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Abstract

Audio super-resolution (SR), i.e., upsampling the low-resolution (LR) waveform to
the high-resolution (HR) version, has recently been explored with diffusion and
bridge models, while previous methods often suffer from sub-optimal upsampling
quality due to their uninformative generation prior. Towards high-quality audio
super-resolution, we present a new system with latent bridge models (LBMs), where
we compress the audio waveform into a continuous latent space and design an LBM
to enable a latent-to-latent generation process that naturally matches the LR-fo-
HR upsampling process, thereby fully exploiting the instructive prior information
contained in the LR waveform. To further enhance the training results despite the
limited availability of HR samples, we introduce frequency-aware LBMs, where
the prior and target frequency are taken as model input, enabling LBMs to explicitly
learn an any-to-any upsampling process at the training stage. Furthermore, we
design cascaded LBMs and present two prior augmentation strategies, where
we make the first attempt to unlock the audio upsampling beyond 48 kHz and
empower a seamless cascaded SR process, providing higher flexibility for audio
post-production. Comprehensive experimental results evaluated on the VCTK,
ESC-50, Song-Describer benchmark datasets and two internal testsets demonstrate
that we achieve state-of-the-art objective and perceptual quality for any-to-48kHz
SR across speech, audio, and music signals, as well as setting the first record
for any-to-192kHz audio SR. Demo at https://AudioLBM.github.io/.

1 Introduction

Audio super-resolution (SR) systems aim to generate the high-resolution (HR) audio waveform
from the observed low-resolution (LR) waveform [47, 156, [109]. Audio SR plays a crucial roles
in various applications, including historical recording restoration [73} 59, [74], hearing aids [30],
and improvement of perceptual quality [62]. Previous works have explored audio SR with diverse
methods such as mapping-based [60, [59], generative adversarial network (GAN)-based [69], 165,
diffusion-based [72} 162], and recently proposed bridge-based [54, 45] methods. However, these
efforts focus on the audio SR task in a limited scope, e.g., the speech signals in a benchmark dataset,
without generalizing to a broader domain of different audio types. To extend audio SR to multiple
domains spanning speech signals, sound effects, and music samples, Liu et al. [62] has recently
explored diffusion models in the latent space of mel-spectrogram, enabling any-to-48 kHz audio SR.
A?SB [43] has recently explored bridge models to synthesize the short-time Fourier transformation
(STFT) representation, achieving any-to-44.1 kHz music SR.
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However, the quality of audio SR at scale is still lim- 45
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of the LR waveform demonstrates instructive infor-

mation for the latent of the HR waveform and avoids the removed areas in previous works [41}435].
Then, we design bridge models [[14} [130] to enable a latent-to-latent generation process, which is
inherently matched with the LR-to-HR waveform SR task and fully exploits the informative prior in
the latent space.

Given the scarcity of high-resolution audio samples, which limits the generalization and scalability of
audio SR systems, we propose frequency-aware LBMs that incorporate the prior and target frequencies
as explicit conditioning inputs. The awareness of the frequency at both boundary distributions enables
AudioLBMs to explicitly learn an any-to-any upsampling process across different frequency bands
at the training stage, leading to improved upsampling performance to the target resolution at the
sampling stage. Furthermore, upsampling the audio signal to a higher sampling rate, such as 96 or 192
kHz, provides enhanced high-frequency detail and allows flexibility in audio post-production. In this
regard, we demonstrate that AudioLBM can be naturally extended to unlock the audio upsampling
beyond 48 kHz with a cascaded design, where we present the prior augmentation strategies to reduce
the cascading error in inference and the fine-tuning techniques to facilitate 192 kHz upsampling.

In summary, we make the following contributions in this work:

* We present a high-quality audio SR system across speech, sound effects, and music samples
through modeling the LR-to-HR process with a latent-to-latent generative framework.

* We propose frequency-aware LBMs and cascaded LBMs, enabling an any-fo-any training
process to overcome data scarcity and empowering SR beyond 48 kHz for the first time.

» Zero-shot any-to-48 kHz audio SR evaluated on VCTK [118]], Song-Describer-Dataset [68]],
and ESC-50 [79] demonstrate that our method outperforms prior systems with an average
improvement of 21.5% in LSD [25]] and 3.05% in ViSQOL [15]] across audio and music, as
well as achieves state-of-the-art objective and perceptual quality [87] for speech upsampling.

2 Related Work

Audio super-resolution. Previous works on audio SR can be broadly categorized into spectral-based
and waveform-based methods. Spectral-based methods, often referred to as bandwidth extension
(BWE), formulate the task as a spectral inpainting problem in either time-frequency space [60,
59L 169, 96/, [72] 141} [122] 1126, [19}, 146]] or latent spectral space [62, 37, [110]. In contrast, waveform-
based methods directly generate high-resolution signals in the time domain [47, 76149} 32} [125] 51}
54]]. However, most existing works remain limited in specific domains such as speech or isolated
music genres [73| [71], and are evaluated under fixed input resolutions [69, 65| 96]], simplified
degradation assumptions [32,155]], or limited output sampling rates [72, 46, 69]. These limitations
hinder generalization to real-world scenarios involving diverse content and degradation types, such
as polyphonic pop music that combines vocals, background instrumentation, and sound effects, or
handling extremely low-resolution inputs. Moreover, performing SR beyond 48 kHz (e.g., 96 kHz and
192 kHz) remains unexplored, which provides further benefits in various professional applications,
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Figure 2: The top part shows how the low-resolution waveform is simulated during training via
low-pass filtering, the middle part depicts the baseline method AudioSR [62] that synthesizes high-
resolution content from Gaussian noise, and the bottom part presents overview of our proposed
AudioLBM. It learns a latent-to-latent generation process between the low- and high-resolution
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waveform latent representations, namely zLR € R * 7= and 2R € R * 7=, where L is waveform

length. ¢, and r, are the channel dimension and compression ratio of waveform latent. In contrast,

BT . ;
AudioSR operates in latent space zx € R *7x *7x of mel-spectrogram X € RF*T with a noise-

to-latent generation process, where 7" and I’ denote time and frequency bins of mel-spectrogram; cx
and rx denote channel dimension and compression ratio of mel-spectrogram latent.

including mastering [S7], post-production [7], spatial audio [8], and immersive content creation [[101]].
Although AudioSR [62]] stands out as a scalable method achieving any-fo-48 kHz SR across diverse
domains, it suffers from two-stage compression pipeline and sub-optimal generative modeling
paradigms for the SR task, leading to sub-optimal low-frequency fidelity, misalignment across
frequency bands, and high-frequency artifacts [[131], which ultimately limit perceptual SR quality.
Therefore, building a unified and high-fidelity audio SR model that scales across speech signals,
sound effects, and music samples remains a critical challenge. Detailed discussion of audio SR
baseline methods is provided in Appendix [H.2.2]

Bridge models. Tractable bridge models [130 (14} 164} 52] have received increasing attention for
enabling more effective and efficient data-to-data generation paradigms. Unlike diffusion models [34}
98| that generate data by reversing a Markov process that gradually injects noise into the input, bridge
models begin from a deterministic and informative prior, and interpolate stochastically toward the
target distribution. Recent studies have explored bridge models in various applications, including
image translation [52| [103]], image restoration [58, [18]], dense prediction [38]], image editing [11]],
quality assessment [[128],[129]] and text-to-speech synthesis [14]. Building on this paradigm, Bridge-
SR [54] applies the Schrodinger Bridge (SB) framework directly in the waveform domain for speech
SR, using a lightweight WaveNet-based score estimator [[106, 144]. In parallel, A2SB [45]] employs
the SB formulation in the STFT domain for music bandwidth extension and inpainting using a U-Net
backbone [89,[22]. However, directly modeling in the data space inherently limits generalization and
poses challenges for stable training and flexible scaling to higher-resolution SR. These limitations
motivate us to develop a more adaptive generation framework tailored to audio SR.

3 Method

In this section, we introduce a latent bridge model (LBM) named AudioLBM to achieve high-quality
super-resolution (SR). The key innovations include bridge-based audio upsampling in the continuous
latent space of waveform, the frequency-aware model training process, and the cascaded design that
unlocks audio SR beyond 48 kHz.



3.1 AudioLBM

Considering that the observed LR waveform has been an informative prior of the target HR waveform
in the time-domain [54], we train a convolution-based variational autoencoder (VAE) [26] to directly
compress the audio waveform into continuous representations, preserving the prior contained in the
LR waveform for target generation. The details of VAE architecture and training configurations are
introduced in Appendix|B} Given the HR audio waveform xR € R, we compute the LR counterpart
xR € R with various low-pass filters to simulate the real-world degradations. Then, we compress
them into latent representations 2" € Re*! and 2R € R*! with a pre-trained encoder £ (x), where
l= % and r,, is the down-sampling factor, constructing the boundary distributions and establishing
the bridge process as follows.

Bridge process. Given 2R € R*! as the prior zr at time step t = T and 2R € R°*! as the
target zq at time step t = 0, we build a bridge process [[14] to connect the boundary distributions (see
details in Appendix [C):
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where z; denotes the noisy representation at time step ¢ in the forward process of bridge models, and
oy, O, 0, 01 define the drift and diffusion terms in the associated stochastic differential equation
(SDE), thereby controlling the noise schedule of the bridge process. Different from the forward
process of diffusion models transforming the clean representation at the beginning ¢ = 0 into standard
Gaussian noise at the boundary ¢ = T, bridge models replace the uninformative Gaussian prior
with a Dirac prior §,1&, and therefore facilitate the generation process to fully exploit the instructive
information contained in the prior distribution i.e., zM® in AudioLBM.

Training objective. There exist multiple equivalent training objectives for bridge models. We
empirically find that in the latent space, our AudioLBM achieves higher synthesis quality by using a
noise predictor, compared to the data predictor used by recent bridge-related works in waveform [54]]
or mel-spectrogram domain [14]. In this regard, we formulate the denoising objective as:
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where z; is calculated with Eq. (I) at each training iteration.

Sampling process. The forward process of bridge models has a reverse process sharing the same
marginal distribution p; (z¢|20, 27) [14, [130]. For signal generation, starting from the prior z'%, we
use a first-order SDE-based sampler. From the time step s to the time step ¢ € [0, s), the first-order
discretization gives:
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Given a noise predictor €y well-trained with Eq. (2)), we estimate the target 2 in Eq. (3) with
2o = fTi — o4€p at each sampling step, and iteratively synthesize the generation target "X, The
pre-trained decoder D(2HR) of VAE is then used to reconstruct the waveform xR,
Bridge process vs. diffusion process. As shown in Fig.[2] the diffusion-based audio upsampling
employs a conditional noise-to-latent sampling trajectory, where the prior provides limited infor-
mation for the target. In comparison, our method employs a latent-to-latent sampling trajectory
from z'R to zMR, which has been aligned with the LR-to-HR audio upsampling. Moreover, in the
continuous latent space directly compressed from the audio waveform, the representation of LR
waveform provides instructive information for the generation target, rather than suffering from area
removal in a latent space compressed by the STFT representation [435] or mel-spectrogram [[122].

3.2 Frequency-aware LBMs

Compared to most text-to-speech [111}24] or text-to-audio [61 163} 27, 50] generation systems that
synthesize the audio samples at a sampling rate below 24 or 44.1 kHz, it is more expensive to collect



the audio samples at a sampling rate of 48 kHz for training audio up-sampling models. To address the
limitation of dataset scale, we propose frequency-aware LBMs, enabling an any-to-any upsampling
process at the training stage. Specifically, given an audio signal € R%, we first filter an HR
waveform 'R € R with a sampling rate SRwHRH that is lower than the sampling rate of &, while it
has already provided the frequency band where the audio information predominantly concentrates
(detailed in Appendix . Then, we compute the LR version 'R € RZ with a sampling rate SR ;i
uniformly sampled from U (0, SRz ), constructing a new LR-HR data pair rather than using a fixed

sampling rate for 'R,

At each training iteration, we first compress the 'R and 'R into latent zHR and 2R, and then
take their sampling rate SR mr and SR, ix as model input, encouraging LBMs to explicitly learn
an any-to-any upsampling process. Specifically, we extract a sinusoidal embedding of quantized
frarget = Quantize(SRux /2) and continuous fyrior = SR4ir /2 and prepend them as two additional

tokens of our DiT [78] 4]-based noise prediction network, expanding the feature space to R (1+2)
Towards stronger training performance, we leverage the constant scaling factor s for training bridge
models in the waveform domain [54]], rescaling the latent with Z = s x z for stable training, leading
to the training objective of our frequency-aware LBMs:
2
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where the noisy latent Z; is computed from rescaled Z; and Zr with Eq. (I). At inference, the
detected prior frequency fyrior and the target frequency fiaeer = 48 kHz /2 = 24 kHz are both used
to condition the model. Specifically, the input waveform is low-pass filterd by fpior to suppress
high-frequency artifacts, while fi.reec guides the model to generate full-band output up to the desired
resolution.
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3.3 Audio SR beyond 48 kHz

Cascaded LBMs. Beyond 48 kHz, the audio at an
ultra-high sampling rate (e.g., 96 kHz or 192 kHz)
provides engineering advantages and post-processing
flexibility [85]. However, scaling the upsampling
system to such a sampling rate is constrained by the
limited capacity of a single model and the scarcity
of high-resolution training data, which has not been
addressed to date. Here, we propose an extended
version of AudioLBM that progressively improves
the reconstructed signals from 48 kHz to higher sam-
pling rates. Taking the upsampling to 96 kHz as an
example, we introduce cascaded LBMs. We first
train a VAE-based compression network & (zVHR) for
the ultra HR audio waveform 2R, enabling us to Figure 3: LBMs can be naturally extended
design a new AudioLBM €§"R in the latent space into higher-resolution waveform generation
zUHR At generation stage, the waveform ™R is first With a cascaded paradigm, where prior aug-
upsampled to "R with the first-stage LBM, and then mentation is utilized to avoid cascading arti-
taken as the input of the second-stage model, further facts and accumulating errors between stages.
upsampled to zVHR with a latent-to-latent process

from 2R to 2UHR with Eq. (3), as shown in Figure [3| In the scenario of 192 kHz upsampling, a
third-stage LBM is cascaded. However, as the data has been extremely expensive to collect, which
restricts the model performance, we propose a fine-tuning method to leverage the pretrained LBM at
the second stage, improving the synthesis quality.

Prior augmentation. One of the potential limitations of cascaded generative models is the cascading
errors in inference [35]. In cascaded LBMs, the LBM at the first stage approximates the ground-
truth distribution of xR, while we inevitably suffer from a mismatch between the synthesized
data and the GT signal because of the imperfect learning of €y. Hence, we propose two prior

3To avoid ambiguity, we define the low-pass filter (LPF) by its sampling rate, corresponding to filtering with
cutoff at its Nyquist frequency.



augmentation strategies in the waveform and latent space, respectively, for the cascaded bridge
models ek, alleviating the mismatch issue with the first-stage LBM €y and therefore strengthening
the upsampling performance. Firstly, considering the difficulty for generative models to reconstruct
fine-grained waveform features, we introduce a degradation operation in the waveform domain.
Specifically, in the second upsampling stage, we randomly remove a small portion of high-frequency
details near the Nyquist boundary of the prior and obtain a low-pass-filtered waveform, denoted as
LPF(z"R). Furthermore, solely simulating the previous stage’s output via waveform degradation is
insufficient to address potential large-scale artifacts, which may be reflected in unclear harmonics or
imbalanced energy distribution. To mitigate this, we further introduce latent-space blurring, which
perturbs the audio by applying dynamic Gaussian smoothing to its latent representation along the time
axis. Unlike previous diffusion-based [35]] or flow-based [[95]] methods where the latent is corrupted
with random noise for augmentation, the blurring strategy provides a deterministic degradation that
aligns with the Dirac boundary distributions in bridge models [[14]], leading to the following training

objective for the cascaded bridge model ej"IR:
2
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where Z; is calculated with the the ground-truth target 2UHR and the blurred latent prior Blur(Z

the condition 2" is the rescaled latent compressed from the degraded waveform LPF(x"R); the
condition b, ~ U(0, bi"*) is the blurring ratio. Hence, the degradation level is also conditioned
into the LBM with fpior and b,.. In the training of cascaded LBMs €'k, the small-scale details
of the ground-truth prior '} has been removed and then the latent prior is blurred, enforcing the
model to model the generation of zUHR from a degraded prior Blur(2"®) and therefore facilitating the
cascaded upsampling process in a robust manner. Further training details of cascaded are provided in
Appendix [D] At inference time, we select the optimal parameters b} and waveform filtering extent
via grid search to maximize cascading quality.

4 Experiment

In this section, we first describe the experimental setups and then present the experimental results of
any-to-48 kHz upsampling and upsampling beyond 48 kHz with an in-depth analysis.

4.1 Experimental setup

Training setup. We train our compression and SR models on a mixed corpus comprising speech,
audio, and music data. All recordings with an original sampling rate below 32 kHz are filtered out,
resulting in a total of approximately 5,000 hours of training data. The detailed dataset information is
summarized in Appendix[G| For each SR stage, all data are resampled to the corresponding target
sampling rate and randomly cropped for 5.12-second for the any-to-48 kHz and 48—96 kHz models
and 2.56-second segments for the 96— 192 kHz upsampling stage.

We apply dynamic low-pass filtering to simulate real-world complexity. For the any-to-48 kHz
stage, the cutoff frequency is sampled from ¢/(1,000, 20,000) Hz, the filter type is randomly chosen
from {Chebyshev, Butterworth, Bessel, Elliptic}, and the order is sampled from ¢/(2, 10). For the
48—96 kHz and 96— 192 kHz stages, we exclusively use a Chebyshev Type-I filter with order 8,
and sample cutoff frequencies from 2/ (16,000, 48,000) Hz and ¢/(32,000, 96,000), respectively. This
design supports arbitrary input sampling rates in any stage and naturally serves as a deterministic
waveform-based degradation strategy, as described in Sec.[3.3] For cascading inference, we filter off
a frequency range of 4 kHz as waveform degradation and )" = 1.0, b} = 0.3 for latent degradation
for both 96 kHz and 192 kHz SR.

Evaluation setup. For the any-to-48 kHz task, we randomly sample 500 speech clips from the
VCTK [L18]] test set, 300 audio samples from the ESC-50 fold-5 [79]] and 300 music samples from the
Song-Describer-Dataset (SDS) [68]]. Since both ESC-50 and Song-Describer are natively recorded
at 44.1 kHz, we resample all model outputs to 44.1 kHz to ensure a fair comparison. To evaluate
performance on native 48 kHz content, we additionally use 300 randomly selected clips from our
internal 48 kHz dataset (48 Audio). For the 96 kHz and 192 kHz settings, we select 300 audio clips



VCTK | 8 kHz—48 kHz

Metric ‘ Input UDM+ NWI1* NW2 NVSR Frep FlowH APBE BriSR* AuSR Ours Oursy
LSD| 4069 1232 1417 1141 1.003 0907 0.816 1.003 1.047 0940 0.753 0.742
LSD(L)| | 0.187 0216 0268 0294 0357 0272 0.194 0224 0.172 0486 0.773 0.708
LSD(H)| | 4456 1.345 1.544 1239 1.085 0985 0.889 1.093 1.143 0994 0.724 0.712
SSIMt | 0519 0.691 0.661 0.654 0734 0755 0784 0742 0.660 0.809 0.893 0.906
SigMOST | 3.136 3.068 2936 2.838 2.831 2743 2792 3.082 2998 2.846 3.023 3.095
Metric ‘Input AuSR Ours Input AuSR Ours Input AuSR Ours Input AuSR Ours
48Audio | 8kHz—48kHz | 12kHz—48kHz | 16kHz—48kHz | 24 kHz—48kHz

LSD| 2931 1468 1.066 2637 1365 0981 2351 1304 0.893 1788 1234 0.845
ViSQOL? | 2.714 3.156 3.281 2905 3.242 3.331 3.055 3.303 3.509 3.454 3.622 3.801
ESC-50 | 8kHz—44.1kHz | 12kHz—44.1kHz | 16kHz—44.1kHz | 24 kHz—44.1kHz

LSD| 3.042 1537 1190 2720 1412 1.087 2435 1292 0999 1810 1.067 0.947
ViSQOL?T | 2.604 2.961 3.003 2.642 3.031 3.089 2777 3.108 3.234 3.609 3.602 3.641
SDS | 8kHz—44.1kHz | 12kHz—44.1kHz | 16kHz—44.1kHz | 24 kHz—44.1 kHz

LSD| 4515 1728 1.338 4.070 1.501 1.223 3.632 1352 1160 1.788 1.166 1.110
VISQOLt | 1.712 2714 2744 1.833 2905 2939 2.155 3.055 3.168 3.377 3.454 3.603

Table 1: Objective and perceptual metrics across speech, audio, and music. Baselines marked with *
are our re-implementations. Ourst denotes our model trained exclusively on the VCTK training set.

(96/192 Audio) and 300 music (96/192 Music) excerpts from our internal dataset. Each 192 kHz clip
is 2.56 seconds long, while all other evaluation samples are 5.12 seconds.

Long duration inference can be readily implemented using the MultiDiffusion [5 20} 39] framework,
and we empirically find that employing larger overlap sizes in the early sampling steps, while using
smaller ones but shifting window positions in the later steps (even 0), is more effective in improving
consistency and quality with LBMs.

For objective evaluation, we report the widely used Log-Spectral Distance (LSD) [25] and Spectral
Structural Similarity (SSIM) [113}59]. To assess perceptual quality, we use ViSQOL [[15]] for 48 kHz
general audio and music, and SigMOS [87] for 48 kHz speech.

Baseline method. For evaluation under the any-to-48 kHz setting, unless specifically noted, we
report only our zero-shot results without post-processing[62,160] for low-frequency replacement. For
speech, in addition to AudioSR (AuSR) [62], we compare against speech-specific baselines trained
on the VCTK-train set, including UDM+ [[120], NU-Wave (NW1) [49], NU-Wave2 (NW2) [32],
NVSR [60], FlowHigh (FlowH) [122], Frepainter (Frep) [41], AP-BWE [65], and Bridge-SR
(BriSR*) [54]]. We follow the original Bridge-SR configuration, scale up the network to 10.6M
parameters, and retrain it on both the VCTK-train set and our training dataset. For general audio and
music, we compare with AudioSR under the any-to-48 kHz configuration. As there are no publicly
available baselines for the 96 kHz and 192 kHz settings, we conduct only ablation studies using our
own models. We scale our any-to-48 kHz model to 0.5B parameters, while the two subsequent models
are scaled to 0.3B. All models are trained with an effective batch size of 128 and 1M iterations, while
the fine-tuning procedure described in Sec. [3.3|takes an additional 0.5M steps. Unless otherwise
specified, all ablation experiments are conducted with the same model size, using an effective batch
size of 32 and trained for 0.2M steps without speech data. We use First-Order SDE sampling [[14]
for 50 steps for all stages. The compression architecture and additional model details are further
discussed in Appendix B}

4.2 Any-to-48 kHz upsampling

Overall performance. As shown in Table[T] we evaluate our method across speech (48 kHz), gen-
eral audio (48/44.1 kHz), and music datasets (44.1 kHz) using both objective metrics and perceptual
scores. For the 8 kHz—48 kHz speech SR task, probabilistic generative approaches [62, [122] as



Dataset ‘ ESC-50 (Audio, 16 kHz—48 kHz) ‘ SDS (Music, 16 kHz—48 kHz)

w/o  w/o w/o  Ours only

Filter Input-A Target-A 48 kHz
LSDJ 1.366 1.052 1.022 0.994 1.127 [1.461 1.187 1.166 1.124 1.198
LSD-HF||1.448 1.093 1.069 1.026 1.173 |1.567 1262 1239 1.192 1.275
SSIMt  |0.701 0.715  0.721 0.722 0.711 [0.466 0477 0.478 0.484 0.478

Table 2: Ablation studies on ESC-50 and SDS for the 16 kHz—48 kHz SR setting. Input-A denotes
input-frequency awareness; Target-A denotes target-frequency awareness.

w/o w/o w/o Ours only

Metric | Filter Input-A Target-A 48 kHz

16—96 kHz on 96Audio and 96Music ‘ 16—192 kHz on 192Audio and 192Music
Metric Input Direct Ours ‘ Metric Input Direct 48kHz 96kHz Ours
LSD| 3.068 1.406 1.216 | LSD| 2929 1913 2744 2314 1365

LSD (0-48)] 4.006 1.498 1.083 | LSD (16-96)] 3.191 1452 2304 1.372  1.160
ViSQOL?T 2562 3.010 3.330 | LSD (96-192)] 2.880 2.244  2.879 2879 1474

Table 3: Comparison of super-resolution performance on 96 kHz and 192 kHz targets. Direct refers
to directly trained any-to-96/192 kHz models. The 48 kHz and 96 kHz columns indicate intermediate
outputs in the cascaded pipeline.

well as our method demonstrate clear advantages in capturing global spectral structure (SSIM) and
high-frequency quality (LSD(H)). Notably, our zero-shot model significantly outperforms all previous
methods in objective evaluation, reducing LSD-HF from FlowHigh’s 0.889 to 0.724, improving
SSIM from AudioSR’s 0.809 to 0.893, and achieving higher perceptual quality (3.023 vs. 2.846 in
SigMOS). Due to the domain diversity of the zero-shot training set, we find that the low-frequency
noise of speech in some cases is amplified and mistaken for texture in sound effects, which can
slightly degrade the perceptual quality. As a point of comparison, we further evaluate a variant trained
only on VCTK-train (OursT), which obtains even better performance and surpasses the GAN-based
perceptual SoTA [65]] (3.095 vs. 3.082 in SigMOS).

It is worth noting that the methods without compression networks [[120, 149} 32, 154] often preserve
low-frequency components almost perfectly, as indicated by LSD(L) scores close to the input.
However, they often struggle to generate high-quality high-frequency contents. Alternatively, other
methods [122} 160} 411 162]] employ post-processing strategies that directly replace the low-frequency
band with the original input, thereby achieving near-perfect preservation. In our case, since the
model already demonstrates strong overall LSD performance, we refrain from using such replacement
strategies (detailed in Appendix [E).

Ablation studies. We compare our AudioLBMs without filtering any low sampling-rate data (w/o
Filter), without any frequency-awareness (w/o Input A), sorely with input-awareness (w/o Target A)
and with both input and target frequency awareness (Ours). As shown in Table[2] the use of simple
dataset filtering, input-frequency awareness, and output-frequency awareness leads to a steady and
progressive improvement in 48 kHz SR performance. This leads to approximately a 20% reduction in
LSD and a noticeable increase in SSIM across both audio and music domains, demonstrating the
proposed frequency-awareness mechanism under a moderately filtered dataset. Furthermore, the
training solely on 48 kHz data significantly reduces the diversity and scale of the training set, leading
to sub-optimal performance and a notable drop in both LSD and SSIM. These results further validate
the superiority of the proposed any-to-any training paradigm.

4.3 Upsampling beyond 48 kHz

Overall performance. Table 3| presents the comparison results under the 96 kHz and 192 kHz
SR settings, where the input waveform is sampled at 16 kHz. We evaluate both cascaded LBMs
and directly trained any-to-96/192 kHz LBMs. It can be seen that the cascaded LBMs consistently
outperform the directly trained counterparts for SR beyond 48kHz. Benefiting from specific trained
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Ours (48 kHz) Ours (192 kHz)
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Figure 5: For case studies, we present the linear-amplitude STFT spectrograms of a 1.5-second
speech segment from the VCTK-test set (sample p360_102) and a 5.12-second music clip.

models with sufficient quantity of corresponding audio data, the cascaded 96kHz LBMs achieves
better content generation below 48kHz, reflected in a 0.415 reduction in LSD (0—48) and a 0.32
improvement in ViSQOL, which demonstrates the necessity of the cascaded paradigm. Furthermore,
a 0.212 reduction in LSD(16-96) under the 192 kHz setting indicates that the proposed prior and
conditioning augmentation strategy effectively enhances and refines the content generated by the
previous stage.

To validate the effectiveness of the frequency-aware 2.4

training paradigm in higher-resolution SR scenar- 20 == Audio (96 kHz) Q
ios and further investigate the cascading augmen- == Music (96 kHz) ]
tation, we perform extensive ablation studies con- 207 §
ducted on the 96Music and 96Audio datasets under o 18 -

the 16—96 kHz SR setting (see Fig. ). Specifically, 26l ~ 8 & 9

we ablate the following components: (i) dataset filter- 1ad o § 0l o h o 3 =

ing by removing samples with original sampling rates NI R e

below 64 kHz, (ii) input/output frequency-awareness, e fﬂ FH

(iii) waveform-domain filtering-based augmentation, 1.0--— } } } }

(iv) latent-space blurring-based augmentation, and (v) ﬁ@ Aoq}‘)« 39 & &

the effect of dynamically sampled blurring ratios dur- @@5\ *&@‘ o &}r QQ&Y &

ing training. Across both datasets, each component ¢~ & & QX\O’\'Z’ & @0&

consistently contributes to performance improvement,
as reflected in the overrall LSD. While the dynamic  Figure 4: Ablation results on 96Audio and
blur ratio provides additional gains, it also offers the  96Music in the 16—96 kHz setting.
flexibility to support both the cascaded SR pipeline

and the standalone 48—96 kHz setting, where no distortion or degradation needs to be applied
to the input signal. The SR experiments under real-world scenarios and a detailed comparison of
augmentation parameters are provided in the Appendix [E]

Case studies. Fig.[5presents case studies on 8—48kHz speech and 16— 192kHz music SR using
our zero-shot model. For speech, we compare with recent SOTA methods [32]. NU-
Wave 2 demonstrates strong low-frequency preservation but struggles to recover high-frequency
components under the challenging 6 x upsampling setting. Frepainter and FlowHigh capture the
general high-frequency contour, yet lack sufficient spectral energy and fine-grained details. AudioSR
generates adequate high-frequency content, but often introduces over-boost and undesired artifacts. In
contrast, our method achieves detailed full-band reconstruction, maintaining a better energy balance
across frequency bands. For music, AudioSR fails to retain low-frequency consistency due to its
spectrogram-based design, leading to spectral mismatches and weak harmonic modeling. In contrast,
our method takes advantages of LBM modeling and frequency-awareness techniques to generate
full-band audio with high fidelity at 48kHz. Further cascading to 96/192kHz introduces clearer
high-frequency detail and harmonic structure, confirming the effectiveness of our architecture design
and augmentation strategy.



5 Conclusion

In this work, we present AudioLBM, a novel audio upsampling system with bridge models in the
continuous latent space of audio waveform, modeling the LR-fo-HR audio upsampling process
with a latent-to-latent generative framework. By proposing frequency-aware LBMs, we enable the
learning of any-to-any upsampling process at the training stage to enlarge training data, thereby
enhancing the super-resolution quality. We further present cascaded LBMs, empowering the audio
upsampling beyond 48 kHz, and propose the prior augmentation strategies to reduce cascading errors.
Comprehensive experimental results demonstrate that our AudioLBM outperforms previous audio
upsampling systems by a large margin across speech, sound effects, and music signals, and enables
high-quality upsampling to 96 kHz and 192 kHz for the first time in audio community. In the future,
we plan to extend our super-resolution approach to additional modalities (e.g. image, video or time
series), and further generalize it to a broader range of restoration tasks. As with other generative audio
models, our method may raise concerns about potential misuse, including unauthorized synthesis of
speech or music, imitation of artists’ vocal identities, and challenges in verifying the authenticity of
audio content, which could contribute to misinformation or undermine creative labor.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We confirm that the main claims made in the abstract and introduction accu-
rately reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper has discussed the limitations of the work, see Sec. 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The authors have described necessary information to reproduce the main
experimental results of the paper, see Sec. 4.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: The authors will provide detailed implementation specifics in the supplemen-
tary materials, but the code is not available at this stage.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper has specified all the training and test details necessary to understand
the results, see Sec. 4.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper has provided sufficient information on the computer resources, see
Section 4.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The authors have discussed the broader impacts of this paper, see Section 5
Guidelines.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and only permissively licensed data are selected the to train our
model.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not release new assets
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: TThe authors provide detailed descriptions of the subjective evaluation setup
in the Appendix G.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper does not suffer these risks.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Data processing

A.1 Selecting fiarger in any-to-any training paradigm

Our any-to-any training strategy adopts a flexible target sampling rate fiaree, Where the input rate is
randomly sampled as fpror ~ U (fmins ftarget). While this design improves generalization and robust-
ness, it may also suffer from the presence of unexpected distortion, device artifacts, or environmental
noise in high-frequency regions [84]], which frequently occur in in-the-wild recordings. As a result,
training SR models with fi,ree exceeding the meaningful frequency range may potentially lead to
overfitting to compression artifacts or aliasing patterns, rather than learning useful structure. Such
failure cases are shown in Figure [6]

Bad Case 1 " BadCase 2

Figure 6: The impact of high-frequency noise on super-resolution outputs. Without an effective
choice of fiarger, the SR model hallucinates unnatural noise and artifacts in the high-frequency band.

These hallucinations not only degrade perceptual quality [T02], but also propagate errors in subsequent
cascade stages. To mitigate this, we restrict training targets to a more reliable range by enforcing
frarget < fese(x), where fee(2) denotes the estimated effective bandwidth of input x that identifies the
frequency range where signal energy is concentrated [10] [102].

Estimating fer. Traditional methods estimate fe(2) using energy-based heuristics, such as com-
puting the log-ratio of total signal energy before and after low-pass filtering [112]], or applying
spectral roll-off thresholds as implemented in Librosa [[70] based on cumulative spectral energy.
However, these approaches are often sensitive to broadband or high-frequency noise, which can lead
to inaccurate estimates of usable bandwidth (see Figure[7). CQT-Diff++ [73] proposes an iterative
refinement strategy to more accurately approximate the true effective frequency band. However, it
requires carefully tuned filtering parameters and introduces additional inference overhead.

To address these issues, we adopt a robust data preprocessing pipeline, as shown in Figure[8] Given
a raw waveform x, we first estimate the effective cut-off frequency fefr(x) using curvature-aware
spectral analysis, then apply a low-pass filter at fer(2) to suppress high-frequency noise and artifacts,
effectively boosting the fidelity and stability of downstream super-resolution models.

Data preprocessing : 99% Roll-off energy frequency estimation : Curvature-aware estimation
BRI

Low pass filters

Figure 7: Our proposed data preprocessing pipeline estimates the effective cut-off frequency and
removes spectral noise, leading to more suitable samples for SR training.
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Figure 8: Overview of our proposed curvature-aware estimation pipeline. Given a raw waveform
x, we first compute its magnitude spectrum via FFT, followed by Savitzky-Golay smoothing and
local downsampling to obtain a denoised spectrum. We then compute the second-order curvature
over the log-magnitude spectrum to detect the effective cut-off frequency fefr(), which is used for
downstream low-pass filtering. As a result, our method is robust to high-frequency noise.

We propose a curvature-aware approach to estimate the effective bandwidth fegr(2) of an audio signal,
as illustrated in Figure[§] Our key motivation is that informative frequency regions exhibit stronger
local variation, while noise or silence appears smoother—especially in the log-magnitude spectrum.

Given the densely sampled FFT magnitude X (f) = |FFT(z)[f]|, we apply Savitzky-Golay smooth-
ing and downsampling to obtain X;, then define the truncation index ¢* as the smallest index where
local curvatureﬂ falls below a threshold e, and spectral energy drops below 7:

= argmin{ max |V?log X;| < ey and X; < T} . (6)
i |g€liitk]
The estimated bandwidth is then: .\
it sy
= ., 7
Jar =55 (N

During training, we low-pass filter each input at f.g to suppress spurious high-frequency components
as data preprocessing, improving stability and perceptual quality in subsequent SR stages.

A.2 Importance of fyrior detection for inference

At inference time, fprior(x) is estimated for each input sample with the same detection method of feg
individually, allowing adaptive filtering tailored to the true spectral bandwidth of the audio. This
ensures that super-resolution is performed on the informative signal subspace, leading to improved
perceptual quality and generalization When generative models are used as the source of input audio,
such as MaskGCT [111], the nominal output sampling rate is fixed (e.g., 24 kHz). However, the actual
frequency content may vary depending on the speech prompt or training data, and may not occupy
the full bandwidth of the input sampling rate. Similar phenomena have also been observed in 16 kHz
generation models [61]], where the effective bandwidth is often narrower than the nominal sampling
rate. Consequently, using the declared sampling rate as the low-pass cutoff for super-resolution input
may lead to incorrect reconstruction.

As illustrated in Figure[9] although the model declares a 24 kHz sampling rate, its generated waveform
exhibits a clear spectral roll-off well below the Nyquist frequency (12 kHz).

4V2 log Xz ~ % (— log Xi+2 + 1610g Xi+1 — 30 log Xz =+ 16 log Xi—l — log Xi_z) .
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Input (24 kHz) Ours (with detected input frequency) AudioSR (with inaccurate cut-off frequency)

Figure 9: Super-resolution results for samples generated by MaskGCT [Iml] at 24 kHz, using both
AudioSR and our proposed system. While the nominal sampling rate is 24 kHz, the actual spectral
content does not span the full bandwidth. As shown in the result of AudioSR, using 24 kHz directly
as the cutoff frequency results in incorrect high-frequency generation.

Using 12 kHz as the cutoff frequency by default leads to noticeable spectral discontinuities and
artifacts in the output. In contrast, our method first estimates the effective bandwidth of the input
audio and adjusts the filtering accordingly, thereby avoiding the generation of spurious high-frequency
content and producing a more natural and coherent spectrum.

B Compression network

Variational autoencoders (VAEs) [42]] include an encoder £ and a decoder D. The encoder maps an
input  to a latent representation z = £(x), and the decoder reconstructs « from z via & = D(z).
The training loss is

Lyae = Exnx [R(D(E(w)), )] + KL(ge (2[a) | N(0, T)), ®)

where R is a reconstruction loss that measures the distance between the original sample x and the
reconstructed sample D(E(x)). ge(z|x) is the approximate posterior distribution over z given x,
and the KL term regularizes this posterior toward a standard Gaussian prior.

We follow the similar training network structure and pipeline with Stable-Audio-Open and
ETTA [50], which combines the following training objectives:

1. A multi-resolution STFT loss [[99] :
ZL tft; (x) — stfty(@)]|, 1 ft;(x

L r) =
MRSTFT (2, ) |[stft; ()] T gStftz‘(ﬂA’f')

J

i=1

2. An adversarial hinge loss and feature matching loss from EnCodec [21]):

K
Low(&,x) = [max(0,1 — Dy (x)) + max(0,1 + Dg(£))],
k=1
1D} (=) — Di(@)]],
‘C eat ’
! KL kZUZ; mean HD;C(:B)H )

where DY, is the [-th layer of the k-th discriminator Dy,.

3. The KL divergence loss:
KL(ge (z|z) [ N(0,T)).

B.1 48 kHz compression network

An effective compression network is critical to latent-based super-resolution. However, most existing
audio compression models fail to maintain strong reconstruction quality, thereby limiting the upper
bound of downstream performance. In this section, we analyze the effect of latent compression rate,
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KL divergence, and latent scaling coefficient on both reconstruction and generation. Finally, we also
compare our VAE to other baselines.

To ensure a fair evaluation of both reconstruction and generation capabilities, we train each ablated
VAE configuration on our full speech corpus (details in Appendix |G]) for 200K steps, and pair it with
a corresponding Latent Bridge Model (LBM) trained for 150K steps. All evaluations are conducted
on the VCTK-test set. Throughout, we fix the VAE channel dimension to 64 for consistency, as we
found that a higher channel dimension often leads to unstable training.

B.1.1 Compression rate

Typically, for the generation task, higher compression typically improves generative modeling without
significantly compromising reconstruction [26]. However, in low-level tasks such as audio super-
resolution, we observe that lower compression rates consistently yield better reconstruction and SR
performance, as shown in Table |4} Nevertheless, lower compression introduces longer training time
and higher inference cost (RTF), thus reducing deployment efficiency.

To this end, we conduct experiments under a fixed LBM training budget (96 A800-hours), and
find that a compression rate of 512 achieves the best trade-off between efficiency and performance,
delivering consistently superior results across both objective and subjective metrics.

Metric / Compression rate r, 2048 1024 512 256

Reconstruction

SSIM? 0.925 0.930 0946 0.959
LSDJ 0.664 0.679 0.665 0.637
SigMOS? 3.099 3.083 3.169 3.142
Generation

SSIM? 0911 0912 0.925 0.936
LSDJ 0.730 0.714 0.710 0.687
SigMOS? 3.088 3.025 3.139 3.088
Trained in equal time

SSIM? 0.900 0.912 0.925 0.905
LSDJ 0.730 0.742 0.711 0.825
SigMOS? 3.086 2958 3.130 3.029
RTF (A800, 100 step) 0.180 0.370 0.700 1.140

Table 4: Objective and subjective evaluation under different compression rates r,. Metrics include
SSIM, LSD, and SigMOS across reconstruction, generation, and time equalization settings.

B.1.2 KL divergence

For diffusion-based generation, increasing the KL divergence term is known to improve the alignment
between the latent space and the Gaussian prior, thereby enhancing the diffusability of autoencoders
and improving generation quality [117, 97]. However, in bridge models, the prior distribution
is no longer a standard Gaussian but instead a Dirac distribution induced by the low-resolution
waveform latent. In this setting, enforcing KL regularization may no longer be appropriate. Moreover,
a smaller—or even zero—KL weight allows the latent space to prioritize reconstruction fidelity,
potentially lifting the upper bound of super-resolution quality. To examine this, Table [5|reports results
under a fixed compression rate of 512, with KL coefficients set to 0, 1le-7, 1e-5, 1e-3. Consistent
with trends observed in Section[B.1.1] we find that smaller KL values (as low as 0 or le-7) yield
better reconstruction and super-resolution performance in the LBM setup—contrasting with the usual
observations in diffusion-based generation tasks.

We also observe that reducing the KL weight causes the latent distribution to expand, reflected in
significantly increased minimum and maximum values. This can potentially hinder training stability
and downstream modeling. To mitigate this, we introduce a simple post-scaling strategy for the
latent space. For KL values of {0, le-7, le-5}, we apply a fixed scaling factor s, chosen such
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Metric/KL 0 le-7 le-5 le-3

Reconstruction

SSIM 1 0.942 0.942 0.940 0.935
LSD | 0.651 0.619 0.637 0.664
pMOS 1 3.111 3.079 3.103 3.030
mean 0.0506 0.1047 —0.0123  —0.032
std 3.9313 4.4400 1.1670 0.9407
min —27.403 —29.362 —8.516 —4.619
max 27.615 34.446 8.506 4.774
Generation

s=0.25

SSIM 1 0.907 0.907 0.904 -
LSD | 0.742 0.703 0.723 -
pMOS 1 3.095 3.060 3.073 -
s=1.0

SSIM 1 0.905 0.906 0.903 0.899
LSD | 0.769 0.704 0.719 0.751
pMOS 1 3.082 3.044 3.063 2.976

Table 5: Reconstruction and generation performance under varying KL divergence coefficients (VAE)
and latent scaling factors (LBM). Reported on VCTK-test.

that std(z - s) & 1, thereby constraining the amplitude range of the latent representation. This
normalization consistently improves both objective and subjective metrics.

B.1.3 Comparison with baselines

Therefore, we set the compression rate to 512, reduce the KL-divergence to 0, and apply a latent
scaling factor of s = (.25, resulting in a latent representation z with a frame rate of 100 Hz and 64
channels. After training for 1 million steps on the full dataset, we evaluate the reconstruction quality
on the ESC-50 and VCTK-test sets and compare it against other baselines. As shown in Table [6]
our model achieves the best reconstruction performance both in speech and audio domain across
all metrics, which illustrates the advantage of using the compression network with relatively lower
compression ratio and KL weight for AudioLBM.

B.2 Beyond 48 kHz compression networks

In our cascaded architecture, audio super-resolution above 48 kHz is achieved progressively across
multiple stages. To avoid making the compression model (VAE) at higher sampling rates a bottleneck,
or introducing artifacts that compromise details reconstructed in earlier stages, we use a unified
compression ratio of 512 across all sampling rates.

However, high-resolution datasets (e.g., 96 kHz and 192 kHz) are relatively scarce. Training
compression models directly on such data can significantly hurt generalization and lead to poorer
reconstruction performance. Fortunately, we find that as long as the compression ratio remains
consistent, a VAE trained at a lower sampling rate can be directly and effectively reused for higher
sampling rates. Specifically, from the perspective of a 96 kHz VAE, 48 kHz audio can be interpreted
as a time-compressed (i.e., faster-played) version of high-resolution audio, and thus still represents
a valid subset of the high-resolution distribution. Since low-resolution audio data (such as 48
kHz) is more abundant, pretraining compression models on such data provides a strong and robust
initialization, even in the presence of some distributional shift. As shown in Table [/} using a
compression model pretrained on 48 kHz already yields strong results on the 96Audio dataset.
However, despite the much smaller dataset size, directly pretraining at 96 kHz still achieves better
performance under the test dataset with native 96 kHz distribution, suggesting a domain gap between
the two resolutions. Nevertheless, a lightweight 200k-step fine-tuning on top of the 48 kHz-pretrained
VAE surpasses both models, demonstrating strong transferability with only 20% training resource.
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fr | Model | SSIM{ LSD| LSD-LF| LSD-HF |

VCTK (48 kHz)
100Hz | agc [3] (continuous) | 0.913 0.762 0.766 0.741
50Hz | agc [3]] (discrete) 0917 0.789 0.754 0.768
150Hz | encodec [21] 0.887 1.126 0.761 1.176
75Hz | audiodec [115] 0.922 0.939 0.944 0.937
75Hz | flowdec [[114]] 0.925 0.619 0.560 0.630
100Hz | Ours 0.951 0.580 0.428 0.602
ESC-50 (44.1 kHz)
100Hz | agc [3] (continuous) | 0.730 0.836 0.748 0.840
50Hz | agc [3] (discrete) 0.741 0.852 0.703 0.862
150Hz | encodec [21] 0.704 0.925 0.910 0.922
100Hz | dac [48] 0.734 0.799 0.735 0.801
75Hz | audiodec [115] 0.695 0.999 0.969 0.997
75Hz | flowdec [[114]] 0.717 0.899 0.810 0.908
100Hz | Ours 0.789 0.763 0.544 0.785

Table 6: Comparison of reconstruction quality across baselines on VCTK and ESC-50 test sets
(resampled to 48 kHz and 44.1 kHz, respectively).

Step Phase Model fr ‘ SSIM+ LSD| LSD-LF| LSD-HF |
96Audio dataset

100w pretrain 48 kHz-vae 50Hz | 0.815 0.808 0.815 0.774
100w pretrain 96 kHz-vae 50Hz | 0.818  0.798 0.803 0.772
100w pretrain 48 kHz-vae 100Hz | 0.840  0.811 0.821 0.760
100w pretrain 96 kHz-vae 100Hz | 0.841 0.731 0.747 0.698
20w finetune finetune from 48Hz-vae 100Hz | 0.850  0.709 0.703 0.692
192Audio dataset

100w pretrain 192 kHz-vae 100Hz | 0.868  0.736 0.643 0.752
100w pretrain 96 kHz-vae 100Hz | 0.862  0.747 0.646 0.763
100w pretrain 48 kHz-vae 100Hz | 0.863  0.750 0.692 0.748
20w finetune finetune from 96 kHz-vae 100Hz | 0.866  0.722 0.630 0.740
20w finetune finetune from 48 kHz-vae 100Hz | 0.871  0.713 0.603 0.737

Table 7: VAE reconstruction results using different training strategies.

We observe similar trends in the 192Audio dataset: models fine-tuned from either 48 kHz or 96
kHz initialization outperform those trained from scratch at 192 kHz. Interestingly, fine-tuning from
48 kHz-pretrained VAE consistently leads to better results compared to fine-tuning from 96 kHz-
pretrained VAE, highlighting that the scale of pretraining data matters more than resolution proximity.
In other words, pretraining on larger datasets at lower sampling rates yields more transferable and
stable compression models for high-resolution audio.

C Foundation of bridge models

Bridge models provide a principled and efficient solution for inverse problems and conditional
generation in settings where the prior is non-Gaussian yet partially aligned with the target distribution.
Given a sample from the prior distribution x o, and its correspondence from target distribution Zarget,
In score-based generative models (SGMs) [98]], a forward SDE is defined between xo = Targer ~

Drarget» and 7 = ZTprior ™~ Pprior:

dxy = f(x,t) dt + g(t) dw;. 9)
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Here, ¢t € [0, T represents the current time step, with 2; denoting the state of data in the process. The
drift is given by the vector field f, the diffusion by the scalar function g, w; is the standard Wiener
process, and the reference path measure p™f describes the probability of paths from Dprior A0d Prarger-

Under the above framework with boundary constraints, the Schrodinger bridge (SB) problem [94] [14]
seeks to find a path measure p of specified boundary distributions that minimizes the Kullback-Leibler
divergence Dgy between a path measure and reference path measure pyes:

min Dxp(p || p
(0,7

ref
PEP, )

s.t. po = Pprior; PT = Pdata; (10)

where Py 1 denotes the collection of all path measures over the time interval [0, T].

In SB theory [108} 13} [14], this specific SB problem can be expressed as a pair of forward-backwords
linear SDEs:

day = [f (24, t) + > () V1og U (24
dw, = [ (wi,1) = GOV log ¥ (2,

where the non-linear drifts Vlog ¥;(x;) and V log \T/t(zt) can be described by coupled partial
differential equations (PDEs). A closed-form solution for SB [14]] exists when Gaussian smoothing
is applied with pg = N (zur, €1) and pr = N (z1r, €5.), to the original Dirac distribution. By

defining o;; = elo F(dr &, — oJi F(r)dr o} = fot QQ(T)dT, and 62 = ftl QQ(T)dT, with boundary

| dt + g(t)dwy, (11)

)
)| dt + g(t)dw, (12)

a? o2
conditions and linear Gaussian assumption, tractable form of SB is solved as

U, =N (wz,0fofl), Wy =N (awy,a;671) (13)
under e = elo 1 (T)dTE() and €y — 0 [14]. Therefore, marginal distribution of x; at state ¢ is also

Gaussian: ) 5 s 5 o

=~ a0 Q0 a;0;0
pt:‘l’t‘l’tz/\/( 2t$0+ 2t3?T7 ! ;t1>~ (14)

01 01 07

D Cascaded LBMs

In this section, we provide a detailed description of the cascaded LBM, including analyses of the
proposed waveform-based and latent-based augmentation techniques.

D.1 Waveform-based filtering augmentation

Samples generated from the any-fo-48 kHz stage often exhibit small-scale high-frequency artifacts, as
shown in Figure [I0] (a). Directly feeding such artifacts into the next-stage super-resolution model can
significantly degrade performance, as shown in Figure[I0](b), where high-frequency content becomes
difficult to reconstruct. To address this, we apply Chebyshev Type-I low-pass filters (order=8) with
sharp frequency roll-off in the spectral domain, as shown in Figure [I0](c)—(e), removing a frequency
content of 8 kHz, 4 kHz, and 2 kHz, respectively, before feeding them into the next-stage model. The
resulting outputs are shown in Figure [I0](f)—(h).

As shown in Figures[I0|(g) and (h), moderate filtering removes unwanted high-frequency artifacts
while preserving useful mid-frequency information, enabling the model to generate high-frequency
details more effectively. However, overly aggressive filtering, such as in Figure[I0](g), eliminates too
much information. This forces the model to simultaneously reconstruct missing mid-to-low frequency
content and synthesize high frequencies, resulting in over-smoothed outputs compared to the result in

Figure 10| (h).

The quantitative results presented in Table[8]further validate our findings. We conduct super-resolution
experiments on both 48 kHz waveform generated by a preceding 16—48 kHz model (denoted as
Generated) and 48 kHz audio obtained by downsampling real 96 kHz recordings (denoted as Real).
For the Generated setting, waveform-based augmentation proves consistently effective across all
filtering scales, with a moderate filtering ratio achieving the best trade-off between artifact removal
and content preservation. Notably, for the Real setting, although inference benefits most from models
trained without filtering, applying dynamic waveform-based augmentation during training still leads
to improved performance. This suggests that waveform-based augmentation remains beneficial in
both synthetic and real-data scenarios, highlighting its general applicability and robustness.
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Figure 10: Visual comparison of waveform-based filtering strategies. (a) shows the baseline output
from the any-to-48 kHz stage with high-frequency artifacts. (b) demonstrates that direct super-
resolution from such inputs results in degraded high-frequency reconstruction. (c)—(e) apply low-pass
Silters with different cutoff frequencies, and the corresponding outputs after super-resolution are
shown in (f)—(h).

48—96 kHzSR | SR on Generated 48 kHz waveform || SR on Real 48 kHz waveform
Filter Ratio: 24—4 | 18 kHz 19kHz 20kHz 22kHz w.o. ||12kHz 15kHz 18kHz 21kHz w.o.
LSD | 1.532 1.495 1.520 1.534 1.518]| 1.147 1.193 1.122 0.978 1.282

SSIM 1 0.539 0.541 0539 0.538 0.537|| 0.763 0.762 0.766 0.767 0.757

Table 8: Ablation study on waveform-based filtering augmentation for 48—96 kHz super-resolution
on the 96Music dataset.

D.2 Latent-based blurring augmentation

To improve the alignment between the predicted and ground-truth latents in the first stage, we
introduce a blurring augmentation strategy applied to the latent of the upsampled waveform from
previous stage. Specifically, after performing waveform-based degradation—where a small portion

of high-frequency spectral content is removed using low-pass filtering—we obtain a degraded latent
L
representation 2'R € R%* 7z,
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Specifically, we apply one-dimensional Gaussian blurring to each channel of zHR, which helps
smooth local fluctuations and provides a stable initial point for bridge sampling:

k 1 72
Zprior €] (t) = Blur(z"R) = Z w(t) 2Rt —7), w(r) = — €XP <_262> , (15)
T=—k r

where ¢ € [1,c¢.], b, denotes the blur ratio, k is half the kernel size, and Z is the normalization
constant ensuring » > w(7) = 1. We choose a kernel size of 5, which is significantly larger than 3b,,
ensuring sufficient coverage of the Gaussian support. During training, the blur ratio b, is uniformly
sampled from the range (0, 1).

High-frequency relative low-energy Zoom-in comparison

(b) (©)

latent-based augmentation
- .
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@ Blurring scale

Small Medium Large

© ) D) ’ ©

Figure 11: Visual comparison of latent-based blurring strategies. (a) shows the baseline output from
the any-to-48 kHz stage, where unclear harmonics and low high-frequency energy can be observed.
(e)—(g) illustrate the effect of applying different blur ratios b,, = 0.05,0.3,0.5 to the prior latent
during bridge sampling. (b)—(d) show zoom-in views of (e)—(g) respectively for closer inspection.

As shown in Figure([IT} in addition to the small-scale high-frequency artifacts described in Section[D.1]
the generated samples may also exhibit unclear harmonics or relatively low energy in the high-
frequency band—both of which can negatively affect downstream stages and lead to cascading
errors.

To address this, we apply different degrees of prior blurring with b, = 0.05, b, = 0.3, and b, = 0.5,
as shown in Figures[TT](e)—(g), with zoom-in comparisons in (b)—(d). The results demonstrate that
latent-based augmentation effectively mitigates the imperfections in the input prior and improves
overall reconstruction quality. It not only enhances high-frequency generation but also improves low-
frequency reconstruction, leading to more balanced spectral energy and clearer harmonic structures.

Among them, Figure IE' (f) (with b, = 0.3) yields the best result. A smaller blur ratio, as in
Figure |l 1| (e), may not sufficiently correct low-frequency inconsistencies, while a larger blur ratio, as
in Figure I 1|(g), may overly smooth useful details, resulting in insufficient high-frequency generation.
As shown in Table[9] applying latent-based blurring significantly improves performance over the
no-augmentation baseline. A moderate blur ratio (b, = 0.3 for generated, b, — 0 for real inputs)
yields the best trade-off, effectively reducing high-frequency artifacts while preserving essential
structure. From the results on SR on Real 48 kHz waveform, we observe a similar trend as discussed
in Section[D.I} applying stronger blurring generally leads to worse performance on real data, as
low-frequency content is already accurate and does not require correction. This suggests that during
inference, only a small or near-zero blur ratio is needed for real 48 kHz data. Nevertheless, applying a
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48—96 kHz SR | SR on Generated 48 kHz waveform || SR on Real 48 kHz waveform
Blur Ratio: b, ‘ 0.4 03 025 020 w.0. H 035 025 0.15 0.05 w.o.
LSD | 1.399 1.361 1.377 1.380 1.405 H 1.196 0.984 0.978 0.976 0.995

SSIM 1 0.531 0.542 0.543 0.538 0.540 ||0.735 0.769 0.771 0.771 0.759

Table 9: Ablation study on latent-based blurring augmentation for 48—96 kHz super-resolution on
the 96Music dataset.

mild level of blurring during training still outperforms the no-blur baseline (yielding a 0.02 reduction
in LSD and a 0.01 improvement in SSIM), which may be because such operation promotes better
understanding of low-frequency content, thereby enabling the model to generate high-frequency
components more effectively.

E Additional results

In this section, we first continue our discussion on the cascaded stage and present a comparison
of several additional augmentation strategies and their effects. We then analyze the role of the
low-frequency replacement technique, comparing its use in our system and in other baseline methods.

E.1 Other augmentation techniques

We additionally compare three alternative augmentation strategies: (1) latent noise, where Zprior =
ZMR 4 n, - N(0,1); (2) pixel blur, where Tpior = Blur(2"R); and (3) pixel noise, where T pior =
R +n,. - N(0,I).

latent latent
Method | blur blur
(fixed) (dyn)

brIny ‘ 0.3 0.3 0.1 0.1 0.2 0.3 0.4 0.1 -

LSD | 1.186 1.182 1.234 1.381 1.389 1385 1.394 3.461 1219
SSIM+ | 0.733 0.738 0.731 0.728 0.728 0.725 0.725 0.397 0.734

Table 10: Ablation study comparing different prior augmentation strategies for bridge-based super-
resolution. The second row indicates the blur/noise ratio (b,/n,) used in each method.

pixel latent latent latent latent pixel

. . . . . w/o
blur noise noise noise noise noise

We observe that latent blurring consistently outperforms other strategies, especially when using
dynamic blur ratios during training. Pixel-level noise introduces instability and fails to converge, while
random latent noise degrades gradually with increased noise levels. This suggests that randomized
augmentation may not be suitable for bridge models, while deterministic methods such as blurring
offer more stable and reliable guidance. Compared to pixel blurring, latent blurring provides a more
global and structured form of regularization, which better aligns the low-frequency components with
the ground-truth during training.

E.2 Low-frequency replacement

Low-frequency replacement is a widely adopted post-processing technique in super-resolution sys-
tems, particularly in super-resolution models based on compressed representations 60, 162 [122} [37]].
Table [T T] presents the results of applying post-processing within our cascaded architecture. Specifi-
cally, we apply low-frequency replacement to the output of the any-to-48 kHz model by substituting
the sub-16 kHz frequency band with the corresponding band from the input waveform, resulting in
the 48 kHz post variant. This serves as the input for the subsequent 48—96 kHz super-resolution
stage, producing 96 kHz post. Finally, a second round of low-frequency replacement is performed
on the output waveform to yield the Final post result.

From the table, we observe that performing post-processing at the 48 kHz stage significantly improves
low-frequency fidelity, as reflected by improvements in LSD (0-48 Hz: 2.714 — 2.437) and ViSQOL
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. . Cascaded 48 kHz 48 kHz 96 kHz Final
Band (Hz) Metric Direct (w/o post) Upsampling  Post Post Post
0-438 LSD | 3.785 1.552 2.714 2.437 1.314  1.291
0-16 LSD-LF| | 0.186 0.485 0.811 0.331 0.522  0.342
16-48 LSD-HF | | 5.071 1.738 1.614 1.596 1.221  1.220
48-96 LSD-SF | | 3.329 1.603 3.532 3.141 1.507 1.487
0-438 ViSQOL 1 | 1.954 2.602 3.073 3.144 3.119 3.137

Table 11: Ablation study of low-frequency replacement as a post-processing technique for 16—96 kHz
super-resolution on the 96Music dataset. Direct denotes any-to-96 kHz model; Cascaded (w/o post)
denotes the raw output from cascaded LBMs without replacement; Post indicates low-frequency
replacement at corresponding stages.

Method Modeling Space Method Type RTF| NFE
Ours (any — 48 kHz) Wav-VAE Bridge 0.369 50
Ours (any — 96 kHz) Wav-VAE Cascaded Bridges 0.695 100
Ours (any — 192 kHz) Wav-VAE Cascaded Bridges 1.351 150
Bridge-SR [54] 48 kHz Waveform Bridge 1.670 50
UDM+ [60]] 48 kHz Waveform Unconditional Diffusion  2.320 100
AudioSR [62] 48 kHz Mel-VAE Conditional Diffusion 0.948 50
Fre-painter [41] 48 kHz Mel GAN 0.009 1
NVSR [60] 48 kHz Mel GAN 0.033 1

Table 12: Real-time factor (RTF) results on an NVIDIA-A800 under the 48 kHz setting, as well as
several baselines.

(3.073 — 3.144). More importantly, starting the 48—96 kHz super-resolution from a more accurate
low-frequency foundation leads to better high-frequency generation, shown by the LSD-SF (48—
96 Hz) improvement from 1.603 to 1.507.

Although the 48—96 kHz stage may slightly degrade the low-frequency components again, we find
that performing an additional round of low-frequency replacement on the final 96 kHz waveform helps
recover this degradation. As a result, we achieve a comparable overall fidelity in the 0—48 kHz band
(ViSQOL: 3.137 vs. 3.144), confirming the effectiveness of post-processing in both any-to-48 kHz
and cascaded LBMs settings.

E.3 Inference computational cost

To comprehensively evaluate the efficiency, we report the real-time factor (RTF) on an NVIDIA-A800
and several baselines under the 48 kHz setting in Table[12]

It is worth noting that under the 48 kHz setting, although our method is not as fast as GAN-based
approaches such as [60, 41]], due to the iterative sampling nature, it significantly outperforms other
iterative-based methods including [[54]] and the previous state-of-the-art system AudioSR [[62].

When scaling to higher sampling rates (e.g., 192 kHz), it naturally leads to slower inference speeds.
We mitigate this impact by adopting a lighter network architecture (see Appendix G.2), so the
inference speed does not increase linearly with the sampling rate. As shown in Table [I2] even
when upsampling to 192 kHz, our system is still faster than the 48 kHz waveform-domain bridge
system [54].

E.4 Modeling space and other probabilistic methods

To isolate the contribution of the latent-bridge formulation, we conducted additional experiments
using the same speech datasets (OpenSLR [43]], Expresso [75], EARS [86], and VCTK-Train [118]))
for training all models, and evaluated them on the VCTK-Test set. We compare the following variants
without any additional modules, each trained with 500K steps on the any-to-48 kHz setting and tested
on the 8-t0-48 kHz SR setting with 50-step sampling:
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Method Modeling Space SSIM1 LSDJ) LSD-LF| LSD-HF|] SigMOS [87] 1

Diffusion Mel-VAE latent 0.809 0.940 0.486 0.994 2.846
Rectified Flow Mel 0.784 0.816 0.194 0.889 2.792
Bridge Complex STFT 0.809 1.295 0.414 1.401 2951
Bridge Raw waveform 0.660 1.037 0.184 1.101 2.896
Rectified Flow  Ours Wav-VAE latent 0.880 0.751 0.793 0.722 2.892
Diffusion Ours Wav-VAE latent  0.879 0.758 0.806 0.728 2.741
Bridge (Ours)  Ours Wav-VAE latent 0.907 0.742 0.708 0.712 3.095

Table 13: Comparison of different generative paradigms under the 8-to-48 kHz SR setting. All
models are trained on the same datasets for SO0K steps.

Latent Diffusion (on Wav-VAE latents)

¢ Latent Rectified Flow (on Wav-VAE latents)

* Bridge-STFT (based on the Nemo [33] framework)

* Bridge-Waveform (based on Bridge-SR [54])

 Latent Bridge (Ours)
As shown in Table[I3] our latent-bridge model achieves higher SSIM, lower LSD (objective qual-
ity), and better SigMOS (subjective quality), supporting that the latent-domain bridge formulation

contributes significantly to the final performance, even when controlling for model architecture and
training data.

F Inference techniques

In this section, we will discuss the low-pass filtering preprocessing method designed to handle
real-world downsampled data.

F.1 Filtering preprocessing for real-world data

Metric | Chebyl Ellip Bessel Butter

LSD | 0.977 0996 1.193 1.017
LSD-LF | 0.814 0.814  0.811 0.810
LSD-HF | 0.989 1.011  1.236 1.036
SSIM 1 0.693 0.690 0.664  0.686

Table 14: Comparison of different low-pass filters applied for super-resolution inference. Metrics are
reported on 16—48 kHz super-resolution.

Even though we adopt various randomized low-pass filters during training to simulate real-world
low-resolution audio, we empirically find that it is beneficial to additionally apply a low-pass filter
to the upsampled low-resolution waveform during inference. In particular, the filter should ideally
exhibit a sharp roll-off in the frequency domain.

As shown in Table|14] we compare four classical low-pass filters—Chebyshev Type I, Butterworth,
Bessel, and Elliptic—for post-upsampling filtering, and evaluate their effects on 16—48 kHz super-
resolution performance on the ESC-50 test set.

We observe that both the Chebyshev and Elliptic filters lead to better super-resolution results, as
they feature faster attenuation in the stopband. In contrast, Butterworth and Bessel filters exhibit
slower roll-off. We hypothesize that this is because the model may struggle to distinguish whether the
observed high-frequency attenuation originates from the true characteristics of the data or from the
filtering artifacts introduced during preprocessing. In the former case, the model may mistakenly learn
to continue the attenuation trend, which can impair its ability to effectively generate high-frequency
components.
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G Detailed experiment settings

G.1 Training dataset

Sampling Rate ‘ Dataset ‘ Duration ‘ Type
VCTK-train [118]] | 40h Speech
OpenSLR [43] 190h Speech
EARS [86] 100h Speech
Expresso [[75] 20h Speech
48 kHz MusDB18 [82] 10h Music
Medleydb [6]] 10h Music
[InternalMusic] 2000h Music
FSD50K [29] 100h Sound
[InternalSound] 2000h Sound
[InternalMusic] 90h Music
96 kHz [InternalSound] 150h Sound
[InternalMusic] 5h Music
192 kHz [InternalSound] 10h Sound

Table 15: Overview of training datasets used at different sampling rates, including both public and
internal sources.

To support multi-rate audio super-resolution, we curate a diverse set of training datasets spanning
speech, music, and sound domains across three sampling rates: 48 kHz, 96 kHz, and 192 kHz. As
shown in Table As shown in Table We can also observe that high-resolution data becomes
increasingly scarce as the sampling rate increases.

G.2 Model architecture

We adopt the Diffusion Transformer (DiT) architecture as the noise predictor for our bridge model,
following the design of Stable Audio Open [28]]. During training, we employ the Bridge-gmax
schedule, which has been proven effective in previous super-resolution and text-to-speech tasks [54,
14]]. The network architecture and training configurations for the three-stage cascade are detailed
below.

Any-to-48 kHz Stage
Model:

* Depth: 24 layers

* Attention heads: 24

* Hidden dimension: 1152

¢ Scaling factor: 0.25

* Training sample length: 245760 samples (5.12s)

Training: Model:

* Batch size: 128

* Optimizer: Adam with 5; = 0.9, 82 = 0.99
e Learning rate: 1 x 1075

* Weight decay: 0

* Training sample rate range: 2 kHz to 32 kHz
e Bridge g2, = 1.0

* Bridge g2, = 0.001
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48-t0-96 kHz Stage and 96-to-192 kHz Stage
Model:

* Depth: 16 layers

* Attention heads: 16

* Hidden dimension: 1152

* Scaling factor: 1.00

* Training sample length: 245760 samples (5.12s for 96 kHz 2.56s for 192 kHz)

Training:

* Batch size: 128

* Optimizer: Adam with 5; = 0.9, 82 = 0.99

e Learning rate: 1 x 1075

* Weight decay: 0

* Training sample rate range for 48-0-96 kHz: 32 kHz to 96 kHz

* Training sample rate range for 96-to-192 kHz: 64 kHz to 192 kHz
* Bridge g2, = 1.0

* Bridge g2, = 0.001

G.3 Evaluation metrics

Log-Spectral Distance (LSD) Log-Spectral Distance (LSD) [25] is a widely used metric for
evaluating the performance of audio super-resolution methods. Given a signal s and its super-resolved
counterpart §, their Short-Time Fourier Transforms (STFT) are computed as S = STFT(s) and

S = STFT(§), where both .S, S e RFXT with F denoting the number of frequency bins and 7" the

number of time frames. LSD is defined as:
s\
log,q ( e 2)] . (16)
S(f,1)

Here, S(f,t) and S(f,t) denote the spectral magnitude at frequency f and time ¢ for the original
and super-resolved signals, respectively. LSD penalizes spectral discrepancies, and lower values
indicate better perceptual similarity in the frequency domain. To evaluate performance over a specific
frequency band [f1, f2], we define a band-limited version of LSD as:

T

1 1 &
f=1

t=1

oLy R s02\]’
LSD[fl’fQ](S,S)_T; mg;l [bglo(g(f,t)? : (17)

Structural Similarity (SSIM) While LSD is a point-wise spectral metric, Structural Similarity
(SSIM) [113] overcomes its limitations by incorporating structural and contextual information.
Originally designed for perceptual image quality assessment, SSIM compares local statistics of
luminance, contrast, and structure. In the context of audio, we apply SSIM on log-magnitude
spectrograms to capture spectral texture fidelity.

The SSIM score between reference S and super-resolved S'is computed as:

K ((msk pg, +€1)(2Cov(Sk, Sk) + 62))

SSIM(S, S) =
,; (ng, +n% +e)(os, +0% +e2)

(13)

Here, S and Sk denote the k-th local 7 x 7 block in the spectrograms, K is the total number of
blocks, and €; = 0.01, e = 0.02 are stability constants following VoiceFixer [24]. Higher SSIM
values imply better preservation of spectral structure.
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Virtual Quality Objective Listener (ViSQOL) To assess perceptual speech quality in an objective
manner, we adopt the Virtual Speech Quality Objective Listener (ViSQOL) [15], a signal-based
estimator of Mean Opinion Score (MOS) using spectro-temporal similarity.

ViSQOL (in audio mode) assumes a sampling rate of 48 kHz and outputs MOS-LQO scores ranging
from 1 to 4.75, with higher scores indicating better perceptual quality. However, since ViSQOL is
designed for speech and only supports certain sample rates (e.g., 16 kHz), we additionally employ
SigMOS [87] to evaluate speech quality for 48 kHz scenario.

G.4 Subjective experiment

For the subjective listening test, we evaluate super-resolution performance on generative model
outputs from three representative systems: MaskGCT [111], AudioLDM?2 [63]], and QA-MDT [53]],
which represent modern speech generation at 24 kHz and music/sound generation at 16 kHz, respec-
tively.

For speech, we randomly select 10 samples from the LibriSpeech-test set [77] as both the reference
audio and the text prompt for MaskGCT generation. For music and environmental audio, we sample
10 examples each from the MusicCaps [1] and AudioCaps [40]] datasets. To further assess performance
on real-world music, we additionally include 10 music segments from the Song-Describer dataset [68]].
All audio clips are truncated to 5.12 seconds. For each test case, we present three versions to listeners:
the input audio (Generated), the output from AudioSR, and the output from our system (AudioLBM),
yielding a total of 40 groups x 3 samples = 120 audio clips for evaluation.

Participants were presented with 40 randomly ordered groups, each containing the three versions
described above.They were instructed to rate each sample based on a holistic evaluation of fidelity,
clarity, and overall sound quality. Higher scores indicate better perceived quality.

We collected a total of 2400 ratings from 20 participants with diverse backgrounds. We then compute
the average ratings across three domains—Speech, Music, and Audio Effects—as shown in Figure 1 in
the Introduction. The results show that super-resolution consistently improves the perceptual quality
of low-sample-rate audio, confirming the value of upsampling for generative models. Furthermore,
our system outperforms AudioSR across all domains, demonstrating the superior audio quality
enabled by our approach.

H Related works

H.1 Detailed introduction of audio super-resolution baselines

Nu-Wave. Nu-Wave [49] represents the first attempt at applying diffusion models to waveform-
level audio super-resolution. It builds on the WaveNet [106] structure and adopts the DiffWave [44]]
training paradigm to learn mappings from fixed low-resolution audio to 48 kHz waveform. To support
evaluation across various input resolutions, we follow the official implementatiorﬂ and train separate
models for 8 kHz, 12 kHz, 16 kHz, and 24 kHz inputs, each for 1.5 million steps.

Nu-Wave 2. Nu-Wave 2 [49] extends Nu-Wave by incorporating two key innovations: Short-Time
Fourier Convolution (STFC) and Bandwidth Spectral Feature Transform (BSFT). These additions
improve harmonic modeling and allow support for any-to-48 kHz super-resolution. The model
also adopts a fast generation scheme using eight predefined non-uniform sampling steps. For fair
comparison, we use the pre-trained model made available by the authorsﬂ

UDM+. UDM+ [120] retains the DiffWave-based architecture but deviates from Nu-Wave in train-
ing strategy. It uses unconditional diffusion modeling and injects low-resolution signal guidance at in-
ference through a 50-step uniform sampling process with low-frequency component replacement[67]].
Additionally, Manifold Constraint Gradient (MCG) [17] is introduced to better balance low- and
high-frequency consistency during generation.

Shttps://github.com/maum-ai/nuvave
Shttps://github.com/maum-ai/nuwave2
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Bridge-SR. Bridge-SR [54] adapts the Nu-Wave 2 architecture but introduces a key conceptual
shift: instead of sampling from a standard Gaussian prior, the model initializes directly from the
low-resolution input. This bridge formulation allows high-quality any-to-48 kHz SR. Furthermore,
it employs data normalization strategies and frequency-aware loss functions to improve the final
reconstruction quality.

mdctGAN. mdctGAN [96] targets the instability issues of complex-valued neural networks in the
STFT domain by operating in the Modified Discrete Cosine Transform (MDCT) domain. Rather than
relying on post-vocoders, mdctGAN uses adversarial learning to generate high-fidelity waveform
with phase consistency. We evaluate the model using the authors’ official checkpointsﬂ covering four
different input resolutions.

NVSR. NVSR [60] is a neural vocoder-based speech SR system tailored to handle a wide range
of upsampling factors and phase reconstruction challenges. It is composed of three main modules:
(1) a mel-bandwidth extension network based on ResUNet; (2) a TFGAN-powered [105] neural
vocoder; and (3) a post-processing module. We use the official model checkpoint available atﬂfor
our comparisons.

AP-BWE. AP-BWE [65] is the first bandwidth extension system to model the high-frequency phase
explicitly. It leverages a GAN-based framework to jointly predict amplitude and phase spectra using
a dual-stream CNN, where the two branches interact to reconstruct full-band audio from narrowband
speech. Although it does not support arbitrary-resolution inputs, we evaluate the four fixed-resolution
models provided by the authorﬁ

AudioSR. AudioSR [62] is a general-purpose diffusion-based super-resolution model capable of
handling speech, music, and general audio inputs. It performs super-resolution in the latent space
conditioned on low-resolution inputs and uses a two-stage cascade—consisting of a mel-spectrogram
VAE and a vocoder—for waveform reconstruction. Benefiting from strong zero-shot generalization,
we evaluate the model using the official implementatio

FrePainter. Fre-Painter [41] introduces a masked autoencoder (MAE)-based framework for audio
super-resolution. It employs an upper-band masking strategy during fine-tuning to simulate low-
resolution inputs by masking high-frequency components. Additionally, a mix-ratio masking approach
is utilized to enhance robustness across various input sampling rates. The model is pre-trained on
large-scale datasets to learn robust speech representations and is fine-tuned jointly with a neural
vocoder for waveform reconstruction. We evaluate the model using the official implementatio

FlowHigh. FLowHigh [122] proposes an audio super-resolution method based on flow matching,
aiming to overcome the sampling inefficiency of traditional diffusion models. It adopts an inpainting-
style framework similar to AudioSR but constrains the modeling space to Mel-spectrograms. A
lightweight two-layer Transformer [[107] is used as the velocity predictor. To further improve sampling
efficiency, FLowHigh introduces a data-dependent prior instead of a pure Gaussian initialization,
allowing for faster flow-based sampling. We evaluate the model using the official implementatior@

H.2 Cascaded modeling
H.2.1 Audio domain

Audio waveform are continuous and high-dimensional [[64], training a monolithic network to synthe-
size full-band signals is notoriously unstable and tends to lose high-frequency detail [16]. Recent
work therefore favors cascade architectures in which each stage handles a narrower bandwidth or a
simpler representation.

"https://github.com/neoncloud/mdctGAN
$https://github.com/haoheliu/ssr_eval

“https://github. com/yxlu-0102/AP-BWE
https://github.com/haocheliu/versatile_audio_super_resolution
"https://github.com/FrePainter/code
"https://github.com/jjunak-yun/FLowHigh_code
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Text/semantic — audio cascades. Early systems such as Jukebox [23] map a text prompt through
three VQ-VAE tiers—semantic, acoustic and waveform—before decoding; Modsai [93] reduces this
to two latent-diffusion steps. More recent models, including AudioLM, MusicLM, and MusicFlow
[9, 11} 181]], first generate semantic tokens, then refine them into acoustic tokens that a vocoder converts
to the final audio. InspireMusic [[123]] pairs a transformer LM with a flow-based super-resolution
decoder for long-form, high-resolution music, while YuE [121]] uses an LLM-based lyric encoder
followed by a lightweight vocoder, forming a two-stage lyric-to-song pipeline.

Super-resolution cascades. On the SR side, models improve fidelity by letting each block focus
on a limited frequency band: progressive up-sampling GANs (PU-GAN) [16], coarse-to-fine phase
extensions such as MS-BWE [66]], and multi-band diffusion that processes sub-bands in parallel [92].
The work most closely related to ours, Noise-to-Music [36]], cascades two diffusion models (3.2 kHz
— 16 kHz) and uses waveform blurring plus stochastic low-pass resampling to perform cascading
augmentation.

H.2.2 Vision domain

A similar multi-stage processing trend is evident in the vision domain. Cascade-resolution training
progressively feeds the same network with increasingly finer inputs—as seen in models like PixArt-
Y [12] and SANA[116]—enabling a single model to scale seamlessly to generate high-resolution
images.

Text-to-Image cascades. Modern text-to-image generation pipelines often employ cascaded ar-
chitectures, where separate diffusion or autoregressive models operate sequentially at increasing
spatial resolutions. Early examples include CDM [35]], DALL-E 2 [83]], Imagen [90], and Relay-
Diffusion [[104]. More recent advances, such as CogView 3 [127]], Matryoshka Diffusion Model [31],
and FMboost [93]], incorporate hybrid approaches combining diffusion models or flow models.
Pipelines like SDXL [80] enhance the image quality of Stable Diffusion [88]] through explicitly
incorporating multi-resolution enhancement and refinement stages.

Super-resolution cascades. Super-resolution systems built on diffusion models also adopt cascaded
frameworks. Methods such as Inf-DiT [119] and SR3 [91] perform iterative refinement, while Pixel-
Space Laplacian Diffusion [2] leverage successive Laplacian pyramid-based enhancements. Together,
these works confirm that allocating separate generators to coarse layout and fine detail is crucial for
stable training, fast sampling, and high-fidelity ultra-resolution imagery.

I Qualitative results

In this section, we present two subsections of case studies. The first subsection compares the
super-resolution performance of bridge models trained in different representation spaces. The second
focuses on cherry-picked samples from the demo page of A2SB [45]], which provides a strong baseline
for comparison.

I.1 Modeling on different audio spaces

In this section, we compare three bridge models: (1) following Bridge-SR [54], we train a 10.6M-
parameter network based on a large WavNet [106] architecture on our dataset; (2) following NVIDIA-
NeMo [461131 we construct a bridge model directly on the STFT spectrogram, treating each time
frame as a token and modeling it with a DiT (Diffusion Transformer [4]) architecture of 0.3B,
also trained on our dataset; and (3) our proposed any-to-48 kHz AudioLBM system. As shown
in Figure [T2] waveform-based bridge models perform reasonably well on speech data but remain
constrained by limited model capacity. When applied to more diverse content such as music and
sound effects, these models fail to generalize, resulting in blurred high-frequency components and
weak spectral energy. In contrast, STFT-based models can roughly capture the relationship between
low and high frequencies; however, the high-frequency details remain overly smooth, and harmonic
structures are not well preserved—often leading to visible spectral discontinuities. Our proposed

Phttps://github.com/NVIDIA/NeMo
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Waveform STFT Wav-VAE latent Ground Truth

Figure 12: Super-resolution results for bridge models on different modeling spaces.

AudioLBM demonstrates better generalization across all domains, yielding richer spectral detail and
more consistent energy distribution across the frequency spectrum.

I.2 Comparison with cherry-picked samples vs. our non-cherry-picked results

In this section, we present a qualitative comparison across five representative super-resolution
baselines on the 8 kHz to 48 kHz task: AudioSR [62]], A2SB [45]], re-implemented 48 kHz version
of Audit, CQTDiff [[72] form from A2SB [41]], and our proposed method. As shown in Figure

Input

Figure 13: Qualitative comparison from A2SB’s demo page.

our method clearly outperforms other latent-representation-based approaches such as AudioSR and
Audit, producing more complete, harmonic-rich, and structurally coherent high-frequency content. In
contrast, direct data-space methods like A2SB and CQTDiff tend to generate overly smooth outputs
with blurred high-frequency regions and fail to reconstruct clear harmonic patterns—especially visible
in the blue box in the leftmost example.
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Input AudioSR Ours Ground Truth

Figure 14: Additional comparison with AudioSR.

1.3 Additional Comparison

As shown in Figure[14] we further compare eight 16 kHz to 48 kHz super-resolution samples between
our method and AudioSR. It can be observed that AudioSR, which performs spectral completion in the
latent space, often produces excessively strong high-frequency components or misalignments between
high- and low-frequency regions. This suggests a limited ability to leverage the low-frequency cues
present in the input.

Additionally, due to the use of multi-stage cascading compression network in AudioSR, fine spectral
detail is often smoothed out, resulting in overly blurred outputs. In contrast, our method aligns
more closely with the ground truth and maintains strong coherence across the full frequency range.
Moreover, thanks to the any-to-any training paradigm, our system can consistently generate full-
bandwidth 48 kHz outputs, whereas AudioSR occasionally fails to fully reconstruct the high-frequency
spectrum.
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