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Abstract

In light of the widespread deployment of001
Large Language Models (LLMs), the respon-002
sibility for safeguarding and regulating LLM-003
generated content has taken on heightened sig-004
nificance. Recent advancements in LLM-based005
moderation methods, e.g., LlamaGuard, have006
demonstrated remarkable promise in identify-007
ing safety risks associated with both inputs and008
outputs in human-AI interactions. However, in-009
tegrating LLM-based safeguards into a chatbot010
system requires an additional inference stage011
involving a moderation LLM with billions of012
parameters, which significantly increases com-013
putational costs and reduces overall efficiency.014
In this paper, we demonstrate that simply learn-015
ing a classification head on the last-layer hid-016
den states of the dialogue model provides a017
strong capability to identify harmful contents.018
The classification head, referred to as Shield-019
Head, serves as an auxiliary branch paralleled020
with next-token-prediction LM head, enabling021
the detection of potential risks in past text se-022
quences. Additionally, a label disambiguation023
technique is employed to supervise ShieldHead024
with both token-level and sentence-level labels,025
which further enhances its performance. Shield-026
Head exhibits remarkable efficiency during in-027
ference, providing real-time moderation results028
alongside token-wise streaming output during029
the chatbot system’s decoding phase. Extensive030
experimental results demonstrate the superior-031
ity of the proposed framework: a state-of-the-032
art performance on the XSTest and SafeRLHF033
datasets while running at a speed about 300×034
faster (<1ms) than previous LLM-based mod-035
eration models with ∼99% less parameters of036
LlamaGuard.037

1 Introduction038

The widespread application of large language039

models (LLMs) has ushered in transformative ef-040

fects across domains such as content generation041

(Josh Achiam, 2023; Team, 2024a), AI agent (Zhi-042

heng Xi and etc., 2023) and conversational assistant043

(Liu et al., 2024). Despite exhibiting impressive 044

capabilities, the deployment of LLMs is accompa- 045

nied by a plethora of safety challenges that pose 046

substantial risks, such as privacy violations (Li 047

et al., 2023), harmful content generation (Desh- 048

pande et al., 2023), facilitation of illegal activities 049

(Zhang et al., 2023), etc. As LLMs become increas- 050

ingly prevalent, an effective and efficient content 051

moderation tool is essential to detect safety risks, 052

ensuring safe and responsible interactions. 053
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Figure 1: Performance v.s. Latency of different mod-
eration methods. The latency is calculated on XSTest
response and includes network delay for GPT-4.

The rise of LLMs has transformed content mod- 054

eration, dividing approaches into two categories: 055

(1) traditional moderation APIs, such as Perspec- 056

tive API (Lees et al., 2022), OpenAI Content Mod- 057

eration API (Markov et al., 2023), and Azure 058

Content Safety API (Azure., 2024), which rely 059

on rule-based or discriminative classifiers, and 060

(2) LLM-based moderation tools, exemplified by 061

LlamaGuard (Inan et al., 2023; Team, 2024b; 062

Llama Team, 2024), ShieldGemma (Zeng et al., 063

2024), etc. The formers provide fast APIs and have 064

the advantage in speed, as they use non-parametric 065

rules or smaller models to efficiently judge harm- 066

ful content (Markov et al., 2023). However, they 067
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Figure 2: The comparison between the traditional LLM-based safety guardrails with the proposed ShieldHead
pipeline. Upper part: traditional LLM-based safety guardrails use a fine-tuned billion-size moderation model
which unions the completed query and response pair to output a safe or unsafe prediction. Lower part: Our pipeline
identifies risks at token-level, by training a lightweight ShieldHead parallelized with LM head. We use red color to
represent an unsafe prediction from the moderator.

have weaker language comprehension and reason-068

ing ability compared to LLMs and are unable to dif-069

ferentiate the distinct roles of users and AI agents.070

In contrast, LLM-based moderation methods, pi-071

oneered by LlamaGuard, take advantage of the072

powerful instruction following and reasoning capa-073

bilities inherent in LLM. These methods employ074

instruction-tuning to train LLMs for risk classifi-075

cation (Zeng et al., 2024). However, these LLMs076

contain billions of parameters, and the training and077

inference of them are computationally expensive078

and time-consuming. Therefore, most LLM-based079

moderators are inefficient and can only run offline,080

where the auditing process needs to wait until the081

chatbot completes the generation of its response.082

Such a post-event process increases the likelihood083

of harmful content being exposed by AI chatbots.084

An effective and efficient online safeguard is ur-085

gently needed to provide real-time results based on086

token-level streaming output from chatbot systems.087

Given the advantages and limitations of both088

baseline categories, we explore integrating faster,089

smaller classification methods into more accurate090

LLM-based pipelines. To this end, we propose091

utilizing the strong capabilities of dialogue LLMs092

as a pre-trained feature extractor for moderation 093

tasks. Motivated by previous work (Llama Team, 094

2024) that fine-tunes pre-trained LLM to harmless- 095

ness reward models simply by replacing next token 096

prediction with reward score prediction objective, 097

we suppose that a capable dialogue LLM should 098

encode sufficient context required for identifying 099

harmful content. Empirical evidence is presented 100

in Table 3, where training a safety classifier based 101

on the last token hidden states of the dialogue LLM 102

yields an average F1 score of 76.7, surpassing Lla- 103

maGuard by 2.6 points. 104

Based on this observation, we propose Shield- 105

Head, a novel LLM risk moderation pipeline that 106

reuses the hidden states of the dialogue model. 107

Different from traditional safeguards (Han et al., 108

2024; Zeng et al., 2024) which moderate sentence- 109

level safety, ShieldHead additionally has a token- 110

level moderation objective. To mitigate the huge 111

labor cost of token-level annotation, we adopt a 112

prototype-based label disambiguation technique 113

(Wang et al., 2022), which assigns sentence-level 114

labels as initial pseudo targets for each token, and 115

updates the token-level pseudo targets based on the 116

closest class prototype. The experiments indicate 117
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that ShieldHead accurately identifies both token-118

level and sentence-level harmfulness. Since Shield-119

Head has much fewer parameters, the additional120

introduced computational effort can be negligible121

compared with the overall pipeline. Also, Shield-122

Head can deliver real-time content moderation re-123

sults concurrently with text generation. Overall,124

Figure 1 demonstrates our ShieldHead achieves op-125

timal performance and efficiency compared with126

other safety moderation methods. Our contribu-127

tions are summarized as follows:128

• We introduce ShieldHead, a novel approach129

which moderates safety risk by reusing the hid-130

den states of dialogue model. With label dis-131

ambiguation technique, ShieldHead learns both132

sentence-level and token-level labels, achieving133

superior performance on risk moderation.134

• ShieldHead is a real-time moderator that au-135

dits safety risks alongside token-wise streaming136

output during the chatbot’s decoding phase. It137

achieves latency of less than 1 ms and utilizes138

approximately ∼1.1% parameters to surpass139

LlamaGuard with a large margin.140

• Through extensive experiments, ShieldHead141

achieves state-of-the-art on XSTest and142

SafeRLHF datasets. The averaged F1 score of143

ShieldHead on 3 prompt harmfulness and 2144

response harmfulness datasets has surpassed all145

other content moderation methods.146

2 Methodology147

The overview of the proposed ShieldHead frame-148

work is shown in Figure 2. Given a query “Can I149

commit suicide?”, traditional LLM-based safety150

guardrails (in the upper part) sequentially wait151

for the dialogue model providing a completed re-152

sponse, i.e. “No, but you can try taking poison153

...”. A fine-tuned billion-size moderation model154

unions the query and response pair to output a safe155

or unsafe prediction. In contrast, our pipeline (in156

the lower part) identifies risks at token-level, by a157

ShieldHead classifier parallelized with LM head.158

Concretely, once the dialogue model decodes the159

first token “[No]”, the safety score corresponding160

to the token, which is 0.1 in the figure, is given161

by ShieldHead. With the decoding process contin-162

ued, ShieldHead outputs a high-risk score 0.9 for163

the token “[poison]”, which means that there is a164

high probability of existing safety risks in the past165

sequences. The detailed classification module of166

ShieldHead is presented in Section 2.1. The label 167

disambiguation module is illustrated in Section 2.2, 168

which is used for training the proposed ShieldHead. 169

2.1 ShieldHead for Safety Classification 170

In this paper, we do not follow the generative train- 171

ing objective, which is characterized by an expan- 172

sive vocabulary, necessitating a strong instruction- 173

following capacity to ensure precise “safe” or “un- 174

safe” outputs. Instead, we propose to directly op- 175

timize a classification head based on the last-layer 176

hidden state of LLMs. Since previous LLM-based 177

safety moderation models and dialogue models 178

both utilize a causal inference paradigm for to- 179

ken prediction, their token inference processes are 180

reusable. By adding a multi-task head during the 181

dialogue model’s decoding process, the risk classi- 182

fication results of the past sequence can be simul- 183

taneously predicted once the model decodes the 184

next token. This process is referred to the real-time 185

moderation of LLM’s content. 186

ShieldHead pipeline is formalized as follows. 187

Suppose the targeted dialogue model H with the 188

output content needs to be moderated. For input 189

sentence j, H output the last-layer hidden state of 190

token i as h(i,j) ∈ Rd where d is the hidden size. 191

The classifier ShieldHead(·) is composed of a mul- 192

tilayer perceptron (MLP), generates the predicted 193

token-level probability ptoken
(i,j) ∈ RC as follows: 194

ptoken
(i,j) = Softmax(ShieldHead(h(i,j))) (1) 195

where ptoken
(i,j) = [ptoken

(i,j,1), . . . , p
token
(i,j,C)], and 196

ptoken
(i,j,c) ∈ R1 indicates the probability of h(i,j) be- 197

ing classified as category c. In this study, we set 198

C = 2, classifying tokens and sentences as either 199

safe or unsafe. Notably, our framework theoreti- 200

cally supports multiclass classification for different 201

safety risk categories (e.g., explicit content, bias) 202

using sentence-level multiclass labels, without re- 203

quiring token-level labels. To maintain generality 204

in our formulas, we use C instead of 2. 205

2.2 Label Disambiguation 206

To achieve the token-level safety classification 207

training, token-level safety data is essential. How- 208

ever, the cost of annotating token-level safety 209

data is significantly higher than sentence-level or 210

conversation-level annotation, and to the best of our 211

knowledge, no open-source datasets or effective 212

data synthesis methods currently exist. A straight- 213

forward and feasible approach is to use sentence- 214
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level labels for all tokens at the token level. How-215

ever, this introduces substantial noise, as unsafe216

sentences often contain numerous safe or neutral217

tokens (e.g., “are”, “the”, and other subjects or218

verbs).219

To address this issue and enhance the model’s220

classification accuracy, we introduce a label disam-221

biguation module, which consists of a prototype for222

each class. Intuitively, prototypes represent the cen-223

tral or “common” hidden features of each class and224

are used to update token-level labels, making them225

more accurate. More accurate token-level labels,226

in turn, are used to refine the prototype, enhancing227

its accuracy. Let P = [P1, ...,PC ],P ∈ RC×d rep-228

resent the prototype, initialized with a zero vector.229

Hidden state features h of tokens with the highest230

prediction probability p belonging to the respective231

class (i.e., {1, ..., C}) are utilized to update proto-232

types, and prototype labels s are calculated based233

on the proximity between these hidden features and234

prototypes.235

Prototype Label Generation: At time t, let236

the prototype vector for class c be Pt
c ∈ Rd. To-237

kens with Top@k prediction confidence ptoken
(i,j,c) ∈238

TopKc(p
token
(i,j) ) for class c was predicted by Shield-239

Head. Hidden state features of these Top@k tokens240

T t
c are used to update the corresponding class’s241

embedding in the prototype Pt
c. Subsequently,242

a moving-average update method is employed to243

compute the prototypes Pt+1
c as follows:244

Pt+1
c = Normalize(γ · Pt

c + (1− γ) · h(i,j)),245

for h(i,j) ∈ T t
c (2)246

where γ is the coefficient that adjusts the update247

rate, decreasing from γ = 0.99 to γ = 0.95 as248

the training epochs progress. The prototype label249

scores s(i,j) ∈ RC are then computed based on the250

proximity of token-level features to the prototypes,251

as shown below:252

s(i,j) = Softmax
(
P · h(i,j)

)
(3)253

where s(i,j) indicating the category of the i-th254

token in the j-th sentence.255

Before calculating the token-level loss, the dis-256

ambiguation soft labels at the token level are up-257

dated using the prototype label scores, as shown258

below:259

Yt+1
(i,j) = σ · Yt

(i,j) + (1− σ) · s(i,j) (4)260

where σ is the parameter adjusting the moving-261

average update rate decreasing from σ = 0.98 to262

σ = 0.5 as the training epochs progress.263

2.3 Loss Function 264

In the token-level supervision, a cross-entropy-like 265

loss is utilized as: 266

Ltoken = −
N∑
j=1

M∑
i=1

C∑
c=1

Yt
(i,j,c) · log(p

token
(i,j,c)) (5) 267

where Yt
(i,j,c) represents the c-th category of the 268

updated soft label at time t, and ptoken
(i,j,c) indicates 269

the c-th category of the predicted probability of the 270

i-th token in the j-th sentence. N is the number of 271

sentences in a batch and M is the number of tokens 272

in a sentence. 273

In the context of sentence-level supervision, we 274

utilize the predictive results of the final token of 275

prompt and response to compute the cross-entropy 276

losses, denoted as Lprompt and Lres, for prompts and 277

responses, respectively. The overall loss function 278

as follows: 279

L = Lprompt + Lres + λLtoken (6) 280

where λ is the hyperparameter controlling the 281

relative contribution between sentence-level loss 282

and token-level loss. 283

3 Experiments and Results 284

3.1 Setups 285

Training Datasets. In this study, we aim to create a 286

framework for token-level and real-time safety risk 287

classification, rather than improving safety classifi- 288

cation through enhanced data synthesis processes 289

and a greater amount of high-quality annotated data. 290

Consequently, existing open-source datasets are 291

adopted for training. We specifically utilize WILD- 292

GUARDTRAIN (WGTRAIN) (Han et al., 2024), 293

which provides the necessary sentence-level labels 294

for both prompts and responses. Each token is as- 295

signed an initial value based on its sentence-level la- 296

bel during the initial training phase. Detailed train- 297

ing settings are presented in the Appendix A.2.1. 298

Test Datasets. The evaluation benchmarks 299

used for testing ShieldHead can be summarized 300

into two categories. For prompt harmfulness clas- 301

sification, XStest (Röttger et al., 2023), ToxicChat 302

(Lin et al., 2023) and OpenAI Moderation (Markov 303

et al., 2023) are adopted. For response harmful- 304

ness classification, the test subset of BeaverTails 305

(Jiaming Ji and Yang., 2024) and Safe-RLHF (Dai 306
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Table 1: Comparisons of F1 scores (%) between ShieldHead (with Gemma2-9B as base model) and the SOTA
approaches on prompt and response safety classification in existing public benchmarks

Tasks Prompt Harmfulness (F1) Response Harmfulness (F1)
Datasets XSTest OpenAI Mod ToxicChat Avg. BeaverTails S-RLHF Avg.

OpenAI Mod API 57.6 79.0 25.4 54.0 75.5 10.1 42.8
GPT-4 (zero-shot) 89.5 70.5 68.3 76.1 86.1 67.9 77.0
GPT-4 (few-shot) 89.5 74.4 70.2 78.0 88.5 76.3 72.4

LlamaGuard3 92.0 79.8 50.4 74.1 75.5 87.4 81.5
WildGuard (Mistral-7B-v0.3) 94.8 72.1 67.1 78.0 84.1 84.0 84.1

WildGuard (Gemma2-9B) 93.2 72.1 65.9 77.1 82.0 83.8 82.9
ShieldGemma-9B 82.6 82.1 69.4 78.0 76.0 78.0 77.0
ShieldHead (Ours) 95.1 76.3 66.5 79.3 80.0 88.5 84.3

et al., 2024) are used. Other than prompt/response307

harmfulness, the token-wise harmfulness classifica-308

tion results of ShieldHead are additionally reported309

in Section 3.2.2. There are no public available310

benchmarks on token-wise harmfulness, so a small311

subset of BeaverTails is manually labeled for the312

token-wise evaluation.313

3.2 Comparison with SOTA Methods314

3.2.1 Sentence-level safety classification315

We conducted a comprehensive comparison of316

ShieldHead with the LLM-based safety classifi-317

cation models and an online moderation API, as318

detailed in Tables 1. In this scenario, akin to other319

moderation models, ShieldHead is capable of per-320

forming safety classification on any given sentence321

directly, without the necessity for additional train-322

ing. In the domain of prompt classification, Shield-323

Head achieved a superior F1 score, surpassing all324

competing models on the XSTest dataset and ex-325

ceeding the second-best by an average of 1.3%326

across all public prompt harmfulness benchmarks.327

In response classification, ShieldHead also demon-328

strated exceptional performance, outperforming the329

second-best model by 1.1% and surpassing GPT-4330

by 20.6% on the Safe-RLHF dataset. Furthermore,331

it achieved the highest average F1 score overall.332

For sentence-level classification, encompassing333

both prompt and response classification, our model334

consistently surpassed GPT-4, the OpenAI Moder-335

ation API, and other LLM-based methods in terms336

of the average F1 score. This demonstrates that337

our framework can achieve superior performance338

with a minimal number of trainable parameters and339

inference latency.340

3.2.2 Token-level safety classification341

To assess the efficacy of ShieldHead for safety clas-342

sification at the token level, we constructed and uti-343

lized the Beavertails-token dataset, which provides 344

token-level labels. From Beavertails (Jiaming Ji 345

and Yang., 2024), we randomly sampled 30 prompt- 346

response pairs, comprising 15 safe and 15 unsafe 347

instances at the conversation level. The tokenizer 348

from Llama-3.1-8B-Instruct is employed to divide 349

these pairs into tokens. Two independent annota- 350

tors provided annotations for each token within the 351

pairs. During annotation, prompts and responses 352

were reviewed independently, and all tokens follow- 353

ing an unsafe token in the sentence were marked 354

as unsafe. The dataset comprised a total of 2,694 355

tokens, with 1,745 labeled as unsafe and 949 as 356

safe. Detailed annotation method is presented in 357

Appendix A.5. 358

Subsequently, token-level safety classification 359

was conducted using the ShieldHead model trained 360

with Llama-3.1-8B-Instruct. The results of the 361

token-level safety classification yielded an F1 score 362

of 84.7% and an accuracy of 78.0%, demonstrating 363

the potential of ShieldHead in effectively identi- 364

fying safety at the token level. For comparison, 365

GPT-4 was tested with three samples as few-shot 366

in-context examples for word-level safety classifi- 367

cation, with details of the prompt template shown 368

in Section A.6. Due to challenges in ensuring that 369

GPT-4 adheres to token (subword) segmentation, 370

word-level testing was performed. For a fair com- 371

parison, word-level classification results of Shield- 372

Head was recalculated by using the label and pre- 373

diction of the first token in multi-token words as 374

the representative and yielded an F1 score of 85.1% 375

and an accuracy of 78.9%. In contrast, GPT-4’s out- 376

put included 29 sentences where the number of pre- 377

dictions differed from the actual number of words. 378

Excluding these cases, the word-level safety classi- 379

fication yielded an F1 score of 73.6% and accuracy 380

of 68.0%. GPT-4’s performance in word-level clas- 381

sification underperforms ShieldHead by F1-score 382
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Table 2: ShieldHead with different base models. Avg. F1 scores (%) on Prompt Classification benchmarks and
Response Classification benchmarks.

Base Prompt Harmfulness (F1) Response Harmfulness (F1)
Models XSTest OpenAI Mod ToxicChat Avg. BeaverTails S-RLHF Avg.

Gemma2-2B 93.3 76.0 65.2 78.2 80.1 87.1 83.6
Gemma2-9B 95.1 76.3 66.5 79.3 80.0 88.5 84.3
Gemma2-27B 93.0 76.0 67.7 78.9 82.0 87.2 84.6
Llama3.1-8B 95.1 74.9 64.3 78.1 82.6 76.7 79.7
Llama3.1-70B 94.7 76.1 66.9 79.2 82.1 81.0 81.6

of 11.5% and accuracy of 10.9%. To the best of383

our knowledge, no other baseline models currently384

support token-level safety risk classification.385

3.3 Analysis of Inference Performance386

In our comparative analysis of inference efficiency387

among ShieldHead, other LLM-based models, and388

the OpenAI Moderation API, as shown in Figure389

1, we observed that ShieldHead achieved superior390

F1 scores under conditions of optimal inference391

speed. This notable performance can be attributed392

to ShieldHead’s unique ability to simultaneously393

generate response outputs and perform safety clas-394

sification for each token. ShieldHead does not re-395

quire the dialogue model to complete its response396

prior to safety risk classification. This approach397

effectively eliminates the inefficiencies associated398

with the traditional two-step process of generating399

a response followed by subsequent safety classi-400

fication. Furthermore, ShieldHead’s significantly401

reduced parameter size (approximately 1.1% of402

Llama-Guard) ensures that its additional compu-403

tational overhead is negligible within the overall404

pipeline. In practice, a LLaMA-8B model with-405

out any prefix costs 48 ms to decode one token,406

while our ShieldHead only takes 0.4 ms (less than407

1%). Consequently, this integration significantly408

enhances the overall efficiency of moderation tasks.409

3.4 Ablation Study410

Adaptability of ShieldHead framework for411

streaming safety classification across diverse412

base models and model scales. As demonstrated413

in Table 2, ShieldHead effectively facilitates safety414

classification across various base models and model415

sizes. Overall, the choice of base model influ-416

ences the performance of safety classification, par-417

ticularly in response classification tasks. Notably,418

Gemma2-9B outperforms Llama3.1-8B by 1.2%419

and 4.6% in average F1 score for Prompt Classifica-420

tion and Response Classification, respectively, with421

the largest disparity observed on the Safe-RLHF422

dataset at 11.8%. Additionally, there is a general 423

trend of improved safety classification performance 424

with increased model size, although the gains are 425

relatively moderate. Specifically, Gemma2-27B 426

outperforms Gemma2-2B by 0.7% and 1.0% in 427

average F1 score for Prompt Classification and Re- 428

sponse Classification. 429

Each major component of ShieldHead con- 430

tributes to enhancing safety classification perfor- 431

mance. We conducted ablation studies to assess the 432

impact of the designed components in our proposed 433

method, including sentence-level and token-level 434

co-supervision, as well as the label disambiguation 435

module. The results, presented in Table 3, demon- 436

strate that ShieldHead benefits from all its compo- 437

nents. Relying solely on token-level loss, without 438

sentence-level supervision, results in significant 439

performance declines, with average F1 scores drop- 440

ping by 4.4% and 4.1% in prompt and response 441

classification, respectively. In contrast, using only 442

sentence-level supervision yields relatively good 443

performance, yet still lags behind the full Shield- 444

Head by 1.4% and 1.7% in prompt and response 445

classification F1 scores, with the largest gap reach- 446

ing a drop of 3.0 on datasets including Toxic Chat 447

and Beavertails. A detailed analysis of the roles 448

played by different modules is meticulously docu- 449

mented in Table 5 and Appendix A.2.2. 450

Table 3: Ablations of ShieldHead showing the con-
tributions of the designed modules. Avg. F1 scores
(%) on Prompt Classification benchmarks and Response
Classification benchmarks.

Model Prompt Response
w/o Sentence Loss 73.7 77.6

w/o Token Loss 76.7 80.0
w/o Label Disambi. 75.8 79.7
ShieldHead (Our) 78.1 81.7

The number of layers (parameters) in Shield- 451

Head can affect safety classification perfor- 452

mance. We conducted a comparative analysis of 453

training with ShieldHead (with Llama3.1-8B as 454

6



base model) of varying layers and trainable param-455

eters, as is shown in Figure 3. Our findings indicate456

that for models with up to five layers, an increase in457

the number of layers and parameters corresponds458

to improved performance across various datasets.459

Specifically, employing a 5-layer MLP results in a460

4.7% higher F1 score in prompt classification and461

a 5.0% higher F1 score in response classification462

compared to a single-layer MLP. Beyond five lay-463

ers, there is a slight drop in the model performance464

of response classification while the performance of465

prompt classification does not exhibit significant466

improvements. Notably, even with a 5-layer MLP,467

the number of trainable parameters constitutes only468

3.28% of those required for full parameter fine-469

tuning.470

Figure 3: Performance v.s. ShieldHead’s parameters.

Employing moving averages and reducing up-471

date rates improve model performance by mit-472

igating early training noise. γ and σ denote the473

update rates for prototypes and token-level labels,474

respectively. As shown in Table 4, reducing γ and475

σ yields better performance than using fixed values.476

Setting γ = 0 corresponds to a simple averaging477

approach, and the moving average method outper-478

forms simple averaging (+1.3% on prompts and479

+1.0% on responses). The utilization of a mov-480

ing average yields superior performance due to the481

inherent unreliability of the classifier during the482

initial stages of training. During this phase, the se-483

lection of top-k tokens for updating the prototypes484

may not be fully accurate. Therefore, a conserva-485

tive update approach is used initially to prevent486

noise, with the update rate gradually increasing as487

the classifier becomes more reliable. A detailed488

analysis is shown in Appendix A.2.2.489

3.5 Interpretability490

As illustrated in Figure 4, the proposed Shield-491

Head effectively identifies risky tokens, such as492

Table 4: ShieldHead with different momentum coef-
ficients. Avg. F1 scores (%) on Prompt Classification
benchmarks and Response Classification benchmarks.

Momentum Prompt Response
γ=0.99 75.8 79.9
γ=0.95 77.5 81.0
γ=0.5 76.5 80.9

γ=0 (simple average) 76.8 80.7
σ=1 (w/o Label Disambi.) 75.8 79.7

σ=0.98 75.8 80.1
σ=0.5 77.1 81.3

ShieldHead (Our) 78.1 81.7

“racist” in the scenario with the unsafe response, 493

and “steal” in the safe scenario. This visualization, 494

complemented by the quantitative token-level met- 495

rics described in Section 3.2.2, provides clear and 496

straightforward evidence of ShieldHead’s potential 497

in performing token-level safety risk classification. 498

Moreover, ShieldHead’s decision-making pro- 499

cess is based on hidden states, which, in GPT-like 500

models, encompass all cumulative information pre- 501

ceding the current token. This feature explains 502

ShieldHead’s ability to classify the same word dif- 503

ferently based on context. For instance, the term 504

“steal” appears in both the prompt and response of 505

the unsafe scenario, it is identified as risky in the 506

prompt but not in the response. The presence of 507

“not permissible to” in the preceding context of the 508

response contributes to this differentiation. This 509

observation further substantiates the presence of 510

safety risk-related features within the hidden state, 511

highlighting ShieldHead’s capability to effectively 512

extract these features for safety risk classification. 513

4 Related Work 514

4.1 Safety Content Moderation 515

Extensive research in content moderation can be 516

categorized into two main approaches. The first 517

involves online content moderation tools, such as 518

the Perspective API (Lees et al., 2022), OpenAI 519

Content Moderation API (Markov et al., 2023), and 520

Azure Content Safety API (Azure., 2024), which 521

have been pivotal in detecting harmful language. 522

The second leverages LLMs’ strong instruction- 523

following capabilities to detect safety issues with 524

minimal supervision. Advances have been made 525

through fine-tuning LLMs, exemplified by systems 526

like Llama-Guard (Inan et al., 2023; Team, 2024b; 527

Llama Team, 2024), ShieldGemma (Zeng et al., 528

2024), and others, achieving significant progress 529
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Figure 4: Visualization of token-level predictions with ShieldHead for safety classification. Two scenarios are
presented: one depicting a safe response and the other an unsafe response. In this visualization, the intensity of the
color red correlates with predictions approaching 1, indicating higher unsafety at the token level. Conversely, the
intensity of the color green signifies predictions approaching 0, indicating higher safety at the token level.

in content moderation. However, our work is dis-530

tinct in several key aspects. Unlike previous ef-531

forts, ShieldHead offers a universal token-level se-532

curity classification framework that enables real-533

time monitoring at the model layer without the need534

for additional guardrail training. This enhances de-535

fense efficiency and addresses tasks that previous536

models could not support satisfactorily.537

4.2 Label Disambiguation538

In token-level safety risk classification tasks, di-539

rectly assigning sentence-level labels to each to-540

ken within a sentence often results in label am-541

biguity. In this paper, we leverage the concept542

of Partial Label Learning (PLL) to design a label-543

disambiguation-based Multiple Instance Learning544

(MIL) approach for safety risk classification.545

PLL involves annotating each training instance546

with a candidate label set that includes the true547

label. A central challenge in PLL is label disam-548

biguation, which requires identifying the correct549

label from these candidates (Zhang et al., 2016;550

Lyu et al., 2019). For our task, obtaining token-551

level labels is costly and limits large-scale training,552

making token-level classification suitable for PLL.553

Compared to supervised learning, PLL labels are554

more ambiguous and require denoising for accu-555

rate classification. Traditional averaging methods556

(Hüllermeier and Beringer, 2005; Zhang and Yu,557

2015) treat all candidates equally but risk false posi-558

tives. Recognition-based methods (Jin and Ghahra-559

mani, 2002) consider the true label a latent variable560

and include margin-based (Nguyen and Caruana, 561

2008; Wang et al., 2020), graph-based (Zhang et al., 562

2016; Wang et al., 2020; Xu et al., 2019; Lyu et al., 563

2019), and clustering-based approaches (Liu and 564

Dietterich, 2012). Recently, Pico introduced a uni- 565

fied framework combining representation learning 566

and label disambiguation (Wang et al., 2022), using 567

contrastive learning for embeddings and a proto- 568

type strategy to update pseudo-labels according to 569

the nearest class, addressing label ambiguity. 570

5 Conclusion 571

In this paper, we introduce ShieldHead, an effi- 572

cient safety risk moderation pipeline for LLMs, 573

designed to deliver real-time results based on the 574

token-level streaming output of a chatbot system. 575

ShieldHead achieves a substantial advantage in 576

both prompt and response classification tasks, uti- 577

lizing only approximately 1.1% of trainable pa- 578

rameters and maintaining an inference latency of 579

less than 1ms (300× faster), compared to existing 580

safety risk moderation methods. While ShieldHead 581

outperforms existing moderation methods in per- 582

formance and real-time applicability, enhancing 583

the accuracy of token-level safety classification re- 584

mains a critical area for future research, which is 585

crucial for practical applications. In conclusion, 586

ShieldHead presents significant potential for en- 587

hancing the safety capabilities of LLMs and miti- 588

gating the risks associated with content generated 589

by these models effectively and efficiently. 590
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A Appendix 758

A.1 Limitations 759

Fairness: Although we utilized the WGTrain 760

dataset, which strives to minimize bias, discrepan- 761

cies in labels may still occur when identity groups 762

are interchanged. Furthermore, as an LLM-based 763

safety classifier, our performance is heavily reliant 764

on the semantic understanding of the base model, 765

making it susceptible to biases potentially intro- 766

duced in the base model’s training dataset and pre- 767

training process (Chen et al., 2024). 768

Ethical Considerations: Despite achieving 769

state-of-the-art F1 scores, ShieldHead is not im- 770

mune to errors and biases in safety classification. 771

When integrated into automated moderation sys- 772

tems, these inaccuracies can potentially allow un- 773

safe content to bypass detection. Users should re- 774

main cognizant of this limitation and the potential 775

for inaccuracies. 776

Generalization: While our ShieldHead frame- 777

work performs well across multiple public external 778

benchmarks on both prompt classification and re- 779

sponse classification, it is trained using the same 780

WGTrain dataset as WildGuard. As noted in the 781

WildGuard study, much of their data is synthetic, 782

which may not perfectly represent natural human 783

inputs encountered in real-world scenarios. Further 784

experiments are required to verify its generalization 785

across other datasets. 786

Token-Level Classification: Currently, there is 787

no large-scale, open-source dataset available for 788

token-level safety classification evaluation. We vi- 789

sualized token-level predictions to demonstrate the 790

effectiveness of ShieldHead and conducted token- 791

level data annotation based on beavertails as a 792

means of assessing the classification capabilities 793

of ShieldHead. However, the dataset’s limited size 794

means it cannot cover all possible real-world sce- 795

narios. 796

Multiclass Unsafe Content Classification: In 797

practical applications, it may be necessary to de- 798

termine specific categories of unsafe content. This 799

study focuses on binary classification between safe 800

and unsafe. Although the proposed ShieldHead 801
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Table 5: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
with and without designed modules on prompt and response safety classification in existing public benchmarks.

Model
Prompt Harmfulness (F1) Response Harmfulness (F1)

XSTest OpenAI Mod ToxicChat Avg. BeaverTails S-RLHF Avg.

w/o Sentence Loss 91.8 71.3 58.1 73.7 73.5 81.6 77.6

w/o Prompt Loss 92.0 70.9 59.3 74.1 76.2 85.9 81.1

w/o Response Loss 95.4 74.8 64.0 78.1 74.2 84.0 79.1

w/o Token Loss 94.1 74.8 61.3 76.7 73.7 86.2 80.0

w/o Label Disambi. 93.0 72.0 62.3 75.8 76.2 83.1 79.7

ShieldHead (Our) 95.1 74.9 64.3 78.1 76.7 86.6 81.7

with prototype-based label disambiguation tech-802

nique supports multi-classification, further explo-803

ration is deferred to future work.804

A.2 More Details about ShieldHead805

A.2.1 Implementation Details806

We initially assessed our method against state-of-807

the-art LLM-based and online API approaches808

across multiple public benchmarks, as shown in809

Section 3.1. Our experiments utilized F1 scores as810

the evaluation metric for all benchmarks. To en-811

sure fairness, we used consistent data splits for all812

evaluations. We use the LLaMA-Factory (Zheng813

et al., 2024) codebase for model training, with814

4 A100 80GB GPUs (8 A100 80GB GPUs for815

Llama3.1-70B) using a total batch size of 8, a816

max sequence length of 4096. During training,817

the AdamW optimizer was employed with a learn-818

ing rate of 1 × 10−5 and a warmup ratio of 0.1,819

no weight decay. ShieldHead was trained for one820

epoch over the training set. Token-level labels were821

initialized to their corresponding sentence-level la-822

bels, and prototypes were initialized to zero. We823

implemented a warm-up strategy for label disam-824

biguation, during which only the prototypes were825

updated, and the token-level labels remained un-826

changed for the initial 2000 steps. The duration827

of training is contingent upon the base model em-828

ployed. Specifically, when utilizing the Llama-829

3.1-8B-Instruct model as base model, the training830

process can be completed in under one hour.831

We utilize WILDGUARDTRAIN (WGTRAIN)832

(Han et al., 2024) as training dataset, which pro-833

vides the necessary sentence-level labels for both834

prompts and responses. WGTRAIN contains a total835

of 86,759 entries, consisting of 48,783 standalone836

prompts and 37,976 prompt-response pairs. Our837

focus is on the 37,976 pairs, classified as follows: 838

16,647 pairs with both safe prompts and responses, 839

12,946 with unsafe prompts but safe responses, 27 840

with safe prompts and unsafe responses, and 8,356 841

where both are unsafe. We designate 10% of these 842

pairs as a validation set. 843

A.2.2 More Results for Ablation Study 844

In Table 5 and Table 6, we report full evalua- 845

tion results of ShieldHead with and without de- 846

signed modules and with different number of layers 847

across all public benchmarks. Introducing token- 848

level labels without label disambiguation results in 849

decreased performance compared to solely using 850

sentence-level labels. This method falls short by 851

2.3% and 2.0% in average F1 scores for prompt and 852

response classification, respectively, when com- 853

pared to the complete ShieldHead. Additionally, it 854

experiences declines of 0.9% and 0.3% compared 855

to the ShieldHead variant without token-level co- 856

supervision. This result shows that the proposed 857

label disambiguation module effectively mitigates 858

the noise introduced by token-level supervision, 859

maximizing its benefits and ultimately enhancing 860

model performance. 861

Benefit of using moving-average during train- 862

ing. Moving average and simple average do not 863

perform the same function. We conducted an abla- 864

tion experiment to compare their effects, as shown 865

in Table 7. There are two potential ways to up- 866

date prototypes using the simple average of hid- 867

den features: (1) by calculating a simple average 868

over all tokens at the start, or (2) by calculating it 869

per batch during training. In the first case, when 870

token-level labels are initially assigned based on 871

noisy sentence-level labels, the simple average pro- 872

duces biased prototypes, which prevents the pro- 873
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Table 6: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
with different number of layers on prompt and response safety classification in existing public benchmarks.

Layer
Trainable Parm. Prompt Harmfulness (F1) Response Harmfulness (F1)

(%) XSTest OpenAI Mod ToxicChat Avg. BeaverTails S-RLHF Avg.

1 0.416 94.9 73.9 60.6 76.5 74.5 82.9 78.7

2 0.832 94.9 75.8 64.5 78.4 76.4 87.8 82.1

3 1.136 95.1 74.9 64.3 78.1 76.7 86.6 81.7

4 1.745 95.9 76.2 66.8 79.6 79.2 88.3 83.8

5 3.284 96.6 77.2 69.5 81.1 79.0 88.4 83.7
6 3.721 96.4 77.6 71.3 81.8 79.7 87.3 83.5

Table 7: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
and simple average methods on prompt and response safety classification in existing public benchmarks.

Model
Prompt Harmfulness (F1) Response Harmfulness (F1)

XSTest OpenAI Mod ToxicChat Avg. BeaverTails S-RLHF Avg.
Simple average

(prototype remains constant)
93.0 72.6 62.5 76.0 76.5 83.0 79.8

Simple average per batch
(γ=0)

93.2 74.1 63.0 76.8 75.9 85.5 80.7

ShieldHead (Our) 95.1 74.9 64.3 78.1 76.7 86.6 81.7

totypes from reducing the noise of token-level la-874

bels. ShieldHead outperforms the first case model875

by an average F1-score of 2.1% and 1.9% across876

prompt and response benchmarks, respectively. In877

the second case, calculating the simple average per878

batch can still introduce batch-specific biases, as879

prototypes are calculated independently for each880

batch. This prevents the prototypes from accumu-881

lating information over time, leading to less stable882

or reliable prototypes. ShieldHead outperforms the883

second case model by an average F1-score of 1.3%884

and 1.0% across prompt and response benchmarks,885

respectively.886

Benefit of reducing momentum coefficients887

during training. To demonstrate the effect of the888

moving average update and the impact of reducing889

γ and σ during training, we included an additional890

ablation study as shown in Table 8 and Table 9. γ891

and σ represent the update rates for the prototypes892

and token-level labels, respectively. Overall, the893

results show that reducing γ and σ yields better per-894

formance than using fixed values. The utilization895

of a moving average yields superior performance896

due to the inherent unreliability of the classifier dur-897

ing the initial stages of training. During this phase,898

the selection of top-k tokens for updating the pro-899

totypes may not be fully accurate. Therefore, a 900

conservative update approach is used initially to 901

prevent noise, with the update rate gradually in- 902

creasing as the classifier becomes more reliable. 903

Note that setting γ=0 corresponds to using a sim- 904

ple average for each batch (when calculating the 905

prototype in each batch during training, only the 906

current batch is considered, without taking histori- 907

cal information into account). The moving average 908

approach outperforms the simple average by an av- 909

erage F1-score of 1.3% and 1.0% across prompt 910

and response benchmarks, respectively. Similarly, 911

setting σ=0 corresponds to an ablation where the 912

token-level labels are used without the label dis- 913

ambiguation algorithm (since the labels are not 914

updated). 915

A.2.3 Performance in Safety-Critical 916

Scenarios 917

Identifying unsafe instances as safe (false nega- 918

tives, with "safe" considered negative and "unsafe" 919

considered positive) is crucial in safety-critical sce- 920

narios. In our model training, we took into account 921

and calculated a variety of metrics, including the 922

False Negative Rate (FNR), although our primary 923

focus was on the F1 score. The FNR results are 924
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Table 8: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
with different γ values on prompt and response safety classification in existing public benchmarks.

Model
Prompt Harmfulness (F1) Response Harmfulness (F1)

XSTest OpenAI Mod ToxicChat Avg. BeaverTails S-RLHF Avg.

γ=0.99 93.0 72.2 62.1 75.8 76.3 83.5 79.9

γ=0.95 95.2 73.5 63.9 77.5 76.3 85.7 81.0

γ=0.5 93.3 73.6 62.6 76.5 76.0 85.8 80.9

γ=0 (simple average) 93.2 74.1 63.0 76.8 75.9 85.5 80.7

ShieldHead (Our) 95.1 74.9 64.3 78.1 76.7 86.6 81.7

Table 9: Ablation Study. Comparisons of F1 scores (%) between ShieldHead (with Llama3.1-8B as base model)
with different σ values on prompt and response safety classification in existing public benchmarks.

Model
Prompt Harmfulness (F1) Response Harmfulness (F1)

XSTest OpenAI Mod ToxicChat Avg. BeaverTails S-RLHF Avg.

σ=1 (w/o Label Disambi.) 93.0 72.0 62.3 75.8 76.2 83.1 79.7

σ=0.98 93.3 72.2 61.9 75.8 75.6 84.5 80.1

σ=0.5 94.5 72.8 64.1 77.1 76.7 85.8 81.3

ShieldHead (Our) 95.1 74.9 64.3 78.1 76.7 86.6 81.7

shown in Table 10. ShieldHead on ToxicChat ex-925

hibits a relatively high FNR, as the number of pos-926

itive samples (unsafe) is much smaller than the927

number of negative samples (safe), with a ratio of928

approximately 1:10, which increases the difficulty929

of the task. Nonetheless, the model demonstrated930

generally strong performance across different base931

model sizes, with the lowest FNRs of 0.14 and932

0.13 on the prompt and response benchmarks, re-933

spectively, showing the potential of ShieldHead in934

safety-critical scenarios.935

A.3 Public Benchmarks for Evaluations936

XSTest Dataset (Röttger et al., 2023): This eval-937

uation dataset consists of 450 prompts, including938

250 safe prompts across ten prompt types that well-939

calibrated models should not refuse to comply with,940

and 200 unsafe prompts as contrasts that, for most941

LLM applications, should be refused. In our eval-942

uation, prompts which LLM applications should943

refuse to response was labeled as unsafe.944

OpenAI Moderation Dataset (Markov et al.,945

2023): This evaluation dataset consists of 1,680946

prompts, each labeled according to eight distinct947

risk categories. In our evaluation, all prompts were948

utilized, and every risk category was labeled as949

unsafe.950

ToxicChat Test Set (Lin et al., 2023): This 951

dataset includes a test split containing harm labels 952

for real-world user requests sourced from the Vi- 953

cuna online demo. It features 2,853 prompts, an- 954

notated by humans, with labels indicating prompt 955

harmfulness and whether a prompt is adversarial. 956

In our evaluation, any prompt marked as harmful 957

is labeled unsafe. 958

BeaverTails Test Set (Jiaming Ji and Yang., 959

2024): This test set is part of a manually-annotated 960

dataset, comprising 3,021 prompt-response pairs 961

with harm labels. The prompts are derived from 962

HH-RLHF red teaming (Yuntao Bai, 2022) splits 963

and other sources, while responses are generated 964

using the Alpaca-7B model, followed by human an- 965

notations. The dataset spans 14 harm categories, all 966

of which were labeled as unsafe in our evaluation. 967

SafeRLHF Test Set (Dai et al., 2024): This 968

dataset is a test split from a preference dataset fea- 969

turing prompts followed by two responses and a 970

comparison of these responses. Sharing prompts 971

with the BeaverTails dataset, it emphasizes com- 972

parison data with manual human preference anno- 973

tations. For efficiency, we selected the subset with 974

Alpaca3-8B responses, comprising a total of 2,327 975

prompt-response pairs. 976
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Table 10: FNR scores of ShieldHead with different base models on prompt and response safety classification in
existing public benchmarks.

Model
Prompt Harmfulness (FNR) Response Harmfulness (FNR)

XSTest OpenAI Mod ToxicChat Avg. BeaverTails S-RLHF Avg.

Gemma2-2B 0.03 0.17 0.37 0.19 0.14 0.09 0.12

Gemma2-9B 0.03 0.17 0.32 0.16 0.15 0.09 0.12

Gemma2-27B 0.04 0.14 0.35 0.14 0.17 0.09 0.13

A.4 Existing Safety Risks Moderation Tools977

We compare our ShieldHead against several meth-978

ods: OpenAI Moderation API, LlamaGuard3979

(Llama Team, 2024), WildGuard (Han et al., 2024),980

ShieldGemma-9B (Zeng et al., 2024) and GPT-4981

(Josh Achiam, 2023). For GPT-4, we utilize the982

OpenAI API (model=gpt-4-0613) with the prompt983

used in WildGuard (Han et al., 2024). For other984

methods, we simply adopt their default prompt and985

evaluation setting.986

A.4.1 LLM-based safety classification model987

Llama-Guard (Inan et al., 2023): Llama-Guard988

is an instruction-tuned model based on Llama-2989

7B, aimed at classifying harms within both input990

prompts and model responses. It supports the clas-991

sification of 6 distinct types of safety risks. The992

model is trained using prompts from the Anthropic993

Red Teaming dataset (Perez et al., 2022), supple-994

mented with proprietary responses and labels that995

indicate the harmfulness of prompts and responses.996

Llama-Guard2 (Team, 2024b): Llama-Guard2997

is an advanced version of Llama-Guard, developed998

using Llama-3 8B. It defines and supports the clas-999

sification of 11 safety risk types. Building based1000

on the Llama-Guard training set, it focuses on chal-1001

lenging examples by augmenting existing prompts1002

with flipped labels. This approach aims to refine1003

the model’s ability to identify complex safety risks1004

accurately.1005

Llama-Guard3 (Llama Team, 2024): Llama-1006

Guard3 is an instruction-tuned model based on1007

Llama-3.1 8B, supporting 14 types of safety risk1008

classifications. Its training set extends from Llama-1009

Guard, with an emphasis on multilingual capabili-1010

ties and tool usage. It incorporates additional hu-1011

man and synthetically generated data to enhance1012

adaptability and precision across diverse contexts.1013

ShieldGemma (Zeng et al., 2024): Shield-1014

Gemma is an instruction-tuned model based on1015

Gemma2, available in multiple parameter scales1016

(2B, 9B, and 27B). Its training dataset is derived 1017

from Anthropic/hh-rlhf (Yuntao Bai, 2022) and 1018

is downsampled to 15,000 samples to align with 1019

Llama-Guard. 1020

WildGuard (Han et al., 2024): WildGuard is 1021

an instruction-tuned model based on Mistral-7b- 1022

v0.3, supporting multi-task recognition including 1023

Prompt Harm, Response Harm, and Refusal De- 1024

tection. Its training relies on the WILDGUARD- 1025

TRAIN (WGTRAIN) dataset, consisting of a total 1026

of 86,759 entries, with 48,783 standalone prompts 1027

and 37,976 prompt-response pairs. The training 1028

data for WildGuard is publicly accessible, promot- 1029

ing transparency and facilitating further research. 1030

A.4.2 LLM-based safety classification model 1031

GPT-4 Classification (Josh Achiam, 2023): We 1032

follow the prompts used for GPT-4 classifica- 1033

tion in WildGuard (Han et al., 2024). In Wild- 1034

Guard, a search of several prompt variants is con- 1035

ducted, including providing additional guidelines 1036

and prompting chain-of-thought reasoning, finding 1037

that this prompt performs the best overall across 1038

evaluations. We use gpt-4-0613 for all GPT-4 clas- 1039

sification. 1040

A.5 Annotation method on token-level 1041

classification 1042

A.5.1 Annotation agreement 1043

As to the annotation agreement, we followed the 1044

best practice from prior studies, such as ToxicChat 1045

(Lin et al., 2023) and Beavertails (Jiaming Ji and 1046

Yang., 2024), adapting their sentence-level anno- 1047

tation method to our token-level annotation: Two 1048

independent annotators were tasked with labeling 1049

each token within the sentence. Any disagreements 1050

between the annotators were resolved through dis- 1051

cussion to reach mutual agreement on all tokens. 1052
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A.5.2 Intuition for token-level annotation1053

Most work in text generation considers all pre-1054

ceding tokens when performing next token pre-1055

diction (Radford and Narasimhan, 2018; Brown1056

et al., 2020), and our work aims to classify safety1057

of the responses generated by these text generators.1058

Therefore, intuitively, we follow this manner.1059

Hence, in this paper, we adopt the cumulative ef-1060

fect of GPT-like models (Radford and Narasimhan,1061

2018; Radford et al., 2019; Brown et al., 2020).1062

Instead of directly labeling each token individually1063

(treat them independently), we label tokens taking1064

into account all the preceding context. Our safety1065

risk classification is derived from the conditional1066

probability p(sn|t1, ..., tn), where t1 to tn repre-1067

sent the first to the nth token, and sn denotes the1068

safety risk classification of the nth token.1069

The manual annotation method is used only for1070

the evaluation set, whereas token-level labels used1071

during training are obtained through the prototype-1072

based disambiguation method. In our experiments,1073

following the cumulative effect of GPT-like mod-1074

els, we use the safety classification of the last token1075

in a sentence as the prediction for the sentence. We1076

achieve state-of-the-art performance in sentence-1077

level safety classification. This also demonstrates1078

that the cumulative effect is applicable in the con-1079

text of safety classification in our work.1080

A.5.3 Existing token-level annotation methods1081

In addition to its application in safety risk classi-1082

fication, as proposed in this paper, accumulative1083

token-level annotation is also applied in other tasks.1084

For example, RIPA (Choi et al., 2023) proposes1085

that once the first hallucinated token is detected,1086

all subsequent generated tokens should be labeled1087

as hallucinated. NADO (Meng et al., 2022) in-1088

troduced the concept that the occurrence of hal-1089

lucination in a token is related to its prefix from1090

the perspective of the conditional distribution for-1091

mula. Our method, NADO (Meng et al., 2022), and1092

RIPA (Choi et al., 2023), leverages the cumulative1093

effect of GPT-like models, where the conditional1094

probability of subsequent tokens is influenced by1095

the preceding tokens. Similar to our annotation1096

method, these approaches also use accumulative1097

annotation. However, their objectives differ from1098

ours. For example, RIPA constructs a reward based1099

on these accumulative token-level labels. Besides,1100

Fast-detectgpt (Bao et al., 2023) use token-level1101

conditional probability curvature as a cumulative1102

effect to determine whether the text is AI-generated.1103

Fast-detectgpt (Bao et al., 2023) and DetectGPT 1104

(Mitchell et al., 2023) label the first few tokens as 1105

“human-written,” and all tokens following the first 1106

AI-generated token as “AI-generated”. 1107

In summary, accumulative annotation has been 1108

employed in previous work as well, further validat- 1109

ing the effectiveness of our annotation method. 1110

A.6 Example for GPT-4 Prompts 1111

You are a classifier for analyzing interactions between hu-
mans and LLMs. Given a request from a human user, deter-
mine whether the human user’s request is harmful. Please
just response with harmful or unharmful without any other
words.
Here are two examples:
Prompt: How can I rob the bank?
Prompt harmfulness: harmful
Prompt: What’s the weather like today?
Prompt harmfulness: unharmful
Following is the request and response for you to classify:
Prompt: {prompt}
Prompt harmfulness:

Table 11: Instruction prompt to use a few WGTRAIN
samples as a few-shot in-context learning examples for
sentence-level safety classification.

You are a classifier for analyzing interactions between hu-
mans and LLMs. Given a request from a human user or
a response from an LLM assistant, determine whether the
sentence is harmful word by word. Please respond solely
with 0 for non-harmful content and 1 for harmful content,
without any additional commentary.
Here are three examples:
Sentence: How can I rob the bank?
Sentence harmfulness: 0, 0, 0, 1, 1, 1
Sentence: To have cyber sex, you’ll need to find someone
who is interested in virtual sex and get comfortable being
sexual online. Start by slowly getting sexual and increasingly
more intimate through suggestive conversations.
Sentence harmfulness: 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Following is the request and response for you to classify:
Sentence: {prompt}
Sentence harmfulness:

Table 12: Instruction prompt to use a few WGTRAIN
samples as a few-shot in-context learning examples for
word-level safety classification.
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