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Abstract

Single image super-resolution (SISR) is a crucial task in the field of medical imaging.
It transforms low-resolution images into high-resolution counterparts. Performing SISR
on chest x-ray images enhances image quality, aiding better diagnosis. However, arti-
facts may be present in the images. We propose an anomaly-guided SISR process uti-
lizing the denoising mechanism of the diffusion model to iteratively remove noise and re-
store the original image. We train the model to learn the data distribution, enabling it
to eliminate artifacts within the images. Additionally, we ensure reconstruction of the
disease regions by prioritizing their reconstruction. Our research experiment over the
publicly available dataset and find that the existing SISR methods are unable to learn
and remove these artificially added artifacts. On the other hand, our proposed model
not only prioritizes superior image reconstruction but also remove the artifacts. Our
method is found to outperform the existing methods. The code is publicly available at
https://github.com/Datta-IITJ/MIDL_code.git.

Keywords: Diffusion Model, variational autoencoding, artifact removal, bounding box
loss, chest x-ray

1. Introduction

Medical images with superior resolution may provide important information about various
abnormalities that may be present in such images. Such information is likely to play a
crucial role in the diagnosis. Chest x-ray is one of the most widely used imaging modalities.
Chest x-rays with a superior resolution may facilitate the diagnosis of various abnormalities
by radiologists. Furthermore, in various applications including telemedicine, it may be
required to compress the size of such images. However, at the time of diagnosis, the original
resolution of those images should be restored. Therefore, improving the resolution of chest
x-ray images may potentially aid various aspects of modern healthcare.

Single image super-resolution (SISR) methods aim to create high resolution (HR) images
from their low resolution (LR) counterparts. In spite of the significant progress in the field
of SISR (Ledig et al., 2017; Wang et al., 2018; Saharia et al., 2022; Li et al., 2022), such
methods are relatively rare for medical images including chest x-rays. In (Yu et al., 2021),
the authors presented WFSAN, a lightweight architecture for high-quality medical image
super-resolution. SNSR-GAN was proposed in (Xu et al., 2020) for enhancing chest x-ray
images. The authors of (Monday et al., 2022) introduced the COVID-SRWCNN which
employs a siamese wavelet multi-resolution convolutional neural network. For anomaly-
driven SISR of chest x-ray images, see (Yadagiri et al., 2023).
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Due to various factors including image compression, and presence of foreign objects,
artifacts may be created in chest x-rays and other medical images. However, most of the
existing methods do not involve a mechanism to deal with artifacts in LR images during
the process of generating the super-resolved (SR) images. As a result, such artifacts may
be present in SR images. The presence of such artifacts may affect the diagnosis of the
medical images.

We propose a SISR method for chest x-rays. A major goal in our design is to remove
artifacts during the super-resolution process. Diffusion models (Ho et al., 2020) take a noisy
image and learn to iteratively denoise it. Therefore, such models may be useful for removing
artifacts by treating the artifacts as a form of noise. Hence, we design our SISR method
utilizing diffusion models. We propose a novel training strategy to deal with the artifacts.

While designing the proposed model, we consider the fact that learning the distribution
of data may aid the super-resolution process. We also note that emphasizing the abnormality
during the super-resolution process may result in an SR image that has rich information
about the abnormality. Such an SR image may lead to an improved diagnosis. Most
diffusion models are designed using a U-net backbone. We modify the U-net backbone
with variational autoencoding (Kingma and Welling, 2013) mechanism to capture the
distribution of the data. We also design a loss function that helps to focus on the region
with abnormality during the super-resolution process. This may lead to an SR image with
richer information about the abnormalities. In this work, our major contributions are:

• We introduce a SISR method for chest x-rays using a diffusion probabilistic model
that can remove artifacts during super-resolution.

• The proposed model utilizes information about abnormalities that may be present in
the chest x-rays. The resultant SR image is likely to contain richer information about
the abnormalities.

• Our model captures the distribution of data using a variational autoencoding mecha-
nism to facilitate super-resolution.

• Experiments on publicly available datasets show the potential of generalizability of
the proposed method.

The rest of the paper is organized as per sections. Section 2 consists of the methodology
where we mention details regarding our proposed method and the training process. Section
3 is the experimental details and the quantitative and qualitative results obtained using our
methodology. Section 4 contains the conclusion.

2. Methods

We design a method for the single image super-resolution of chest x-rays. To design this
method, we consider the following facts. Due to various reasons, artifacts may be present in
LR chest x-ray images. Removal of these artifacts during super-resolution may facilitate the
diagnosis. Diffusion models can iteratively remove noise from images. Therefore, diffusion
models may be helpful in removing artifacts. So, we use a diffusion model-based approach
for SISR. We also note that in the super-resolved images, if we have rich information about
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Figure 1: Block diagram of the proposed backbone model for one iteration of the diffusion
model. Input images of size 64×64 pixels are interpolated to 256×256 pixels be-
fore being fed into the model. The model comprises a modified U-net architecture
with additional layers for encoding (BLVE), latent space (BLVL), and decoding
(BLVD) layers to incorporate variational autoencoding. The original bottleneck
layer of the U-net backbone is denoted as BLU. During the reverse process, at
each iteration, the model is expected to generate a less noisy image YT−1 from a
more noisy image YT obtained from the previous iteration. The eventual output
after all the iterations of the reverse process is the SR image. The Green and the
blue arrows indicate only the down-sampling and up-sampling operation, respec-
tively. The Dashed lines in black denote the skip-connections.

the abnormality present in the x-ray images, diagnosis may be improved. Therefore, we
design an anomaly-guided SISR method. Furthermore, we also consider that capturing
the distribution of the data during the super-resolution process may help in achieving a
superior SR image. Thus, as a backbone of our model, we utilize a U-net based architecture
(Ronneberger et al., 2015) that explicitly capture the distribution of the data. A block
diagram of this architecture is presented in Fig.1.

2.1. Diffusion Probabilistic Model

We build our super-resolution model on the design of (Saharia et al., 2022). During training,
we employ a forward Markovian diffusion process to gradually add Gaussian noise to a high-
resolution (HR) chest x-ray image over T iterations. In the reverse process, we iteratively
denoise the above noisy image to get back the HR image through T iterations following
(Saharia et al., 2022). At each iteration of the reverse process, the model is expected to
generate a less noisy image YT−1 from a more noisy image YT obtained from the previous
iteration. The eventual output (after all the iterations of the reverse process) of the model
is the Super-resolved image. During the inference process, we take an LR chest x-ray image
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and perform bicubic interpolation to improve the resolution. The bicubic interpolation only
provides an approximate super-resolved image. After adding noise, this interpolated image
becomes noisy. Subsequently, the reverse process is applied to this noisy image to generate
a super-resolution (SR) image from it. The method of (Saharia et al., 2022) is designed
using a U-net backbone to perform the reverse process. We modify the design of (Saharia
et al., 2022) in such a way that we capture the distribution of the data during the process
of super-resolution. We also emphasize the abnormal regions during this process.

2.2. Capturing Data Distribution

To capture the distribution of the data through our U-net backbone, we employ a variational
autoencoding mechanism. Variational autoencoders (VAE) (Kingma and Welling, 2013) can
capture the distribution of data. We modify the structure of the bottleneck layer of our
U-net backbone to act like the latent layer of VAE. In this context, we note that U-net
consists of an encoder-decoder architecture. Therefore, if we can enforce a distributional
similarity in the bottleneck layer of U-net, the modified U-net can emulate the properties
of VAE in the context of capturing data distribution. Therefore, in our method, the latent
layer of the VAE captures the distribution of the input data after the data is transformed
by the encoder part of U-Net.

To that end, we add a few layers parallel to the bottleneck layer of the U-net (see Fig.1).
We abbreviate the original bottleneck layer of U-net as BLU and the newly added layers as
BLVE, BLVL and BLVD. Layers BLVE and BLVD act like an encoder and a decoder layer,
respectively. Layer BLVL acts like the latent layer of a VAE. Let Z be the representation
of transformed input data at BLVL. We calculate the KL divergence loss (LKL) between Z
and a standard normal reference distribution. Minimization of this makes the distribution
of Z similar to the reference distribution. Loss LKL helps in capturing the distribution of
this data in latent layer BLVL. Since the output of BLVD is generated by sampling from
the distribution learnt in BLVL, the output quality from BLVL and thereby the output of
the proposed method is likely to be dependent on the distribution of the data captured in
BLVL. To enforce autoencoding, we also calculate a reconstruction loss (LV R) between the
input to BLVE and the output from BLVD.

2.3. Anomaly-focused Training

A better reconstruction of the regions with abnormality may aid the diagnosis. So, we
aim to provide additional emphasis on the reconstruction of such regions. To that end, we
utilize the bounding box (BB) annotations of the abnormalities in the chest x-ray images.
We calculate the mean-squared error of the pixel intensities inside BB between the SR and
the corresponding HR images. This error serves as bounding box loss (LB). We ignore the
BB-loss component if an image does not have the BB information (e.g., images with no
anomaly).

In addition, we also compute a reconstruction loss (LR) between the original HR image
without artifacts and the SR image generated by our method. Minimization of this loss
helps in making the SR image similar to the HR image. During the training of the proposed
method, we minimize the following loss:

Ltotal = λRLR + λBLB + λV AE(LV R + LKL), (1)
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where λR, λB, and λVAE represent the weights governing the relative importance of each
component. LR and LB are already mentioned above. LVR is the reconstruction loss
between the representations of the input data created by layers BLVE and BLVD. LKL

is the KL divergence loss between the representation Z at BLVL and a standard normal
reference distribution.

2.4. Artifact Removal

A major goal of the proposed method is to remove artifacts during super-resolution. For
that purpose, we propose the following training protocol. First, we add artifacts in the
LR images. The original chest x-ray artifacts have circular shapes, letters, digits, and lines
(art; bra). We tried to create similar artifacts. During the training, we use these images
with artifacts as input and try to generate super-resolved images without artifacts. Our
diffusion model, being suitable for removing noise is expected to treat the artifacts as noise
and learn to remove those artifacts during the process of super-resolution.

2.5. Inference

During inference, we apply an LR chest x-ray image with artifacts to our trained model.
First, a bicubic interpolation is performed to create an approximated super-resolved image.
Noise is added to this image. We continue adding the noise until we create a fully noisy
image up to T time-steps. Subsequently, the SR image is generated from the interpolated
noisy image through the reverse process. A step-wise visualization of the diffusion process
is presented in Appendix A.

2.6. Implementation Details

The backbone of the proposed model is a U-net structure similar to the one used in (Saharia
et al., 2022). However, from the down-sampled stage, we create a branch for implementing
variational autoencoding. This branch has got one encoding convolutional layer BLVE,
one decoding convolutional layer BLVD, and a fully connected latent layer BLVL. We then
concatenate the reconstructed outputs from the bottleneck layer of the U-net and BLVD
layer. It then goes to the up-sampling stage where it reconstructs the image back to the
required dimension.

To add noise to the images, we use a linear schedule adopted over 1000 time-steps
denoted as T in Fig.1. The noise level initiates at 1 × 10−4 and gradually increases to
1× 10−2. Our model is trained using the Adam optimizer with a learning rate of 1e-4 and
batch size of 2. We include the hyperparameter details of the competitive methods in the
Appendix B. For the calculation of loss, we use λR as 0.4, λB as 0.3, and λV AE as 0.3. All
these parameters are selected based on the validation performance.

3. Experiment and Results

3.1. Datasets

We use two publicly available chest x-ray datasets for our experiments. These are VinBig
chest x-ray dataset (Nguyen et al., 2022) and NIH Chest x-ray14 dataset (Wang et al.,
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Figure 2: Result of SISR from 64×64 to 256×256 resolution on the test set from VinBig
(columns 1-2) and NIH (columns 3-4) datasets using various methods. Original
LR images with artifacts have a size of 64×64. The HR images and the super-
resolved images using various methods (rows 3-7) have a dimension of 256× 256.

2017). The VinBig dataset consists of 18,000 postero-anterior (PA) chest X-ray images in
DICOM format, categorized into 15 classes representing various medical conditions. The
dataset contains 18,000 images. For our experiments, we use 12,000 training images, 3,000
validation images, and 3,000 test images. Our model is trained with the training images of
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Table 1: Performances of different models in terms of PSNR and SSIM (mean ± sd) com-
puted between the ground truth HR image of size 256×256 without artifacts and
the SR output using the corresponding models. The results are reported using
the test set from VinBig and NIH datasets. All the values in this table are
computed on the test data of VinBig and NIH Dataset using the model
trained on the VinBig dataset.

VinBig NIH

Model PSNR SSIM PSNR SSIM

Bicubic 22.684 ± 0.553 0.631 ± 0.009 21.741 ± 0.443 0.626 ± 0.006

SRCNN 25.057 ± 0.493 0.655 ± 0.002 24.144 ± 1.024 0.656 ± 0.003

SRGAN 31.813 ± 1.116 0.719 ± 0.001 30.104 ± 0.541 0.713 ± 0.009

ESRGAN 33.688 ± 1.119 0.737 ± 0.001 32.679 ± 1.107 0.721 ± 0.002

SR3 37.717 ± 0.584 0.797 ± 0.005 35.405 ± 0.829 0.785 ± 0.008

Proposed 38.936 ± 0.914 0.813 ± 0.002 36.532 ± 0.789 0.805 ± 0.007

the VinBig dataset. The NIH dataset comprises 112,120 x-ray images with disease labels
from 30,805 patients. We use 3000 images from the NIH dataset for testing only.

3.2. Comparative Performances

We compare the performance of the proposed method with several state-of-the-art SISR
techniques including SRCNN (Dong et al., 2015), SRGAN (Ledig et al., 2017), ESR-
GAN (Wang et al., 2018) and SR3 (Saharia et al., 2022). The details of hyperparameters
for the competing methods are presented in Appendix C. The performances are evaluated
based on Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) cal-
culated using SR image produced by a method and the ground truth HR image (without
artifacts). All the models are trained on the VinBig training dataset and tested on the Vin-
Big test dataset and the NIH test dataset. We train the proposed method and all SOTA
methods using the same training images with same artifacts. In all the experiments, an
LR input image of size 64×64 is created from the original HR image by down-sampling.
Subsequently, artifacts are added to these LR images. We train the various models to cre-
ate super-resolved images of size 256×256 from these LR images. Thus, the numerical and
visual results not only show the efficacy of the proposed method for super-resolution but
also show its effectiveness in removing artifacts while performing super-resolution.

The results using the different methods for ten runs are reported in Table 1 in terms
of PSNR and SSIM. Notice that the proposed method outperforms all its competitors on
both the datasets. Results on sample images using different methods are presented in Fig.2.
Additional results showing the various images with and without artifacts and the output of
the proposed method are presented in Fig.4 of Appendix C. A statistical analysis between
the performance of SR3 and the Proposed method is presented in Appendix E.

3.3. On Generalizability

Since we train the SISR models with the VinBig dataset, the results on the NIH dataset
is an indicator of the generalizability of the SISR methods. The abnormalities present in
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Table 2: Performances in different ablation studies in terms of PSNR and SSIM (mean ±
sd) for the VinBig dataset.

Model PSNR SSIM

SR3 37.717 ± 0.584 0.797 ± 0.005

W-BBLoss 38.741 ± 0.862 0.807 ± 0.007

W-DataDist 37.954 ± 0.237 0.793 ± 0.009

Proposed 38.936 ± 0.914 0.813 ± 0.002

the VinBig and NIH Dataset are mentioned in Appendix D. We note that there are some
unseen anomalies which are not present in the VinBig dataset but are present in the NIH
dataset (e.g, edema, hernia). So, when we use our model trained on the VinBig dataset
and perform testing on the NIH dataset, we encounter these unseen abnormalities in the
test data. From Table 1, notice that the proposed method outperforms all the competing
approaches in this context. Thus, we conclude that the test results on the NIH dataset
show the ability of our model to generalize to unseen anomalies as well.

3.4. Ablation Studies

We perform various ablation studies to look into the importance of different components
of the proposed method. All the ablation studies are performed on the VinBig dataset.
First, we evaluate the importance of the bounding box loss of (1). To that end, we train
our model excluding the bounding box loss (abbreviated as W-BBLoss). We also look into
the impact of capturing the data distribution in our model. For this purpose, we train
our model without the variational autoencoding branch (abbreviated as W-DataDist). The
results of these ablation studies are presented in Table 2. Notice that for both of the ablation
studies, we obtain inferior results compared to the proposed method. These results signify
the importance of different components of the proposed method.

4. Conclusion

We introduce a SISR method for chest x-rays that eliminates artifacts during super-resolution.
Our method employs diffusion model to facilitate an iterative denoising. A novel bounding
box helps to emphasize the abnormal regions and produce richer information about the
abnormalities in the SR images. We design a variational autoencoding mechanism in our
architecture to capture the underlying data distribution during super-resolution. A novel
training strategy helps in removing the artifacts. Rigorous experiments show not only the
usefulness of our method in publicly available datasets but also its generalizability. Abla-
tion studies show the impact of different components in our design. In the future, we will
explore the possibility of using similar methods in other radiology images including CT. We
will also look into the possibility of utilizing auxiliary information for SISR.
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Appendix A. Step-wise Visualization of the Diffusion Process

Fig.3 shows the forward and reverse process in a diffusion model. In the Forward Diffusion
Process, the model orchestrates the gradual evolution of a random initial state towards a
desired target state. Controlled amounts of Gaussian noise are added at each step, following
a Markov chain. In contrast, during inference, the reverse diffusion process is employed to
recover the original target state from a noisy observation. The model iteratively refines the
noisy image by reversing the introduced noise using a denoising model. From Fig. 3, it can
be observed that during noise removal, our method removes the artifacts also.

Appendix B. Hyperparameters for the Competing Methods

The SRCNN model is trained over 450 epochs, with a learning rate of 0.001. The batch size
is set to 4 and the Adam optimizer is employed to minimize Mean Squared Error (MSE) loss.
Unlike SRCNN, SRGAN is trained for a shorter duration of 100 epochs. A lower learning
rate of 0.0002 is utilized, with the batch size maintained at 4. Similar to SRCNN, the Adam
optimizer is used. Training of ESRGAN is continued for 120 epochs with a learning rate of
0.005. A batch size of 8 is used with the Adam optimizer. The SR3 model is trained for
250 epochs. We employ a learning rate of 1e-5. Unlike the previous methods, SR3 utilizes
the L1 loss function. The batch size is set to 1, and the Adam optimizer is used.
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Figure 3: Diagram of the diffusion process. Top row: forward process with images at mul-
tiple time-steps, bottom row: reverse process with images at multiple time-steps.

Appendix C. Result on Sample Images using the Proposed method

Fig.4 shows the results of the proposed method on the test set of the VinBig dataset.

Appendix D. Labels Present in VinBig and NIH dataset

The VinBig Dataset consists of the following abnormalities: Aortic enlargement, Atelectasis,
Calcification, Cardiomegaly, Consolidation, ILD, Infiltration, Lung Opacity, Nodule/Mass,
Other lesion, Pleural effusion, Pleural thickening, Pneumothorax and Pulmonary fibro-
sis. The NIH dataset consists of the following abnormalities: Atelectasis, Consolidation,
Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural
thickening, Cardiomegaly, Nodule Mass and Hernia.

Appendix E. Statistical Analysis of the Comparative Performances
between SR3 and the Proposed method.

We also investigate if the performance of the proposed method is statistically significantly
different compared to that of our baseline SR3 method. As mentioned in Section 3.2,
for each method, we perform ten rounds of experiments. At each round, we evaluate the
performance on the VinBig and NIH datasets through PSNR and SSIM. Using those values
of PSNR and SSIM values for both the VinBig and NIH test data, we perform a t-test to
look into the statistical significance of the difference in performance between our method
and SR3. The p-values of these experiments are reported in Fig.5. For the NIH dataset, the
p-values for PSNR and SSIM are 0.0029 and 0.0018, respectively. Similarly, for the VinBig
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Figure 4: Result of SISR from 64×64 to 256×256 resolution using the proposed method on
the test data from VinBig dataset showing images at various stages. Original LR
and original LR with artifacts have a size of 64×64. Original HR, Original HR
with artifacts, and Proposed have a size of 256×256.

dataset, the p-values for PSNR and SSIM are 0.0011 and 0.0158, respectively. Therefore,
we can conclude that the results of our method are statistically significantly different from
those of SR3.
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Figure 5: T-test between the SR3 baseline and Proposed method using the PSNR and SSIM
values for both the VinBig and NIH test data.
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