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ABSTRACT

Graph neural networks follow an iterative scheme of updating node representa-
tions based on the aggregation from nearby nodes known as the message passing
paradigm. Although they are widely used, it has been established that they suffer
from a problem of over-squashing that limits their efficiency. Recently, it has been
shown that the bottleneck phenomenon comes from certain areas of the graphs,
which can be identified by a measure of edge curvature. In this paper, we propose
a framework appropriate for any MPNN architecture that distributes information
based on the curvature of the graph’s edges. Experiments conducted on different
datasets show that our method mitigates over-squashing and outperforms existing
graph rewiring methods in several node classification datasets.

1 INTRODUCTION

Graph representation learning is a rapidly expanding research field that focuses on the development
of versatile methods for effectively learning representations from graph-structured data (Goller
& Kuchler, 1996) (Gori et al., 2005) (Scarselli et al., 2008) (Bruna et al., 2014). The majority
of Graph neural networks GNNs are based on the message passing paradigm (Gilmer et al.,
2017), in which the information is propagated by the iterative exchange of information (messages)
between neighboring nodes to update their representations. This process is typically performed
over multiple iterations and/or layers. The message passing paradigm is effective in capturing the
relational information and structural patterns within graph-structured data. It enables GNNs to learn
expressive representations that are sensitive to the connectivity and interactions among nodes in a
graph. GNNs have been successful in various domains, including chemistry, information retrieval,
social network analysis, and knowledge graphs, due to the wide variety of features that a graph can
model (Wu et al., 2020). These architectures have produced very interesting results when it comes
to solving tasks at the node, graph, or edge level (Xiao et al., 2022) (Errica et al., 2020) (Zhang &
Chen, 2018).

Despite their widespread use, it has been shown that GNNs can face a variety of issues under certain
conditions, specifically in heterophilic environments (Zhu et al., 2020) (Platonov et al., 2023),
when the neighboring nodes tend to have different labels. Other works have highlighted that GNNs
suffer from a limited ability to model long-range interactions (Alon & Yahav, 2021). Popular GNN
architectures such as Graph Convolutional Networks (GCN) (Kipf & Welling, 2017) and Graph
Attention Networks (GAT) (Veličković et al., 2018) can only share information between nodes at a
distance that depends on the number of layers in the architecture: for a node i to be able to exchange
information with a node j ∈ Nk(i), we need to stack at least k layers. Therefore, a naive approach
to address this issue consists of increasing the number of layers.

However, this process leads to two well-known problems for GNN. First, the phenomenon of
over-smoothing which arrives when the message passing is carried out in an excessive way. In this
case, all the features of the nodes are going to be similar wich leads to a deterioration in results
Oono & Suzuki (2020) Cai & Wang (2020). Second, as the number of layers in a GNN grows,
information from exponentially growing receptive fields must be propagated concurrently at each
message-passing step, leading to a bottleneck that causes over-squashing (Alon & Yahav, 2021).
In this case, spreading information locally is not enough. To overcome this problem, GNNs must
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be able to incorporate additional global graph features in the process of learning representations.
Another popular approach is to rewire the input graph to improve the connectivity and avoid
over-squashing. Recently, it has been shown that the local structural properties of a graph, like edge
curvature, play an essential component in the spread of knowledge about the graph (Topping et al.,
2022).

Main Contributions This paper presents a new framework for any MPNN architecture to prevent
over-squashing. The main contributions are:

• We present a new measure of homophily based on edge curvature that allows us to better
model the community behavior of a neighborhood.

• Motivated by this metric we propose a new MPNN model (curvature-constrained message
passing) that leverages the curvature of the edges to guide learning by dissociating edges
with positive and negative curvature. We propose different variants of this model, each
one based on a different way of propagating the information: only on edges with negative
curvature, positive curvature, or a combination of both. We also propose two- or one-hop
propagation strategies that are bound to the curvature.

• We empirically demonstrate a performance gain on heterophilic datasets and we show that
using a curvature message passing attenuates over-squashing.

2 RELATED WORK

2.1 MESSAGE PASSING NEURAL NETWORKS

The success of deep learning in the Euclidean domain prompted a great interest to generalize neural
networks to non-Euclidean domains e.g. graphs. Let G = (V,E) be a simple, undirected, and
connected graph with node features hi ∈ Rd, i ∈ V . N (i) represents the set of neighbors of node i.

The main objective of the message passing approach is to iteratively find an effective node embed-
ding that captures context and neighborhood information (Gilmer et al., 2017). The message passing
technique consists of two phases which iteratively apply the AGGREGATE and UPDATE func-
tion to compute embeddings hℓ

i at the layer ℓ based on message m
(ℓ)
i containing information on

neighbors :

m
(ℓ)
i = AGGREGATE(ℓ)

(
h
(ℓ−1)
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i =

∑
j∈N (i)

hℓ
j√

|N (i)||N (j)|
while for GAT (Veličković et al.,
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where || stands for concatenation. This score is parameterised by z(l) and W(l), respectively a weight
vector and a linear transformation.

As classical MPNNs only send messages along the edges of the graph, this will prove particularly
interesting when adjacent nodes in the graph share the same label (homophilic case). On the other
hand, working in a heterophilic environment with classical MPNNs can leads to low performance
(Zheng et al., 2022). Indeed one of the main drawbacks of classical MPNNs is to rely only on
one-hop message propagation. Additional layers must be stacked to capture non-local interactions.
However, this leads to over-squashing discussed in the section 2.3.
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2.2 GRAPH CURVATURE

As for a manifold, the notion of curvature is a good
way to classify the local behavior of a graph. Dis-
crete graph curvature describes how the neighbors
of two nodes are structurally connected. Forman
(2003) and Ollivier (2007) were the first to propose
a measure of discrete graph curvature. Numerous
studies have demonstrated the usefulness of edge
curvature for various graph tasks. For instance (Jost
& Liu, 2014) (Ni et al., 2019) (Sia et al., 2019) use
Ollivier curvature for community detection.
Ye et al. (2019) have defined Curvature Graph Neu-
ral architecture which calculates an attention mech-
anism based on Ollivier curvature. They demon-
strate the benefits of such an architecture for the task
of node classification. More recently, Jost & Liu
(2014) and Topping et al. (2022) proposed exten-
sions to Forman’s curvature to improve its expres-
siveness. Topping et al. (2022) demonstrate the cor-
relation between edge curvature and over-squashing
phenomenon. In this paper, we focus on Ollivier
curvature (Ollivier, 2007) and on Augmented For-
man Curvature as detailed in Section 3.1.

Figure 1: In red, edges with positive curva-
ture,connect nodes in the same community,
and in blue, edges with negative curvature
connect nodes in different communities.

2.3 OVER-SQUASHING

Long-range tasks need the propagation of information across several levels. The node representa-
tions are aggregated with others at each stage before being passed on to the next node. Because the
size of the node feature vectors remains constant, they rapidly exhaust their representational capac-
ity in order to retain all of the previously integrated information. When an exponentially expanding
quantity of information is squashed into a fixed-size vector, over-squashing happens (Alon & Yahav,
2021).

To quantify this phenomenon, some approaches exploit the spectral gap (Banerjee et al., 2022)
(Karhadkar et al., 2023), which is closely linked to the Cheeger constant (Chung & Graham, 1997).

Ch(G) = min
1≤|S|≤ |V |

2

|∂S|
|S|

, (2)

With S ⊂ V and where ∂S = {(i, j) : i ∈ S, j ∈ S, (i, j) ∈ E}
If Cheeger’s constant is small, there is a bottleneck structure in the sense that there are two large
groups of vertices with few edges connecting them. Cheeger’s constant is large if a feasible vertex
split into two subsets has ”many” edges between these two subsets.

Calculating the precise value of Ch(G) is too costly. The discrete Cheeger inequality Alon &
Milman (1984) Cheeger (1970) shows the link between the spectral gap and the Cheeger constant.
We denote A the adjacency matrix and D the diagonal degree matrix and let L = I−D−1/2AD−1/2

be the normalized Laplacian of G. The spectral gap of G is the difference between the first two
eigenvalues λ2 - λ1 of L with λ1 = 0.

λ2

2
≤ Ch(G) ≤

√
2λ2 (3)

To mitigate the over-squashing phenomenon different works have proposed various methods to im-
prove the local connectivity of the graph.
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Rewiring methods Most methods address over-squashing by rewiring the input graph i.e. mod-
ifying the original adjacency matrix such that it has fewer structural bottlenecks. Alon & Yahav
(2021) were the first to highlight the problem of GNN over-squashing. They propose to modify the
GNN’s last layer in order to connect all of the nodes. Topping et al. (2022) shows that the highly
negatively curved edges are characteristic of the bottleneck phenomenon and therefore disrupt mes-
sage passing. They propose a stochastic discrete Ricci Flow (SDRF) rewiring approach, which tries
to raise the balanced Forman curvature of negatively curved edges by adding and removing edges.
Karhadkar et al. (2023) propose an algorithm (FOSR) for adding edges at each step to maximize the
spectral gap. Because calculating the spectral gap for each edge addition is costly, FOSR employs a
first-order spectral gap approximation based on matrix perturbation theory.
Without the direct objective of reducing the phenomenon of over-squashing, other methods such
as Klicpera et al. (2019) modify the adjacency matrix to improve the connectivity of the graph
(DIGL). This method adds edges based on the PageRank algorithm, followed by sparsification. As
PageRank works using random walks, DIGL tends to improve the connectivity among nodes in the
intra-community parts of the graph.

Master node Another way to reduce over-squashing consists of the introduction of a sort of
”global context” by introducing a master node. This node is connected to all other nodes in the
graph (Battaglia et al., 2018) (Gilmer et al., 2017). Since the hop distance between all other nodes
is at a maximum of two, the reduction of over-squashing is assured (except for the master node).
However, in large graphs, incorporating information over a very large neighborhood leads to poor
quality of the master node embedding.

Expander Graphs Deac et al. (2022) adopt a strategy based on expander graphs, adding to the
GNN a layer based on a Cayley graph of the same size as the original input graph. These graphs have
some desirable properties, such as being sparse and having a low diameter. The smaller diameter
means that any two nodes in the graph can be reached in a reduced number of hops, which removes
bottlenecks.

3 CURVATURE MESSAGE PASSING

3.1 OLLIVIER CURVATURE

We propose to use two notions of curvature on edges for information diffusion : Ollivier curvature
and the Augmented Forman Curvature (Samal et al., 2018). We recall the definition of the Ollivier
curvature. Let’s define a probability distribution µi over the nodes of the graph in such a way we
apply to each node i a lazy random walk probability measure α :

µi : j 7→

{
α if j = i

(1− α)/di if j ∈ N (i)
0 otherwise

, (4)

Following previous work (Ni et al., 2015) (Ni et al., 2018) we choose α = 0.5. We then consider
the Wasserstein distance of order 1, W1(i, j), corresponding to the optimal transport of probability
masses from i neighbors to j neighbors.

W1 (µi, µj) = inf
α∈Π(µi,µj)

∑
i,j∈V

dist (i, j)M (i, j) (5)

where Π(µ1, µ2) denotes the set of probability measures with marginals µi and µj . where M (i, j)
is the amount of mass moved from i to j along the shortest path of i and j. Finally, the Ollivier
curvature cij of an edge eij can be defined as :

cij = 1− W1 (µi, µj)

dist (i, j)
, (6)

where dist(i, j) is the shortest path beetween node i and node j.
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3.2 AUGMENTED FORMAN CURVATURE

The curvature measure proposed by Samal et al. (2018) proposes to extend Forman’s curvature
taking into account the triangles in the graph to make it more expressive

For an undirected graph
cij = 4−Dii −Djj + 3m (7)

where m is the number of triangles contained in eij.

3.3 CURVATURE-CONSTRAINED HOMOPHILY

The homophily of a graph has a determining role in the efficiency of architectures on a node clas-
sification task. Many homophily measures exist in literature (Pei et al., 2020) (Zhu et al., 2020)
(Lim et al., 2021) (Platonov et al., 2022); the most commonly used are node homophily Pei et al.
(2020) which computes the average of the proportion of neighbors that have the same class y for
each node and edge homophily β Zhu et al. (2020) which corresponds to the fraction of edges that
connect nodes of the same class:

β =
|{(i, j) : (i, j) ∈ E ∧ yi = yj}|

|E|

The main limitation of this measure is that it doesn’t fully capture the local structural characteristics
of the graphs. Therefore, we propose a new measure of homophily that takes into account the
curvature of edges such that:

β+ =
|{(i, j) : (i, j) ∈ E+ ∧ yi = yj}|

|E+|

Where E+ is the set of edges (i, j) such that cij ≥ ϵ. β− is conversely defined using E−, the set
of edges (i, j) such that cij < ϵ. A high value for the positive curvature homophily means that the
fraction of edges that connect nodes within the same community tend to have the same label.

The values of β+ and β− obtained for the datasets are shown in Table 6 (see Table 2 for the details
of the datasets). We consider the Ollivier-curvature-constrained homophily, so we fix ϵ = 0, for
one-hop and two-hop neighborhoods. We also provide the max homophilic gain relative to the
initial metrics (Zhu et al., 2020). Note that Augmented Forman-curvature-constrained homophily is
provided at appendix A.2.

Dataset β β+ β− 2-hopβ+ 2-hopβ− Max Homophilic Gain -

Heterophilic

Squirrel 0.23 0.28 0.29 0.25 0.29 25%
Chameleon 0.26 0.29 0.28 0.32 0.23 24%

Texas 0.31 0.44 0.43 0.59 0.47 92%
Wisconsin 0.36 0.44 0.50 0.49 0.38 37%

Cornell 0.34 0.48 0.46 0.37 0.40 40%
R-empire/ 0.29 0.40 0.48 0.05 0.07 65%

Actor 0.32 0.73 0.32 0.32 0.21 131%

Homophilic

Cora 0.84 0.95 0.83 0.91 0.74 11%
Citeseer 0,81 0.86 0.84 0.80 0.75 6%

Photo 0.84 0.94 0.73 0.94 0.54 12%
Computers 0.78 0.93 0.70 0.94 0.59 20%

Table 1: Comparison of edge homophily measures. The last column reports the max gain in ho-
mophily obtained by using the curvature-constrained edge homophily as opposed to edge homophily.

For homophilic datasets, we notice that β+ ≥ β ie the intra-community nodes of the graph tend
to have more similar labels (positive curvature edges) than inter-community (negative curvature
edges) ones. For heterophilic datasets, using positively curved edges does not improve homophily.
According to (Zhu et al., 2020), for heterophilic graphs, the 2-hop is more homophilic than the 1-
hop. However, we can observe that according to the curvature-constrained edge homophily using a
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two-hop neighborhood is only greater for small datasets ie WebKB dataset. Finally, it can be noted
that the negative curvature homophily is generally higher than the initial metrics for heterophilic
datasets.

3.4 CURVATURE-CONSTRAINED MESSAGE PASSING

Based on the previously introduced curvature-constrained homophily measures, we propose to dis-
sociate the spread of information in the graph based on the Ollivier curvature of the graph edges.
We consider diffusions for both one-hop and two-hop connectivity (see the examples in Figure 2).

A B C D

Figure 2: On the left a classic message passing for the first (A) and second layers (B) starting from
a given node i. On the right an example of one-hop positive curvature (C) and two-hop positive
curvature (D) message passing. The message is propagated not only to the adjacent nodes but also
to those at distance two along positively curved edges i.e following a chain of positively curved
edges of size 2.

We propose to extend the aggregation part of the classic MPNNs 1 :

Curv+mi

(ℓ) = AGGREGATE(ℓ)
({

h
(ℓ)
j : j ∈ N+(i)

})
hℓ
i = UPDATE(ℓ)

(
h
(ℓ−1)
i , Curv+mi

(ℓ)
) (8)

Where N+ represents the neighborhood of nodes that are connected by a positively curved edge to
i. Similarly, Curv−mi

is defined in the same way by considering N− instead of N+.

Propagating information through the curvature of edges offers greater flexibility in learning repre-
sentation. For a two-layer GNN, we can either only exchange information on edges with negative
or positive curvature i.e. using one curvature adjacency matrix, or first broadcast information on
edges with positive and then negative curvature, or using both curvature adjacency matrix for the
two different layers.

One-hop curvature We eliminate either the edges with negative curvature or the positive edges,
thereby simplifying the graph’s connectivity. In this case W1 (µi, µj) of equation 5 decreases; there-
fore the number of edges which are strongly negatively curved (Topping et al., 2022), responsible
for bottlenecks, is reduced. In addition, sparsifying the graph has several advantages, (1) helps to re-
duce oversmoothing (Rong et al., 2019), (2) we drastically reduce the diameter of the graph, thereby
reducing the number of hops needed to join two nodes also helps to prevent over-squashing (Deac
et al., 2022). We show empirically that the use of one-hop is beneficial in limiting bottlenecks by
noticing an increase in the normalized spectral gap after rewiring.

Two-hop curvature Using a neighborhood with multiple hops allows us to mitigate the limitation
of classical MPNNs where nodes can only communicate through direct neighbors. Indeed by den-
sifying the graph with multiple hops, we can now transmit information directly with distant nodes
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(Brüel-Gabrielsson et al., 2022)(Abboud et al., 2022). This procedure eliminates the requirement to
repeat messages across powers of the adjacency matrix thereby reducing the risk of over-squashing
(Topping et al., 2022). However, depending on the size of the graph, this can considerably increase
the computational cost of the (Gutteridge et al., 2023) method. By working only on a two-hop neigh-
borhood according to a certain curvature of the edges, it is possible to limit the densification of the
graph and therefore to reduce the computational cost of the two-hop while facilitating the exchange
of information between the distant nodes.

Using one-hop and two-hop curvature on layers Remember that if the distance k between nodes
i and j is greater than one, their interaction occurs only at the kth layers. For two-layer GNNs, using
a one-hop and then a two-hop curvature between layers allows for faster interaction between distant
nodes. This procedure restricts dynamic rewiring message passing (Gutteridge et al., 2023) to only
positive or negative curvatures. Using this framework, as demonstrated in (Gutteridge et al., 2023),
helps mitigate over-squashing. Restricting this process also addresses one of the paper’s limitations,
which is that it can only be used for very deep GNN models.

Positive curvature adjacency matrix Diffusing information only on edges with positive cur-
vature allows information to be exchanged only within the communities of the graph. Based on
the curvature-constrained homophily used positive curvature adjacency matrix can be useful on ho-
mophilic datasets.

Negative curvature adjacency matrix As discussed by Deac et al. (2022) working with neg-
atively curved edges may seem counterintuitive in relation to the recommendation to avoid nega-
tively curved edges (Topping et al., 2022). We confirm the results of Deac et al. (2022) by showing
empirically that diffusing information through negatively curved edges improves performance and
mitigates the oversquashing phenomenon.

4 EXPERIMENTS

4.1 DATASETS

We carry out experiments on eleven different datasets for the node classification task of which 7
heterophilic datasets Tang et al. (2009) Rozemberczki et al. (2021)Platonov et al. (2023) and 4
homophilic datasets McAuley et al. (2015) Sen et al. (2008). More details are provided in appendix
A.1. The dataset statistics are described in Table 2. We also note the construction time of the
curvature matrix according to Ollivier and augmented Forman (AF) (in seconds).

Dataset # Nodes # Edges # Classes # Olliver time # AF-Forman time
Squirrel 5021 217073 5 ≈ 836 ≈202
Chameleon 2277 36101 5 ≈ 11 ≈9
Texas 181 309 5 ≈ 1 ≈1
Wisconsin 251 499 5 ≈ 1 ≈1
Cornell 181 295 5 ≈ 1 ≈1
Roman-empire 22662 32927 18 ≈ 75 ≈2
Actor 7600 33544 5 ≈ 15 ≈ 4
Citeseer 3 312 4 715 6 ≈ 3 ≈ 1
Cora 2 708 5 429 7 ≈ 2 ≈ 1
Computers 13752 245861 10 ≈ 287 ≈ 135
Photo 7650 119081 8 ≈ 61 ≈34

Table 2: Description of datasets

4.2 BASELINE

We compare our method with four other methods based on rewiring techniques. We provide the
results of FA Alon & Yahav (2021) which rewires only the last layer, DIGL (Klicpera et al., 2019)1,

1https://github.com/gasteigerjo/gdc
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SDRF(Topping et al., 2022)2 and FOSR(Karhadkar et al., 2023)3.
We use the hyperparameters that has been defined in the original publication and fine-tune the num-
ber of iterations. For DIGL we fine tune top k for {8, 16, 32, 64, 128} and {0.05, 0.1, 0.15} for the
personalized PageRank (Page et al., 1998).

4.3 SETUP

For the experiments we use the same framework as (Pei et al., 2020) to evaluate the robustness of
each method. Thus, we fix the number of layers to 2, the dropout to = 0.5, learning rate to 0.005,
patience of 100 epochs, weight decay of 5E−6 (Texas/Wisconsin/Cornell) or 5E−5 (other datasets).
The number of hidden states is 32 (Texas/Wisconsin/Cornell), 48 (Squirrel/ Chameleon/Roman-
Empire), 32 (Actor) and 16 (Cora/Citeseer) except for Amazon Photo and Computers where the
hidden states is 64 and we use a learning rate of 0.01 following the usual framework presented in
(Shchur et al., 2018).
We use the two most popular GNNs, GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018)
as a basis and compare the different methods for rewiring the input graph.
For all the graphs datasets we take a random sample of nodes of 60% for training, and 20% for
validation and 20% for testing. We report the average accuracy of each method on 100 random
samples.

Curvature-Constrained Message Passing (CCMP) configuration Depending on the curvature
method, we use different configurations for the datasets. As the measure of Olliver’s curvature is
bounded, we consider an adjacency matrix curved negatively/positively respectively in such a way
that eij ≤ 0 and eij ≥ 0. For the augmented Forman curvature measure we consider an adjacency
matrix curved negatively/positively respectively in such a way that the curvature is less/more im-
portant than the average of the curvature of the edges on the graph. Details of the adjacency matrix
types for the different datasets are presented in appendix A.3. We designate the use of the Olliver
curvature with CCMPO and the augmented Forman curvature with CCMPA.

4.4 RESULTS

Backbone Method Cora Citeseer Amazon Photo Amazon Computers

GCN

None 87.73 ±0.25 76.01 ±0.25 89.89 ±0.37 80.45 ±0.56
DIGL 88.22 ±0.28 76.18 ±0.34 90.31 ±0.43 83.04±0.43

FA 29.86 ±0.28 22.31 ±0.34 OOM OOM
SDRF 87.73 ±0.31 76.43 ±0.32 ≥ 48H ≥ 48H
FOSR 87.94±0.26 76.34 ±0.27 90.24 ±0.31 80.78 ±0.43

CCMP0 87.34 ±0.29 76.68 ±0.28 89.94 ±0.29 81.66 ±0.47
CCMPA 85.60 ±0.37 75.76 ±0.39 90.31 ±0.38 81.84±0.45

GAT

None 87.65 ±0.24 76.20 ±0.27 88.76 ±0.39 80.72(2.5) ±0.53
DIGL 88.31 ±0.29 76.22 ±0.34 90.32±0.46 83.28 ±0.49

FA 30.44 ±0.26 23.11 ±0.32 OOM OOM
SDRF 88.11 ±0.28 76.26 ±0.31 ≥ 48H ≥ 48H
FOSR 88.13 ±0.27 75.94±0.32 90.12 ±0.41 80.78

CCMPO 84.59±0.30 76.44±0.33 89.47 ±0.37 81.41 ±0.47
CCMPA 86.16 ±0.32 75.88 ±0.44 89.88 ±0.22 81.96 ±0.51

Table 3: Experimental results on homophilic datasets. Best score in bold and second best score
underlined.

Tables 3, 4 and 5 show the results of our experiments. The rewiring approaches to limit over-
squashing SDRF, FORSR, and CCMP produce quite comparable results for homophilic datasets.
Indeed in such datasets nearby neighborhood information is sufficient to achieve good performance.
DIGL tends to improve connectivity between nodes with short diffusion. As a result, DIGL’s su-
perior performance can be explained by the fact that it will add positively curved edges. This

2https://github.com/jctops/understanding-oversquashing/tree/main
3https://github.com/kedar2/FoSR/tree/main
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Base (GCN) DIGL FA SRDF FOSR CCMPo CCMPa

Cham. 65.35±0.54 54.82 ±0.48 26.34 ±0.61 63.08 ±0.37 67.98 ±0.40 63.22 ±0.45 65.66 ±0.44
Squir. 51.30±0.38 40.53 ±0.29 22.88 ±0.42 49.11±0.28 52.63 ±0.30 53.36 ±0.22 54.79 ±0.31
Actor 30.02±0.22 26.75 ±0.23 26.03±0.30 31.85 ±0.22 29.26±0.23 33.57±0.22 34.59±0.24
Texas 56.19 ±1.61 45.95 ±1.58 55.93 ±1.76 59.79 ±1.71 61.35 ±1.25 64.67 ±1.81 69.67 ±1.64
Wisc. 55.12±1.51 46.90 ±1.28 46.77±1.48 58.49 ±1.23 55.60 ±1.25 66.40 ±1.24 67.80 ±1.49
Corn. 44.78 ±1.45 44.46 ±1.37 45.33±1.55 47.73 ±1.51 45.11 ±1.47 58.91 ±1.82 58.54 ±1.57

R-emp. 51.66 ±0.17 53.93 ±0.14 OOM 52.53 ±0.13 52.38 ±0.21 58.58 ±0.14 58.91 ±0.19

Table 4: Experimental results on heterophilic datasets with GCN as backbone. Best score in bold
and second-best score underlined.

Base (GAT) DIGL FA SRDF FOSR CCMPo CCMPa

Cham. 65.07 ±0.41 56.34 ±0.43 27.11 ±0.56 63.15±0.44 66.61 ±0.45 63.09 ±0.52 65.59 ±0.43
Squi. 50.87 ±0.56 41.65 ±0.68 21.49 ±0.71 50.36 ± 0.38 52.02 ±0.43 51.82 ±0.32 54.74 ±0.52
Actor 29.92 ±0.23 31.22 ±0.47 28.20 ±0.51 31.47 ±0.25 29.73 ±0.24 33.23 ±0.22 34.23 ±0.23
Texas 56.84 ±1.61 46.49 ±1.63 56.17 ±1.71 57.45 ±1.62 61.85 ±1.41 71.78 ±1.39 70.65 ±1.36
Wisc. 53.58 ±1.39 46.29 ±1.47 46.95 ±1.52 56.80 ±1.29 54.06±1.27 65.77±1.32 68.59 ±1.41)

Cornell 46.05 ±1.49 44.05 ±1.44 44.60 ±1.74 48.03 ±1.66 48.30±1.61 60.43 ±1.47 59.81 ±1.49
R-Emp. 49.23 ±0.33 53.89 ±0.16 OOM 50.75 ±0.17 49.54 ±0.31 57.36 ±0.19 56.78 ±0.39

Table 5: Experimental results on heterophilic datasets with GAT as backbone. Best score in bold
and second-best score underlined.

rewiring process allows for the improvement of homophily on homophilic datasets illustrated by
our curvature-constrained measure β+.

Tables 4 and 5 show that for 6 among 7 heterophilic datasets our method achieves the best results. Of
all these datasets on average, CCMPO and CCMPA outperforms the original adjacency matrix with
a base of GCN and GAT by 14.24% and 16.55%. Note that SRDF, FOSR, and CCMP outperform
DIGL on heterophilic datasets because neighboring nodes tend to have different labels.

Here we present some results based on CCMPO. According to (Topping et al., 2022), we are inter-
ested in the original graphs’ strongly negatively curved edges. After removing these edges in Wis-
consin and Cornell’s datasets, the first deciles of the curvature change from −0.33, −0.33, −0.25 in
the original adjacency matrix to +0.37, +0.33, +0.06 in the two hop negatively curved adjacency
matrix.
Using a one-hop curvature allows to reduce the size of the graph. Consequently, on Squirrel, Actor,
and Roman-Empire, the computational cost is reduced from 10% to 40%. Besides, the fact that the
normalized spectral gap increases from 5% to 87% on these datasets shows that using a one-hop
curvature allows to mitigate over-squashing.

5 CONCLUSION

In this paper, we present a method, that can be applied to any MPNN architecture, to distribute
messages according to the curvature of the graph’s edges. This allows to mitigate over-squashing,
one of the main drawbacks of classical MPNN architectures. Taking into account a new curvature-
constrained homophily measure, we developed various variants of the method to propagate the in-
formation along curved edges: propagation along negative or positive edges, with one or two hops.
The experiments show a significant improvement over comparable state-of-the-art methods based
on rewiring, empirically proving the utility of curvature-based constraining of message passing for
the reduction of bottlenecks. In future works, we plan to consider other curvature measures. We will
also study the effect of using very deep GNN models with different curvature adjacency matrices
for long-range graph benchmarks.
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A APPENDIX

A.1 DATASETS

In this section, we present the dataset information for the experiments.

WebKB: in this dataset, nodes represent web pages, and edges are hyperlinks between them. Node
features are the bag-of-words representation of web pages.

Actor: Each node corresponds to an actor, and one edge between two nodes denotes co-occurrence
on the same Wikipedia page (Tang et al., 2009). Node features correspond to some keywords in the
Wikipedia pages.

Wikipedia network. Nodes represent web pages and edges are mutual links between pages (Rozem-
berczki et al., 2021). Node features correspond to informative nouns in the Wikipedia pages.

Roman-empire. Graph-of-Words: each node corresponds to one word from the Roman Empire
article from English Wikipedia Platonov et al. (2023). Two words are connected with an edge if
either these words follow each other in the text, or these words are connected in the dependency tree
of the sentence.

Scientific publication networks. Cora and Citeseer datasets Sen et al. (2008) describe citations to
scientific publications. Each publication is described by a one-hot vector indicating whether a word
is absent/present in the publication abstract.

Amazon. An extract of the Amazon purchase graph McAuley et al. (2015), where nodes represent
goods, and edges indicate whether two goods are frequently purchased together. The features are
the bags of words of the product descriptions.

A.2 DETAILS ABOUT CURVATURE-CONSTRAINED HOMOPHILY

Here we specify the details of the Curvature-Constrained homophily used in the experiments for our
rewiring methods for layers 1/2.

Dataset β β-CCMPO β-CCMPA

Heterophilic

Squirrel 0.23/0.23 0.28/0.28 0.26/0.26
Chameleon 0.26/0.26 0.29/0.32 0.32/0.32

Texas 0.31/0.31 0.47/0.47 0.56/0.56
Wisconsin 0.36/0.36 0.38/0.38 0.42/0.42

Cornell 0.34/0.34 0.40/0.40 0.39/0.39
R-empire/ 0.29/0.29 0.48/0.48 0.33/0.33

Actor 0.32/0.32 0.73/0.73 0.64/0.64

Homophilic

Cora 0.84/0.84 0.83/0.95 0.84/0.98
Citeseer 0.81/0.81 0.84/0.86 0.89/0.89

Photo 0.84/0.84 0.94/0.94 0.89/0.89
Computers 0.78/0.78 0.93/0.93 0.83/0.83

Table 6: Comparison of edge homophily measures. The last column reports the max gain in ho-
mophily obtained by using the curvature-constrained edge homophily as opposed to edge homophily.

A.3 DETAILS OF CONFIGURATION FOR CCMPO AND CCMPA

The optimal configurations for CCMPO is: (1) for Cora and Citeseer, for the first layer a one-hop
negatively curved adjacency matrix and for the second layer a one-hop positively curved adjacency
matrix, (2) for small datasets like Texas, Wisconsin and Cornell, a two-hop negatively curved ad-
jacency matrix for both layers. (3) for Squirrel and Roman-Empire datasets, a negatively curved
one-hop adjacency matrix on two layers, (4) for Actor and Amazon computers, a positive one-hop
adjacency matrix on two layers, (5) for Chameleon and Amazon photo, for the first layer a one-hop
positive adjacency matrix and for the second layer a two-hop positive adjacency matrix.

For CCMPA: (1) Chameleon, Squirrel, Citeseer, Amazon Computers, Photo we use a positive one-
hop adjacency matrix on two layers, (2) For Actor and Romain-empire we use a negatively curved

10
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one-hop adjacency matrix on two layers, (3) For the other datasets the configuration is the same as
for the CCMPO.
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