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Abstract
Test-time scaling in agentic tasks often relies on generating long reasoning traces
(“think” more) before acting, but this does not allow agents to acquire new informa-
tion from the environment or adapt behavior over time. In this work, we propose
scaling test-time interaction, an untapped dimension for test-time scaling that in-
creases the agent’s interaction horizon to enable rich behaviors such as exploration,
backtracking, and dynamic re-planning within a single rollout. To demonstrate
the promise of this scaling dimension, we situate our study in the domain of web
agents. We first show that even prompting-based interaction scaling can improve
task success on web benchmarks non-trivially. Building on this, we introduce TTI,
a curriculum-based online reinforcement learning (RL) approach that trains agents
by adaptively adjusting their interaction lengths during rollout. Using a Gemma 3
12B model, TTI sets a new state-of-the-art among open-source agents trained on
public data on WebVoyager and WebArena.

1 Introduction

Figure 1: We propose a new-axis of test-time scaling for agents: scaling the number of interaction steps.
Unlike traditional methods that emphasize longer reasoning per step, we show that acting more helps gain new
information from the environment and improve task performance (detailed results of the left plot in Section 4.2).

Recent advances in foundation models have enabled a shift from static language models to interactive
agents that perform multi-step tasks in dynamic environments like browsers [1–6], terminals [7], and
the physical world [8–13]. These agents operate in closed-loop settings where each action changes the
current state of the world and affects future interaction with the environment. As a result, interactive
agents must plan under uncertainty and adapt to failures in real time to be successful. How can we
build agents that succeed in such interactive settings?
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Current post-training approaches produce reactive agents that respond to immediate observations
but struggle with evolving or uncertain task dynamics. Methods like supervised fine-tuning (SFT) on
expert demonstrations [14–18] or reinforcement learning (RL) with task rewards [19–23] typically
train agents to predict a single best action at each step. Even with test-time scaling, where agents
are prompted to “think” longer before prescribing an action [24–26], they are still optimized to select
the most effective action based on the agent’s internal state. While sufficient for fully observable and
stationary tasks, reactive policies based on the agent’s internal estimate of the task state are often sub-
optimal in partially observable (e.g., incomplete details visible on a page) or non-stationary (e.g., fluc-
tuating prices during flight booking) settings, where adaptive, information-seeking behavior is critical.

In this paper, we argue that instead of reactive “optimal” policies, agents should learn adaptive
policies that can collect new information from the environment and adjust their behaviors on-the-fly.
A pre-requisite for such adaptability is the ability to take more actions during deployment than
those prescribed by an expert trajectory. We therefore propose a new dimension of test-time scaling:
increasing the number of interaction steps of the agent. This allows agents to have sufficient
context and time to attempt different behaviors. For example, in a hotel booking task, an agent must
first browse many listings to compare user reviews and check availability before selecting the best
option. Interaction scaling is orthogonal to existing methods based on chain-of-thought (CoT), which
emphasize deeper reasoning per step but do not support information-gathering from the environment.
This notion of information gain is unique to agentic tasks with partial observability and requires
interaction, not merely larger per-step compute. For instance, an agent that reasons deeply about one
selected hotel without interacting further may miss better options that show up only after exploration.

Although the idea of interaction scaling is conceptually straightforward, extending it to post-training
and teaching agents to scale interaction autonomously presents key challenges. Without appropriate
training signals, agents may overfit to exploratory behaviors like blindly clicking links but not making
progress toward the actual task objective, wasting the additional steps. To tackle this issue, we
propose to combine online RL with a curriculum that prescribes how to scale the interaction horizon,
training agents that first learn effective exploitation before extending their horizon to explore.

We instantiate our approach in the domain of web agents, a widely applicable setting with well-
established benchmarks. We first show that scaling test-time interaction via prompting the agent to
“think and act again” after it decides to terminate can already improve the task success rate from
23% to ≥ 28% on WebArena [2]. While this increases trajectory length and the number of tokens
generated, spending an equivalent amount of compute on conventional test-time scaling methods like
forcing the agent to think for longer [27] or running best-of-n [28–30] yields less than a 3% gain.
These validate interaction scaling as a promising and complementary axis of test-time scaling.

We then move beyond prompting and develop TTI (Test-Time Interaction), a curriculum RL approach
that trains agents to adaptively scale interaction by gradually increasing the rollout horizon. We scale
TTI to >100K training tasks across ∼20 domains, TTI achieves state-of-the-art performance among
open-source agents trained on open data on both WebVoyager [1] and WebArena [2], using only a
12B Gemma 3 model, improving over the non-fine-tuned agent by 9% and 8%, respectively. Our
analysis further shows that curriculum training enables adaptive exploration: agents learn to initiate
new searches or backtrack in complex tasks, while following efficient paths in simpler ones.

2 Related Work
Scaffolded foundation models as web agents. Prior works use external control stuctures to scaffold
foundation models via modular prompting [31, 6, 32–35], programs [36, 37], or feedback mecha-
nisms [38, 39]. These methods often rely on proprietary models like GPT-4 [40] or Claude [41].
Thus, progress is largely driven by designing better prompts and workflows for planning [42–44],
self-correction [45], self-evaluation [46, 47], or by integrating external modules such as memory [48]
or retrieval systems [49]. More recently, developing specialized agents has become a promising
direction [14]. Automated data curation workflows [50–52] and distillation approaches [18] are also
developed. Despite these research efforts, scaffolding approaches remain fundamentally limited: they
do not enable agents to self-improve through interaction, and rely on fixed behavioral wrappers that
lack adaptability across diverse tasks or environments.

RL training for foundation model agents. RL-based approaches provide an alternative by en-
abling agents to autonomously improve through interaction. Recent work has explored DPO [53],
actor-critic [20, 21, 54], or distributed sampling [55]. Full pipelines like PAE [19] and Learn-By-
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Interact [56] support automatic task generation, exploration, and labeling. However, most of these
approaches lack explicit mechanisms for test-time exploration, limiting the agent’s ability to dynam-
ically adapt behavior over long horizons. Our work addresses this limitation by scaling test-time
interaction as an independent dimension, allowing agents to refine behavior while acting. Curriculum-
based RL is used in AutoWebGLM [57] and WebRL [23]. However, their curricula are based on task
difficulty, whereas we adapt the interaction horizon.

Scaling test-time compute. Increasing test-time compute via best-of-n sampling [29], beam
search [58, 59], or verifiers [60–62] has shown to improve performance in reasoning-heavy tasks. In
non-interactive settings like math and competitive coding, recent methods train models to generate
long CoT and scale reasoning internally [e.g., 63, 27, 64]. As for multi-turn interactive settings,
most existing works simply integrate CoT prompting into the agent system to enhance per-step
reasoning [e.g., 65, 44]. EXACT [66] scales up the search process for each action, GenRM-CoT [67]
the number of verifiers, and Jin et al. [68] the number of agents. However, none of these efforts study
the benefits of scaling over the time horizon, where the agent can explore alternatives, backtrack, or
gather more information before committing to certain actions. Our work extends this line of research
by introducing test-time scaling of interaction. As we will show in our empirical results (Section 4.2),
the benefits of scaling test-time interaction go beyond scaling test-time compute within each step,
because each extra step of interaction with the environment provides new information to the agentic
policy, whereas thinking for longer simply reorganizes information that the agent already has.

3 Problem Setup
We consider solving a web task as a finite-horizon decision-making process2. The environment
implements a transition function that evolves over time and provides an observation ot at step t. The
agent policy π is parameterized by a multi-modal model that maps observation history o1:t−1 and
action history a1:t−1 to the next action at. Denote the horizon, or the maximum number of interaction
steps allowed in the environment, as h. For each task, the interaction process ends when the agent
issues a stop signal or reaches the step limit h. Let hstop ∈ (0, h] be the actual number of steps taken.
The agent receives a reward of 1 for task success, and 0 otherwise. Our observation space consists
of the task goal, the URL, the accessibility tree of the web page and a screenshot augmented with a
set-of-marks [1]. Our action space consists of six actions: click, type, scroll, go back, search (e.g.,
Google or Bing), and stop the task with an answer. For details, see Appendix C.1.

4 Scaling Test-Time Interaction: A New Dimension of Agent Scaling
Prior methods for agent test-time scaling usually scale the number of thinking tokens at each step,
but this does not enable the agent to engage in longer interactions with the environment to collect new
information. In principle, scaling the maximum number of interaction steps should allow the agent to
employ richer behavioral strategies such as exploration, backtracking, and recovery. We will now ver-
ify this hypothesis through controlled experiments on WebArena [2]. We will then build upon these in-
sights to develop TTI, an online RL method to explicitly train agents to optimize test-time interaction.

Table 1: Base results
averaged over 3 runs.

Prompt Task SR (%)
Action Only 14.76
CoT 23.81

Experiment setup. We choose WebArena [2] as our testbed because it enables
reproducible interaction with diverse domains (OneStopShop, Reddit, GitLab,
CMS, and OpenStreetMap) and have ground truth evaluators. We sample
62 tasks for testing and reserve the remaining for online training (Sec. 5.1).
We set a generous test-time limit of h = 30, well above the 6-step average
required by most tasks [48, 69]. To study the effect of increasing h, we use a
simple prompting-based agent with Gemma 3 12B [70], which observes the web page and outputs an
action via a single model call. It does not leverage any retrieval, verifiers, or other external modules,
ensuring any performance gains come solely from increased h but not auxiliary scaffolding. We
prompt the agent to generate a reasoning trace before acting (see Appendix C.1 for the templates).
As Table 1 shows, CoT prompting yields significantly higher task success rate (SR) than direct action
generation. We thus adopt it as the default prompting strategy.

4.1 Scaling Test-Time Interaction by Acting Longer

2While this work centers on web agents, we believe the insights should generalize to other agent domains,
and we hope future work will extend these ideas beyond web agents and web navigation.
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Figure 2: Scaling test-time interaction by prompting
the agent to “re-check” its answer.

To study the impact of test-time interaction
scaling, we introduce a purely inference-time
“check-again” mechanism: after the agent issues
the task completion action, we explicitly prompt
it to reconsider its decision by “You just signaled
task completion. Let’s pause and think again...”
We can extend re-checking from double-check
(two passes) to triple-check (three passes) and beyond, using slightly varied prompt phrasings for
each pass. Detailed prompts are in Appendix C.4.

As shown in Figure 2, prompting the agent to re-check not only increases the actual interaction length
hstop as expected (dotted lines), but also improves the success rates on most WebArena domains
(bars). When being asked to “check-again”, the agent either reaffirms its decision (e.g., “I previously
stated the driving time was approximately 30 minutes....30 minutes seems plausible with typical traffic conditions.
I’ll stick with my previous answer.”) or revises it upon reflection (e.g., “My apologies. I jumped to a
conclusion prematurely. Although the address book *displays* the desired address, the task requires me to
*change* it....I should click button [24] to modify the address.”). In particular, it changes its action ∼25%
of the time after double-checking. This highlights the potential of interaction scaling: when given
sufficient time, the agent is likely to explore alternatives or correct mistakes before reaching a final
answer. The chance of the final answer being correct could thus be higher.

However, we do observe that repeatedly prompting the agent to re-check can sometimes lead to
confusion, causing it to revise correct answers into incorrect ones. We attribute this limitation to the
use of prompting, which we discuss further in Section 4.2 and address by training the agent to scale.

4.2 Scaling Test-Time Interaction vs. Per-Step Test-Time Compute
Next, we examine the effect of scaling interaction relative to scaling per-step reasoning: Given a
total token budget, should agents prioritize more interaction steps or generating longer reasoning
traces at each step? To explore this, we study two test-time compute scaling methods: (1) budget
forcing [27] prompts the agent to “wait and think again” after generating a CoT, encouraging more
intermediate reasoning before it commits to an action. We vary the number of forced waits from 1 to
4; (2) best-of-n [14] samples n ∈ {3, 5, 7} candidate actions per step and performs majority voting.

Figure 3: Task success rate vs compute for
scaling interaction vs. per-step compute.

Fig. 3 (top) plots the task success against total compute,
measured by the number of tokens per trajectory in log
scale. Among the three strategies, interaction scaling
(green) shows the steepest upward trend, achieving the
highest success rate as the allowed token budgets increase.
Budget forcing (blue) yields moderate gains but plateaus
around 0.26. Despite incurring the highest cost, best-of-n
(orange) brings the least improvements, suggesting that
repeatedly sampling actions per step is a less effective use
of compute in interactive tasks.

A natural question is then: how should we distribute a
bounded compute budget between running more interac-
tion steps vs. reasoning longer? These two dimensions
present different costs per unit, which may not be known
apriori. Figure 3 (bottom) decomposes total compute into
tokens per step (y-axis) and steps per rollout (x-axis). In-
teraction scaling extends along the x-axis, while per-step
reasoning scales along y-axis. We find that scaling across
steps is more effective than scaling within steps in We-
bArena tasks, likely because the former enables the agent to gather new information and enrich its
context. This ability to query and observe external feedback is unique to agentic settings but not
single-turn QA tasks. While standard per-step reasoning is constrained by the information already
available at each step, our approach takes advantage of this dynamic interaction.

While our results highlight the potential of scaling test-time interaction, the “check-again” strategy
only allows the agent to revisit its behavior upon task completion, it does not enable it to implement
nuanced behaviors such as switching between exploration and exploitation in the middle of a
rollout. We also experimented with combining interaction scaling with budget forcing and best-of-n
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Figure 4: Online RL with different values of maximum interaction horizon. L: success rates for different
domains. “Harder” means generally lower success rate. R: average rollout length (hstop) on the evaluation set.

(Appendix Table 6) This shows the need for methods that train agents to optimize for best behavior
when scaling test-time interaction, rather than naïve prompting.

5 TTI: Curriculum-Based Online RL for Scaling Interaction
How can we train agents to make effective use of test-time interaction? A natural starting point is
to draw inspiration from current approaches for optimizing test-time compute [30, 64] and extend
these ideas to interactive settings. Specifically, we can run RL with binary task rewards and longer
task horizons. However, is this approach sufficient enough? We first describe the key challenges in
learning to scale interaction, and then develop our approach to address them via curriculum learning.

5.1 Challenges of Training Agents with Long, Fixed Horizons
A natural way to encourage more steps is to train with longer horizons. To study this, we run
REINFORCE [71] with binary rewards R(·), also known as online filtered behavior cloning [72, 19]:

argmax
θ

ET ∼tasks

{
Eo0≤h,a0≤h−1∼π(·|T )

[( h−1∑
t=0

log πθ(at | o≤t, T )
)
· 1[R(o0:h, T ) = 1]

]}
(1)

We run it in the WebArena testbed, varying h ∈ {5, 10, 20}. Smaller h exposes the agent only
to exploitative rollouts that succeed within the allowed time steps, while larger h also includes
exploratory trajectories. We use the non-test tasks for rollout. Experiment details are in Appendix D.

As shown in Figure 4 (left), agent trained with h = 5 learns quickly, likely because on-policy
RL is more sample-efficient at smaller horizons, but it also quickly overfits. This agent often
terminates prematurely during evaluation despite being allowed to interact for much longer time.
Conversely, agent trained at longer horizons generally learns policies that are quite stochastic and
learn significantly more slowly due to higher variance of policy gradient losses and optimization
challenges such as vanishing gradient [e.g., 73–75]. Moreover, we manually inspect the trajectories
and find that the h = 20 agent tends to associate exploratory actions such as “going back” or “trying
random links” with high rewards initially. This noisy credit assignment slows learning, and only after
several iterations do the agents begin to recover and produce more robust policies. The impact of
horizon is domain-dependent: in complex domains requiring exploration (e.g., CMS), long-horizon
agents outperform, while in simpler settings (e.g., Reddit), performance differences are minimal. As
a side note, the number of tokens generated per action remains relatively stable throughout training.

Importantly, although the interaction length increases as expected for h = 20 (Figure 4 right), worse
performance stemming from noisy credit assignment and slower learning suggests that simply setting
h to be large is insufficient to learn to scale test-time interaction. These observations motivate our
method’s core idea: rather than fixing the horizon throughout training, we aim to teach agents when
and how to scale their interaction length adaptively during learning.

5.2 Our Approach: Curriculum Over Interaction Horizon
To address these challenges, we propose TTI (Test-Time Interaction), a curriculum-based online RL
approach that trains the agent with short trajectories initially and gradually exposes it to longer ones.
Existing curriculum learning methods in RL [e.g., 76–80] or web agents [23, 57] have been centered
around prioritizing easier tasks followed by harder ones, and are typically built around predefined
heuristics. In contrast, we define curriculum progression in terms of the maximum number of steps an
agent performs per trajectory, and doing so does not require any external measure of task complexity.

How do we design a curriculum over the interaction horizon h? Ideally, the learning schedule
should allow the agent to first learn basic, “atomic” skills to solve easier tasks, then progressively
tackle complex ones via skill chaining and exploration. We explore two strategies: (1) a conservative,
additive increase in h per iteration, giving the agent sufficient time to solidify core task-solving skills;
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Table 3: TTI Gemma 3 12B achieves the best performance among open-weight agents trained on public
synthetic data. Baseline results are taken from Zhou et al. [19], Qin et al. [81].
Model Average Allrecipes Amazon Apple ArXiv GitHub ESPN Coursera Cambridge BBC Map Search HuggingFace WolframAlpha
Proprietary Model
Claude 3.7 84.1 - - - - - - - - - - - - -
Claude 3.5 50.5 50.0 68.3 60.4 46.5 58.5 27.3 78.6 86.0 36.6 58.5 30.2 44.2 66.7
OpenAI CUA 87.0 - - - - - - - - - - - - -
Agent E 73.1 71.1 70.7 74.4 62.8 82.9 77.3 85.7 81.4 73.8 87.8 90.7 81.0 95.7
Open Model, Proprietary Human-Annotated Data
UI-TARS-1.5 84.8 - - - - - - - - - - - - -
Open Model, Open Synthetic Data
LLaVa-34B SFT 22.2 6.8 26.8 23.3 16.3 4.9 8.6 26.8 67.4 16.7 12.2 23.3 20.9 38.1
PAE-LLaVa-7B 22.3 14.3 37.5 17.5 19.0 14.6 0.0 33.3 52.4 18.6 22.5 23.3 19.0 24.4
PAE-LLaVa-34B 33.0 22.7 53.7 38.5 25.6 14.6 13.6 42.9 74.4 39.0 22.0 18.6 25.6 42.9
Gemma 3 12B 55.8 25.7 32.3 45.5 60.6 54.8 60.6 56.3 69.6 65.6 54.8 72.7 66.7 61.1
Fixed h = 10 59.1 25.7 74.1 51.5 75.7 70.9 44.1 59.3 66.7 50.0 41.9 60.6 75.5 72.2
Fixed h = 30 45.2 20.0 41.9 60.6 42.4 41.9 50.0 34.4 60.6 25.0 29.0 63.6 45.5 69.4
TTI (Ours) 64.8 57.1 48.3 69.6 66.6 45.2 56.3 46.9 85.2 81.2 66.7 72.7 75.7 79.4

and (2) a more aggressive, multiplicative increase, which assumes the agent can quickly acquire
the basic skills and benefit from earlier exposure to exploratory behavior. Formally, for iteration i:

hi := clip(hmin + i, hmax) (Additive schedule) (2)
hi := clip(hmin · i, hmax) (Multiplicative schedule) (3)

We store the rollouts in a replay buffer and assign higher weights to more recent trajectories. The
full pseudocode for TTI and implementation details are provided in Appendix E.

Table 2: Comparing the
scheduling strategies.
Schedule Task SR (%)
Additive 29.50
Multiplicative 32.25

Empirical insights. We instantiate these two strategies in WebArena, using
the non-test tasks for online training. We set hmin to 10 and hmax to 30,
and apply the schedules on top of filtered BC. Evaluation results after 10
iterations are shown in Table 2. Multiplicative schedule outperforms the
additive one, possibly because it exposes the agent to longer horizons early
on and helps prevent it from overfitting prematurely to shortcut behaviors like always taking the
shortest path. Based on these findings, we adopt the multiplicative schedule as the default for TTI.

Results in Table 2 show that even with limited data (∼700 training tasks), adaptive TTI outperforms
the fixed h = 20 baseline in Figure 4 by nearly 3%, using 40% fewer training steps over 10 iterations.
In the next section, we demonstrate this advantage carries over to large-scale online training.

6 Experiments: Scaling Up to Realistic Benchmarks

We now provide a comprehensive evaluation of TTI in large-scale, realistic environments, specifically:
(1) WebVoyager [1] with 427 tasks across 13 domains; and (2) full WebArena [2] with 812 tasks.

Training. To enable large-scale training without training on the benchmark itself, we adopt synthetic
task generation inspired by PAE [19] and generate 140K synthetic tasks across diverse real-world
domains and WebArena’s self-hosted domains. We leverage a prompting-based verifier based on
Gemma 3 27B and using action histories and screenshots to label rollouts. For the agent, we use
Gemma 3 12B [70] as the base model and train it for 10 iterations with a multiplicative schedule
with hmin = 10 and hmax = 30. Other training hyperparameters and prompt templates are in
Appendix F.3 and Appendix F.1, respectively.

Baselines. We compare with zero-shot Gemma 3 12B and fixed-horizon baselines with h ∈ {10, 30}.
We also compare to prior work, including closed-source agents (e.g., those based on GPT-4 [40]
and Claude [41]), open-weight models trained on proprietary data (e.g., UI-TARS [81]), and fully
open-weight, open-data models (e.g., PAE [19]).

6.1 WebVoyager Results and Analysis
State-of-the-art open-weight, open-data performance. We report the overall task success rates
(SR) on WebVoyager in Table 3. The TTIGemma 3 12B achieves an average SR of 64.8%, setting a
new state-of-the-art among open agents trained purely on public data. While previous methods such
as UI-TARS achieves a strong SR of 84.8%, they rely on private human-annotated data that remains
inaccessible to the open-source community. In contrast, TTI is trained entirely on synthetic data
generated by the base model (Gemma 3 12B) itself, meaning that our training protocol implements a
form of self-improvement. TTI also obtains the highest SR in 8 out of 13 domains.
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Figure 5: Dynamics of TTI during training. The green area represents the phase where the maximum allowed
interaction horizon is the largest (h = 30), per our multiplicative schedule. All results are evaluated on a held-out
subset of WebVoyager, not on the training tasks. a: Average trajectory length, i.e. the average number of steps
taken in a trajectory normalized by the average length at the first iteration (iteration 0). b: Ratio of the sum of
GoBack and Bing actions out of all actions normalized by the first iteration. c: The average number of tokens
(CoT lengths) per action. d: Average task success rates for TTI. e: Per-domain success rates for TTI.

TTI outperforms fixed-horizon via adaptive exploration. Table 3 also shows our curriculum ap-
proach outperforms fixed h = 10 baseline by 5.7% and fixed h = 30 baseline by 19.6%. To better
understand the use of interaction within a rollout, we plot the average number of interaction steps
on a held-out validation set with 78 tasks in Figure 5 (a). Note that the agent trained with h = 10
learns to continuously reduce the maximum number of steps it spends in a rollout, while h = 30
quickly drifts into aimless exploration and executes a larger number of steps pre-maturely in training,
hindering performance. This aligns with our findings in Section 5.1. Also, when training with TTI,
the interaction length of the agent’s rollouts first decreases but then starts to increase as the maximum
allowed horizon increases, indicating that an adaptive curriculum enables effective interaction scaling.

Figure 5 (d) shows that the task success rate also grows over time and correlates with the expanding
horizon. While the average task success rates for TTI are better, we observe notable per-domain
differences. Figure 5 (e) shows representative per-domain success rates. On domains like Allrecipes
and Cambridge, TTI significantly outperforms fixed-horizon and zero-shot approaches, improving
success rates by 31.4% and 15.6%, respectively, likely because these domains are highly information-
dense and benefit from extended exploration enabled by adaptive interaction scaling. However, in
domains like Amazon and GitHub, TTI underperforms the baselines. We notice that the base model
already has strong knowledge about domain-specific terminologies (e.g., commit history, forks, stars)
in these domains, resulting in high base performance. Inspecting the rollouts, we find that instead
of using built-in filters and sorting, TTI can engage in exploration behaviors such as initiating Bing
searches or consulting external sites. This exposes the agent to noisy or distracting information,
reducing task success. We discuss this amd include more case studies in Appendix F.4.

Learning dynamics of TTI. To study how TTI enhances the “within-rollout” exploration capabilities
of the agent, we measure the number of GoBack and Bing actions over the course of training. GoBack
actions measure the number of retries the agent makes within an episode to get unstuck during
exploration. Bing actions correspond to the number of times the agent attempts to seek information
by moving to bing.com. As shown in Figure 5 (a, b, and d), the performance of TTI improves
substantially as the number of GoBack and Bing actions and the trajectory length grow.

Also note that the trajectory length and the numbers of GoBack and Bing actions begin to increase
with TTI, once the maximum allowed horizon length is increased as a part of the curriculum schedule
(this regime is shown by the green shaded area in Figure 5). In contrast, these quantities continuously
decrease over the course of training for the run with a lower number of maximum interaction steps
(h = 10). We also find that the trajectory length shoots up substantially for the run with h = 30
and this correlates with worse performance. Finally, as shown in Figure 5 (c) we also note that as
the agent’s trajectory grows longer with TTI, the number of tokens appearing in per-step reasoning
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Table 4: Full WebArena results. For proprietary agents, we include the top 8 from the official leaderboard. We
do not train fixed h = 30 baseline due to its generally poor performance and large compute cost for training.

Method Backbone Average Shopping CMS Reddit GitLab Maps
Proprietary-Based IBM CUGA [82] - 61.7 - - - - -

OpenAI CUA [4] - 58.1 - - - - -
Jace AI [83] - 57.1 - - - - -
ScribeAgent [14] GPT-4o + Qwen2.5 32B 53.0 45.8 37.9 73.7 59.7 56.3
AgentSymbiotic [18] Claude 3.5 + Llama 3.1 8B 48.5 48.7 41.2 63.2 47.2 57.8
Learn-by-Interact [56] Claude 3.5 Sonnet 48 - - - - -
AgentOccam-Judge [33] GPT-4 45.7 43.3 46.2 67.0 38.9 52.3
WebPilot [34] GPT-4o 37.2 36.9 24.7 65.1 39.4 33.9

Fully Open-Source Learn-by-Interact [56] Codestral 22B 24.2 - - - - -
(Self-Improvement) AgentTrek [35] Qwen2.5 32B 22.4 - - - - -

AutoWebGLM [57] ChatGLM3 6B 18.2 - - - - -
NNetnav [84] Llama 3.1 8B 7.2 7.4 4.2 0 0 28.5
Zero-Shot Baseline Gemma 3 12B 18.3 26.7 8.7 30.9 5.5 27.7
Fixed h = 10 Gemma 3 12B 23.8 28.4 15.6 26.0 13.2 34.7
Fixed h = 30 Gemma 3 12B 19.0 25.7 9.7 29.8 8.7 28.57
TTI (Ours) Gemma 3 12B 26.1 33.9 15.5 35.3 15.7 40.5

actually becomes smaller. This implies that our agent is automatically learning to tradeoff interaction
for per-step compute in order to attain higher performance and prevents any issues with overthinking.

6.2 WebArena Results and Analysis
Benchmark results. We further assess TTI on the full WebArena [2] (we only use the model-based
evaluator for training but use the original benchmark evaluators for evaluation). As shown in Table 4,
TTI obtains the highest performance among open-source agents trained entirely via self-improvement,
without relying on proprietary models for task completion or distillation. While TTI improves over
the zero-shot baseline by 7.8%, the gains are smaller than on WebVoyager, possibly because: (1)
WebArena tasks are more complex, as reflected in lower accuracies even for proprietary models,
leading to fewer successful rollouts per iteration and slower learning; (2) agents sometimes mistake
WebArena sites for real websites and attempt invalid actions (e.g., searching works well on Reddit but
fails on WebArena’s Postmill due to environment bugs). More experiment details are in Appendix G.

Figure 6: We apply test-time re-
checks to TTI checkpoints.

Further scaling. While TTI equips agents with the ability to adjust
their interaction horizon during deployment, an open question re-
mains: Can we further amplify performance by combining TTI with
inference-time interaction scaling techniques such as re-checking?
To explore this, we apply the “check-again” strategy (Section 4)
to intermediate TTI checkpoints. Due to the high evaluation cost
associated with evaluating on full WebVoyager or WebArena, we
leverage the WebArena subset checkpoints obtained in Section 5.2.

As shown in Figure 6, applying re-checking on top of TTIimproves
task success across various training stages. The benefits are more
obvious in the early stages of training, when the agent has a stronger bias to terminate prematurely.
As training progresses, TTI encourages longer interaction traces that naturally incorporate behaviors
like re-checking, reducing the added benefit of explicit re-checks. Nonetheless, even in later stages,
re-checking continues to provide modest gains, serving as a safety-check for well-trained agents.

7 Conclusion
In this work, we introduced interaction scaling as a new dimension of test-time scaling for interactive
agents. Through empirical studies on web agents, we validate that interaction scaling enables agents
to explore and adapt dynamically, significantly improving task performance. We hope that this work
opens new directions in agentic reasoning and inspires broader applications beyond web navigation.

Limitations and future work. Our experiments are limited to web environments; extending this
method to other domains like robotics or open-world games requires further exploration. Besides,
scaling interaction steps increases computational costs during both inference and training. Although
our adaptive scheduling helps, more efficient handling of long interactions is needed. In addition, our
training relies on simple behavior cloning; future work could incorporate more advanced RL methods
like PPO [85], GRPO [63] to improve performance. Lastly, due to high compute cost, we only ran the
full benchmark once per setting, limiting the ability to quantify variance from policy, environment,
and evaluator stochasticity. Future work should explore multiple runs or more robust evaluation.
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A Broader Impact

This work contributes to the development of more adaptive and capable AI agents by introducing a new
test-time scaling dimension focused on interaction rather than per-step reasoning alone. While this
approach improves robustness and generalization in open-ended environments, it also raises important
considerations. Increased agent autonomy can amplify both the benefits and risks of deployment
in real-world systems. Moreover, agents capable of richer behaviors could be applied to sensitive
domains (e.g., customer service, education, or automation workflows) where unintended actions
could have large impacts. We encourage future work to consider ethical safeguards, interpretability
tools, and human-in-the-loop designs when deploying interaction-scaled agents. Our experiments are
conducted entirely in simulated environments, and we hope this work inspires further research on
controllable and trustworthy agent behavior under realistic constraints.

B Observation Space Design

We use the screenshot accompanied with the web page’s accessibility tree as our main observation.
We study two versions of accessibility tree. Rich accessibility tree is modified from the WebArena
code and looks like:

[21]: RootWebArea ’Dashboard / Magento Admin’ focused: True; [0]: link ’Magento Admin Panel’;
[1]: link ’DASHBOARD’; [2]: link ’SALES’; [3]: link ’CATALOG’; [4]: link ’CUSTOMERS’; [5]:
link ’MARKETING’; [6]: link ’CONTENT’; [7]: link ’REPORTS’; [8]: link ’STORES’; [22]: link
’SYSTEM’; [23]: link ’FIND PARTNERS & EXTENSIONS’; [24]: heading ’Dashboard’; [9]: link
’admin’; [10]: link ”; [25]: StaticText ’Scope:’; [12]: button ’All Store Views’ hasPopup: menu; [13]:
link ’What is this?’; [14]: button ’Reload Data’...

Simple accessibility tree is modified from the PAE code and looks like:

[1]: "Dashboard"; [2]: "Sales"; [3]: "Catalog"; [4]: "Customers"; [5]: "Marketing"; [6]: "Content";
[7]: "Reports"; [8]: "Stores"; [9]: "admin"; [12]: <button> "All Store Views"; [13]: "What is this?";
[14]: <button> "Reload Data"; [15]: "Go to Advanced Reporting"; [16]: "here";...

Rich tree contains more details such as the HTML tag and attributes like required, hasPopup
compared to simple tree. However, it is much longer than simple tree and hence harder to optimize
due to the increased context length. As simple tree gives more steady training dynamics, we mainly
use it for our experiments.

C Preliminary Test-Time Experiments on WebArena

C.1 General Prompts

General Prompt

Imagine you are an agent browsing the web, just like humans. Now you need to complete a
task. In each iteration, you will receive an observation that includes the accessibility tree of the
webpage and a screenshot of the current viewpoint. The accessbility tree contains information
about the web elements and their properties. The screenshot will feature numerical labels
placed in the TOP LEFT corner of web elements in th current viewpoint. Carefully analyze
the webpage information to identify the numerical label corresponding to the web element
that requires interaction, then follow the guidelines and choose one of the following actions:
1. Click a web element.
2. Delete existing content in a textbox and then type content.
3. Scroll up or down the whole window.
4. Go back, returning to the previous webpage.
5. Answer. This action should only be chosen when all questions in the task have been solved.
Correspondingly, action should STRICTLY follow the format specified by one of the follow-
ing lines:
Click [numerical_label]
Type [numerical_label] [content]
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Scroll [up/down]
GoBack
ANSWER [content]
Some examples are:
Click [8]
Type [22] [Boston]
Scroll [down]
ANSWER [06516]
Key guidelines you MUST follow:
* Action guidelines *
- Use either screenshot or accessibility tree to obtain the numerical_label. Sometimes the
accessibility tree captures more elements than the screenshot. It’s safe to select these elements
without scrolling
- For text input, use Type action directly (no need to click first). All existing texts in the
textbox will be deleted automatically before typing
- Preserve text inside quotation marks exactly as provided by user
- You must not repeat the same actions over and over again. If the same action doesn’t work,
try alternative approaches
- Use ANSWER only after completing ALL task requirements
- Wrap content for Type and ANSWER with square brackets ‘[]‘
- Do not add quotation marks for search queries
* Web navigation hints *
{hint}
Your reply should strictly follow the format:
Thought: Your reasoning trace. A good practice is to summarize information on the current
web page that are relevant to the task goal, then generate a high-level plan that contains the
sequence of actions you probably need to take
Action: Based on this reasoning, identify the single most optimal action. You should output it
in the format specified above (under "STRICTLY follow the format")
After each action, you’ll receive a new observation. Proceed until task completion. Now
solve the following task.
Task: {task_goal}
Current URL: {url}
Screenshot of current viewpoint: attached
Accessibility tree of current viewpoint: {accessibility_tree}

Beyond the above CoT prompt, we also tried using a more complex prompt for the thought process.
However, this does not lead to significant gain in downstream accuracy (see Table 5), but it could
increase training and inference cost, so we did not use it in the end.

Complex Prompt

Thought: You must analyze the current webpage thoroughly to guide your decision-making.
Show your reasoning through these steps:
- Summarization: Begin by understanding the page context - identify what type of page
you’re on (search results, form, article, etc.) and how it relates to your objective. Summarize
important information on the webpage that might be relevant to task completion. Especially
when the task requires to return some answers to a specific question, you should note down
intermediate information that helps generate the answer.
- Planning: Generate a checklist of subtasks required for completion and cross-out the subtasks
you’ve completed. Identify the next logical subtask.
- Verification: Verify all information you’ve entered so far. Check that your inputs match
requirements in terms of spelling and format (you should not change the user-specified
information, even if there’re grammar errors). Verify if any selections for dropdown items
align with the task objective. Identify if there’re necessary fields that have not been filled
in. Note that if the last few steps are repeating the same action, there must be missing or
incorrect information.
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- Backtracking: If the task requires exploring multiple webpages (e.g., orders, posts, item
pages, etc) to find out an answer, consider if you need to issue GoBack and return to the
previous web page.
- Candidate Generation: After all the above reasoning, list the most relevant possible actions,
evaluate pros and cons of each action, and finally select the most effective action to progress
task.
Action: Choose ONE of the following action formats:
- Click [numerical_label] - Click a specific element
- Type [numerical_label] [content] - Input text into a field
- Scroll [up/down] - Navigate the page vertically
- GoBack - Return to previous webpage
- ANSWER [content] - Provide final answer when task is complete

C.2 WebArena Prompts

Below are the content replacing “{hint}” in the general prompt.

General Hint

- Always save progress through appropriate buttons (Save, Submit, Post, etc.)
- Always remember to interact with dropdown options after expanding
- Clear filters before setting new ones

Reddit

- Always save progress through appropriate buttons (Save, Submit, Post, etc.)
- Always remember to interact with dropdown options after expanding
- Pay attention to words like "latest", "newest", "hottest" in the task objective, which require
clicking the dropdown menu and select "New" or "Top" with the correct time range
- When selecting a subforum, you can either browse the dropdown menu in the "Submit" page
or navigate to "Forums" and check all subforums by clicking on "Next" to go over all pages.
You must try to find a subforum that exactly matches your query. If there’s no exact match,
pick the most relevant one, ideally the subforum is about objects or locations contained in the
given objective
- "Trending" means "hot"
- To find out all posts or replies from a user, click the user name and then click "Submissions"
or "Comments"

CMS

- Always save progress through appropriate buttons (Save, Submit, Post, etc.)
- Always remember to interact with dropdown options after expanding
- Clear filters before setting new ones
- Use date format: month/day/year (e.g., 1/1/16, 12/31/24)
- When searching phone numbers, remove the country code
- When searching product name, use single but not plural form
- When the web page contains a table, aggregate the rows with the same item

Shopping

- Always save progress through appropriate buttons (Save, Submit, Post, etc.)
- Always remember to interact with dropdown options after expanding
- Sort items by price by clicking the dropdown menu and set descending/ascending direction
- When searching product name, use single but not plural form
- If the objective requires only finding an item, stop at the item page without adding to cart
- To find out the quality of a product, search the item, click on review, and inspect its review

17



- Click "Page Next" to iterate over all orders
- Since there’s no way to filter order history, click "View Order" for every order within a date
range and inspect individually. If the condition is not met, go back

GitLab

- Always save progress through appropriate buttons (Save, Submit, Post, etc.)
- Always remember to interact with dropdown options after expanding
- Clear filters before setting new ones
- When searching a repo in gitlab, type only the project name after "/" in the search box

Map

- Always remember to interact with dropdown options after expanding
- When searching for a place, remove prepositions like in/on/by/at. For example, use "star-
bucks, craig street" instead of "starbucks on craig street". Put the city name at the end
- When there is no results shown up after search, rephrase the address and try again
- To find direction between two points, after entering the from and to addresses, select the
correct transportation (foot/bicycle/car) before clicking "Go"
- When the given location is not a geological address, use your knowledge to infer the address

C.3 CoT Experiments for Base Agent

To enable efficient rollout collection, we spin up multiple Docker containers on a single GPU
according to the official WebArena repository. We use the vLLM [86] engine for inference and apply
the following inference hyperparameters for most of our experiments.

• max_new_tokens: 1024

• max_attached_imgs: 4

• temperature: 1

• top_p: 0.95

We randomly subsample 62 test tasks for analysis purposes. Below are the results of zero-shot agent
vs CoT prompting. “CoT” uses the “General Prompt” in Section C.1. “Complex CoT” uses the
“Complex Prompt” in Section C.1. .

Table 5: Base agent results averaged over 3 runs on WebArena subset.
Prompt Task SR (%)
Action Only 14.76
CoT 23.81
Complex CoT 23.33

C.4 Scaling Trade-off Experiments

“Check-again” for interaction scaling. After the agent outputs the task-stop signal, we append
the following prompts to the observation to induce it to check again.

Check-Again Prompt

Important: You returned an answer in the last step. Let’s pause, check the web page, and
think again. If you still think the task is finished, double-check your answer, revise it if need,
and return a final answer. If not, continue the task. Your output should still be in the same
“Thought:...Action:...” format.
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Table 6: Comparing different inference-time prompting strategies. Results averaged over 3 runs on WebArena
subset. All methods are applied once.

Inference-Time Strategy Task SR (%)
Baseline 23.81
Check-again 26.14
Budget-forcing 24.81
Best-of-n 25.03
Check-again + Budget-forcing 26.33
Check-again + Best-of-n 27.36

When applying multiple re-checks, we slightly vary the prompts such as ‘‘Before you finalize the
answer, re-evaluate it in terms of the current web page—what exactly supports or contradicts it?” or

“Why do I believe this answer is correct? What on the page justifies it? Could an alternative answer be
better?” Please refer to the code base for the exact prompt used.

Per-step budget forcing. Following [64], we use the phrases below to induce longer per-step
thinking. The phrases are different to ensure that the model does not run into the scenario of endless
repeating a phrase.

• First time: Wait, let me think deeper.

• Second time: But let me double-check.

• Third time: But hold on.

Per-step best-of-n. We tried both selecting by log likelihood and majority voting, with the latter
showing slightly better results.

Additional results for combined scaling. Beyond evaluating each scaling method separately, we
also tried combining methods along different axes.

D Online Filtered BC on WebArena

We use the following hyperparameters to obtain the training curves in Table 4. During training,
the vision_tower of Gemma 3 is kept frozen because it is frozen during pretraining. Other
hyperparameters can be found in our code in the supplementary material.

• num_iteration: 10

• actor_epochs: 1 # number of epochs to update the actor

• rollout_size: 512

• num_update_sample_per_iteration: 512

• lr: 1e-6

• optimizer: AdamW

• scheduler: WarmupCosineLR

• batch_size: 4

• grad_accum_steps: 2

• eval_horizon: 30

E TTI Implementation

We provide the pseudocode in Algorithm 1. For the replay buffer, to encourage the agent to learn
from more recent examples, we assign weights based on recency when sampling rollouts to update
the agent: for the k-th trajectory added to the buffer, its weight is k

|D| .
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Algorithm 1 TTI: Filtered Behavior Cloning with Interaction Scheduling

1: Input: Agent policy πθ, Evaluator R, Environment E , Learning rate α, Replay buffer D,
Interaction scheduler hyperparameters hmin, hmax

2: Initialize policy πθ from pretrained model
3: Initialize replay buffer D ← {}
4: for each episode i do
5: Set interaction horizon hi ← get_schedule(i, hmin, hmax)
6: for each rollout to collect do
7: Initialize environment: s0 ∼ E
8: for each t in [1, hi] do
9: Observe current state st

10: Predict action ât ← πθ(st)
11: Execute action ât in environment
12: Observe next state st+1

13: if episode done then
14: Compute reward rt ← R(st, ât)
15: else
16: rt ← 0
17: end if
18: Store transition: D ← D ∪ {(st, ât, rt, st+1)}
19: end for
20: end for
21: for sample successful trajectory in D do
22: for t = 1 to hstop do
23: Accumulate loss: L(θ)← L(θ) + CrossEntropy(πθ(st), ât)
24: end for
25: end for
26: Update policy: θ ← θ − α∇θL(θ)
27: end for

F WebVoyager Experiments

F.1 Task Generator & Evaluator Prompt

Task Generator Prompt

You are a website exploration assistant tasked with discovering potential tasks on websites.
These tasks should be similar to a user-specified task and aim to complete some high-level
goals such as booking restaurants in a website. Your goal is to freely explore websites and
propose tasks similar to a given set of examples. For each iteration, you’ll receive:
- An observation with the webpage’s accessibility tree
- A screenshot showing numerical labels in the TOP LEFT corner of web elements
You will then generate possible tasks while exploring the website. You should imagine tasks
that are likely proposed by a most likely user of this website. You’ll be given a set of examples
for reference, but you must not output tasks that are the same as the given examples. The
generated tasks must be realistic and at least require 3 steps to complete. It cannot be too
simple.
## Response Format and Available Actions
Your reply for each iteration must strictly follow this format:
Thought: Analyze the current webpage thoroughly to guide your exploration. Examine the
webpage’s structure, content, and interactive elements to identify potential tasks that users
might perform on this site. Decide whether you want to keep exploring or output some tasks
Tasks: If you think you are ready to generate some tasks, output them in the follow-
ing format (note that different tasks are separated with double semicolons): GENERATE
[task1;answer1;;task2;answer2]
Action: Then, to continue with your exploration, choose ONE of the following action formats:
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- Click [numerical_label] - Click a specific element
- Type [numerical_label] [content] - Input text into a field
- Scroll [up/down] - Navigate the page vertically
- GoBack - Return to previous webpage
Examples:
Click [8]
Type [22] [Boston]
Scroll [down]
GENERATE [Find the company’s phone number;(555) 123-4567;;Locate the price of the
basic subscription plan;$19.99/month]
Your final output should look like:
Thought: ...
Tasks: GENERATE [...] (this is optional, only generate when you are confident)
Action: ...
## Critical Guidelines
### Action Rules
- Use either screenshot or accessibility tree to obtain the numerical_label
- For text input, use Type action directly (no need to click first)
- Ensure proposed tasks are diverse and demonstrate different aspects of the website. The
tasks must have diverse difficulty and require different number of steps (3-20) to complete.
- Tasks should be clear, specific, achievable, and self-contained. It cannot be too general, e.g.,
related to äny posẗ, äny product,̈ äny place.̈ It must not depend on any context or actions that
you have performed, i.e., you must assume zero prior knowledge when someone wants to
complete the task
- Your task should be objective and unambiguous. The carry-out of the task should NOT
BE DEPENDENT on the user’s personal information such as the CURRENT TIME OR
LOCATION
- Your tasks should be able to be evaluated OBJECTIVELY. That is, by looking at the last
three screenshots and the answer provided by an agent, it should be possible to tell without
ambiguity whether the task was completed successfully or not
- Answers should be precise (e.g., exact prices, specific information, exact text)
- Your should output both operational tasks (the goal is to complete some steps) and informa-
tion retrieval tasks (the goal is to find some answer to return)
- You must refer to the examples given and mimic the complexity and task structure. See how
these tasks are self-contained and realistic
- Your proposed task cannot be a single action like click, type! Tasks like ’Determine the
number of uses for that term’ is unacceptable because it is ambiguous as a stand-alone task;
’Uncheck Use system value’ is unacceptable because it is not a complete task; ’Locate the
total revenue for the last month’ is unacceptable because ’last month’ is ambiguous;
After each action, you’ll receive a new observation. Continue exploring and generating tasks.
Here’re some examples: {example}
Current URL: {url}
Screenshot of current viewpoint: attached
Accessibility tree of current viewpoint: {accessibility_tree}

Evaluator Prompt

You are an expert in evaluating the performance of a web navigation agent. The agent is
designed to help a human user navigate a website to complete a task. Your goal is to decide
whether the agent’s execution is successful or not.
As an evaluator, you will be presented with three primary components to assist you in your
role:
1. Web Task Instruction: This is a clear and specific directive provided in natural language,
detailing the online activity to be carried out.
2. Result Response: This is a textual response obtained after the execution of the web task. It
serves as textual result in response to the instruction.
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3. Result Screenshots: This is a visual representation of the screen showing the result or
intermediate state of performing a web task. It serves as visual proof of the actions taken in
response to the instruction.
– You SHOULD NOT make assumptions based on information not presented in the screenshot
when comparing it to the instructions.
– Your primary responsibility is to conduct a thorough assessment of the web task instruction
against the outcome depicted in the screenshot and in the response, evaluating whether the
actions taken align with the given instructions.
– NOTE that the instruction may involve more than one task, for example, locating the garage
and summarizing the review. Failing to complete either task, such as not providing a summary,
should be considered unsuccessful.
– NOTE that the screenshot is authentic, but the response provided by LLM is generated at the
end of web browsing, and there may be discrepancies between the text and the screenshots.
– Note that if the content in the Result response is not mentioned on or different from the
screenshot, mark it as not success.
– NOTE that the task may be impossible to complete, in which case the agent should indicate
this in the response. CAREFULLY VERIFY THE SCREENSHOT TO DETERMINE IF
THE TASK IS IMPOSSIBLE TO COMPLETE. Be aware that the agent may fail because
of its incorrect actions, please do not mark it as impossible if the agent fails because of its
incorrect actions.
You should explicit consider the following criterion:
- Whether the claims in the response can be verified by the screenshot. E.g. if the response
claims the distance between two places, the screenshot should show the direction. YOU
SHOULD EXPECT THAT THERE IS A HIGH CHANCE THAT THE AGENT WILL
MAKE UP AN ANSWER NOT VERIFIED BY THE SCREENSHOT.
- Whether the agent completes EXACTLY what the task asks for. E.g. if the task asks to find
a specific place, the agent should not find a similar place.
In your responses:
You should first provide thoughts EXPLICITLY VERIFY ALL THREE CRITERION and
then provide a definitive verdict on whether the task has been successfully accomplished,
either as ’SUCCESS’ or ’NOT SUCCESS’.
A task is ’SUCCESS’ only when all of the criteria are met. If any of the criteria are not met,
the task should be considered ’NOT SUCCESS’.

F.2 Agent Prompt

WebVoayager

Imagine you are a robot browsing the web, just like humans. Now you need to complete a task.
In each iteration, you will receive an observation that includes the accessibility tree of the
webpage and a screenshot of the current viewpoint. The accessbility tree contains information
about the web elements and their properties. The screenshot will feature numerical labels
placed in the TOP LEFT corner of web elements in the current viewpoint. Carefully analyze
the webpage information to identify the numerical label corresponding to the web element
that requires interaction, then follow the guidelines and choose one of the following actions:
1. Click a web element.
2. Delete existing content in a textbox and then type content.
3. Scroll up or down the whole window.
4. Go back, returning to the previous webpage.
5. Navigate to Bing’s homepage.
6. Answer. This action should only be chosen when all questions in the task have been solved.
Correspondingly, action should STRICTLY follow the format specified by one of the follow-
ing lines:
Click [numerical_label]
Type [numerical_label] [content]
Scroll [up/down]
GoBack
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Bing
ANSWER [content]
Some examples are:
Click [8]
Type [22] [Boston]
Scroll [down]
Bing
ANSWER [06516]
Key guidelines you MUST follow:
* Action guidelines *
1. The predicted action should be based on elements as long as it’s accessibility tree OR
screenshot. Sometimes, accessibility tree or screenshot captures more elements than the other,
but it’s fine to use either one.
2. To input text for search bars, no need to click textbox first, directly type content. After
typing, the system automatically hits ’ENTER’ key.
3. When a complex task involves multiple questions or steps, select ’ANSWER’ only at
the very end, after addressing all of these questions or steps. Double check the formatting
requirements in the task when ANSWER. Always think twice before using ’ANSWER’
action!!!
4. When specifying the content for ’Type’ and ’ANSWER’ actions, be sure to wrap the
content with ’[]’.
5. Use ‘GoBack‘ to return to the previous state, use it when you find the previous action
incorrect.
6. When you see a pop-up page, you should immediately ‘GoBack‘ to the previous page.
7. Use ‘Bing‘ when you need to navigate to a different website or search for new information.
Your reply should strictly follow the format:
Thought: Your reasoning trace. A good practice is to follow this format:
- Observation summary: where are you at now? list all elements that are related to the task
goal. e.g. if you’re trying to filter something out, list all filters visible.
- Planning: what sequence of actions do you need take to achieve the task goal? give a
high-level overview of the steps you need to take.
- Possible actions: to achieve that plan, what are potential actions you need to do immediately
and what’s their effect? List at least 3 actions and analyze each of them.
Action: Based on this reasoning, identify the single most optimal action. You should output it
in the format specified above ("...STRICTLY follow the format...").
After you issue an action, the user will execute it and provide a new observation. Now solve
the following task.
Task: {task_goal}
Current URL: {url}
Screenshot of current viewpoint: attached
Accessibility tree of current viewpoint: {accessibility_tree}

F.3 Experiment Details

We use the following hyperparameters to obtain the WebVoyager results.

• num_iteration: 10

• actor_epochs: 1 # number of epochs to update the actor

• rollout_size: 512

• num_update_sample_per_iteration: 512

• lr: 1e-5

• optimizer: AdamW

• scheduler: WarmupCosineLR

• batch_size: 4

• grad_accum_steps: 2
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• eval_horizon: 30 # note that train horizon is different for different methods, but evaluation
horizon is kept the same
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F.4 Case Studies: Strengths and Failure Modes
We conduct detailed case studies to analyze how TTI behaves across tasks and domains. These cases
highlight both the strengths and remaining limitations of our approach.

Strength: Effective exploration in complex tasks (example visualized in Appendix F.5). For
complex, exploratory tasks that require information retrieval, TTI trains agent to extend its interaction
horizon through searches and backtracking, gathering and comparing information before making
decisions. For instance, when tasked to find the baking temperature of an apple pie recipe with 4+
stars and 50+ reviews, our agent first selects a recipe but encounters a pop-up it cannot dismiss due to
backend issues. It then tries another recipe but finds no baking temperature. Returning to the listing
again, it correctly identifies one that meets all criteria. We also observe that such behaviors emerge
progressively. In early training with h = 10, the agent actually tends to stick to the first recipe it
finds, keeps retrying it and saying “I remember seeing one with 613 ratings earlier” instead of
seeking alternatives. This illustrates that while TTI schedules interaction length globally, it teaches
agents to adjust their horizon within a task and shift from exploitation to exploration. In contrast,
training with a fixed short horizon can make it difficult to develop such exploratory behaviors.

Strength: Strategic exploitation in simple tasks (Appendix F.6). For simpler tasks with clear, de-
terministic paths (e.g., form filling or direct lookups), TTI-agent completes tasks efficiently without
over-exploration. For example, when instructed to find the “top trending open-source project on ma-
chine learning” in GitHub, the agent goes directly to the Open-Source menu, selects the Trending tab,
and performs search. This shows that TTI balances exploration and exploitation based on task context.

Despite these strengths, we also observe characteristic failure modes that point to areas for improve-
ment and may partly explain the agent’s lower performance on domains like GitHub.

Failure mode: over-reliance on resets (Appendix F.7). When an action fails, our agent can reset
the task by returning to the Bing search page rather than attempting recovery within the target domain.
This suggests the agent treats search as a universal fallback, even when more domain-specific actions
(e.g., revisiting menus, refining filters) would be more effective. We also observe repeated resets
within the same trajectory, indicating a lack of adaptive error recovery. While agents can extend
horizons through both resetting and backtracking, the latter is often more natural. This highlights an
area where TTI could improve by guiding exploration more systematically and enforcing structure.

Failure mode: limited self-verification (Appendix F.8). We also observe that the agent can fail to
verify its actions against the task goal, especially in the last step. In one case, the agent identifies a
2021 GitHub repository for a task requiring one from 2022. While it explicitly acknowledges the
mismatch, “It was created in 2021, not 2022, so it doesn’t meet the criteria”, it still submits it as the
answer. This implies limited self-verification ability and could be mitigated by longer, more deliberate
per-step reasoning. An important next step is to combine TTI with scaling per-step reasoning.
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F.5 Case Studies: Strengths 1

Task: Locate a recipe for an American apple pie on Allrecipes with a rating of at least 4 stars and
more than 50 reviews. Note the maximum temperature mentioned in the Directions.

Fully trained agent explores:
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Early-stage agent prefers exploitation:
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F.6 Case Studies: Strengths 2

Task: Identify the latest top-trending open-source project in the category of ‘Machine Learning’ on
GitHub, and check the number of stars it has received.
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F.7 Case Studies: Fail Modes 1

Task: On Apple’s website, how many different types of keyboards are available when customizing
your 14-inch MacBook Pro?
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Task: Which university maintains and manages ArXiv. Accessing the university’s website from
ArXiv, how many underegraduate students are currently at the university.
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F.8 Case Studies: Fail Modes 2

Task: Identify a new open-source project on GitHub related to ‘AI agriculture’ that created in 2022,
and note its main programming language and description.

G Full WebArena Experiment Details

We use the following hyperparameters to obtain the full WebArena results.

• num_iteration: 10
• actor_epochs: 1 # number of epochs to update the actor
• rollout_size: 512
• num_update_sample_per_iteration: 512
• lr: 1e-6
• optimizer: AdamW
• scheduler: WarmupCosineLR
• batch_size: 4
• grad_accum_steps: 2
• eval_horizon: 30
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contribution is to propose a new axis of test-time scaling for agent settings
and design effective methods for leveraging the benefits during online training. These are
reflected in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: See the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There is no theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all training and inference configurations, hyperprameters, LLM
prompts in the main text and appendix. We also include the code in the supplementary
materials.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use open-source benchmarks and release our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, see the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report numbers averaged three trials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we specify the GPUs we used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Broader Impact section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not use data or train models with high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We discussed how we prompt and train LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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