 258
meters. Figure 4 (d) depicts the distribution of distances from the starting point to the goal across
the evaluation sets. Accordingly, episodes were classified as ‘Easy’ if the distance was less than 171
meters, ‘Medium’ for distances between 171 and 258 meters, and ‘Hard’ for distances exceeding
258 meters. Additionally, Figure 4 (a) presents the dataset statistics categorized by these difficulty
levels.

Shortest paths and human demonstrations. We developed a set of trajectories based on the short-
est paths to compare them with human demonstrations. These shortest path trajectories are com-
monly employed to train navigation modules in tasks like Object Navigation (Chaplot et al., 2020)
and Embodied Question Answering (Das et al., 2018; Wijmans et al., 2019). To align with the
human demonstrations, we set the initial positions identically and generated the shortest path trajec-
tories as straight lines connecting the initial position to a point directly above the target object (at
the same height as the initial position), and then connecting that point to the target object, resulting
in a total of 32,637 trajectories. Following methodologies similar to those used in AerialVLN (Liu
et al., 2023c), we generated ground-truth actions for a “look-ahead” path, utilizing both the shortest
path and human demonstration trajectories for imitation learning. Figure 4 (e) illustrates the episode
lengths of both the shortest path and human demonstration trajectories. Notably, human demonstra-
tion trajectories of the look-ahead path averaged longer distances than the shortest path trajectories
(508 vs. 290 meters). Additionally, Figure 4 (f) presents action histograms for both the shortest path
and human demonstrations. The histograms highlight that human demonstrations typically involve
more diverse maneuvers, including frequent Turn Left/Right and Move Up commands, reflecting
the more complex and varied nature of these trajectories.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation. We evaluated the navigation performance using four standard metrics commonly em-
ployed in VLN tasks (Anderson et al., 2018b; Liu et al., 2023c; Qi et al., 2020): Navigation Error
(NE), Success Rate (SR), Oracle Success Rate (OSR), and Success weighted by Path Length (SPL).
NE represents the linear distance in meters from the goal to the agent’s stopping point at the end
of an episode. SR reflects the proportion of episodes in which the agent successfully stops within
20 meters of the destination. OSR measures the percentage of episodes where the agent’s trajectory
comes within 20 meters of the target location on the xy-plane at any point during the navigation.
SPL calculates the success metric adjusted by the ratio of the optimal path length to the length of the
path actually taken by the agent, rewarding shorter, more efficient routes (Anderson et al., 2018a).

Aerial agent models. We implemented several navigation models and compared their performance
to our proposed model on the CityNav dataset. Detailed descriptions of the models and their training
methodologies are provided in the Appendix.
- Random serves as a non-learning baseline, wherein a random agent samples actions according to
the action distribution observed in the training split of the human-collected trajectories.
- Sequence-to-Sequence (Seq2Seq) (Anderson et al., 2018b) employs a recurrent policy that predicts
the next action based on the current RGB-D observation and the accompanying descriptions. At
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Table 2: Overall aerial navigation performance. Learning-based models are evaluated with shortest
path (SP) or human demonstrations (HD) trajectories.

Validation Seen Validation Unseen Test Unseen

Method NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
Random 222.3 0.00 1.15 0.00 223.0 0.00 0.90 0.00 208.8 0.00 1.44 0.00
Seq2Seq w/ SP 148.4 4.52 10.61 4.47 201.4 1.04 8.03 1.02 174.5 1.73 8.57 1.69
Seq2Seq w/ HD 257.1 1.81 7.89 1.58 317.4 0.79 8.82 0.61 245.3 1.50 8.34 1.30
CMA w/ SP 151.7 3.74 10.77 3.70 205.2 1.08 7.89 1.06 179.1 1.61 10.07 1.57
CMA w/ HD 240.8 0.95 9.42 0.92 268.8 0.65 7.86 0.63 252.6 0.82 9.70 0.79
MGP w/ SP 75.0 6.53 22.26 6.27 93.4 4.32 15.00 4.24 109.0 4.73 17.47 4.62
MGP w/ HD 59.7 8.69 35.51 8.28 75.1 5.84 22.19 5.56 93.8 6.38 26.04 6.08

Human 9.1 89.31 96.40 60.17 9.4 88.39 95.54 62.66 9.8 87.86 95.29 57.04

each timestep, RGB and depth images are processed using a pre-trained ResNet50 (He et al., 2016),
while the descriptions are encoded via an LSTM. The resulting embeddings are subsequently passed
through a GRU (Cho et al., 2014) followed by a feed-forward layer, which then outputs the action.
- Cross-Modal Attention (CMA) (Liu et al., 2023c) is a latest model in aerial VLN, building upon the
Sequence-to-Sequence model by incorporating cross-modal attention mechanisms into the decision-
making process. This model enhances the integration of RGB, depth, and linguistic description
embeddings by employing scaled dot-product attention (Vaswani et al., 2017) to focus on both de-
scriptive and visual features. Utilizing these attention-enhanced features, CMA accurately predicts
the subsequent action.

Figure 5: Overview of map-based goal predictor

- Map-based Goal Predictor (MGP) is our
proposed baseline model that leverages state-
of-the-art off-the-shelf components for map-
based goal prediction. As depicted in Fig-
ure 5, it dynamically generates navigation maps
at each timestep through a three-step process:
(i) Extraction of names for targets, landmarks,
and surroundings using GPT-3.5 Turbo, (ii)
Object detection and segmentation performed
by GroundingDINO (Liu et al., 2023b) and
Mobile-SAM (Zhang et al., 2023), (iii) Optional coordinate refinement with LLaVA-1.6-34b (Liu
et al., 2023a), which refines the label of the target segment mask created via set-of-mark prompt-
ing (Yang et al., 2023), taking into account the spatial relationships derived from the input image
and description. The model also includes a map encoder, which integrates the landmark map, view
& explore area maps, and target & surroundings maps. This encoder is trained in conjunction with
the RGB and depth encoders from the CMA. Further details are provided in the Appendix.

Impelementation details. The Seq2Seq and CMA models were trained using the Adam opti-
mizer (Kingma & Ba, 2015) over 5 epochs, with a learning rate set at 1.5 × 10−3 and a batch
size of 12. The MGP model employed the AdamW optimizer (Loshchilov & Hutter, 2017) for 10
epochs, utilizing a lower learning rate of 1.0× 10−3 and a smaller batch size of 8.

4.2 EXPERIMENTAL RESULTS

Overall performance. Table 2 presents the comprehensive results for aerial navigation across the
evaluation sets on the CityNav dataset. Notably, our MGP agents, utilizing navigation maps, con-
sistently outperformed other models across all four metrics in each evaluation set. This underscores
the importance of integrating geographical map information to significantly enhance the accuracy
of aerial VLN tasks within real urban datasets characterized by expansive search spaces. However,
it was observed that manual navigation (Human) outperformed all automated agent models, with
MGP agents being approximately ten times less likely to succeed in the task compared to manual
navigation. This disparity highlights that the CityNav task demands more sophisticated planning
and advanced spatial reasoning capabilities, which are currently better executed by humans.
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Table 3: Aerial navigation performance across difficulty levels. Human demos are used for training.

Method
Easy Medium Hard

NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
Random 127.5 0.00 3.60 0.00 212.0 0.00 0.00 0.00 319.8 0.00 0.00 0.00
Seq2Seq 238.8 3.07 14.70 2.64 246.5 0.43 3.87 0.38 253.1 0.48 4.38 0.44
CMA 260.7 0.49 16.69 0.44 241.2 1.10 7.67 1.09 253.8 0.96 1.64 0.95
MGP 98.9 6.15 39.89 5.48 90.9 6.29 21.47 6.21 90.0 6.80 12.10 6.78

Human 9.4 88.45 95.85 55.80 9.8 87.54 95.26 56.54 10.1 87.38 94.57 59.30

Shortest paths vs. human demonstrations. Table 2 reveals that the MGP agent trained on human
demonstration trajectories (MGP w/ HD) outperformed those trained on automatically generated
shortest-path trajectories (MGP w/ SP). This outcome indicates that the navigation maps used within
the MGP significantly enhance the model’s ability to interpret the complex relationship between the
given instructions and the corresponding human demonstrations.

Difficulty by distance to target. Table 3 displays the navigation performance across three diffi-
culty levels in the ‘Test Unseen’ split. Agents that did not utilize maps (Random, Seq2Seq, and
CMA) exhibited lower performance on the Medium and Hard sets as opposed to the Easy set. In
contrast, both our MGP agents and human navigators demonstrated more consistent results across
all difficulty levels, underscoring the critical role that geographic information plays in enhancing the
effectiveness of the aerial VLN task.

Table 4: Performance by train-
ing size (MGP).

Path Size NE ↓ SR ↑ OSR ↑
SP 8k 80.5 4.27 14.56
SP 22k 93.4 4.32 15.00

HD 8k 80.9 4.41 18.69
HD 22k 75.1 5.84 22.19

Effect of the number of human demonstrations. In Table 4,
we examined the impact of varying the training dataset size on
performance. We observed that increasing the number of human
demonstrations consistently enhanced navigation performance.
In contrast, augmenting the number of shortest path trajectories
did not result in a consistent improvement. This outcome under-
scores the value of human demonstrations in refining the effec-
tiveness of aerial VLN tasks, suggesting that further accumulation
of human-generated data could yield substantial advancements.

Table 5: Ablation study.

Method SR ↑
MGP 5.84
w/o landmark map 0.47
w/o view & explored area maps 5.49
w/o target & surroundings maps 5.81

Ablation study. Table 5 presents the success rates of the
MGP model when specific channels in the internal map rep-
resentation were omitted. Notably, the success rate plum-
meted to 0.47% when the landmark map was excluded, con-
firming our hypothesis that integrating named objects from
descriptions into the spatial 2D map is crucial for the task.
Conversely, the target and surroundings maps contributed
minimally to performance enhancement. This minimal impact likely stems from the discrepancy in
camera perspectives between the Grounding-DINO’s training data and the observation images.

Figure 6: Disaster situations.

Challenging conditions. Table 6 presents the perfor-
mance results of our model under two challenging prac-
tical scenarios designed to test its robustness: (1) envi-
ronments with unreliable GNSS signals, and (2) disaster
situations, both of which are key applications for aerial
VLN. In the first scenario, Gaussian noise (±100m) was
introduced to the agent’s pose to simulate GNSS unre-
liability. In the second scenario, the model was tested
in simulated disaster environments, specifically flooding
inundation and earthquake-induced ground cracks, as illustrated in Figure 6. Despite these chal-
lenges, the success rates for our map-based MGP model remained higher than those achieved by
the Seq2Seq and CMA models under normal conditions, as shown in Table 2. This performance
underscores the effectiveness of the MGP in navigating complex and adverse environments. Further
details and comprehensive results are provided in the Appendix.

Qualitative results. Figure 7 showcases successful examples of the proposed aerial navigation
model (MGP) utilizing landmark map information. These examples highlight how geographic data

9
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Table 6: Navigation performance under under challenging conditions (test unseen).

Unreliable GNSS Flood Inundation Ground Fissures

Method NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
MGP w/ SP 135.3 2.10 4.10 1.79 110.9 3.27 11.27 2.71 110.4 3.42 10.22 2.81
MGP w/ HD 93.4 5.42 9.60 4.46 88.6 5.07 12.56 4.34 88.5 5.00 12.58 4.30

White car next to a light blue car in a group of 3 cars 
facing the grass next to the Stevenson Building on 

Hobson Street.

This is a green area, next to this area, the South 
Paddock Green Ground. This field is between The 

Avenue Footpath and The Garret Hostel Lane 
Footpath.

“The grey roof building shaped like a more flat and wider 'n' 
found to the right of the Pound Hill road when viewing it 

vertically. Northampton Street is going across horizontally below. 
There's another two smaller roof buildings below the building.”

White car next to a light blue car in a group of 3 cars 
facing the grass next to the Stevenson Building on 

Hobson Street.

This is a green area, next to this area, the South 
Paddock Green Ground. This field is between The 

Avenue Footpath and The Garret Hostel Lane Footpath.

The grey roof building shaped like a more flat and 
wider 'n' found to the right of the Pound Hill road when 

viewing it vertically. Northampton Street is going 
across horizontally below. There's another two smaller 

roof buildings below the building.

Figure 7: Qualitative examples.

aids in locating target objects effectively. In the leftmost example, the aerial agent, starting from
its spawn on ‘Hobson Street,’ uses the provided description to progress forward. It then identifies
the ‘Stevenson Building’ and locates three cars adjacent to it. The central example illustrates the
agent recognizing ‘The Avenue Footpath’ and ‘The Garret Hostel Lane Footpath,’ enabling it to find
the green field area situated between these streets. The rightmost example demonstrates the agent’s
response to more complex linguistic cues: initially navigating along a street, the agent reaches the
intersection of ‘The Pound Hill Road’ and ‘Northampton Street.’ Although it initially misses the
building described, upon encountering ‘Castle Street,’ the agent corrects its course and successfully
identifies the correct buildings. These scenarios underscore the potential of integrating described
geographic information with actual world maps to significantly enhance navigation efficiency.

5 CONCLUSION

This paper introduces CityNav, a city-scale aerial Vision-and-Language Navigation (VLN) dataset
comprising 32,637 descriptions paired with human-generated trajectories, covering 5,850 geograph-
ical objects across real urban environments. We conducted a comprehensive benchmark of exist-
ing aerial VLN models and our map-based goal prediction model using this dataset. Experimen-
tal results revealed that our proposed model, which integrates 2D spatial map representations with
human-generated geo-aware trajectories, significantly improves navigation performance and main-
tains robustness in challenging conditions. Given these findings, we assert that the CityNav dataset
represents a valuable resource for both benchmarking and developing advanced intelligent aerial
agents.

Limitations and future work. The CityNav dataset currently does not encompass agent-object
interactions or dynamic elements such as moving vehicles and pedestrians in urban simulations,
which limits its realism and applicability to real-world scenarios. In this work, interactions with
stationary objects, particularly tall buildings, were not actively considered due to the nature of the 3D
city scans that we used. The role of distant object visibility, while not explicitly addressed, is another
factor that could influence navigation performance. To enhance realism and navigation accuracy,
future work could focus on integrating physical interactions, real-time data, and considerations for
distant object visibility, expanding its utility and applicability.

Broader impacts. CityNav has the potential to significantly enhance urban surveillance and emer-
gency response tasks by enabling aerial agents to navigate using natural language. However, the
adoption of these technologies also introduces ethical concerns, particularly regarding privacy and
data security. It is crucial to address social acceptance and regulatory challenges, engage with com-
munities to ensure equitable benefits are distributed equitably, and mitigate potential risks to privacy
and safety.
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APPENDIX

This is appendix for the paper: CityNav: Language-Goal Aerial Navigation Dataset with Geo-
graphic Information. We present additional details of the data collection interface, dataset statistics,
models, and experimental results.

A INTERFACE DETAILS

We developed the data collection website using the Amazon Mechanical Turk platform. Figure 8
displays a full screenshot of the web interface, enabling users to operate an aerial agent within 3D
environments.

Figure 8: Trajectory collection interface. Full screenshot of web interface for collecting human
demonstration trajectories for the CityNav dataset.

B DATASET STATISTICS

Altitude. We analyze the collected trajectories in the CityNav dataset. Figure 9 presents the mean
altitude of the agent’s trajectory for human-operated flights, segmented into 20-meter intervals based
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on the distance from the goal. Given that the average 3D altitude is 35.96 meters, the results suggest
that the majority of human-operated agents flew above buildings, gradually decreasing their altitude
as they approached the goal. Figure 10 show the top-down view of the aerial agent at an altitude of
150m. At this altitude, cars are clearly visible. In fact, annotators could navigate to the target with
high accuracy.
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Figure 9: Relationship between distance to goal and mean altitude of aerial agents.

Figure 10: Top-down view of the aerial agent at an altitude of 150m, captured from the web interface.

Navigation strategy. In the aerial VLN task, the exploration space is vast, making it crucial to
narrow down the search area. To address this, our approach mimics the way humans leverage geo-
graphic information (landmarks) to reduce the exploration range. As illustrated in Figure 1, human
demonstrations rely on the landmarks mentioned in the description (e.g., Sidney Street) to navigate
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toward the landmark’s vicinity. Once near the landmark, humans focus their search on the area
around it to find the target object. This human strategy enables efficient navigation by focusing
efforts around landmarks rather than random exploration.

To validate this concept, we analyzed the trajectory data collected in the CityNav dataset, which
includes geographic information. For each trajectory, we extracted the landmark name from the
associated description using an LLM (GPT-3.5) and computed whether the agent passed over the
landmark polygon for both SP and HD trajectories. The results showed that agents passed over
landmarks 36.3% of the time for HD trajectories, compared to 24.6% for SP trajectories. Then, we
also analyzed whether agents passed within a certain radius of the landmark center. We observed
that HD trajectories demonstrated a significantly higher proportion compared to SP, with 35.5% of
HD trajectories passing within 20 meters of a landmark, compared to 24.0% for SP. Similarly, within
40 meters, 62.5% of HD trajectories passed near a landmark, compared to 51.9% for SP.

Additionally, we calculated the number of actions performed within 50m of a landmark polygon,
revealing that HD trajectories averaged 95.4 actions per trajectory compared to 59.8 actions for SP
trajectories. These findings highlight that HD trajectories engage in more focused and thorough
exploration around landmarks, which likely contributes to their superior performance in Table 2.

C AGENT MODEL DETAILS

We provide additional architectural details for aerial agents, including baseline models (Sequence-
to-Sequence and Cross-Modal Attention) and our proposed model (Map-based Goal Predictor). The
first two baseline models do not utilize geographical information, whereas our proposed method
incorporates geographical information for aerial navigation.

C.1 SEQUENCE-TO-SEQUENCE

The Sequence-to-Sequence (Seq2Seq) model (Anderson et al., 2018b) is a recurrent policy that
predicts the next action based on the current RGB-D observation and descriptions. At each time
step t, the RGB image ot

RGB, the depth image ot
depth and the description oinstr = [τ1, . . . , τL]

are encoded into embeddings for RGB, depth, and description. The RGB embedding f tRGB is
derived by extracting the features from the RGB observation using a ResNet50 (He et al., 2016)
pretrained with ImageNet (Deng et al., 2009), then flattening the average-pooled features into a 256-
dimensional vector. Similarly, the depth embedding f tdepth is generated using a ResNet50 trained on
a point-goal navigation task (Wijmans et al., 2020), with features flattened into a 128-dimensional
vector, omitting average pooling operations. The description embedding finstr is produced by feed-
ing the tokenized description into an LSTM, taking the final hidden state with a dimension of 128
from the outputs. These embeddings are then concatenated to form a 512-dimensional input vector[
f tRGB f tdepth finstr

]
to be fed into a GRU along with the previous hidden state ht. Finally, the

output from the GRU is passed through a feed-forward layer, which produces the logits correspond-
ing to the predicted action distribution.

C.2 CROSS-MODAL ATTENTION

The Cross-Modal Attention (CMA) model (Liu et al., 2023c) enhances the Seq2Seq model by in-
tegrating cross-modal attention features into the decision-making process. While the input embed-
dings largely mirror those of the Seq2Seq model, the description embedding diverges by utilizing all
intermediate hidden states [f1instr, . . . , f

L
instr] = BiLSTM([τ1, . . . , τL]) from a bidirectional LSTM.

This model computes attended visual features f̂ tRGB, f̂
t
depth and attended description features f̂instr to

enhance the reasoning of relative spatial references and to focus on relevant parts of the description.

Attended description features are computed as f̂instr = Attn([f1instr, . . . , f
L
instr],h

t
v), where Attn

denotes a scaled dot-product attention (Vaswani et al., 2017). The recurrent representation of visual
observations, ht

v = GRU([f tRGB, f
t
depth,a

t−1],ht−1
v ), is calculated from RGB and depth embed-

dings f tRGB, f
t
depth, along with a 32-dimensional embedding of the previous action at−1.

Attended visual features are obtained by applying scaled dot-product attention between the visual
features and the attended description features, expressed as f̂ tRGB = Attn(f tRGB, f

1
instr), f̂

t
depth =
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Attn(f tdepth, f
1
instr). The attended visual and description features, f̂ tRGB, f̂

t
depth, f̂instr, the action

embedding at−1, and the hidden state from the first GRU ht
v are all concatenated. This combined

input is then fed into a second GRU and a feed-forward layer, ultimately producing the logits for the
predicted action distribution.

C.3 MAP-BASED GOAL PREDICTOR

While the CMA model excels in tasks that require spatial reasoning, it lacks the inherent capability
to recognize named objects, such as “Willmore Road,” which is essential for identifying unnamed
objects like a red car parked on the side of Willmore Road in urban outdoor environments. To
address this limitation, we introduce a sophisticated model known as the map-based goal predictor,
as illustrated in Figure 11.

Figure 11: A detailed layout of the map-based goal predictor.

The model outputs two values: predicted goal coordinates and predicted progress. The predicted
goal coordinates estimate the location of the target object based on prior observations, while the
predicted progress calculates the ratio of the remaining to the total distance from the starting point to
the goal. To approach the predicted coordinates, the agent updates these coordinates based on new
observations and executes up to five actions consecutively at each time step. When the predicted
progress exceeds a set threshold, the agent ceases iterations and proceeds directly to the predicted
goal coordinates

The predicted goal coordinates are derived from a navigation map, updated by the ‘Navigation Map
Generator’ module, depicted on the right side of Figure 11. This map comprises five channels: the
first two channels monitor navigation history, and the remaining three record the locations of entities
relevant to the description. The ‘view area map’ channel, the first, represents the area currently visi-
ble in the RGB and depth images. The second, ‘explored area map,’ aggregates view area maps over
time. The third to fifth channels—‘landmark map’, ‘target map’, and ‘surroundings map’—identify
the entities mentioned in the descriptions. Landmarks, exact locations identifiable via online maps
such as ‘Grand Square’, are extracted using names and contour coordinates from the CityRefer
dataset (Miyanishi et al., 2023). Targets and surroundings, described in the narrative (e.g., ‘a build-
ing with a grey roof’ and ‘a red van with black stripes’), are detected using Grounding DINO (Liu
et al., 2023b), an open-set object detector. The segmentation masks of these entities are refined using
Mobile-SAM (Zhang et al., 2023), with coordinate transformations applied to accurately place the
masks on the map.

If the predicted progress value surpasses a predefined threshold, it indicates that the agent is likely
near the target’s visible location. As the final action, the agent must ascertain the exact location of
the target from the observations and position itself accordingly. MGP utilizes Set-of-Mark prompt-
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ing (Yang et al., 2023) for visual prompting. The RGB image is initially annotated with labels from
the segmentation masks provided by Semantic-SAM (Li et al., 2023). A vision-language model,
LLaVA-1.6-34b (Liu et al., 2023a), is then prompted to select a label. The agent moves to the center
of the bounding box corresponding to the selected label’s segmentation mask. Finally, the agent
descends to a height of 5 meters above ground level at the xy coordinates of its current position.

C.4 OBSERVATION AND ACTION SPACE

The observation space for the Seq2Seq and CMA models comprises an RGB image, a depth image,
and a description string. The RGB and depth images have resolutions of 224× 224 and 256× 256
respectively, with both offering a field of view of 90 degrees. In contrast, while the MGP model
employs RGB and depth images of the same resolutions for the ResNet encoders, it uses a higher-
resolution RGB image of 500× 500 as the input for Grounding DINO and Mobile SAM.

The action space for all models consists of six actions: Stop, Move Forward, Move Up, Move
Down, Turn Left, and Turn Right. The Move Forward action advances the agent by 5
meters in the direction it is facing. The Move Up and Move Down actions adjust the agent’s
altitude by 2 meters, raising or lowering it, respectively. Turn Left and Turn Right cause the
agent to rotate 30 degrees counterclockwise and clockwise, respectively.

Table 7: Hyperparameters for training CMA and Seq2Seq

Hyperparameter Value

Training Epochs 5
Optimizer Adam (Kingma & Ba, 2015)

Learning Rate 1.5e-3
Training Batch Size 12

Table 8: Hyperparameters for training MGP

Hyperparameter Value

Training Epochs 10
Optimizer AdamW (Loshchilov & Hutter, 2017)

Learning Rate 1.0e-3
Training Batch Size 8

Predicted Progress Threshold 0.75
Grounding DINO Bounding Box Threshold 0.15

Grounding DINO Text Threshold 0.25

C.5 TRAINING

The Seq2Seq and CMA models were trained on a single NVIDIA H100 GPU, while the MGP model
was trained on a single GeForce RTX 4090 GPU. The hyperparameters for training these models are
detailed in Tables 7 and 8.

To enhance the efficiency of training and inference, we cached the target and surrounding maps. For
each scene, we extracted a set of phrases describing unnamed entities from the descriptions using
ChatGPT-3.5 Turbo. The scene was divided into a grid, each square measuring 100 m per side,
and a photograph covering an area of 40,000 m2 was captured at each grid vertex. Segmentation
masks corresponding to the phrases for unnamed entities were then extracted and aggregated to
create comprehensive target/surrounding maps for the entire scene. For practical application during
training and inference, only the portions of these maps that correspond to the agent’s view area were
cropped and utilized as the target/surrounding maps.
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Figure 12: Disaster environments.

D ADDITIONAL QUANTITATIVE ANALYSIS

Difficulty by distance to target. Tables 9 and 10 present the navigation performance of the baseline
models and the proposed model for the ‘Validation Seen’ and ‘Validation Unseen’ sets, respectively.
The results mirror the trend observed in the ‘Test Seen’ set, where the random and Seq2Seq agents
demonstrate lower success rates in more challenging episodes, while the MGP agent maintains rel-
atively consistent results across various difficulty levels.

Table 9: Aerial navigation performance across difficulty levels (Val Seen)

Easy Medium Hard

Method NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
Random 130.4 0.00 3.41 0.00 211.7 0.00 0.00 0.00 323.7 0.00 0.00 0.00
Seq2Seq 270.3 2.92 14.01 2.35 265.0 1.15 4.20 1.11 236.6 1.33 5.33 1.26

CMA 253.7 0.73 14.49 0.71 233.2 1.02 10.45 1.00 235.1 1.09 3.39 1.06
MGP 64.7 8.73 49.40 7.96 55.7 9.67 40.15 9.26 58.7 7.72 17.54 7.66

Human 9.3 89.65 96.83 58.34 9.2 88.03 95.03 60.56 8.8 90.31 97.09 65.05

Table 10: Aerial navigation performance across difficulty levels (Val Unseen)

Easy Medium Hard

Method NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
Random 132.1 0.00 3.38 0.00 213.4 0.00 0.00 0.00 324.6 0.00 0.00 0.00
Seq2Seq 356.0 2.08 15.71 1.52 337.9 0.21 5.39 0.16 270.6 0.38 6.93 0.35

CMA 285.1 0.00 17.53 0.00 273.2 0.73 6.33 0.70 252.7 1.04 2.18 1.03
MGP 80.0 5.95 35.96 5.24 73.1 5.14 23.25 4.89 73.3 6.38 11.38 6.38

Human 10.1 86.36 95.71 56.16 9.5 88.38 95.64 64.35 9.0 89.85 95.16 67.42

Shortest paths vs. human demonstrations. To further substantiate our claim that HD significantly
enhances the performance of map-based methods, we conducted additional experiments. For this
purpose, we modified the map-less Seq2Seq method to include navigation maps, thus transforming
it into a map-based method called MapSeq2Seq. The performance of this new method on the ‘Val-
idation Unseen’ set of the CityNav dataset is detailed in Table 11. The results demonstrate that a
map-based method utilizing HD significantly outperforms one using SD, supporting the claim that
human demonstrations are particularly effective in enhancing the efficacy of map-based methods.
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Table 11: Overall aerial navigation performance on map-based Seq2Seq (MapSeq2Seq) trained with
shortest path (SP) and human demonstration (HD) trajectories.

Validation Seen Validation Unseen Test Unseen

Method NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
MapSeq2Seq w/ SP 70.5 5.02 14.10 4.41 95.1 4.23 10.69 3.71 113.9 3.27 11.72 2.82
MapSeq2Seq w/ HD 58.5 8.43 17.31 7.28 78.6 5.13 10.90 4.65 98.9 4.59 13.33 3.96

Table 13: Overall aerial navigation performance under the challenging situations.

Validation Seen Validation Unseen Test Unseen

Method NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑
Unreliable GNSS
MGP w/ SP 122.5 2.34 4.44 2.09 134.2 2.51 4.05 2.17 135.3 2.10 4.10 1.79
MGP w/ HD 65.1 6.04 10.57 4.96 78.5 4.88 7.89 4.10 93.4 5.42 9.60 4.46

Flood Inundation
MGP w/ SP 79.2 4.93 14.51 4.18 103.9 2.87 8.18 2.48 110.9 3.27 11.27 2.71
MGP w/ HD 58.7 7.11 15.95 6.14 75.0 4.91 10.33 4.32 88.6 5.07 12.56 4.34

Ground Fissures
MGP w/ SP 79.1 5.18 13.12 4.42 104.3 2.69 7.86 2.27 110.4 3.42 10.22 2.81
MGP w/ HD 59.7 6.37 15.67 5.44 74.9 5.09 10.8 4.37 88.5 5.0 12.58 4.30

Normal
Seq2Seq w/ SP 148.4 4.52 10.61 4.47 201.4 1.04 8.03 1.02 174.5 1.73 8.57 1.69
Seq2Seq w/ HD 257.1 1.81 7.89 1.58 317.4 0.79 8.82 0.61 245.3 1.50 8.34 1.30
CMA w/ SP 151.7 3.74 10.77 3.70 205.2 1.08 7.89 1.06 179.1 1.61 10.07 1.57
CMA w/ HD 240.8 0.95 9.42 0.92 268.8 0.65 7.86 0.63 252.6 0.82 9.70 0.79
MGP w/ SP 75.0 6.53 22.26 6.27 93.4 4.32 15.00 4.24 109.0 4.73 17.47 4.62
MGP w/ HD 59.7 8.69 35.51 8.28 75.1 5.84 22.19 5.56 93.8 6.38 26.04 6.08

Table 12: Comparison with refined methods.

Method NE↓ SR↑ OSR↑ SPL↑
Seq2Seq w/ Map 78.6 5.13 10.9 4.65

CMA w/ Map 75.9 4.38 9.29 3.90
MGP 75.1 5.84 22.19 5.56

Comparison with map-based methods. We con-
ducted additional experiments incorporating the nav-
igation map into the two baseline models: Seq2Seq
and CMA. Table 12 shows the results on the CityNav
val unseen set. The results confirmed the effective-
ness of our proposed method compared with refined
baselines, all of which utilized the navigation map.

Category-level performance. Based on the results presented in Table 14, it is evident that the
MGP w/ HD method consistently outperformed other methods across all categories in terms of all
evaluation metrics. This also highlights the effectiveness of incorporating navigation maps with hu-
man demonstration trajectories in guiding agents toward their targets. Furthermore, the comparison
with human performance underscores the gap between machine and human navigation capabilities,
with MGP w/ HD approaching human-like performance in some metrics but still leaving room for
improvement

Challenging conditions. We conducted experiments in two practical scenarios to assess the robust-
ness of our models: (1) environments with unreliable GNSS signals and (2) disaster situations. To
simulate the first scenario, we introduced Gaussian noise (±100 m) to the agent’s pose information
during the testing phase. For the disaster scenario, our model was trained using 3D data from nor-
mal environments and subsequently evaluated in disaster environments, which undergo significant
alterations compared to their normal states, thereby testing the model’s navigation-based search ca-
pabilities. Specifically, we investigated two conditions: (i) Flooding Inundation: This condition
involved scenarios where flooding occurred, as shown in Fig.12 (top). (ii) Earthquake-Induced
Ground Cracks: This condition focused on environments with ground cracks resulting from an
earthquake, depicted in Fig.12 (bottom). These conditions were designed to test the model’s adapt-
ability to terrain and landmarks that had been altered by either inundation or seismic activity.

Table 13 reveals that although the navigation performance of the MGP model decreases in challeng-
ing scenarios, it still surpasses that of the Seq2Seq and CMA models under normal conditions. These
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additional experiments underscore the robustness of the map-based MGP method when GNSS (or
GPS) signals are unreliable or in disaster situations. Moreover, we observed that MGP with human
demonstrations (HD) consistently outperforms MGP with shortest paths (SP) and is less affected by
GNSS noise. For instance, in the ‘Test Unseen’ split, the performance of MGP with HD degraded by
15%, whereas MGP with SP experienced a significant 55% reduction in SR. This resilience is likely
due to the greater variety of trajectories present in the human demonstration data, which enables
the model to function more robustly even when noise is introduced during testing. These findings
indicate that human-demonstrated trajectories from the CityNav dataset serve as a valuable training
resource, especially in challenging scenarios.

Category Method NE↓ SR↑ OSR↑ SPL↑

Seq2Seq w/ SP 199.2 1.12 8.08 1.10
Seq2Seq w/ HD 310.0 0.77 10.32 0.61

CMA w/ SP 198.1 1.46 7.74 1.44
Building CMA w/ HD 253.4 0.77 8.17 0.76

MGP w/ SP 88.5 4.82 14.45 4.81
MGP w/ HD 71.5 6.19 22.53 6.16

Human 11.3 85.64 93.21 57.26

Seq2Seq w/ SP 195.8 1.13 9.02 1.11
Seq2Seq w/ HD 298.8 0.85 7.80 0.64

CMA w/ SP 209.5 0.85 7.71 0.83
Car CMA w/ HD 277.6 0.56 7.99 0.55

MGP w/ SP 90.6 4.32 15.98 4.31
MGP w/ HD 73.0 5.83 23.03 5.77

Human 6.7 95.39 97.93 67.89

Seq2Seq w/ SP 224.9 0.98 5.87 0.96
Seq2Seq w/ HD 381.5 0.73 7.82 0.50

CMA w/ SP 213.2 0.49 8.56 0.49
Ground CMA w/ HD 275.9 0.24 6.85 0.23

MGP w/ SP 113.8 3.18 15.16 3.18
MGP w/ HD 91.5 4.89 19.80 4.87

Human 12.0 82.40 92.42 55.64

Seq2Seq w/ SP 194.2 0.00 6.58 0.00
Seq2Seq w/ HD 332.3 0.66 7.24 0.66

CMA w/ SP 207.9 1.32 8.55 1.29
Parking CMA w/ HD 304.6 1.32 7.24 1.28

MGP w/ SP 96.0 3.95 13.82 3.95
MGP w/ HD 73.7 4.61 22.37 4.16

Human 13.9 76.97 86.84 54.11

Table 14: Performance of each method at the category level.

Qualitative results. Figure 13 presents additional qualitative results from our map-based goal pre-
dictor model. These examples further illustrate the effectiveness of incorporating geographic infor-
mation into the aerial model for accurately locating target objects.
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This is a semicircular green ground. this space is on the 
side of the square green space in the inner courtyard 

between the hall building and the emmanuel college chapel 
buildings. There are trees on this area.

A black car that has a Gray car in front of it, that also has a 
group of three cars across from it, on black one gray and one 

white, off Staffordshire Gardens, in front of a multicolored 
beige and white multi housing unit complex with a gray roof 

that is next to the shenstone house off Norfolk Street.

This is a parking lot with two white cars, two red cars and 
one black car. this parking lot is close to Nash Square road.

The building on Cliveden Avenue that is next to the 
building on the corner of Cliveden Avenue and 

Teddington Grove. It has a white car and a black car on 
the road at the end of it's driveway.

A building with grey roof situated at the intersection 
point of two road named Hertford street and Chesterton 
road. The Edward's Court building is situated at the right 

side of it along the Hertford street.

Large beige building with a multi-colored Brown and 
gray roof that is connected s to the Edwards court 

building off Hertford Street.

Figure 13: Additional qualitative examples of aerial navigation, illustrating the trajectories predicted
by our map-based goal predictor model. The green upper hemisphere represents the area within a
20-meter radius around the target where navigation is successful.
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