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ABSTRACT

This paper presents enhanced analysis for sign-based optimization algorithms with
momentum updates. Traditional sign-based methods obtain a convergence rate of
O(T−1/4) under the separable smoothness assumption, but they typically require
large batch sizes or assume unimodal symmetric stochastic noise. To address
these limitations, we demonstrate that signSGD with momentum can achieve the
same convergence rate using constant batch sizes without additional assumptions.
We also establish a convergence rate under the l2-smoothness condition, improv-
ing upon the result of the prior momentum-based signSGD variant by a factor of
O(d1/2), where d is the problem dimension. Furthermore, we explore sign-based
methods with majority vote in distributed settings and show that the proposed
momentum-based method yields convergence rates of O

(
d1/2T−1/2 + dn−1/2

)
and O

(
max{d1/4T−1/4, d1/10T−1/5}

)
, which outperform the previous results of

O
(
dT−1/4 + dn−1/2

)
and O

(
d3/8T−1/8

)
, respectively. Numerical experiments

also validate the effectiveness of the proposed methods.

1 INTRODUCTION

This paper investigates the stochastic optimization problem in the form

min
x∈Rd

f(x), (1)

where f : Rd → R is a smooth function. We assume that only noisy estimations of the gradient are
available, denoted as ∇f(x; ξ), where ξ is a random sample such that E[∇f(x; ξ)] = ∇f(x).

Problem (1) has been extensively studied in the literature (Duchi et al., 2011; Kingma & Ba, 2015;
Loshchilov & Hutter, 2017; Fang et al., 2018; Wang et al., 2019). One of the most widely used
methods for this problem is Stochastic Gradient Descent (SGD), which updates the parameters as:

xt+1 = xt − η∇f(xt; ξt), (2)

where η is the learning rate and ξt is the random sample drawn at the t-th iteration. It is known that
SGD achieves a convergence rate of O(T−1/4), where T is the number of iterations (Ghadimi &
Lan, 2013). This rate is proved to be optimal under standard assumptions (Arjevani et al., 2023).

Instead of using the stochastic gradient to update, several works (Bernstein et al., 2018; 2019; Sa-
faryan & Richtarik, 2021) propose to update using only the sign of the stochastic gradient, i.e.,

xt+1 = xt − η sign (∇f(xt; ξt)) , (3)

which is particularly beneficial in distributed settings. In such scenarios, only the sign information
needs to be transmitted between nodes, significantly reducing communication overhead.

Recently, several studies have investigated the convergence properties of signSGD and its variants.
Bernstein et al. (2018) first prove that signSGD achieves a convergence rate of O(N−1/4) under the
separable smoothness assumption, where N is the number of stochastic gradient calls. However,
their analysis requires a large batch size of O(

√
N) in each iteration. Later, Bernstein et al. (2019)

demonstrate that signSGD can achieve the same convergence rate with constant batch sizes, but
under the additional assumption that the noise is unimodal and symmetric. To avoid such extra

1
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Table 1: Summary of convergence rates for sign-based algorithms. Here, T represents the number of
stochastic gradient calls and l1&l2 denotes mixed l1-norm and weighted l2-norm. We use stochastic
gradient calls rather than iteration numbers to measure convergence, in order to provide a fairer
comparison across different algorithms with varying batch sizes.

Method Convergence Assumptions Measure Additional Requirements
signSGD
(Bernstein et al., 2018)

O
(

1
T 1/4

)
Assumptions 1, 2, 3

l1 Large batch size of O(
√
T )

Signum
(Bernstein et al., 2018)

Õ
(

1
T 1/4

)
l1 Large batch size of O(

√
T )

signSGD
(Bernstein et al., 2019)

O
(

1
T 1/4

)
l1&l2 Unimodal symmetric noise

Theorem 1
(this work)

O
(

1
T 1/4

)
l1 –

signSGD-SIM
(Sun et al., 2023)

O
(

d
T 1/4

)
Assumptions 1, 4, 5 l1 –Theorem 2

(this work)
O
(

d1/2

T 1/4

)

assumptions, Sun et al. (2023) show that signSGD with momentum can achieve a convergence rate of
O(dT−1/4) under the l2-smoothness assumption. However, this dependence on d is unsatisfactory,
leading to high sample complexity for high-dimensional problems.

In this paper, we re-examine signSGD with momentum and establish a convergence rate of
O(T−1/4) under the separable smoothness condition. Compared with previous work (Bernstein
et al., 2018; 2019), our analysis does not require large batch sizes or unimodal symmetric noise. Un-
der the l2-smoothness assumption, we also derive a convergence rate of O(d1/2T−1/4), improving
the previous result of O(dT−1/4) (Sun et al., 2023).

For distributed sign-based methods, each node typically transmits the sign of its gradient to the
server, which then sends back the sign of the aggregated gradients for update. In this context, previ-
ous literature establishes convergence rates of O

(
d

T 1/4 + d
n1/2

)
(Sun et al., 2023) and O

(
d3/8

T 1/8

)
(Jin

et al., 2021), where n denotes the number of nodes. To improve these rates, we utilize an unbiased
sign operation along with momentum updates, achieving convergence rates of O

(
d1/2

T 1/2 + d
n1/2

)
,

O
(

n1/2

T + d
n1/2

)
and O

(
max{ d1/4

T 1/4 ,
d1/10

T 1/5 }
)

, with different hyper-parameter settings and algo-
rithm designs. In summary, this paper makes the following contributions:

• Under the separable smoothness assumption, we prove that signSGD with momentum can
achieve a convergence rate of O(T−1/4) without additional assumptions. In contrast, ex-
isting analyses require either large batches or the assumption of unimodal symmetric noise.

• Under the l2-smoothness assumption, we show that signSGD with momentum achieves a
convergence rate of O(d1/2T−1/4), improving upon the O(dT−1/4) result of the existing
momentum-based signSGD method under the same conditions.

• In distributed settings, we derive convergence rates of O
(

n1/2

T + d
n1/2

)
, O
(

d1/2

T 1/2 + d
n1/2

)
and O

(
max

{
d1/4

T 1/4 ,
d1/10

T 1/5

})
, with the latter two substantially outperforming previous re-

sults of O
(

d
T 1/4 + d

n1/2

)
and O

(
d3/8

T 1/8

)
, respectively.

We compare our results with existing methods in Tables 1 and 2.
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Table 2: Summary of results for sign-based algorithms in the distributed setting, where n represents
the number of nodes and T denotes the iteration number.

Method Convergence Measure
MV-sto-signSGD-SIM
(Sun et al., 2023)

O
(

d
T 1/4 + d

n1/2

)
l1

Theorem 3
(this work)

O
(

d1/2

T 1/2 + d
n1/2

)
Theorem 4
(this work)

O
(

n1/2

T + d
n1/2

)
Sto-signSGD
(Jin et al., 2021)

O
(

d3/8

T 1/8

)
l2Theorem 5

(this work)
O
(
max

{
d1/4

T 1/4 ,
d1/10

T 1/5

})

2 RELATED WORK

In this section, we review the signSGD method and its variants, as well as sign-based methods with
majority vote in distributed settings.

2.1 SIGNSGD AND ITS VARIANTS

The convergence of signSGD is first analyzed by Bernstein et al. (2018), who obtain a rate of
O(N−1/4) with a large batch size of O(

√
N), where N is the number of stochastic gradient calls.

They also show that the momentum version of signSGD, named Signum, achieves a convergence
rate of O(N−1/4 logN) with increasingly large batches. To avoid large batch sizes, Bernstein et al.
(2019) attain the same convergence rate with a constant batch size, but rely on the strong assumption
that the stochastic gradient noise is both unimodal and symmetric, which is not satisfied for many
types of noise in practice.

Subsequently, Karimireddy et al. (2019) observe that signSGD with a constant batch size may not
converge to optimal points for convex objectives and performs poorly compared to traditional SGD.
To address this, they incorporate the compression error into the next update step and show that error
feedback enhances practical performance. However, their error-feedback method needs to transmit
additional information and further assumes the bounded gradient assumption, making their analyses
non-standard. Rather than assuming unbiased estimation and bounded noise, Safaryan & Richtarik
(2021) provide convergence guarantees under the success probability bounds assumption, which
posits that the sign of the stochastic gradient matches that of the true gradient with a probability
greater than 1/2. Recently, Sun et al. (2023) analyze the momentum-based version of signSGD and
achieve a convergence rate of O(dT−1/4) under standard assumptions. However, their dependence
on d can be further improved, as demonstrated by our analysis.

Besides, several other variants have been proposed. For instance, ZO-signSGD (Liu et al., 2019)
combines zeroth-order updates with sign information, ensuring gradient-free and communication
compression. Jiang et al. (2024) incorporate variance reduction with sign operation, improving the
convergence to O(T−1/3) under a stronger smoothness assumption and to O(d1/2m1/4T−1/2) for
finite-sum problems, where m denotes the number of functions in the finite-sum structure. However,
their O(T−1/3) result is obtained under the stronger average smoothness assumption, which requires
that each stochastic sample is smooth. Additionally, their proposed method involves computing the
gradient at the previous decision point, resulting in additional computational overhead.

2.2 SIGN-BASED METHODS WITH MAJORITY VOTE

The majority vote technique is employed to enable communication compression in distributed set-
tings. In this framework, each node transmits only the sign of its gradient estimation to the pa-
rameter server, which then aggregates the information and sends the sign of the aggregated data

3
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back to each node for updating. In the homogeneous setting, Bernstein et al. (2018) first demon-
strate that signSGD with majority vote can achieve a convergence rate of O(T−1/4) with large batch
sizes. Later, Bernstein et al. (2019) further obtain the same rate with a constant batch size when the
noise is unimodal and symmetric. For more challenging heterogeneous environments, the SSDM
method (Safaryan & Richtarik, 2021) achieves a convergence rate of O(d1/2T−1/4) under the suc-
cess probability bounds assumption. However, SSDM only guarantees 1-bit compression in one
direction, since the information sent back to each node is not the sign information anymore. To
address this, Stochastic-Sign SGD (Jin et al., 2021) ensures 1-bit compression in both directions
and achieves a convergence rate of O(d3/8T−1/8) in terms of the l2-norm. Later, Sun et al. (2023)
propose the MV-sto-signSGD-SIM method, attaining a convergence rate of O

(
d

T 1/4 + d
n1/2

)
. By

incorporating variance reduction techniques, Jiang et al. (2024) improve the convergence rates to
O
(

d1/2

T 1/2 + d
n1/2

)
and O(d1/4T−1/4), under a stronger average smoothness assumption.

3 SIGNSGD WITH MOMENTUM UPDATES

In this section, we first introduce the assumptions used to analyze sign-based methods and then
present our convergence guarantees for signSGD with momentum. Due to space limitations, all
proofs are deferred to the Appendix.

3.1 ASSUMPTIONS

We outline the assumptions commonly used to derive convergence guarantees for sign-based meth-
ods (Bernstein et al., 2018; 2019).

Assumption 1 f∗ = infx f(x) > −∞ and f(x1)− f∗ ≤ ∆f for the initial solution x1.

Assumption 2 (Separable smoothness) The objective function f is separable smooth if there exist
non-negative constants [L1, L2, . . . , Ld] such that

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ 1

2

d∑
i=1

Li(yi − xi)
2.

Assumption 3 (Separable bounded noise) For non-negative constants [σ1, σ2, · · · , σd], we have

Eξ

[
([∇f(x; ξ)]i − [∇f(x)]i)

2
]
≤ σ2

i .

Instead of using Assumptions 2 and 3, other literature (Sun et al., 2023; Jiang et al., 2024) employs
the following assumptions alternatively.

Assumption 4 (l2-smoothness) The objective function f is L-smooth if

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ .

Assumption 5 (Bounded noise) The stochastic gradient noise is bounded such that

Eξ

[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ σ2.

Remark: To align with different literature, we provide two distinct theorems in the next subsection,
derived under Assumptions 1, 2, 3 and Assumptions 1, 4, 5 respectively.

3.2 THE CONVERGENCE GUARANTEES

Here, we introduce the sign-based method with momentum updates and present the corresponding
convergence guarantees. The traditional signSGD method uses the sign of the stochastic gradient
for updates, in the form of equation (3). In contrast to the signSGD method, we track the gradient
using a momentum estimator vt, defined as

vt = (1− β)vt−1 + β∇f(xt; ξt), (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Signum

1: Input: iteration number T , initial point x1

2: for time step t = 1 to T do
3: if t == 1 then
4: Compute vt = ∇f(xt; ξt)
5: else
6: Compute vt = (1− β)vt−1 + β∇f(xt; ξt)
7: end if
8: Update the decision variable: xt+1 = xt − η sign (vt)
9: end for

10: Select τ uniformly at random from {1, . . . , T}
11: Return xτ

where β is the momentum parameter and we use v1 = ∇f(x1; ξ1) for the first iteration. After
computing the estimator vt, we update the decision variable using the sign of vt as follows:

xt+1 = xt − η sign (vt) . (5)

The full algorithm is outlined in Algorithm 1, which is called Signum in the previous work (Bern-
stein et al., 2018) (also named as signSGD-SIM by Sun et al. (2023)). Our contribution lies in the
improved theoretical analysis. To compare with previous signSGD studies (Bernstein et al., 2018;
2019), we first provide guarantees under the separable smoothness assumption.

Theorem 1 Under Assumptions 1, 2 and 3, by setting β = O
(
T−1/2

)
and η = O

(
T−3/4

)
, Algo-

rithm 1 ensures that

E [∥∇f(xτ )∥1] ≤ O
(

1

T 1/4

)
.

Remark: The above rate implies a sample complexity of O(ϵ−4), matching the state-of-the-art
results for signSGD (Bernstein et al., 2018; 2019). However, our method does not require large
batch sizes which can be as large as O(ϵ−2) for signSGD (Bernstein et al., 2018), and avoids the
unimodal symmetric noise assumption required by Bernstein et al. (2019).

Next, we also provide the theoretical guarantee under the l2-smoothness assumption.

Theorem 2 Under Assumptions 1, 4 and 5, by setting β = O
(
T−1/2

)
and η = O

(
d−1/2T−3/4

)
,

Algorithm 1 ensures that

E [∥∇f(xτ )∥1] ≤ O
(
d1/2

T 1/4

)
.

Remark: This rate implies a sample complexity of O(d2ϵ−4), an improvement over the O(d4ϵ−4)
results of previous sign-based momentum methods (Sun et al., 2023). This improvement is espe-
cially significant when the dimension d is large.

Remark: In Theorem 1, by using the separable smoothness and separable bounded noise assump-
tions (Assumptions 2 and 3), we can directly analyze under the ℓ1-norm and provide coordinate-wise
bounds, thus avoiding the d1/2 dependency.

Source of Theoretical Improvement: In the previous work (Bernstein et al., 2018), to bound
the term

∑
i |[∇f(xt)]i| · P (sign([∇f(xt)]i) ̸= sign([vt]i)) appeared in the analysis, they apply

P (sign([∇f(xt)]i) ̸= sign(∇f(xt; ξt)i)) ≤ σi√
ni|[∇f(xt)]i| , which inevitably requires huge batch

sizes ni to ensure convergence. Later work (Bernstein et al., 2019) assumes unimodal symmetric
noise to deal with P (sign([∇f(xt)]i) ̸= sign([vt]i)). While in our analysis, we find that standard
assumption is already adequate and we use

∑
i |[∇f(xt)]i| · P (sign([∇f(xt)]i) ̸= sign([vt]i)) ≤∑

i |[∇f(xt)]i − [vt]i| ≤ ∥∇f(xt)−vt∥1 in the analysis. Since we further provide a tighter bound
for the estimation error ∥∇f(xt)− vt∥1 compared to Sun et al. (2023), we achieve the state-of-the-
art convergence rate without relying on additional assumptions.

5
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3.3 SHARPNESS OF THE OBTAINED RATES

The convergence lower bound for stochastic optimization is Ω(T−1/4) in the l2-norm (Arjevani
et al., 2023). Since we know that ∥z∥1 ≥ ∥z∥2, this lower bound also implies that E[∥∇f(xτ )∥1] ≥
E[∥∇f(xτ )∥2] ≥ Ω(T−1/4), indicating that our result is optimal with respect to T .

Regarding the d1/2 factor in the convergence rate, several pieces of evidence suggest that this factor
is inherent for l1-norm convergence under the standard l2-smoothness assumption:

• Jiang et al. (2025) establish an Ω

(√
d∥L∥∞

T +
d1/4(

∑d
i=1 σi

√
Li)

1/2

T 1/4

)
lower bound for SGD

when measured with the l1-norm. Suppose that {σi} and {Li} have the same value across co-
ordinates such that σi = σ/

√
d, Li = L, the lower bound becomes Ω

(
d1/2

T 1/4

)
, which confirms

the
√
d factor is required in the l1-norm setting.

• Prior works (Bernstein et al., 2018; Dong et al., 2024) have already conducted extensive ex-
periments on various vision and language tasks, and find that the ratio of the gradient norm
r = ∥∇f(x)∥1 / ∥∇f(x)∥2 always stay close to the level of Θ(

√
d), supporting the presence

of the
√
d factor in the l1 measure from the empirical sense.

• Existing rates for sign-based methods under the l1-norm and l2-smoothness assumption also
include the

√
d dependency, or even worse (Jin et al., 2021; Sun et al., 2023). Our Theorem 2

already improves the d-dependency from Sun et al. (2023) under the same assumptions.

4 MAJORITY VOTE SIGNSGD WITH MOMENTUM UPDATES

We first present the problem formulation and the assumptions used. Then, we introduce the proposed
method and establish the convergence guarantees.

4.1 PROBLEM FORMULATION AND ASSUMPTIONS

Sign-based methods are highly communication-efficient in distributed settings, as they only require
1-bit sign information for updates. Previous literature (Bernstein et al., 2018; 2019; Jin et al., 2021;
Sun et al., 2023) has analyzed sign-based methods with majority vote in distributed environments.
To begin with, consider the following distributed learning problem:

min
x∈Rd

f(x) :=
1

n

n∑
j=1

fj(x), fj(x) = Eξj∼Dj

[
fj(x; ξ

j)
]
, (6)

where Dj represents the data distribution on node j, and fj(x) is the corresponding loss function.

Early studies (Bernstein et al., 2018; 2019) focus on homogeneous settings, where Dj and fj are
identical across nodes. For the more difficult heterogeneous setting, Jin et al. (2021) derive a conver-
gence rate of O

(
d3/8T−1/8

)
and Sun et al. (2023) achieve the rate of O

(
d

T 1/4 + d
n1/2

)
. However,

these rates can still be improved based on our analysis.

Next, we introduce the assumptions required in this section, which are standard and commonly used
in previous works (Jin et al., 2021; Sun et al., 2023).

Assumption 6 (Smoothness on node j) For each node j ∈ [n], we suppose
∥∇fj(x)−∇fj(y)∥ ≤ L ∥x− y∥ .

Assumption 7 (Bounded noise on node j) For each node j ∈ [n], we have

Eξ

[
∥∇fj(x; ξ)−∇fj(x)∥2

]
≤ σ2.

Assumption 8 (Bounded gradients) For each node j ∈ [n], we assume supx ∥∇fj(x; ξ)∥∞ ≤ G.

Remark: The bounded gradients assumption is standard and widely employed for sign-based op-
timization in heterogeneous settings (Jin et al., 2021; Sun et al., 2023; Tang et al., 2024). Also
note that our Assumption 8 is strictly weaker than the one used by Sun et al. (2023), which requires
bounded gradients in the l2-norm, i.e., supx ∥∇fj(x; ξ)∥2 ≤ G.

6
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4.2 THE PROPOSED METHOD

In this subsection, we introduce the proposed method for the heterogeneous distributed environments
and aim to obtain improved convergence rates without additional strong assumptions. For distributed
settings, the most straightforward approach is to apply the sign operation twice:

xt+1 = xt − η sign

 1

n

n∑
j=1

sign(vj
t )

 , (7)

where vj
t is the gradient estimator at node j. In this formulation, each node transmits the sign of its

gradient estimate sign(vj
t ) to the server. The server then aggregates these sign values and broadcasts

back the sign of the resulting information sign
(

1
n

∑n
j=1 sign(v

j
t )
)

to each node for updating. This
approach ensures 1-bit communication in both directions. However, the sign operation introduces
bias in the estimation, and applying it twice can significantly amplify this bias. To mitigate this, we
introduce an unbiased sign operation (Sun et al., 2023) as stated below.

Definition 1 For any vector v with ∥v∥∞ ≤ R, the function SR(v) is defined component-wise by:

[SR(v)]k =


1, with probability R+[v]k

2R ,

−1, with probability R−[v]k
2R .

(8)

Remark: This operation provides an unbiased estimate of v/R, since E[SR(v)] = v/R.

We can now introduce our majority vote signSGD with momentum updates. First, we use the mo-
mentum gradient estimator at each node j as follows:

vj
t = (1− β)vj

t−1 + β∇fj(xt; ξ
j
t ), (9)

where β is the momentum parameter. Next, by communicating the gradient estimators with the
unbiased sign operation SG(·), we update the decision variable as follows:

xt+1 = xt − η Sign

 1

n

n∑
j=1

SG(v
j
t )

 . (10)

After applying SG(·), the output is a sign vector, which can be efficiently transmitted between nodes.
The complete algorithm is described in Algorithm 2 (v1), called Majority Vote SignSGD with Mo-
mentum (MVSM). For t = 1, we initialize vj

1 = ∇fj(x1; ξ
j
1). MVSM-v1 is identical to MV-

sto-signSGD-SIM (with α = 0) from Sun et al. (2023). However, our analysis yields stronger
convergence guarantees as stated below.

Theorem 3 Under Assumptions 1, 6, 7 and 8, by setting that β = 1
2 and η = O

(
1

T 1/2d1/2

)
, our

MVSM (v1) method ensures the following convergence:

E [∥∇f(xτ )∥1] ≤ O
(
d1/2

T 1/2
+

d

n1/2

)
.

Remark: Our rate is superior to the previous result of O
(

d
T 1/4 + d

n1/2

)
, indicating our significant

improvement over prior work (Sun et al., 2023) in both d and T dependencies.

By adjusting the learning rate, we can also obtain the following convergence guarantee.

Theorem 4 Under Assumptions 1, 6, 7 and 8, by setting β = 1
2 and η = O(n−1/2), our MVSM (v1)

method ensures:

E [∥∇f(xτ )∥1] ≤ O
(
n1/2

T
+

d

n1/2

)
.

7
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Algorithm 2 Majority vote signSGD with momentum (MVSM)

1: Input: iteration number T , initial point x1

2: for time step t = 1 to T do
3: On node j ∈ {1, 2, · · · , n}:
4: Compute vj

t = (1− β)vj
t−1 + β∇fj(xt; ξ

j
t )

5: Send SG(v
j
t ) to the parameter server

6: On parameter server:
7: (v1) Send vt = sign

(
1
n

∑n
j=1 SG

(
vj
t

))
to all nodes

8: (v2) Send vt = S1

(
1
n

∑n
j=1 SG

(
vj
t

))
to all nodes

9: On node j ∈ {1, 2, · · · , n}:
10: Update the decision variable xt+1 = xt − ηvt

11: end for
12: Select τ uniformly at random from {1, . . . , T}
13: Return xτ

Remark: This rate improves Theorem 3 when T ≥ n
d , which is easily satisfied when d is large.

Source of Theoretical Improvement: The improvement for Algorithm 2 (v1) lies in deriving a

tighter error bound for the gradient estimator, i.e., ϵt =
∥∥∥∇f(xt)− 1

n

∑n
j=1 v

j
t

∥∥∥2
2
. By carefully

analyzing the aggregated estimator 1
n

∑n
j=1 v

j
t , we obtain the recurrence: ϵt+1 = (1 − β)ϵt +

σ2β2

n + 2L2η2d
β , which allows fast decay of ϵt with appropriate choices of β and η.

Although the above theorems achieve better convergence rates than previous methods, they do not
converge to zero as T increases. To address this issue, we replace the sign operation in the server with
the unbiased sign operation S1(·) as defined in equation (8) with R = 1. The revised formulation
for the update is:

vt = S1

 1

n

n∑
j=1

SG

(
vj
t

) . (11)

The corresponding algorithm is presented in Algorithm 2 (v2), with the only modification in Step 8.
We now present the convergence guarantee for this modified approach.

Theorem 5 Under Assumptions 1, 6, 7 and 8, by setting that η = O
(
min

{
1

T 1/2d1/2 ,
1

T 3/5d1/5

})
and β = O

(
η2/3d1/3

)
, the MVSM (v2) method ensures the following convergence:

E [∥∇f(xτ )∥2] ≤ O
(
max

{
d1/4

T 1/4
,
d1/10

T 1/5

})
.

Remark: This convergence rate approaches zero as T → ∞, and significantly improves upon the
previous result of O

(
d3/8

T 1/8

)
(Jin et al., 2021), in terms of both T and d.

Source of Theoretical Improvement: The improved rate stems from the unbiased estimation of
the full gradient, allowing us to use E

[
S1

(
1
n

∑n
j=1 SG(v

j
t )
)]

= 1
nG

∑n
j=1 v

j
t in the analysis. In

contrast, prior works (Jin et al., 2021; Sun et al., 2023) use biased sign operators on the server, which
leads to looser bounds and higher complexities.

5 EXPERIMENTS

In this section, we evaluate the performance of our methods through numerical experiments. We
first assess the Signum algorithm on the image classification task in a centralized setting, and then
test the proposed MVSM method in the distributed learning environment. Finally, we experiment on
the fine-tuning task for large language models. All experiments are conducted on NVIDIA GeForce

8
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Figure 1: Results for CIFAR-10 dataset in the centralized environment.
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Figure 2: Results for CIFAR-100 dataset in the distributed environment.

RTX 3090 GPUs, and results are averaged over 10 runs, with shaded regions representing the stan-
dard deviation.

5.1 IMAGE CLASSIFICATION IN THE CENTRALIZED ENVIRONMENT

We validate the effectiveness of sign-based methods on the image classification task. Specif-
ically, we train a ResNet-18 model (He et al., 2016) on the CIFAR-10 dataset (Krizhevsky,
2009) and compare our method against signSGD (Bernstein et al., 2018), SGDM (Sutskever
et al., 2013), AdamW (Kingma & Ba, 2015; Loshchilov & Hutter, 2019), and signSGD with er-
ror feedback (i.e., EF-signSGD) (Karimireddy et al., 2019). For SGDM and AdamW, we use
the official PyTorch implementations (Paszke et al., 2019). For each optimizer method, hy-
perparameters are determined through grid search. Specifically, the momentum parameter β
is selected from the set {0.9, 0.5, 0.1, 0.01}, and the learning rate η is chosen from the set
{0.5, 0.25, 0.1, 0.05, 0.025, 0.01} × 10−2.

Figure 1 reports the training loss, accuracy, and the l1- and l2-norms of the gradients. In terms of
loss and accuracy, the Signum method converges fastest even among the algorithms that update with
full gradient information. Additionally, the Signum method results in the most rapid reduction of
both l1 and l2 gradient norms. These findings are consistent with our theoretical results, further
highlighting the effectiveness of momentum-based sign methods in accelerating convergence and
improving optimization efficiency.

5.2 IMAGE CLASSIFICATION IN THE DISTRIBUTED ENVIRONMENT

Next, we evaluate our method in the distributed setting. We train a ResNet-50 model (He et al., 2016)
on the CIFAR-100 dataset (Krizhevsky, 2009) across 8 nodes. We compare our newly proposed
MVSM-v2 method against signSGD (with Majority Vote) (Bernstein et al., 2018), Signum (with
Majority Vote) (Bernstein et al., 2019), Sto-signSGD (Jin et al., 2021), and MV-signSGD-SIM (Sun
et al., 2023). Also note that the MV-signSGD algorithm is identical to our MVSM-v1 method. The
hyperparameters are searched in the same way as in Section 5.1.

Figure 2 presents the training loss, accuracy, and the l1- and l2-norms of the gradients. Our MVSM-
v2 algorithm achieves the lowest loss and highest accuracy, while also exhibiting sparser gradients
compared to other methods. In contrast, sign-based optimizers that do not incorporate momentum
updates—specifically, signSGD-MV and Sto-signSGD—exhibit poor performance and produce sig-
nificantly larger gradients. These results further underscore the advantage of integrating momentum
into sign-based optimization methods.

9
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Table 4: Training losses of finetuning GPT-2 and Qwen3 on the Alpaca dataset.

Method SGDM signSGD EF-signSGD AdamW Signum

GPT-2 2.509±.005 2.236±.004 2.267±.003 2.183±.001 2.176±.002
Qwen3 1.677±.006 1.610±.003 1.609±.005 1.592±.002 1.592±.001

5.3 INSTRUCTION FOLLOWING FINE-TUNING FOR LARGE LANGUAGE MODELS

Table 3: Hyperparameter configurations.

Hyperparameter Value
weight decay 0.1
batch size 256
max sequence length 512
gradient accumulation steps 1
epochs 1.0
learning rate schedule cosine decay

Finally, we conduct experiments on fine-tuning
LLMs to evaluate the high-dimensional and prac-
tical usage of sign-based optimizers. Specifically,
we compare signSGD, SGDM, AdamW, and EF-
signSGD with our Signum method on the GPT-
2 (Radford et al., 2019) and Qwen3-0.6B (Yang
et al., 2025) models. These optimization algo-
rithms are evaluated on the Alpaca dataset (Taori
et al., 2023), which consists of 52000 instruction-
following question-answer pairs. Throughout the
experiments, we follow a similar setup as Liu
et al. (2025c) and set the hyperparameters listed
in Table 3. All other settings remain at their
transformers==4.52.4 defaults. To cut memory usage and speed up training, we leverage the
LMFlow toolbox (Diao et al., 2024). For the remaining hyperparameters, we either adopt the values
from the original paper or perform a grid search. For AdamW, we keep β1 = 0.9, β2 = 0.95, the de
facto standard for training LLMs such as LLaMA (Touvron et al., 2023) and AMD-Llama-135M,
whose model size closely matches ours. For every other optimizer that maintains a momentum state,
we search β1 ∈ {0.99, 0.95, 0.9, 0.75, 0.5, 0} (represents 1−β in Algorithm 1). All methods explore
learning rates in {1, 5} × {1e1, 1e0, 1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6}.

The experimental results are listed in Table 4, which shows that our method yields lower training loss
compared to other baselines. We notice that Signum has a similar performance to AdamW, which
is consistent with the empirical observations by Kunstner et al. (2023); Chen et al. (2023). These
findings highlight the practical effect of sign-based methods for training complex, high-dimensional
models. The optimal hyperparameters for each algorithm can be found in Appendix E.1. We also
conduct hyperparameter sensitivity analysis in Appendix E.2, and empirical validation of Assump-
tion 8 in Appendix E.3.

6 CONCLUSION

In this paper, we demonstrate that signSGD with momentum update can achieve a convergence
rate of O(T−1/4) without requiring large batch sizes or assuming unimodal symmetric noise.
When analyzed under the l2-smoothness assumption, our method achieves a convergence rate of
O(d1/2T−1/4), which improves upon the previous rate of O(dT−1/4). In distributed settings, we
establish convergence rates of O

(
d1/2

T 1/2 + d
n1/2

)
and O

(
max

{
d1/4

T 1/4 ,
d1/10

T 1/5

})
, which significantly

outperform prior results of O
(

d
T 1/4 + d

n1/2

)
and O

(
d3/8

T 1/8

)
. Finally, numerical experiments in dif-

ferent learning environments also validate the effectiveness of the proposed method.
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REPRODUCIBILITY STATEMENT

We provide clear explanations of all assumptions and include complete proofs of our theoretical
claims in the appendix. For the experimental results, we specify the dataset, baseline methods, and
hyperparameter choices.

THE USE OF LLMS

We used large language models (LLMs) solely for minor language polishing of the manuscript. The
LLMs did not contribute to research ideation, algorithm design, theoretical analysis, or experimental
work. Their role was strictly limited to assisting with improving readability and grammar.
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APPENDIX

A PROOF OF THEOREM 1

According to Assumption 2 and considering the update xt+1 − xt = −η Sign (vt), we know that

f(xt+1)− f(xt) ≤⟨∇f(xt),xt+1 − xt⟩+
1

2

d∑
i=1

Li([xt+1]i − [xt]i)
2

≤− ⟨∇f(xt), η Sign (vt)⟩+
η2

2

d∑
i=1

Li([Sign (vt)]i)
2

≤− ⟨∇f(xt), η Sign (∇f(xt))⟩

+ η⟨∇f(xt), Sign (∇f(xt))− Sign (vt)⟩+
η2

2

d∑
i=1

Li

≤− η ∥∇f(xt)∥1 + 2η ∥∇f(xt)− vt∥1 +
η2

2

d∑
i=1

Li,

where the last inequality is due to

⟨∇f(xt), Sign (∇f(xt))− Sign (vt)⟩

=

d∑
i=1

[∇f(xt)]i · (Sign [∇f(xt)]i − Sign [vt]i)

≤
d∑

i=1

2 [∇f(xt)]i · I (Sign ([∇f(xt)]i) ̸= Sign [vt]i)

≤
d∑

i=1

2 |[∇f(xt)]i − [vt]i| · I (Sign [∇f(xt)]i ̸= Sign [vt]i)

≤
d∑

i=1

2 |[∇f(xt)]i − [vt]i| = 2 ∥∇f(xt)− vt∥1 .

Rearranging the obtained relation and summing up yields

E

[
1

T

T∑
t=1

∥∇f(xt)∥1
]
≤ ∆f

ηT
+ 2E

[
1

T

T∑
t=1

∥∇f(xt)− vt∥1
]
+

η

2

d∑
i=1

Li, (12)

where we define ∆f = f (x1)− f∗.

Next, we proceed to bound the error term E
[
1
T

∑T
t=1 ∥∇f(xt)− vt∥1

]
. For convenience, we

define the following notations:

ϵt := vt −∇f(xt), nt := ∇f(xt; ξt)−∇f(xt), st := ∇f(xt−1)−∇f(xt).

By definition, we have

ϵt = vt −∇f(xt) = (1− β)vt−1 + β∇f(xt; ξt)−∇f(xt)

=(1− β) (vt−1 −∇f(xt−1)) + (1− β) (∇f(xt−1)−∇f(xt)) + β (∇f(xt; ξt)−∇f(xt))

=(1− β)ϵt−1 + (1− β)st + βnt.

Performing this recursively yields

ϵt = (1− β)t−1n1 + β

t∑
k=2

(1− β)t−knk +

t∑
k=2

(1− β)t−k+1sk,
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where we use the fact that ϵ1 = v1−∇f(x1) = ∇f(x1; ξ1)−∇f(x1) = n1. We bound ϵt via two
terms At and Bt as follows:

E [∥ϵt∥1] ≤ E

[∥∥∥∥∥(1− β)t−1n1 + β

t∑
k=2

(1− β)t−knk

∥∥∥∥∥
1

]
︸ ︷︷ ︸

At

+E

[∥∥∥∥∥
t∑

k=2

(1− β)t−k+1sk

∥∥∥∥∥
1

]
︸ ︷︷ ︸

Bt

Firstly, we cope with At following the similar procedure as in Liu et al. (2025c, Lemma E.2).
We denote the i-th element of the vector nt by nt,i. By the Cauchy–Schwarz inequality, for any
λ1, · · · , λd > 0, it holds that

E

∥∥∥∥∥(1− β)t−1n1 + β

t∑
k=2

(1− β)t−knk

∥∥∥∥∥
2

1


≤
(

d∑
i=1

λi

)
d∑

i=1

1

λi
E

[
(1− β)t−1n1,i + β

t∑
k=2

(1− β)t−knk,i

]2

=

(
d∑

i=1

λi

)
d∑

i=1

1

λi

(
(1− β)2t−2E

[
n2
1,i

]
+ β2

t∑
k=2

(1− β)2(t−k)E
[
n2
k,i

])

≤
(

d∑
i=1

λi

)
d∑

i=1

1

λi

(
(1− β)2t−2σ2

i + β2
t∑

k=2

(1− β)2(t−k)σ2
i

)

≤
(

d∑
i=1

λi

)
d∑

i=1

σ2
i

λi

(
(1− β)2t−2 +

β

2− β

)
,

where the equality is due to E [ns,i · nt,i] = 0,∀s < t ∈ [T ],∀i ∈ [d]; the second inequality is due
to Assumption 3. Denoting by σ = [σ1, · · · , σd]

⊤ and setting λi = σi, we obtain

At ≤

√√√√√E

∥∥∥∥∥(1− β)t−1n1 + β

t∑
k=2

(1− β)t−knk

∥∥∥∥∥
2

1


≤
√(

(1− β)2t−2 +
β

2− β

)
∥σ∥21 ≤

(
(1− β)t−1 +

√
β

2− β

)
∥σ∥1 ,

where we make use of E2[X] ≤ E[X2] and
√
a+ b ≤ √

a+
√
b, ∀a, b ≥ 0.

Secondly, we cope with Bt as the following:

Bt ≤
t∑

k=2

(1− β)t−k+1E [∥sk∥1] ≤ 2η∥L⃗∥1
t∑

k=2

(1− β)t−k+1 ≤ 2(1− β)η∥L⃗∥1
β

,

where the second inequality uses

E [∥sk∥1] = ∥∇f(xt−1)−∇f(xt)∥1 = ∥∇f(xt + η Sign (vt−1))−∇f(xt)∥1 ≤ 2η∥L⃗∥1,
which is due to the following lemma.

Lemma 1 (Lemma F.3. in Bernstein et al. (2018)) Under Assumption 2, for any sign vector s ∈
{−1, 1}d, any x ∈ Rd and any η

∥∇f(x+ ηs)−∇f(x)∥1 ≤ 2η∥L⃗∥1.

Now it suffices to combine the bounds for At, Bt:

1

T

T∑
t=1

E [∥ϵt∥1] ≤
1

T

T∑
t=1

(At + Bt) ≤
(

1

Tβ
+

√
β

2− β

)
∥σ∥1 +

2(1− β)η∥L⃗∥1
β

,
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where we make use of
∑T

t=1(1− β)t−1 ≤ 1/β. Plugging this relation into equation 12 yields

E

[
1

T

T∑
t=1

∥∇f(xt)∥1
]
≤ ∆f

ηT
+

η∥L⃗∥1
2

+ 2 ∥σ∥1

(
1

Tβ
+

√
β

2− β

)
+

4(1− β)η∥L⃗∥1
β

Setting η =
√

∆f

∥L⃗∥1
· T−3/4, β = 1√

T
, we obtain

E [∥∇f(xτ )∥1] ≤
√

∥L⃗∥1∆f

(
5

T 1/4
+

1

2T 3/4

)
+ 2 ∥σ∥1

(
1

T 1/4
+

1√
T

)
= O

(
1

T 1/4

)
.

B PROOF OF THEOREM 2

Firstly, due to the l2-smoothness assumption (Assumption 4), we have that

f(xt+1)

≤ f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= f(xt)− η ⟨∇f(xt), Sign(vt)⟩+
η2L

2
∥ Sign(vt)∥2

≤ f(xt) + η ⟨∇f(xt), Sign(∇f(xt))− Sign(vt)⟩ − η ⟨∇f(xt), Sign(∇f(xt))⟩+
η2Ld

2

= f(xt) + η ⟨∇f(xt), Sign(∇f(xt))− Sign(vt)⟩ − η∥∇f(xt)∥1 +
η2Ld

2

= f(xt) + η

d∑
i=1

⟨[∇f(xt)]i, Sign([∇f(xt)]i)− Sign([vt]i)⟩ − η∥∇f(xt)∥1 +
η2Ld

2

≤ f(xt) + η

d∑
i=1

2 |[∇f(xt)]i| · I (Sign([∇f(xt)]i) ̸= Sign([vt]i))− η∥∇f(xt)∥1

+
η2Ld

2

≤ f(xt) + η

d∑
i=1

2|[∇f(xt)]i − [vt]i| · I (Sign([∇f(xt)]i) ̸= Sign([vt]i))− η∥∇f(xt)∥1

+
η2Ld

2

≤ f(xt) + η

d∑
i=1

2|[∇f(xt)]i − [vt]i| − η∥∇f(xt)∥1 +
η2Ld

2

= f(xt) + 2η ∥∇f(xt)− vt∥1 − η∥∇f(xt)∥1 +
η2Ld

2

≤ f(xt) + 2η
√
d ∥∇f(xt)− vt∥ − η∥∇f(xt)∥1 +

η2Ld

2
.

(13)

Summing up and rearranging the equation (13), we derive:

E

[
1

T

T∑
t=1

∥∇f(xt)∥1
]

≤f(x1)− f(xT+1)

ηT
+ 2

√
d · E

[
1

T

T∑
t=1

∥∇f(xt)− vt∥
]
+

ηLd

2

≤∆f

ηT
+ 2

√
d ·

√√√√E

[
1

T

T∑
t=1

∥∇f(xt)− vt∥2
]
+

ηLd

2
.

(14)
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where we define ∆f = f (x1)− f∗, and the second inequality is due to Jensen’s Inequality.

Next, we can bound the term E
[
1
T

∑T
t=1 ∥∇f(xt)− vt∥2

]
as follows.

E
[
∥∇f(xt+1)− vt+1∥2

]
= E

[
∥(1− β)vt + β∇f(xt+1; ξt+1)−∇f(xt+1)∥2

]
= E [∥(1− β)(vt −∇f(xt)) + β (∇f(xt+1; ξt+1)−∇f(xt+1))

+(1− β) (∇f(xt)−∇f(xt+1))∥2
]

= (1− β)2E
[
∥vt −∇f(xt) +∇f(xt)−∇f(xt+1)∥2

]
+ β2E

[
∥∇f(xt+1; ξt+1)−∇f(xt+1)∥2

]
≤ (1− β)2(1 + β)E

[
∥vt −∇f(xt))∥2

]
+ (1− β)2(1 +

1

β
)E
[
∥∇f(xt)−∇f(xt+1)∥2

]
+ β2σ2

≤ (1− β)E
[
∥vt −∇f(xt)∥2

]
+

2L2

β
∥xt+1 − xt∥2 + β2σ2

≤ (1− β)E
[
∥vt −∇f(xt)∥2

]
+

2η2L2d

β
+ β2σ2,

where the third equality is due to the fact E [∇f(xt+1; ξt+1)−∇f(xt+1)] = 0. Summing up, we
can ensure

E

[
1

T

T∑
t=1

∥vt −∇f(xt)∥2
]
≤

E
[
∥v1 −∇f(x1)∥2

]
βT

+
2η2L2d

β2
+ βσ2

≤ σ2

βT
+

2η2L2d

β2
+ βσ2.

(15)

Incorporating the above into equation (14) and setting that β = O
(
T−1/2

)
, η = O

(
d−1/2T−3/4

)
,

we observe:

E

[
1

T

T∑
t=1

∥∇f(xt)∥1
]
≤ ∆f

ηT
+ 2

√
d ·

√√√√E

[
1

T

T∑
t=1

∥∇f(xt)− vt∥2
]
+

ηLd

2

≤ ∆f

ηT
+ 2

√
d ·
√

σ2

βT
+

2η2L2d

β2
+ βσ2 +

ηLd

2

= O
(
(1 + ∆f + σ + L) d1/2

T 1/4

)
= O

(
d1/2

T 1/4

)
,

which finishes the proof of Theorem 2.
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C PROOF OF THEOREM 3 AND 4

Since the overall objective function f(x) is L-smooth, we have the following:

f(xt+1) ≤f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

≤f(xt)− η

〈
∇f(xt), Sign

 1

n

n∑
j=1

SG(v
j
t )

〉+
η2Ld

2

=f(xt) + η

〈
∇f(xt), Sign(∇f(xt))− Sign

 1

n

n∑
j=1

SG(v
j
t )

〉

− η ⟨∇f(xt), Sign(∇f(xt))⟩+
η2Ld

2

=f(xt) + η

〈
∇f(xt), Sign(∇f(xt))− Sign

 1

n

n∑
j=1

SG(v
j
t )

〉

− η ∥∇f(xt)∥1 +
η2Ld

2

≤f(xt) + 2ηR
√
d

∥∥∥∥∥∥∇f(xt)

R
− 1

n

n∑
j=1

SG(v
j
t )

∥∥∥∥∥∥− η ∥∇f(xt)∥1 +
η2Ld

2
,

(16)

where the last inequality is because of

〈
∇f(xt), Sign(∇f(xt))− Sign

 1

n

n∑
j=1

SG(v
j
t )

〉

=

d∑
i=1

〈
[∇f(xt)]i, Sign([∇f(xt)]i)− Sign

 1

n

n∑
j=1

SG(v
j
t )


i

〉

≤
d∑

i=1

2 |[∇f(xt)]i| · I

Sign([∇f(xt)]i) ̸= Sign

 1

n

n∑
j=1

S(vj
t )


i


≤

d∑
i=1

2R

∣∣∣∣ [∇f(xt)]i
R

∣∣∣∣ · I
Sign([∇f(xt)]i) ̸= Sign

 1

n

n∑
j=1

SG(v
j
t )


i


≤

d∑
i=1

2R

∣∣∣∣∣∣ [∇f(xt)]i
R

−

 1

n

n∑
j=1

SG(v
j
t )


i

∣∣∣∣∣∣ · I
Sign([∇f(xt)]i) ̸= Sign

 1

n

n∑
j=1

SG(v
j
t )


i


≤

d∑
i=1

2R

∣∣∣∣∣∣ [∇f(xt)]i
R

−

 1

n

n∑
j=1

SG(v
j
t )


i

∣∣∣∣∣∣
=2R

∥∥∥∥∥∥∇f(xt)

R
− 1

n

n∑
j=1

SG(v
j
t )

∥∥∥∥∥∥
1

≤2R
√
d

∥∥∥∥∥∥∇f(xt)

R
− 1

n

n∑
j=1

SG(v
j
t )

∥∥∥∥∥∥ .
(17)
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Rearranging and taking the expectation over equation (16), we have:

E [f(xt+1)− f(xt)]

≤2ηG
√
dE

∥∥∥∥∥∥∇f(xt)

G
− 1

n

n∑
j=1

SG(v
j
t )

∥∥∥∥∥∥
− ηE [∥∇f(xt)∥1] +

η2Ld

2

≤2ηG
√
dE

∥∥∥∥∥∥∇f(xt)

G
− 1

nG

n∑
j=1

vj
t

∥∥∥∥∥∥
+ 2ηG

√
dE

∥∥∥∥∥∥ 1n
n∑

j=1

(
SG(v

j
t )−

vj
t

G

)∥∥∥∥∥∥


− ηE [∥∇f(xt)∥1] +
η2Ld

2

≤2η
√
dE

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
+ 2ηG

√
d

√√√√√√E


∥∥∥∥∥∥ 1n

n∑
j=1

(
SG(v

j
t )−

vj
t

G

)∥∥∥∥∥∥
2


− ηE [∥∇f(xt)∥1] +
η2Ld

2

≤2η
√
dE

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
+ 2ηG

√
d

√√√√√ 1

n2

n∑
j=1

E

∥∥∥∥∥
(
SG(v

j
t )−

vj
t

G

)∥∥∥∥∥
2


− ηE [∥∇f(xt)∥1] +
η2Ld

2

≤2η
√
dE

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
+ 2ηG

√
d

√√√√ 1

n2

n∑
j=1

E
[∥∥∥SG(v

j
t )
∥∥∥2]

− ηE [∥∇f(xt)∥1] +
η2Ld

2

≤2η
√
dE

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
+

2ηdG√
n

− ηE [∥∇f(xt)∥1] +
η2Ld

2
,

(18)

where the third inequality is due to the fact that (E [X])
2 ≤ E

[
X2
]
, and the forth inequality is

because of E
[
SG

(
vj
t

)]
=

vj
t

G , as well as the SG operation in each node is independent.

Rearranging the terms and summing up, we have:

1

T

T∑
i=1

E [∥∇f(xt)∥1] ≤
∆f

ηT
+ 2

√
dE

 1

T

T∑
i=1

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
+

2dG√
n

+
ηLd

2

≤ ∆f

ηT
+ 2

√
d

√√√√√√E

 1

T

T∑
i=1

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
2
+

2dG√
n

+
ηLd

2
,

where the last inequality is due to Jensen’s inequality.

For each worker j, we have the following according to the definition of vj
t :

vj
t+1 −∇fj(xt+1) =(1− β)

(
vj
t −∇fj(xt)

)
+ β

(
∇fj(xt+1; ξ

j
t+1)−∇fj(xt+1)

)
+ (1− β) (∇fj(xt)−∇fj(xt+1)) .
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Averaging over {n} and noting that ∇f(x) = 1
n

∑n
j=1 ∇fj(x), we can obtain:

1

n

n∑
j=1

vj
t+1 −∇f(xt+1) =

1

n

n∑
j=1

(
vj
t+1 −∇fj(xt+1)

)
=(1− β)

1

n

n∑
j=1

(
vj
t −∇fj(xt)

)
+ β

1

n

n∑
j=1

(
∇fj(xt+1; ξ

j
t+1)−∇fj(xt+1)

)
+ (1− β)

1

n

n∑
j=1

(∇fj(xt)−∇fj(xt+1)) .

Then we have

E


∥∥∥∥∥∥ 1n

n∑
j=1

vj
t+1 −∇f(xt+1)

∥∥∥∥∥∥
2


≤(1− β)E


∥∥∥∥∥∥ 1n

n∑
j=1

(
vj
t −∇fj(xt)

)∥∥∥∥∥∥
2
+ β2 1

n2

n∑
j=1

E
[∥∥∥∇fj(xt+1; ξ

j
t+1)−∇fj(xt+1)

∥∥∥2]

+
2

βn

n∑
j=1

E
[
∥∇fj(xt+1)−∇fj(xt)∥2

]

≤(1− β)E


∥∥∥∥∥∥ 1n

n∑
j=1

(
vj
t −∇fj(xt)

)∥∥∥∥∥∥
2
+

β2σ2

n
+

2L2

β
∥xt+1 − xt∥2

≤(1− β)E


∥∥∥∥∥∥ 1n

n∑
j=1

vj
t −∇f(xt)

∥∥∥∥∥∥
2
+

β2σ2

n
+

2L2η2d

β
.

By summing up and rearranging, we observe

E

 1

T

T∑
t=1

∥∥∥∥∥∥ 1n
n∑

j=1

vj
t −∇f(xt)

∥∥∥∥∥∥
2
 ≤

E
[∥∥∥ 1

n

∑n
j=1 v

j
1 −∇f(x1)

∥∥∥2]
βT

+
βσ2

n
+

2L2η2d

β2

≤ σ2

nβT
+

σ2β

n
+

2L2η2d

β2
.

(19)

Finally, we can ensure that

1

T

T∑
i=1

∥∇f(xt)∥1 ≤ ∆f

ηT
+

2dG√
n

+
ηLd

2
+ 2

√
d

√√√√√√E

 1

T

T∑
i=1

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
2


≤ ∆f

ηT
+

2dG√
n

+
ηLd

2
+ 2

√
d

√
σ2

nβT
+

σ2β

n
+

2L2η2d

β2
.

By setting β = 1
2 and η = O

(
T−1/2d−1/2

)
, we have

1

T

T∑
i=1

∥∇f(xt)∥1 = O
(
d1/2

T 1/2
+

d

n1/2

)
.

By setting β = 1
2 and η = O

(
n−1/2

)
, we have

1

T

T∑
i=1

∥∇f(xt)∥1 = O
(
n1/2

T
+

d

n1/2

)
.
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D PROOF OF THEOREM 5

Due to the fact that the overall objective function f(x) is L-smooth, we have the following:

f(xt+1) ≤f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

≤f(xt)− η

〈
∇f(xt), S1

 1

n

n∑
j=1

SG(v
j
t )

〉+
η2Ld

2

=f(xt) + η

〈
∇f(xt),

∇f(xt)

G
− S1

 1

n

n∑
j=1

SG(v
j
t )

〉

− η

〈
∇f(xt),

∇f(xt)

G

〉
+

η2Ld

2

=f(xt) + η

〈
∇f(xt),

∇f(xt)

G
− S1

 1

n

n∑
j=1

SG(v
j
t )

〉− η

G
∥∇f(xt)∥2 +

η2Ld

2
.

Taking expectations leads to:

E [f(xt+1)− f(xt)]

≤ηE

〈∇f(xt),
1

G
∇f(xt)− S1

 1

n

n∑
j=1

SG(v
j
t )

〉− η

G
E
[
∥∇f(xt)∥2

]
+

η2Ld

2

=ηE

〈∇f(xt),
1

G
∇f(xt)−

1

n

n∑
j=1

SG(v
j
t )

〉− η

G
E
[
∥∇f(xt)∥2

]
+

η2Ld

2

=ηE

〈∇f(xt),
1

G
∇f(xt)−

1

nG

n∑
j=1

vj
t

〉− η

G
E
[
∥∇f(xt)∥2

]
+

η2Ld

2

≤ηE

 1

2G
∥∇f(xt)∥2 +

1

2G

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
2
− η

G
E
[
∥∇f(xt)∥2

]
+

η2Ld

2

=
η

2G
E


∥∥∥∥∥∥∇f(xt)−

1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
2
− η

2G
E
[
∥∇f(xt)∥2

]
+

η2Ld

2
.

(20)

Rearranging the terms and summing up:

1

T

T∑
i=1

E
∥∥∇f(xt)∥2

]
≤ 2∆fG

ηT
+ E

 1

T

T∑
i=1

∥∥∥∥∥∥∇f(xt)−
1

n

n∑
j=1

vj
t

∥∥∥∥∥∥
2
+ ηLdG

≤ 2∆fG

ηT
+ E

 1

n

n∑
j=1

1

T

T∑
i=1

∥∥∥∇fj(xt)− vj
t

∥∥∥2
+ ηLdG.

For each worker j, according to the definition of vj
t , we have:

vj
t+1 −∇fj(xt+1) = (1− β)

(
vj
t −∇fj(xt)

)
+ β

(
∇fj(xt+1; ξ

j
t+1)−∇fj(xt+1)

)
+ (1− β) (∇fj(xt)−∇fj(xt+1)) .
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Table 5: Optimal hyperparameters for fine-tuning GPT-2 on Alpaca.

Method SGDM signSGD EF-signSGD AdamW Signum
lr 1e-1 1e-4 1e-0 5e-4 1e-4
β1 0.9 – – 0.9 0.75
β2 – – – 0.95 –

Table 6: Optimal hyperparameters for fine-tuning Qwen3-0.6B on Alpaca.

Method SGDM signSGD EF-signSGD AdamW Signum
lr 5e-2 1e-5 5e-1 5e-5 1e-5
β1 0.9 – – 0.9 0.75
β2 – – – 0.95 –

Then we have

E
[∥∥∥vj

t+1 −∇fj(xt+1)
∥∥∥2]

≤(1− β)E
[∥∥∥vj

t −∇fj(xt)
∥∥∥2]+ β2E

[∥∥∥∇fj(xt+1; ξ
j
t+1)−∇fj(xt+1)

∥∥∥2]
+

2

β
E
[
∥∇fj(xt+1)−∇fj(xt)∥2

]
≤(1− β)E

[∥∥∥vj
t −∇fj(xt)

∥∥∥2]+ β2σ2 +
2L2

β
∥xt+1 − xt∥2

≤(1− β)E
[∥∥∥vj

t −∇fj(xt)
∥∥∥2]+ β2σ2 +

2L2η2d

β
.

As a result, we know that

E

 1

n

n∑
j=1

1

T

T∑
t=1

∥∥∥vj
t −∇fj(xt)

∥∥∥2
 ≤ σ2

βT
+ σ2β +

2L2η2d

β2
.

Finally, we can obtain the final bound:

E

[
1

T

T∑
i=1

∥∇f(xt)∥
]
≤

√√√√E

[
1

T

T∑
i=1

∥∇f(xt)∥2
]

≤
√

2∆fG

ηT
+ ηLdG+

σ2

βT
+ σ2β +

2L2η2d

β2
.

That is to say, by setting β = η2/3d1/3, η = O
(
min

{
1

T 1/2d1/2 ,
1

T 3/5d1/5

})
, we can obtain the

convergence rate of O
(
max

{
d1/4

T 1/4 ,
d1/10

T 1/5

})
.

E EXPERIMENTAL DETAILS

In this section, we present the omitted details in our experiments.

E.1 OPTIMAL HYPERPARAMETERS

The tuned learning rates and β1, β2 coefficients for all methods are shown in Tables 5 and 6, which
can be used to reproduce the results in Table 4. We underline that our tuned optimal learning rate of
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Figure 3: Sensitivity result across different learning rates.
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Figure 4: Sensitivity result across different momentum coefficients.

AdamW is 5 times that of Signum, which aligns perfectly well with the theoretical value (Kosson
et al., 2024), as well as the recent empirical discovery (Liu et al., 2025a)1.

E.2 SENSITIVITY ANALYSIS

Then, we conduct a sensitivity analysis across different learning rates and different momentum co-
efficients β1 (representing 1− β in Algorithm 1). We keep the other hyperparameters fixed to their
optimal values and vary only the learning rate or the momentum coefficient to see the changes in
training loss values. Figure 3 shows the training losses on GPT-2 and Qwen3-0.6B for all methods
across a wide range of learning rates. Our method remains valid and stable within a certain range.
While we observe that AdamW is less sensitive to learning rate changes, this is largely due to its
smaller update RMS norm (Liu et al., 2025a). We also investigate the sensitivity of β1 in Signum, as
shown in Figure 4. The results demonstrate that Signum remains quite robust to different momentum
coefficients.

1Such phenomenon stems from the idea of matching update RMS norms between sign-based methods and
AdamW (Liu et al., 2025a). Signum has an inherent update RMS norm of 1, while the value of AdamW typi-
cally ranges from 0.2 to 0.4 (Liu et al., 2025a;b) with theoretical estimation of

√
(1− β1)/(1 + β1) (Kosson

et al., 2024). Matching these terms (1 VS 0.2) gives a rough law of lrAdamW ≈ 5lrSignum.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
Step

0

1

2

3

4
St

oc
ha

st
ic

 g
ra

di
en

t l
∞

-n
or

m

ResNet-50

rank0 rank1 rank2 rank3 rank4 rank5 rank6 rank7

Figure 5: Stochastic gradient trajectory on the CIFAR-100 dataset.
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Figure 6: Stochastic gradient trajectory on the Alpaca dataset.

E.3 EMPIRICAL VALIDATION OF BOUNDED STOCHASTIC GRADIENTS

We investigate the infinity norm of stochastic gradients along the training trajectory. The direct
evidence in Figure 5 shows that Assumption 8 is well-satisfied in distributed environments. We also
consider the centralized environment (where the number of nodes n = 1), whose trend is depicted
in Figure 6. It is evident that the stochastic gradients are bounded in both scenarios, highlighting the
rationality of Assumption 8.
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