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Abstract

Despite the progress in the development of generative models, their usefulness in
creating synthetic data that improve prediction performance of classifiers has been
put into question. Besides heuristic principles such as “synthetic data should be
close to the real data distribution”, it is actually not clear which specific properties
affect the generalization error. Our paper addresses this question through the lens
of high-dimensional regression. Theoretically, we show that, for linear models,
the covariance shift between the target distribution and the distribution of the
synthetic data affects the generalization error but, surprisingly, the mean shift does
not. Furthermore we prove that, in some settings, matching the covariance of the
target distribution is optimal. Remarkably, the theoretical insights from linear
models carry over to deep neural networks and generative models. We empirically
demonstrate that the covariance matching procedure (matching the covariance of
the synthetic data with that of the data coming from the target distribution) performs
well against several recent approaches for synthetic data selection, across training
paradigms, architectures, datasets and generative models used for augmentation.

1 Introduction
The controllable generation of arbitrary amounts of synthetic data for training machine learning
models has long been considered as one of the key implications unlocked by more capable generative
models [Kingma and Welling, 2014, Goodfellow et al., 2014, Shrivastava et al., 2017, Nikolenko
et al., 2021]. After all, synthetic data can not only be abundant, which would already be tremendously
impactful in data-scarce applications such as medicine [Esteban et al., 2017, van Breugel et al., 2024],
but it can also address other difficulties of observational data, such as privacy [Jordon et al., 2018],
imbalancedness [Parihar et al., 2024, Ramaswamy et al., 2021] and overall difficulty to collect, as
the domain can be specific [Dunlap et al., 2023] or the task complex [Wang et al., 2023]. At the same
time, while generative models have progressed significantly, experimental results are still mixed.
Prior studies highlight both the promise [Trabucco et al., 2024, He et al., 2023, Azizi et al., 2023,
Dunlap et al., 2023] and pitfalls [Fan et al., 2024, Burg et al., 2023, Geng et al., 2024, Shumailov
et al., 2024, Wyllie et al., 2024] of synthetic data. What emerges here is a broad challenge which
consists of understanding how extra synthetic data, for example from a generative model, helps
training predictors. Our paper tackles this challenge theoretically and empirically. To do so, we
assume access to a training dataset (Xt, yt) that contains i.i.d. samples, as well as to an additional
synthetic dataset (Xs, ys). The samples from the synthetic dataset are also i.i.d., but they come from
a different distribution, since they are obtained from a generative model and not from the training
dataset. We perform empirical risk minimization (ERM) using the augmentation ((Xt, Xs), (yt, ys)),
and evaluate the performance on an independent test sample with the same distribution as (Xt, yt).
In this context, the challenge above leads to the following concrete question:

How to select the dataset (Xs, ys) in order to minimize the test error? (Q)
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By studying this question, we can identify which properties of the distribution of (Xs, ys) improve
generalization, thus guiding the selection of data obtained in practice from generative models.

Formalization of the problem. We assume that the distributions of both the original training
dataset and the additional synthetic one are mixture models. The number of mixtures corresponds to
the number of classes in the datasets, with each mixture component corresponding to a single class.
As common in practice [Burg et al., 2023], the data augmentation occurs class-by-class. We then
address the question (Q) when (Xt, yt) and (Xs, ys) correspond to a single class. While this is a
strong assumption chosen for mathematical tractability, we highlight that the resulting data selection
procedure is extensively tested in practical settings where it performs well against existing baselines.
For related work, see Appendix A.

Main contributions. Our analysis reveals a surprising behavior: while the shift in the covariances
of Xt and Xs affects the test error, the shift in the means of Xt and Xs is irrelevant, as long as the
training dataset (Xt, yt) is not too small compared to the synthetic dataset (Xs, ys). This allows
synthetic data selection to be formulated as an optimization over the covariance Σs of Xs, and
covariance matching (Σs ∝ Σt, where Σt is the covariance of Xt) yields optimal performance in
some settings. Empirically, relying on this principle alone performs on par—or even outperforms—
several recent approaches for synthetic data selection. We summarize our contributions below:

• We precisely characterize the test error of the min-norm least squares estimator when the dimensions
of β, yt, and ys grow proportionally. In both under- and over-parameterized regimes (Theorems 3.1
and D.1), the test error converges to a deterministic limit depending only on the covariances Σt,Σs,
and not on the means µt, µs.

• Our characterization implies that we can select synthetic data minimizing the test error based on their
covariance. We then show that, under some conditions, taking Σs ∝ Σt, i.e., covariance matching,
is optimal (Theorems 3.2 and D.2 for under-parameterized and over-parameterized regimes).

• We validate the effectiveness of covariance matching as a way to select synthetic data in several
practical scenarios. This simple approach matches or surpasses the recent baselines [He et al., 2023,
Lin et al., 2023, Hulkund et al., 2025] across various training paradigms (training from scratch,
distilling a bigger model, fine-tuning a model trained from a larger dataset), architectures (ResNets,
transformers), datasets (CIFAR-10, ImageNet-100, RxRx1), and generative models used to obtain
synthetic data (StyleGAN2-Ada, SANA1.5, PixArt-α, StableDiffusion1.4, MorphGen).

2 Preliminaries
Data model. We consider data augmentation in the context of linear models. Formally, we observe
two datasets (Xt, yt) and (Xs, ys), denoting training data and augmenting synthetic data, such that

y(i) = X(i)β + ε(i), (i) ∈ {t, s}, (2.1)

where X(i) ∈ Rn(i)×p, β ∈ Rp, and ε(i) ∈ Rn(i) . Thus, we are given nt training samples and
ns synthetic samples, all of which are p dimensional. We denote the total number of samples as
n := nt + ns. For (i) ∈ {t, s}, each entry of the noise vector ε(i) is i.i.d. with mean zero and
variance σ2, and the rows of X(i) are independent random vectors with p× p population covariance
matrix Σ(i) and mean µ(i). By omitting subscripts, we introduce X := [Xt Xs]

⊤ ∈ Rn×p,
y := [yt ys]

⊤ ∈ Rn. We will consider our results under mild assumptions on X (see Appendix B).

Risk and estimator. We test estimators on data sampled from the same distribution as the training
dataset (Xt, yt) and, given an estimator β̂, its out-of-sample excess risk is defined as

RX(β̂;β) := E[(x⊤t β̂ − x⊤t β)
2 | X] = E

[
∥β̂ − β∥2Σt+µtµ⊤

t
| X
]
, (2.2)

where xt has the same distribution as a row of Xt and ∥x∥2M := x⊤Mx. Specifically, we are
interested in the performance of the min-norm least squares regression estimator of y on the whole
dataset available X , i.e., β̂ := argmin

{
∥b∥2 : b minimizes ∥y −Xb∥22

}
. This estimator is also

motivated by its close relation to the gradient descent optimum.3

3Gradient descent converges to the interpolator closest in ℓ2 norm to the initialization (see Equation (33) in
Bartlett et al. [2021]) and, as such, β̂ corresponds to the gradient descent solution starting from 0 initialization.
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3 Theoretical results
We characterize the excess risk of the min-norm interpolator using both training and augmenting
synthetic data. We then use the explicitly derived formulas to optimize the data selection process,
in which, surprisingly, distribution means play no role. We contrast this setting with having only
synthetic data available, where means instead impact the excess risk. Our findings hold in both the
under-parameterized and over-parameterized regimes.

For clarity, we present the under-parameterized regime here, and defer the analysis of the over-
parameterized regime to Appendix D. Accordingly, we assume that n/p, nt/p, ns/p ∈ [1 + τ, 1/τ ],
for some small τ > 0. This implies that n > p, indeed making the setting under-parameterized.
The following result provides a precise asymptotic characterization of the excess risk, extending the
results by Yang et al. [2025] to non-zero centered data. Its proof is deferred to Appendix E.2.

Theorem 3.1. Let M = Σ
−1/2
t ΣsΣ

−1/2
t and denote its eigenvalues as λ1 ≥ · · · ≥ λp. Then, under

the assumptions from Section 2 and the start of this section, it holds that, with high probability,

lim
n→∞

∣∣∣∣RX(β̂;β)− σ2

n
Tr
[
(α1M + α2 Ip)

−1
]∣∣∣∣ = 0, (3.1)

where α1 and α2 are the unique positive solutions to the following two equations

α1 + α2 = 1− p

n
, α1 +

1

n

p∑
i=1

λiα1

λiα1 + α2
=
ns
n
. (3.2)

Theorem 3.1 gives a deterministic equivalent of the test error obtained using training and syn-
thetic data in the under-parameterized regime. In fact, RX(β̂;β) is a random quantity (the data is
random), while σ2

n Tr[(α1M + α2 Ip)
−1] is deterministic as it depends on properties of the data

distributions. Remarkably, the deterministic equivalent depends only on the covariances Σt,Σs (via
M = Σ

−1/2
t ΣsΣ

−1/2
t ) and it does not depend on the means µt, µs. The independence of the test

error on the mean shift is surprising, and it is in stark contrast with the setting in which we only train
on (Xs, ys), where the performance does depend on µs, µt (see Appendix C.1).

The deterministic equivalent can be optimized to find the covariance Σs minimizing the error. Towards
that end, let us denote the deterministic quantity from (3.1) as

Ru(M) :=
σ2

n
Tr
[
(α1M + α2 Ip)

−1
]
, (3.3)

where α1 and α2 satisfy (3.2). This corresponds to the limit of the risk RX(β̂;β) due to Theorem
3.1. Thus, the guiding question (Q) posed in the introduction can be formalized as:

Given Σt, what is the optimal Σs that minimizes Ru(Σ
−1/2
t ΣsΣ

−1/2
t )?

The following theorem exactly treats this. Its proof is in Appendix E.4.
Theorem 3.2. Let M := {M ∈ Rp×p≻0 : Tr[M ] = p}, where Rp×p≻0 denotes the set of p× p positive
definite matrices. Then, it holds that Ip = arginfM∈M Ru(M).
Theorem 3.2 proves that, having fixed Tr[M ], the limit risk Ru(M) is minimized for M proportional
to Ip. The imposed trace normalization is justified in Appendix C.2. Thus, given a training covariance
Σt, choosing synthetic data with Σs ∝ Σt, i.e., matching the covariances, is optimal.

4 Experimental results
Our theoretical results in Section 3 and Appendix D show the optimality of covariance matching
(Σs ∝ Σt) in both under-parameterized and over-parameterized regimes. We now consider clas-
sification problems, assume access to a large pool of synthetic samples obtained from generative
models, and perform the augmentation per class. We implement covariance matching via a greedy
algorithm: we initialize S = ∅ and, until |S| = ns, we add the x from the generated pool that
minimizes ∥Σ̂(S ∪ {x})− Σ̂t∥F , where Σ̂(·) and Σ̂t denote the sample covariance of CLIP features
of the synthetic samples and real samples respectively and ∥ · ∥F is the Frobenius norm. To accelerate
the selection, we compute covariances in a 32-dimensional PCA space fit on the nt real reference
features. After the selection, we train a classifier on the union of real and selected synthetic samples.

Experimental setup. When using CIFAR-10, we evaluate three training paradigms. (1) Scratch:
train a ResNet-18 [He et al., 2016] from scratch on the available data. (2) Distillation: train a ResNet-
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18 using soft targets (logits) from a ResNet-50 trained on full CIFAR-10, following Hinton et al.
[2015]. (3) Pretrained: fine-tune an ImageNet-pretrained ResNet-18 with a new classification head.
We also repeat the Scratch and Distillation experiments replacing the ResNet with two transformer
models (ViT and Swin-T). Unless stated otherwise, we use nt = 200 real images and augment with
ns = 800 synthetic images per class. The features for the selection algorithms are extracted with CLIP
ViT-B, yielding a p = 512-dimensional feature space, which places us in an under-parameterized
regime. We report in Table 8 in Appendix F an additional experiment in the over-parameterized
regime. We additionally consider ImageNet-100 as a more diverse dataset and RxRx1 [Sypetkowski
et al., 2023] as a specialized one, see again Appendix F for details.

Baselines. We compare Covariance matching with the following baselines. (1) Center matching [He
et al., 2023], (2) Center sampling [Lin et al., 2023], (3) DS3 [Hulkund et al., 2025], (4) K-means [Lin
et al., 2023], (5) Random (equivalent to methods “No-filtering” [Hulkund et al., 2025], “Match-
dist” [Hulkund et al., 2025], and “Match-label” [Hulkund et al., 2025] due to having the same number
of data for each class), (6) Text matching [Lin et al., 2023], and (7) Text sampling [Lin et al., 2023].
We also include No synthetic (using only nt real samples) and Real upper bound (using nt + ns
real samples). Results are averaged over 10 seeds (5 for Table 2a in Appendix F) and reported as
mean ± 1 standard deviation. Details of all baselines are provided in Appendix F.

Main findings. First, we test diversity/quality trade-offs. To do so, for each class we generate
images with StyleGAN2-Ada [Karras et al., 2020] under different truncations [Karras et al., 2019]:
6K images from a 0.2-truncated model with three randomized truncation centers and 4K images
from a 0.6-truncated model with two randomized centers. This produces synthetic data with varying
diversity and fidelity. The results of Table 1 demonstrate that covariance matching outperforms all
baselines for all training paradigms. Table 9 in Appendix F suggests that this superiority is partly
due to selecting more diverse samples, evident from the improved Recall [Kynkäänniemi et al.,
2019], FID [Heusel et al., 2017], and KID [Bińkowski et al., 2018] scores guaranteed by covariance
matching. We also demonstrate the effectiveness for transformer models in Table 4 in Appendix F.

Second, we test text-to-image (T2I) generative models. To do so, for each class we generate 4K
SANA-1.5 [Xie et al., 2025], 4K PixArt-α [Chen et al., 2024], and 2K StableDiffusion1.4 [Rombach
et al., 2022] images. Table 1 shows that covariance matching also performs well in this mixed
setup. Finally, to demonstrate the generality of our findings, we consider a broader dataset from
computer vision (ImageNet-100) and a specialized dataset from fluorescence microscopy (RxRx1,
[Sypetkowski et al., 2023]). Once again, the results reported in Tables 2a-2b in Appendix F show that
covariance matching performs on par with the best baselines in all settings.

Table 1: Covariance matching outperforms all baselines across three training paradigms on CIFAR-10,
when the synthetic data is generated via five truncated StyleGAN2-Ada and various T2I models.

Truncated generators T2I generators
Method Scratch Distillation Pretrained Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching [He et al., 2023] 50.04± 2.84 53.83± 0.59 67.01± 0.89 53.46± 1.95 57.67± 0.58 66.52± 0.81
Center sampling [Lin et al., 2023] 50.48± 2.03 54.91± 1.07 67.71± 0.90 50.15± 1.79 56.05± 0.65 65.38± 0.98
DS3 [Hulkund et al., 2025] 52.83± 2.19 58.32± 0.43 68.21± 0.66 54.15± 2.17 59.43± 0.73 66.00± 0.94
K-means [Lin et al., 2023] 50.74± 1.77 56.06± 0.68 66.50± 1.11 51.63± 1.29 56.77± 0.89 65.23± 0.61
Random 49.38± 2.43 54.89± 0.91 67.65± 0.77 51.26± 1.96 55.27± 0.74 65.24± 1.01
Text matching [Lin et al., 2023] 50.94± 1.40 55.17± 0.57 67.81± 0.76 51.20± 1.82 56.08± 0.57 65.93± 0.59
Text sampling [Lin et al., 2023] 50.28± 1.18 54.82± 0.72 67.45± 1.02 50.31± 1.70 55.79± 0.68 64.93± 1.12
Covariance matching (ours) 54.00± 1.89 59.77± 0.61 69.20± 0.56 54.45± 2.11 59.17± 0.64 66.69± 0.70

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56 61.08± 2.54 65.38± 0.51 74.35± 0.56

5 Conclusion

This paper offers the first step in understanding the precise connection between training on a mix
of real and synthetic data and generalizing on real data. We start with a high-dimensional linear
regression analysis, where we find that only covariance shifts, and not mean shifts, affect the
error. Even if our theory ignores the interactions between classes that would affect neural network
training, the resulting insights transfer to realistic settings. We empirically demonstrate that matching
the covariance between samples from real image classification datasets and generative models
(irrespective of whether they are from GANs or diffusion model variants) improves the accuracy of
deep networks (ResNets and Transformers) under different training regimes (from scratch, distillation,
and fine-tuning). In fact, our principled approach even performs on-par or better than existing

4



baselines [Hulkund et al., 2025, He et al., 2023, Lin et al., 2023]. Our analysis provides a foundation
for studying real–synthetic data interactions, and extending these results to more complex models
and data settings opens several directions for future work (see Appendix G).
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A Related work

On the theoretical side, we focus on the high-dimensional regime in which both the number of
features (i.e., dimension of β) and the number of samples (i.e., dimensions of ys, yt) are large and
scale proportionally. This setup was considered by a line of research using random matrix theory
to characterize test error and various associated phenomena (e.g., benign overfitting [Bartlett et al.,
2020] and double descent [Belkin et al., 2019]). More precisely, the test error of ridge(less) regression
was studied by Hastie et al. [2022], Wu and Xu [2020], Richards et al. [2021], Cheng and Montanari
[2024], the distribution of the ERM solution by Montanari et al. [2019], Chang et al. [2021], Han and
Xu [2023], and the impact of spurious correlations by Bombari and Mondelli [2025]. This motivates
us to look for practical insights into synthetic data selection by performing a high-dimensional
regression analysis. Closer to our work are specific analyses involving more than one distribution,
which in our case are the training/test distribution and the synthetic one used for augmentation. More
precisely, the test error under distribution shift was analyzed by Patil et al. [2024], Mallinar et al.
[2024], but this assumes training on one distribution and testing on the other, as opposed to training
on both and testing on one. Training on surrogate data was considered by Ildiz et al. [2025], Kolossov
et al. [2024], Jain et al. [2024]: Ildiz et al. [2025] assume that the surrogate data comes from a teacher
model and study the phenomenon of weak-to-strong generalization; Kolossov et al. [2024] consider
data selection given unlabeled samples plus access to a surrogate model that predicts the labels
better than random guessing; Jain et al. [2024] integrate surrogate and real data, but the analysis
is limited to isotropic covariance. Most closely related to our theoretical setting is when training
occurs on multiple data distributions and testing occurs on a single one of them, which was analyzed
both in under-parameterized [Yang et al., 2025] and over-parameterized [Song et al., 2024] regimes.
However, Yang et al. [2025], Song et al. [2024] assume that the data distributions have zero mean,
which is unrealistic in our context. In fact, centering the data would require access to the mean of the
test sample, which is equivalent to having access to its unknown label.

On the practical side, several papers studied how to incorporate synthetic data into training pre-
dictors. Besides simply training better generative models, empirical work focused on upgrading
the sampling process itself, under the assumption that better conditional generation would lead to
more accurate predictors. More precisely, the CLIP model [Radford et al., 2021] underpins many
filtering and selection algorithms for generative data. He et al. [2023] propose using CLIP similarity
to labels to prune low-quality samples from augmentations. Lin et al. [2023] introduce sampling
and filtering strategies based on CLIP similarity to either labels or the mean representation of real
data, incorporating diversity via clustering. Almost concurrently, other works argued that synthetic
images underperform in scaling laws [Fan et al., 2024] and, if the generative model is pre-trained on
external data, simple retrieval baselines can be better [Geng et al., 2024, Burg et al., 2023]. Our work
can be interpreted as a more fine-grained investigation of the same problem, characterizing which
properties of the generated data improve generalization. At the same time, our results do not preclude
that the extra data is real data from another dataset, as tested in Figure 2 in Appendix F. Closer to
our solution, Hulkund et al. [2025] explore the problem of data selection given a fixed test set and,
taking a purely empirical stance, compare several filtering methods, including an approach inspired
by Gadre et al. [2023] that selects clusters of image embeddings. As a heuristic, we find that this
works rather well but has shortcomings, as empirically demonstrated in Table 3 in Appendix F.

B Model assumptions

Recall that we work with datasets X(i), for (i) ∈ {t, s}, rows of which are independent random
vectors with p× p population covariance matrix Σ(i) and mean µ(i). This can be written as:

X(i) = Z(i)(Σ(i))
1/2 + 1n(i)

µ⊤
(i) ∈ Rni×p, (B.1)

where Z(i) ∈ Rn(i)×p, µ(i) ∈ Rp, 1ni
∈ Rni is the all-ones vector, and all entries [Z

(i)
jk ] are

independent with zero mean and unit variance. By omitting subscripts, we denote by (X, y) the two

datasets (Xt, yt) and (Xs, ys) stacked, i.e., X :=

[
Xt

Xs

]
∈ Rn×p, y :=

[
yt
ys

]
∈ Rn.

We make assumptions on the data distribution which are common in related work [Yang et al., 2025,
Song et al., 2024]. Let τ > 0 be a small constant. We assume that, for ψ > 4, the ψ-th moment of
Z

(i)
jk is upper bounded by 1/τ , i.e., E[|Z(i)

jk |ψ] ≤ τ−1, which means that the tails do not decay too
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slowly. The eigenvalues of Σ(i), denoted as λ(i)1 , · · · , λ(i)p , are all bounded between τ and τ−1, i.e.,
τ ≤ λ

(i)
p ≤ · · · ≤ λ

(i)
2 ≤ λ

(i)
1 ≤ τ−1, which means that the covariance matrix is well-conditioned

(i.e., the distribution is well-spread). Furthermore, the entries of ε(i) ∈ Rni have bounded moments
up to any order, i.e., for any k ∈ N, there exists a constant Ck > 0 s.t. E[|ε(i)j |

k] ≤ Ck (noise is not
heavy tailed). The sample sizes are comparable with the dimension p, i.e., γ := n/p, γt := nt/p,
and γs := ns/p, with 0 ≤ γt ≤ 1/τ and τ ≤ γ, γs ≤ 1/τ . Lastly, let

∥∥µ(i)

∥∥
2
= r(i)

√
p, where

r(i) is a constant, with a constant angle between them φ := |⟨µs, µt⟩| /(∥µs∥2 ∥µt∥2). This is a
technical assumption to simplify the proof notation. If φ is allowed to depend on n, p, all results (and
corresponding proofs) still hold verbatim, as long as either φ < 1− δ for some constant δ > 0 or
φ = 1.

C Under-parametrized regime addendum

C.1 Training only on synthetic data

We adjust the assumption at the beginning of Section 3. Namely, we assume that γt = 0, 1 + τ ≤
γs = γ ≤ 1/τ , which means that we are training on data from a single distribution that is different
from the one we are testing on.

Proposition C.1. In the setting described above, it holds that, with high probability,

lim
n→∞

∣∣∣∣∣∣RX(β̂;β)− σ2

n
· γ

γ − 1
·

Tr[ΣtΣ−1
s ] + ∥Σ−1/2

s µt∥22 −

(
µ⊤
t Σ

−1
s µs

∥Σ−1/2
s µs∥2

)2
∣∣∣∣∣∣ = 0. (C.1)

This result (proved in Appendix E.3) extends the zero-centered expression by Hastie et al. [2022].
We observe consistency if we disregard means (µs = µt = 0) and covariance shift (ΣtΣ−1

s = Ip).
Proposition C.1 also extends the zero-centered anisotropic setting of Yang et al. [2025] to the case
without samples from the training distribution, and consistency follows after setting µs = µt = 0.
The effect of the mean shift is captured by ∥Σ−1/2

s µt∥22 − (µ⊤
t Σ

−1
s µs/∥Σ−1/2

s µs∥2)2: what matters
is (i) the cosine similarity between Σ

−1/2
s µs and Σ

−1/2
s µt, and (ii) the alignment of the principal

directions of Σs with µt. In other words, the excess risk decreases as (i) the mean of synthetic training
data aligns with the mean of test data in the directions of the synthetic covariance matrix, and (ii) the
principal directions of the synthetic covariance matrix align with the test mean.

C.2 Trace normalization

Note that, increasing the scale of Σs also reduces the risk proxy Ru(Σ
−1/2
t ΣsΣ

−1/2
t ), which we

formulate in the following proposition. See Appendix E.5 for the proof and Figure 1c for an
illustration.

Proposition C.2. For any M ∈ Rp×p≻0 and any constant η > 1, it holds that Ru(ηM) ≤ Ru(M).

Recalling M = Σ
−1/2
t ΣsΣ

−1/2
t , this suggests that greater diversity in synthetic data is advantageous.

However, as Theorem 3.1 relies on bounds on the spectra of Σt,Σs (see Section 2), η must be of
constant order, i.e., it cannot grow with n and p (otherwise, the error betweenRX(β̂;β) and Ru(ηM)
may not vanish as in (3.1)). This motivates the trace normalization (Tr[M ] = p) in Theorem 3.2.
While other normalizations exist (e.g., on the determinant in [Yang et al., 2025]), they overly restrict
the search space and make interpretation for synthetic data selection less clear.

C.3 Numerical simulation

We illustrate the theoretical insights from Section 3 via synthetic numerical experiments. Figure
1a highlights the independence of the test error on the mean shift, as suggested by Theorem 3.1.
Namely, it shows that the excess risk remains unchanged upon varying the cosine similarity between
the means. Moreover, the conclusion around Theorem 3.2 is corroborated by Figure 1b, illustrating
that the risk decreases as the covariance matrices Σt and Σs become more similar.
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Figure 1: Excess risk using training data from N (µt,Σt) and synthetic data from N (µs,Σs), where
Σt,Σs are Kac–Murdock–Szegö matrices (Toeplitz matrices with geometrically decaying entries)
with parameters ρt, ρs, scaled so that Tr[M ] = p. We pick ∥µt∥2 = ∥µs∥2 = 2

√
p, ρt = 0.9,

p = 600, nt = 1200, ns = 1200, unless varying the parameters in the plot. Each value is computed
from 100 i.i.d. trials, the error band is at 1 standard deviation, and theoretical predictions are
continuous lines. Different curves correspond to different values of ρs. (a) Changing the cosine
similarity of the mean does not impact the risk (here, Σs is scaled by η := ρs). (b) Larger ρs gives
lower risk since Σs is closer to Σt. (c) Scaling Σs reduces the risk.

D Over-parameterized regime

As opposed to Section 3, let us assume that τ ≤ γ, γs, γt ≤ 1/(1 + τ), so that n < p and we are in
the over-parameterized regime. We sample β from a sphere of constant radius, independently from
X, εt, εs. We also assume that Σs and Σt are simultaneously diagonalizable. This assumption is of
technical nature and common in related work [Song et al., 2024, Mallinar et al., 2024, Ildiz et al.,
2025]. Writing out this condition, we have the SVDs Σs = UΛsU⊤,Σt = UΛtU⊤. Let us denote
by λsi := Λsi,i, λ

t
i := Λti,i and introduce the spectral probability distributions used in our claims:

Ĥp(λ
s, λt) :=

1

p

p∑
i=1

1{(λs,λt)=(λs
i ,λ

t
i)}, Ĝp(λ

s, λt) :=

p∑
i=1

⟨β, ui⟩2 1{(λs,λt)=(λs
i ,λ

t
i)}. (D.1)

This section follows the same blueprint as Section 3 for the under-parameterized regime. Namely,
Theorem D.1 gives a deterministic equivalent of the excess risk using training and synthetic data
and, in doing so, it extends results by Song et al. [2024] to non-zero centered data. The deterministic
equivalent depends only on regression coefficients β and covariances Σt,Σs, and it does not depend
on means µt, µs. Then, Theorem D.2 finds Σs that minimizes the limit risk from Theorem D.1 when
Σt = Ip, thus showing the optimality of covariance matching (Σs ∝ Σt) with isotropic training data.
The proofs of these results follow a similar argument chain as in Section 3, although they tend to be
more technically involved. We briefly discuss differences, deferring the full arguments of Theorems
D.1 and D.2 to Appendices E.7 and E.8, respectively.

Theorem D.1. Under the assumptions from Section 2 and the start of this section, it holds that, with
high probability,

lim
n→∞

∣∣∣RX(β̂;β)− V(Σs,Σt)− B(Σs,Σt, β)
∣∣∣ = 0, (D.2)

where

V(Σs,Σt):=
σ2

γ

∫
−λt(a3λs+a4λt)
(a1λs+a2λt+1)2

dĤp(λ
s,λt), B(Σs,Σt, β):=

∫
b3λ

s+(b4+1)λt

(b1λs+b2λt+1)2
dĜp(λ

s,λt),

and ai, bi (i ∈ {1, 2, 3, 4}) are the unique solutions to the equations reported in Appendix E.6.

We highlight two additional difficulties in the proof of Theorem D.1 arising from the over-
parameterized regime: (1) the inverse does not replace the pseudo-inverse in (E.2), and (2) the
bias term does not vanish. We address the former by introducing the λ-regularized ridge estimator β̂λ,
which approximates β̂ for small λ and admits inverse-based formulas similar to (E.2). Addressing
the latter requires a delicate control of the inverse, obtained via Woodbury formula.

Theorem D.2. Let S := {Σ ∈ Rp×p≻0 : Tr (Σ) = p}, where Rp×p≻0 denotes the set of p× p positive
definite matrices. Recall the definitions of V(Σs,Σt), B(Σs,Σt, β) from Theorem D.1, and define
Ro(Σs,Σt, β) := V(Σs,Σt) + B(Σs,Σt, β). Then, for any Σs ∈ S, with high probability over the
sampling of β over a sphere of constant radius, it holds that
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Ro(Ip, Ip, β) ≤ Ro(Σs, Ip, β) + o(1),

where o(1) denotes a quantity that vanishes as n, p→ ∞.

Due to the complexity of the expressions for V(Σs,Σt) and B(Σs,Σt, β), the optimality of covariance
matching (Σs ∝ Σt) in the over-parameterized regime is shown for isotropic training data (Σt = Ip).
At the technical level, we note that the bias generally depends on the eigenspace decomposition of
the covariance matrices via Ĝp, as defined in (D.1). However, when Σt = Ip, cancellations in the
equations for bi (i ∈ {1, 2, 3, 4}) give that the bias B(Σs, Ip, β) is close to p−n

p ∥β∥2 for any Σs.
Having obtained that, the variance is then optimized following the approach of Theorem 3.2.

E Proofs of the theoretical results

Additional notation. We use the shorthand [n] := {1, . . . , n} for an integer n. Given a matrix M ,
its operator norm is denoted by ∥M∥2, its i-th largest singular value by σi(M) and the corresponding
i-th left-singular (resp. right-singular) vector of unit norm by ui(M) (resp. vi(M)). Additionally,
when applicable, we denote the i-th largest eigenvalue of M by λi(M). We use Rp×p≻0 to denote the
set of all p× p positive definite matrices, and Sp−1 to denote a (p− 1)-dimensional unit sphere. We
denote by ei the i-th element of the canonical basis of Rl, where the exact exponent l is assumed from
context. We will say that an event E happens with high probability (w.h.p.) if and only if P(E) → 1
as p, n→ ∞. Moreover, we will say that an event Ξ happens with overwhelming probability if and
only if, for any large constant D > 0, P(Ξ) ≥ 1− p−D for large enough p. Lastly, throughout this
appendix, we use c to denote a constant (independent of n, p) whose value may change from line to
line.

For convenience, we recall some notation and definitions from Section 2. Namely, we denote by
Z ∈ Rn×p a random matrix with i.i.d. entries having zero mean, unit variance and bounded ψ-th
moment (for some ψ > 4). Recall µ(i) ∈ Rp, for (i) ∈ {s, t}, such that

∥∥µ(i)

∥∥
2
= r(i)

√
p, where r(i)

is a constant, with a constant angle between them φ := |⟨µs, µt⟩| /(∥µs∥2 ∥µt∥2). Also, let Σs,Σt ∈
Rp×p be covariance matrices with bounds on their spectrum as in Section 2. Then, we consider

a data distribution X =

[
ZtΣ

1/2
t + 1nt

µ⊤
t

ZsΣ
1/2
s + 1ns

µ⊤
s

]
∈ Rn×p and introduce its zero mean counterpart

X0 :=

[
ZtΣ

1/2
t

ZsΣ
1/2
s

]
. The corresponding sample covariance matrices are defined as Σ̂ = X⊤X

n and

Σ̂0 = X0⊤
X0

n . Lastly, unless stated otherwise, we work in the regime n/p = γ, where γ ̸= 1 is a
fixed constant independent of n and p.

E.1 Bias and variance decomposition

The excess risk as defined in (2.2) can be further decomposed into bias and variance as

RX(β̂;β)=∥E[β̂ | X]−β∥2Σt+µtµ⊤
t
+Tr[Cov(β̂ | X)(Σt+µtµ

⊤
t )]:=BX(β̂;β)+VX(β̂;β). (E.1)

Then, plugging the known expression for the min norm interpolator β̂ = (X⊤X)+X⊤y (see e.g.
[Yang et al., 2025, Equation (2.7)]) into (E.1) yields closed-form expression for bias and variance,
i.e.,

BX(β̂;β) = β⊤Π(Σt + µtµ
⊤
t )Πβ and VX(β̂;β) =

σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )], (E.2)

where Σ̂ = X⊤X/n, and Π = I − Σ̂+Σ̂ (projection on the null space of X).

E.2 Proof of Theorem 3.1

We first state and prove useful results, in which we analyze the behavior of singular values of a
low-rank perturbation of matrices.
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Proposition E.1. Let σ1 ≥ · · · ≥ σmin(n,p) be the singular values of Z̃ =
Z+1nµ

⊤
s√

n
. Then, there

exists a constant c(γ) > 0 independent of n, such that, almost surely,
lim inf
n→∞

σmin(n,p) ≥ c(γ).

Proof. To simplify notation we will refer to σmin as the smallest singular value of a matrix. Let
us choose an orthogonal matrix Q ∈ Rn×n such that Q1n =

√
n e1. Since singular values are left

orthogonally invariant, we may replace Z̃ by

Z̃ ′ =
QZ√
n
+ e1µ

⊤
s .

Writing the rows of QZ as

QZ =

[
z⊤1
Z2

]
, z1 ∈ Rp, Z2 ∈ R(n−1)×p,

we have

Z̃ ′ =

 z⊤1√
n
+ µ⊤

s

Z2√
n

 .
For any unit vector x ∈ Rp,

∥Z̃ ′x∥2 =

√(
z⊤1 x√
n
+ µ⊤

s x
)2

+
∥∥∥Z2x√

n

∥∥∥2
2

≥
∥∥∥Z2x√

n

∥∥∥
2
.

Hence, by the variational definition of singular values, we have

σmin(Z̃) ≥ σmin

(
Z2√
n

)
=
√

n−1
n σmin

(
Z2√
n−1

)
. (E.3)

By the Bai–Yin theorem [Bai and Silverstein, 2010, Theorem 5.11], for an (n− 1)× p random matrix
Z2 with i.i.d entries with mean zero, unit variance and bounded fourth moments it holds

σmin

(
Z2√
n−1

)
a.s.−−−−→
n→∞

∣∣ 1−√p/(n− 1)
∣∣.

Therefore, applying lim infn→∞ to (E.3), we have

lim inf
n→∞

σmin(Z̃) ≥ lim inf
n→∞

√
n−1
n σmin

(
Z2√
n

)
= lim
n→∞

√
n−1
n σmin

(
Z2√
n

)
=
∣∣∣1− γ−1/2

∣∣∣ > 0,

which gives the desired result as γ ̸= 1.

Proposition E.2. Let X̃n = X/
√
n = 1√

n

[
ZtΣ

1/2
t + 1nt

µ⊤
t

ZsΣ
1/2
s + 1ns

µ⊤
s

]
∈ Rn×p. Let σ1 ≥ · · · ≥ σn be the

singular values of X̃n and v1, . . . , vn be the corresponding right singular vectors. Then, as n→ ∞,
the following results hold:

1. For φ < 1, we have

1a. σ1 = Θ(
√
p), σ2 = Θ(

√
p), and σ3 = O(1);

1b.
∣∣∣ ⟨v1,µs⟩
∥v1∥2∥µs∥2

∣∣∣2 + ∣∣∣ ⟨v2,µs⟩
∥v2∥2∥µs∥2

∣∣∣2 = 1−O
(

1
p

)
,∣∣∣ ⟨v1,µt⟩

∥v1∥2∥µt∥2

∣∣∣2 + ∣∣∣ ⟨v2,µt⟩
∥v2∥2∥µt∥2

∣∣∣2 = 1−O
(

1
p

)
.

2. For φ = 1, we have

2a. σ1 = Θ(
√
p), σ2 = O(1);

2b.
∣∣∣ ⟨v1,µs⟩
∥v1∥2∥µs∥2

∣∣∣2 = 1−O
(

1
p

)
.

13



Proof. Let us first abuse notation and write 1ns = [1, . . . , 1, 0, . . . , 0]⊤ ∈ Rn×1 (ns ones followed
by nt zeros) and 1nt

= [0, . . . , 0, 1, . . . , 1]⊤ ∈ Rn×1 (ns zeros followed by nt ones). Then if we
write

Xn :=
1√
n

[
ZtΣ

1/2
t

ZsΣ
1/2
s

]
,

it holds

X̃n = Xn + Pn, where Pn :=
1ns

µ⊤
s + 1nt

µ⊤
t√

n
. (E.4)

To obtain the wanted result, we will need to express the non-zero singular values and the corresponding
right singular vectors of the rank-2 perturbation Pn, that is σi(Pn) and vi(Pn), i ∈ [2]. Notice that

P⊤
n Pn = α2

sµsµ
⊤
s + α2

tµtµ
⊤
t ,

where αs :=
√

ns

n and αt :=
√

nt

n . Moreover, it holds

P⊤
n Pn = Q⊤

p Qp, (E.5)

where Qp =
[
αsµs
αtµt

]
∈ R2×p. Note that

QpQ
⊤
p =

[
α2
s ∥µs∥

2
2 αsαt ⟨µs, µt⟩

αsαt ⟨µs, µt⟩ α2
t ∥µt∥

2
2

]
=:

[
a b
b d

]
,

and it is enough to analyze its SVD, since

σi(Pn) =
√
σi(QpQ⊤

p ), and vi(Pn) =
1

σi(Pn)
vi(QpQ

⊤
p )

⊤ Qp.

The previous equations hold due to (E.5), since σi(Qp) = σi(Pn), and
1

σi(Pn)
vi(QpQ

⊤
p )

⊤ Qp =
1

σi(Qp)
ui(Qp)

⊤ [u1(Qp) u2(Qp)]

[
σ1(Qp) 0

0 σ2(Qp)

] [
v1(Qp)
v2(Qp)

]
.

This implies that, for i ∈ [2], the singular vectors vi(Pn) are in the span{µs, µt}. Recall that the
angle between µs and µt is fixed to φ := |⟨µs,µt⟩|

∥µs∥2∥µt∥2
.

We first consider the case when φ < 1. It holds that the eigenvalues of QpQ⊤
p are

σ1,2(QpQ
⊤
p ) =

a+ d±
√

(a− d)2 + 4b2

2

=
(r2sα

2
s + r2tα

2
t )p±

√
(r2sα

2
s − r2tα

2
t )

2p2 + 4α2
sr

2
sα

2
t r

2
tφ

2p2

2
(E.6)

≥ p · (r
2
sα

2
s + r2tα

2
t )−

√
(r2sα

2
s − r2tα

2
t )

2 + 4α2
sr

2
sα

2
t r

2
tφ

2

2
= p · c1,

with c1 =
(r2sα

2
s+r

2
tα

2
t )−

√
(r2sα

2
s−rtα2

t )
2+4α2

sr
2
sα

2
tr

2
tφ

2

2 > 0, since φ < 1. This implies that
σi(Pn) ≥ c · √p,

for some constant c.

Furthermore, it almost surely holds that

σ1(Xn) =
√
σ1(X⊤

n Xn)

=

√
σ1(Σ

1/2
s Z⊤

s ZsΣ
1/2
s +Σ

1/2
t Z⊤

t ZtΣ
1/2
t )

≤
√
σ1(Σ

1/2
s Z⊤

s ZsΣ
1/2
s ) + σ1(Σ

1/2
t Z⊤

t ZtΣ
1/2
t )

≤
√
2(1 +

√
γ)2 · τ−1 = O(1),

due to the convergences of the largest eigenvalue of the sample covariance matrices Z⊤
s Zs and Z⊤

t Zt
by Bai–Yin theorem [Bai and Silverstein, 2010, Theorem 5.11] and the boundedness of the spectrum

14



of Σs and Σt. Then, from Weyl’s inequality for singular values (see e.g. [Horn and Johnson, 2012,
Chapter 7]), we have that

σi(Xn + Pn) ≥ σi(Pn)− σ1(Xn), for i = 1, 2,

σ3(Xn + Pn) ≤ σ3(Pn) + σ1(Xn) = σ1(Xn),

which implies that σ1,2(Xn+Pn) ≥ c · √p, whereas σi(Xn+Pn) = O(1), for i ≥ 3. For the upper
bound, note that from (E.6) it holds

σ1,2(QQ
⊤) ≤ (r2sα

2
s + r2tα

2
t )p+ (r2sα

2
s + r2tα

2
t )p

2
= p · c2,

implying σi(Pn) ≤ c · √p. Applying Weyl’s inequality for singular values once more, we get
σi(Xn + Pn) ≤ σ1(Xn) + σi(Pn) = O(

√
p),

concluding the proof of 1a.

Moving onto singular vectors, let us recall the definition of spectral distance between two k-
dimensional subspaces W ≤ Rp and W̃ ≤ Rp, as it will be used to conclude the proof. Towards this
end, we first introduce principal angles θ1 . . . θk ∈ [0, π/2] between W and W̃ , which are defined
recursively from i = 1 as

cos(θi) = max
wi∈W,w̃i∈W̃

⟨wi, w̃i⟩
∥wi∥2 ∥w̃i∥2

,

subject to wi, w̃i being orthogonal to the previous maximizers. Then, the spectral distance between
W and W̃ is defined as

d(W, W̃) := max
i∈[k]

sin θi.

There is an alternative way to express this spectral distance between subspaces, using their orthonor-
mal basis. Namely, let W ∈ Rp×k and W̃ ∈ Rp×k be such that their columns form an orthonormal
basis of W and W̃ , respectively. Then by [Stewart and Sun, 1990, Chapter II, Corollary 5.4] it holds

d(W, W̃) :=
∥∥∥(I −WW⊤)W̃

∥∥∥
2
. (E.7)

Let us denote by Ṽ :=

[
v1(Pn)
v2(Pn)

]⊤
, V :=

[
v1(X̃n)
v2(X̃n)

]⊤
and by V , Ṽ the subspaces spanned by their

columns. Then, by Wedin’s sinΘ theorem, [Stewart and Sun, 1990, Chapter V, Theorem 4.4.] it
holds that

d(V, Ṽ) ≤ σ1(Xn)

σ2(Xn + Pn)− σ3(Xn + Pn)
=

1

c · √p+O(1)
= O

(
1
√
p

)
.

As v1(Pn), v2(Pn) ∈ span{µs, µt} and they are linearly independent, this implies that V =

span{µs, µt}. Choosing matrices Ṽs ∈ Rp×2 and Ṽt ∈ Rp×2 such that their columns are orthonormal
bases of Ṽ and their first column is µs

∥µs∥2
and µt

∥µt∥2
respectively, one gets that∥∥∥∥(I − V V ⊤)

µs
∥µs∥2

∥∥∥∥
2

=
∥∥∥(I − V V ⊤)Ṽse1

∥∥∥
2
≤
∥∥∥(I − V V ⊤)Ṽs

∥∥∥
2
= d(V, Ṽ) ≤ O

(
1
√
p

)
,∥∥∥∥(I − V V ⊤)

µt
∥µt∥2

∥∥∥∥
2

=
∥∥∥(I − V V ⊤)Ṽte1

∥∥∥
2
≤
∥∥∥(I − V V ⊤)Ṽt

∥∥∥
2
= d(V, Ṽ) ≤ O

(
1
√
p

)
.

From this, 1b directly follows. The case φ = 1 is handled analogously.

Proposition E.3. In the under-parameterized regime, i.e., when p < n, it holds that
1

n
Tr[Σ̂+(Σt + µtµ

⊤
t )] =

1

n
Tr[Σ̂+

0 Σt] +O

(
1

p

)
. (E.8)

Proof. We break down the LHS of (E.8) into two terms
1

n
Tr[Σ̂+(Σt + µtµ

⊤
t )] = T1 + T2,

where
T1 =

1

n
Tr[Σ̂+Σt], and T2 =

1

n
Tr[Σ̂+µtµ

⊤
t ].

We will deal with each of the terms individually.
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Bounding the term T1. It holds that

T1 =
1

n
Tr(Σ̂+Σt)

=
1

n
Tr


(XΣ

−1/2
t√
n

)⊤
XΣ

−1/2
t√
n

−1


=
1

n
Tr
((
X̄⊤X̄

)−1
)

=
1

n

k∑
i=1

1

σ2
i

(
X̄
) ,

(E.9)

where X̄ :=
XΣ

−1/2
t√
n

∈ Rn×p, and k ≤ p is the number of non-zero singular values of X̄ . Let us
prove that σp(X̄) > c for some constant c, implying that k = p. Towards this end, we write out

X̄⊤X̄ = X̄⊤
s X̄s + X̄⊤

t X̄t,

where X̄s :=
XsΣ

−1/2
t√
n

=
(ZsΣ

1/2
s +1nsµ

⊤
s )Σ

−1/2
t√

n
and X̄t :=

XtΣ
−1/2
t√
n

=

(
ZtΣ

1/2
t +1ntµ

⊤
t

)
Σ

−1/2
t√

n
.

From Proposition E.1, it follows that for large enough n, almost surely
σp(X̄s) ≥ c, σp(X̄t) ≥ c,

for some constant c, which is just c(γ) from the proposition adjusted by the bound on the eigenvalues
of Σ−1/2

t and Σ
−1/2
s (recall that the smallest eigenvalue of Σs,Σt is lower bounded by τ ). Plugging

this in gives

σp(X̄)2 ≥ σp(X̄s)
2 + σp(X̄t)

2 ≥ 2c2. (E.10)

Let X̄0 :=
X0Σ

−1/2
t√
n

and note that X̄ is a rank-2 perturbation of X̄0 (see (E.4)). Then, due to Weyl’s
inequality for singular values, it holds that, for i ∈ {3, . . . , p− 2},

σi+2(X̄
0) ≤ σi(X̄) ≤ σi−2(X̄

0).

Therefore, we have

1

n

p−4∑
i=1

1

σi
(
X̄0
)2 ≤ 1

n

p−2∑
i=3

1

σi
(
X̄
)2 ≤ 1

n

p∑
i=3

1

σi
(
X̄0
)2 .

An application of the Bai–Yin theorem [Bai and Silverstein, 2010, Theorem 5.11] gives that there
exist constants a and b such that

0 < a < σp(X̄
0) ≤ σ1(X̄

0) < b < +∞,

for large enough n. Therefore, it holds

1

n

p∑
i=1

1

σi
(
X̄0
)2 −O

(
1

n

)
≤ 1

n

p−2∑
i=3

1

σi
(
X̄
)2 ≤ 1

n

p∑
i=1

1

σi
(
X̄0
)2 ,

which implies that

1

n

p−2∑
i=3

1

σi
(
X̄
)2 =

1

n

p∑
i=1

1

σi
(
X̄0
)2 +Θ

(
1

n

)
.

Using the proved fact that σi(X̄) > c we have

1

n

p∑
i=1

1

σi
(
X̄
)2 =

1

n

p−2∑
i=3

1

σi
(
X̄
)2 +O

(
1

n

)
.
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Combining all the pieces, it holds that

T1 =
1

n

p∑
i=1

1

σ2
i (X̄)

=
1

n

p−2∑
i=3

1

σi(X̄)2
+O

(
1

n

)

=
1

n

p∑
i=1

1

σi(X̄0)2
+O

(
1

n

)
=

1

n
Tr
((
X̄0⊤X̄0

)−1
Σt

)
+O

(
1

n

)
=

1

n
Tr
[
Σ̂+

0 Σt
]
+O

(
1

p

)
.

Bounding the term T2. First, recall the shorthand X̃n = X/
√
n and note that

σp(X̃n) = σp(X̄Σ
1/2
t ) ≥ σp(X̄) · σp(Σ1/2

t ) ≥ c · τ, (E.11)
where the last inequality follows from (E.10) and the bounds on the spectrum of Σt. Recall that
n/p = γ, which implies O

(
1
n

)
= O

(
1
p

)
. Then, it holds that

T2 =
1

n
µ⊤
t Σ̂

+µt

=
µ⊤
t√
n
(X̃⊤

n X̃n)
+ µt√

n

=
µ⊤
t√
n

p∑
i=1

1

σi(X̃n)2
vi(X̃n)vi(X̃n)

⊤ µt√
n

(E.12)

=
1

σ1(X̃n)2

〈
v1(X̃n), µt

〉2
n

+
1

σ2(X̃n)2

〈
v2(X̃n), µt

〉2
n

+

p∑
i=3

1

σi(X̃n)2

〈
vi(X̃n), µt

〉2
n

≤ Θ

(
1

p

)(
1−O

(
1

p

))
+

1

c · τ
O

(
1

p

)
= O

(
1

p

)
,

where the penultimate inequality follows directly from (E.11) and Proposition E.2.

Finally, combining the bounds on the two terms we get

T1 + T2 =
1

n
Tr[Σ̂+

0 Σt] +O

(
1

p

)
,

proving the claim.

We conclude this appendix with the proof of Theorem 3.1.

Proof of Theorem 3.1. Since n > p in the considered regime, Σ̂ = X⊤X/n is full rank almost
surely, which implies that Π = I − Σ̂+Σ̂ = I − Σ̂−1Σ̂ = 0. From (E.2), it follows that BX(β̂;β) =
0, so the risk is only characterized by the variance VX(β̂;β). From this follows

RX(β̂, β) = VX(β̂;β) =
σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )].

By directly applying Proposition E.3, it holds

σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )] =

σ2

n
Tr[Σ̂+

0 Σt] +O

(
1

p

)
,
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where Σ̂0 = X0⊤
X0

√
n

. Plugging in the expression of σ2

n Tr[Σ̂+
0 Σt] given in [Yang et al., 2025,

Theorem 3] gives the desired result.

E.3 Proof of Proposition C.1

Since we are in the setting where n > p, it holds that BX(β̂;β) = 0, which implies

RX(β̂, β) = VX(β̂;β) =
σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )].

Note that γt = 0 implies that Xt = 0 and X = Xs. We also note that (E.10) still holds for Xt = 0,
implying that Σ̂ is of rank p almost surely and, therefore, invertible. Thus, it holds

Tr[Σ̂+(Σt + µtµ
⊤
t )] = Tr[Σ̂−1(Σt + µtµ

⊤
t )].

To simplify exposition, we break this down into two terms

RX(β̂, β) = V1 + V2,

with V1 := σ2

n Tr[Σ̂−1Σt], V2 := σ2

n Tr[Σ̂−1µtµ
⊤
t ], and treat each of them separately.

Bounding the term V2. Note that γt = 0 implies n = ns, so we will use these two values
interchangeably throughout the proof. From the cyclic property of trace, we have

V2 =
σ2

n
Tr[Σ̂−1µtµ

⊤
t ] = σ2µ

⊤
t Σ̂

−1µt
n

.

Note that

µ⊤
t Σ̂

−1µ⊤
t = µ⊤

t

(
X⊤X

n

)−1

µt

= µ⊤
t

(
(ZsΣ

1/2
s + 1nsµ

⊤
s )

⊤(ZsΣ
1/2
s + 1nsµ

⊤
s )

n

)−1

µt

=
(
Σ−1/2
s µt

)⊤((Zs + 1ns

(
Σ

−1/2
s µs

)⊤)⊤(
Zs + 1ns

(
Σ

−1/2
s µs

)⊤)
n

)−1 (
Σ−1/2
s µt

)
= µ′⊤

t Σ̂′−1µ′
t,

where we use the notation µ′
t := Σ

−1/2
s µt, µ′

s := Σ
−1/2
s µs and Σ̂′ :=

(Zs+1nsµ
′⊤
s )

⊤
(Zs+1nsµ

′⊤
s )

n .
Note that due to the assumed bound on the spectrum of Σs it holds that ∥µ′

t∥2 = O(
√
p) and

∥µ′
s∥2 = O(

√
p). Next, let us break down the vector µ′

t into its orthogonal projection onto the
subspace {µ′

s} and {µ′
s}⊥ as

µ′
t = µ′

t∥s + µ′
t⊥s, where µ′

t∥s :=
⟨µ′
t, µ

′
s⟩

∥µ′
s∥

2
2

µ′
s, µ′

t⊥s := µ′
t − µ′

t∥s. (E.13)

Moreover, as a decomposition into orthogonal spaces, it holds ∥µ′
t∥s∥

2
2 + ∥µ′

t⊥s∥
2
2 = ∥µ′

t∥
2
2 = O(p).

By using this decomposition, we will shift the focus from µ′
t to µ′

t⊥s. Namely, it holds

V2 = σ2µ
′⊤
t Σ̂′−1µ′

t

n
= σ2

(µ′
t∥s + µ′

t⊥s)
⊤Σ̂′−1(µ′

t∥s + µ′
t⊥s)

n

= σ2µ
′⊤
t⊥s√
n
Σ̂′−1µ

′
t⊥s√
n

+ 2σ2µ
′⊤
t⊥s√
n
Σ̂′−1

µ′
t∥s√
n

+
µ′⊤
t∥s√
n
Σ̂′−1

µ′
t∥s√
n

= σ2µ
′⊤
t⊥s√
n
Σ̂′−1µ

′
t⊥s√
n

+O

(
1
√
p

)
, (E.14)

where the last line follows from derivations analogous to the ones around (E.12), this time applying
case 2. of Proposition E.2. To ease further exposition, we introduce µ̃t⊥s :=

µ′
t⊥s√
n

, noting that
∥µ̃t⊥s∥2 = O(1).
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In order to bound V2, we relate Σ̂′−1 to its zero-mean counterpart, as it is easier to work with mean
zero data. Towards this end, we write out Σ̂′ as

Σ̂′ =

(
Zs + 1ns

µ′⊤
s

)⊤ (
Zs + 1ns

µ′⊤
s

)
n

=

(
Zs

⊤Zs
n

+
Zs

⊤1nsµ
′⊤
s

n
+
µ′
s1

⊤
ns
Zs

n
+ µ′

sµ
′⊤
s

)

=

(
Σ̂′

0 +
Zs

⊤1ns
µ′⊤
s

n
+
µ′
s1

⊤
ns
Zs

n
+ µ′

sµ
′⊤
s

)
,

for Σ̂′
0 := Zs

⊤Zs

n . All the terms above, except the first one, have rank 1, so we use Woodbury formula
to take them out of the inverse when computing Σ̂′. We introduce the following notation

u :=
µ′
s√
n
, v :=

Zs
⊤1ns√
n

,

U := [u v] ∈ Rp×2, and C :=

[
n 1
1 0

]
∈ R2×2.

Under this notation it holds
Zs

⊤1nsµ
′⊤
s

n
+
µ′
s1

⊤
ns
Zs

n
+ µ′

sµ
′⊤
s = UCU⊤.

Then, using Woodbury formula, we have

Σ̂′−1 =
(
Σ̂′

0 + uv⊤ + vu⊤ + nuu⊤
)−1

=
(
Σ̂′

0 + UCU⊤
)−1

= Σ̂′
0
−1 − Σ̂′

0
−1 U (C−1 − U⊤Σ̂′

0
−1U)−1U⊤Σ̂′

0
−1.

We now compute the 2× 2 block

C−1 − U⊤Σ̂′
0
−1U =

[
−u⊤Σ̂′

0
−1u 1− u⊤Σ̂′

0
−1v

1− v⊤Σ̂′
0
−1u −n− v⊤Σ̂′

0
−1v

]
=

[
−a 1− b
1− b −n− d

]
,

where

a := u⊤Σ̂′
0
−1u, b := v⊤Σ̂′

0
−1u = u⊤Σ̂′

0
−1v, d := v⊤Σ̂′

0
−1v.

Hence (
C−1 − U⊤Σ̂′

0
−1U

)−1
=

1

∆

[
−n− d b− 1
b− 1 −a

]
, ∆ := a(n+ d)− (1− b)2.

Plugging back and simplifying gives the explicit formula:

Σ̂′−1 = Σ̂′
0
−1 − 1

∆
Σ̂′

0
−1
(
(−n− d)uu⊤ − (1− b)(uv⊤ + vu⊤)− a vv⊤

)
Σ̂′

0
−1,

which is valid whenever ∆ ̸= 0, i.e., whenever C−1 − U⊤Σ̂′
0
−1U is invertible.

We will now analyze the a, b, d terms. First, for some constants c1, c2 > 0 it holds almost surely that

c2 > λ1(Σ̂
′
0) ≥ λp(Σ̂

′
0) ≥ c1 > 0, (E.15)
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which follows from Bai–Yin theorem [Bai and Silverstein, 2010, Theorem 5.11], as Zs has i.i.d
entries with mean zero, unit variance and bounded fourth moments. From this, it follows that

|a| =
∣∣∣u⊤Σ̂′

0
−1u

∣∣∣
=

∥∥∥∥µ′⊤
s√
n
Σ̂′

0
−1 µ′

s√
n

∥∥∥∥
2

≤
∥∥∥∥ µ′

s√
n

∥∥∥∥
2

∥Σ̂′
0
−1∥2

∥∥∥∥ µ′
s√
n

∥∥∥∥
2

≤ c,

as well as
|a| ≥ c · (λ1(Σ̂′

0))
−1 ≥ c > 0,

Similarly, we have

|b| =
∣∣∣v⊤Σ̂′

0
−1u

∣∣∣ = ∥∥∥∥µ′⊤
s√
n
Σ̂′

0
−1Z

⊤
s 1ns√
n

∥∥∥∥
2

≤
∥∥∥∥ µ′

s√
n

∥∥∥∥
2

∥Σ̂′
0
−1∥2

∥∥∥∥Z⊤
s 1ns√
n

∥∥∥∥
2

≤ c
√
p, (E.16)

where the last inequality follows with high probability over the sampling of Zs, since Z⊤
s 1nt√
n

is a
vector with p i.i.d entries of mean zero and O(1) variance. Finally, we have

|d| =
∣∣∣v⊤Σ̂′

0
−1v

∣∣∣
=

∥∥∥∥∥1⊤ns
Zs√
n

Σ̂′
0
−1 Z

⊤
s 1ns√
n

∥∥∥∥∥
2

≤
∥∥∥∥Z⊤

s 1ns√
n

∥∥∥∥
2

∥Σ̂′
0
−1∥2

∥∥∥∥Z⊤
s 1ns√
n

∥∥∥∥
2

≤ cp,

again with high probability.

We can now prove that, with high probability, ∆ = Ω(p). Using Cauchy-Schwarz, it holds that

b2 = |⟨u, v⟩|A−1 ≤ ∥u∥A−1 ∥v∥A−1 = ad,

from which it follows that
∆ = a (n+ d)− (1− b)2 ≥ an− 1 + 2b = Ω(p), (E.17)

since a is lower bounded by a constant and |b| ≤ c
√
p.

Turning back to the value of interest, we write out

µ̃⊤
t⊥sΣ̂

′−1µ̃t⊥s = µ̃⊤
t⊥sΣ̂

′
0
−1µ̃t⊥s

− µ̃⊤
t⊥s

1

∆
Σ̂′

0
−1
(
(−n− d)uu⊤ − (1− b)(uv⊤ + vu⊤)− a vv⊤

)
Σ̂′

0
−1µ̃t⊥s

= µ̃⊤
t⊥sΣ̂

′
0
−1µ̃t⊥s + Tu,u + Tu,v + Tv,v,

where Tu,u is the summand corresponding to uu⊤, Tu,v to uv⊤ + vu⊤, and Tv,v to vv⊤. We will
prove that each of these terms, except for µ̃t⊥sΣ̂′

0
−1µ̃t⊥s, is vanishing.

First, we state a useful claim, that for arbitrary deterministic unit vectors w1 ∈ Rp and w2 ∈ Rp it
holds with overwhelming probability

w⊤
1 Σ̂

′−1
0 w2 =

γ

γ − 1
⟨w1, w2⟩+O

(
n−c1

)
, (E.18)

for some constant c1 > 0.

Proof of claim in (E.18). The result follows directly from [Yang et al., 2025, Theorem 27]. For
clarity, we refer to the relevant parts of Section B.3.1 of that work. While Theorem 27 is stated in
the more general anisotropic setting, it specializes to our isotropic case by taking Λ, U and V from
(B.3) from their work to be the identity. Substituting these choices into equation (B.6) from Yang
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et al. [2025] for z = 0, implies

α1(0) + α2(0) = 1− p

n
=
γ − 1

γ
.

Substituting this into (B.7) and applying Theorem 27 from the mentioned paper, yields with over-
whelming probability

∣∣∣∣w⊤
1 Σ̂

′−1
0 w2 − w⊤

1

γ

γ − 1
Ipw2

∣∣∣∣ ≤ n−c1 ,

for any c1 < −1/2 + 2/ψ. Recalling that Zs has its ψ-th moment bounded for ψ > 4, implies
c1 > 0. ♣

We can now use (E.18) to tackle the terms Tu,u and Tu,v . Namely, we have that

µ̃⊤
t⊥sΣ̂

′−1
0 u = ∥µ̃t⊥s∥2 ∥u∥2

(
γ

γ − 1
⟨µ̃t⊥s, u⟩+O(n−c1)

)
= c

(
γ

γ − 1

〈
µ̃t⊥s,

µ′
s√
n

〉
+O(n−c1)

)
= O(n−c1),

with high probability. From this, it follows that

Tu,u =
n+ d

∆
µ̃t⊥s Σ̂

′
0
−1 uu⊤Σ̂′

0
−1µ̃t⊥s = O(n−2c1). (E.19)

Similarly,

|Tu,v| =
∣∣∣∣1− b

∆
µ̃t⊥s Σ̂

′
0
−1 (uv⊤ + vu⊤) Σ̂′

0
−1µ̃t⊥s

∣∣∣∣
=
∣∣∣2(µ̃t⊥s Σ̂′

0
−1u

)
·
(
1−b
∆ vΣ̂′

0
−1µ̃t⊥s

)∣∣∣
≤ O(n−c1) ·

∥∥∥ 1−b
∆

Z⊤
s 1ns√
n

∥∥∥
2

∥∥∥Σ̂′
0
−1
∥∥∥
2
∥µ̃t⊥s∥2

= O(n−c1), (E.20)
where the last inequality holds with high probability due to (E.15), (E.16), and (E.17).

Let us denote by 1̃ns
:=

1ns√
n

and turn to the term Tv,v .

Notice that

Tv,v =
a

∆
µ̃t⊥s Σ̂

′
0
−1 vv⊤Σ̂′

0
−1µ̃t⊥s

=
na

∆

1⊤ns√
n

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s

2

= c

1̃⊤ns

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s

2

. (E.21)

Let us introduce a matrix Q = [q1 . . . qp] ∈ Rp×p, whose columns form an orthonormal basis,
such that q1 = µ̃t⊥s

∥µ̃t⊥s∥2
. Then, we have that

1̃⊤ns

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s = 1̃⊤ns

Zs√
n
QQ⊤

(
Zs

⊤Zs
n

)−1

µ̃t⊥s

=

p∑
k=1

1̃⊤ns

Zs√
n
qk · q⊤k

(
Zs

⊤Zs
n

)−1

µ̃t⊥s. (E.22)
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Using (E.18) and a union bound, it holds with overwhelming probability that

qk

(
Zs

⊤Zs
n

)−1

µ̃t⊥s =
γ

γ − 1
⟨qk, µ̃t⊥s⟩+O(n−c1) =

{ γ
γ−1 ∥µ̃t⊥s∥2 +O(n−c1), k = 1,

O(n−c1), k > 1.

Plugging this into (E.22) yields

1̃⊤ns

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s = 1̃⊤ns

Zs√
n
µ̃t⊥s ·

γ

γ − 1
+O(n−c1) ·

p∑
k=1

1̃⊤ns

Zs√
n
qk. (E.23)

Let us first analyze the mean and variance of the random variable 1̃⊤ns

Zs√
n
µ̃t⊥s, namely,

E
[
1̃⊤ns

Zs√
n
µ̃t⊥s

]
= E

 1√
n

n∑
i=1

p∑
j=1

Zi,j(1̃ns)i(µ̃t⊥s)j

 = 0,

Var

(
1̃⊤ns

Zs√
n
µ̃t⊥s

)
= Var

 1√
n

n∑
i=1

p∑
j=1

Zi,j(1̃ns
)i(µ̃t⊥s)j


=

1

n

∥∥1̃ns

∥∥2
2
∥µ̃t⊥s∥22 = O

(
1

n

)
.

Therefore, using Chebyshev inequality, we have that∣∣∣∣1̃⊤ns

Zs√
n
µ̃t⊥s

∣∣∣∣ = O
(
n−c2

)
,

with high probability, for some constant 1/2 > c2 > 0. Similarly, we calculate the mean and variance
of the random variable

∑p
k=1 1̃

⊤
ns

Zs√
n
qk as

E

[
p∑
k=1

1̃⊤ns

Zs√
n
qk

]
= E

 1√
n

p∑
k=1

n∑
i=1

p∑
j=1

Zi,j(1̃ns)i(qk)j

 = 0,

Var

(
p∑
k=1

1̃⊤ns

Zs√
n
qk

)
= Var

 1√
n

p∑
k=1

n∑
i=1

p∑
j=1

Zi,j(1̃ns
)i(qk)j


=

1

n

p∑
k=1

∥∥1̃ns

∥∥2
2
∥qk∥22 = O(1).

Again, Chebyshev inequality implies∣∣∣∣∣O(n−c1) ·
p∑
k=1

1̃⊤ns

Zs√
n
qk

∣∣∣∣∣ = O
(
n−c1/2

)
,

with high probability. Plugging the obtained results into (E.23) and using a union bound on the
probabilities, we get that∣∣∣∣∣∣1̃⊤ns

Zs√
n

(
Zs

⊤Zs
n

)−1

µ̃t⊥s

∣∣∣∣∣∣ ≤
∣∣∣∣∣O(n−c1) ·

p∑
k=1

1̃⊤ns

Zs√
n
qk

∣∣∣∣∣+
∣∣∣∣1̃⊤ns

Zs√
n
µ̃t⊥s

∣∣∣∣
= O

(
n−c1/2

)
,

with high probability. Then, we directly obtain a bound for (E.21) in the form of
Tv,v = O(n−c1), (E.24)

which holds for some constant c1 > 0 with high probability. Combining the bound in (E.18) and the
three bounds on the terms (E.19), (E.20) an (E.24), we get

µ̃t⊥sΣ̂
′−1µ̃t⊥s =

γ

γ − 1
∥µ̃t⊥s∥22 +O(n−c), (E.25)
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for some c > 0. Using this in (E.14) yields

V2 = σ2 γ

γ − 1
∥µ̃t⊥s∥22 +O(n−c),

with high probability. Lastly, note that

∥µ̃t⊥s∥22 =
1

n
∥µ′

t⊥s∥
2
2 =

1

n

(
∥µ′

t∥
2
2 − ∥µ′

t∥s∥
2
2

)
=

1

n

∥Σ−1/2
s µt∥22 −

(
µ⊤
t Σ

−1
s µs

∥Σ−1/2
s µs∥2

)2
 .

Bounding the term V1. By following exactly the proof of the bound of the term T1 in Proposi-
tion E.3, one directly gets the same conclusion that

V1 =
σ2

n
Tr[Σ̂−1

0 Σt] +O

(
1

p

)
.

Notice that

Σ̂0 =
X⊤X

n
=
X⊤
s Xs

n
=

Σ
1/2
s Z⊤

s ZsΣ
1/2
s

n
.

Thus,

σ2

n
Tr
[
Σ̂−1

0 Σt

]
=
σ2

n
Tr

[
Σ−1/2
s

(
Z⊤
s Zs
n

)−1

Σ−1/2
s Σt

]
=
σ2

n
Tr

[
Σ−1/2
s ΣtΣ

−1/2
s

(
Z⊤
s Zs
n

)−1
]
.

Let us write the SVD of Σ−1/2
s ΣtΣ

−1/2
s as

Σ−1/2
s ΣtΣ

−1/2
s =

p∑
i=1

λi(Σ
−1/2
s ΣtΣ

−1/2
s )wiw

⊤
i ,

where wi := vi(Σ
−1/2
s ΣtΣ

−1/2
s ). Then it holds with overwhelming probability

σ2

n
Tr

[
Σ−1/2
s ΣtΣ

−1/2
s

(
Z⊤
s Zs
n

)−1
]
=
σ2

n

p∑
i=1

λi(Σ
−1/2
s ΣtΣ

−1/2
s )w⊤

i

(
Z⊤
s Zs
n

)−1

wi

=
σ2

n

p∑
i=1

λi(Σ
−1/2
s ΣtΣ

−1/2
s )

γ

γ − 1

(
∥wi∥22 +O(n−c)

)
=

(
σ2

n

γ

γ − 1

p∑
i=1

λi(Σ
−1/2
s ΣtΣ

−1/2
s )

)
+O(n−c)

=
σ2

n

γ

γ − 1
Tr
(
ΣtΣ

−1
s

)
+O(n−c),

where the second line holds with overwhelming probability by using (E.18) and the union bound.
The previous bound also holds with high probability, since overwhelming probability implies it.

Finally, by combining the bounds on V1 and V2, one gets that, with high probability,∣∣∣∣∣∣RX(β̂, β)− σ2

n

γ

γ − 1
Tr
(
ΣtΣ

−1
s

)
− σ2

n

γ

γ − 1

∥Σ−1/2
s µt∥22 −

(
µ⊤
t Σ

−1
s µs

∥Σ−1/2
s µs∥2

)2
∣∣∣∣∣∣ = O(n−c),

for some constant c > 0. Taking the limit n→ ∞ on both sides yields the desired result.

E.4 Proof of Theorem 3.2

We start by removing α2 from the fixed point in (3.2) and replacing it by 1− p
n − α1. We rename α1

as α for convenience. Plugging this into the definition of Ru(M), we get

Ru(M) =
σ2

n
Tr
[
(α1M + α2 Idp×p)

−1
]
=
σ2

n

p∑
i=1

1

λiα+ 1− p
n − α

,
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where as in Theorem 3.1 we refer to λ1 ≥ · · · ≥ λp as the eigenvalues of the matrix M . Furthermore,
the fixed point equation (3.2) can be rewritten as follows:

p∑
i=1

1

λiα+ 1− p
n − α

=
p+ nα− ns
1− p

n − α
= n

(
n− ns

n− p− nα
− 1

)
. (E.26)

Thus, we have

Ru(M) =
σ2

n
· n
(

n− ns
n− p− nα

− 1

)
= σ2

(
1− ns

n

1− p
n − α

− 1

)
. (E.27)

Now, due to the RHS of (E.27), it can be seen that Ru(M) is an increasing function of α. Let us
denote by λ⃗ := [λ1, . . . , λp]. Then, for fixed n, p, ns and λ⃗, we will refer to α(λ⃗) as the solution to
the fixed point equation (E.26). Note that following Yang et al. [2025][Appendix B.3.2] we have that
this solutions is unique and 0 < α(λ⃗) < n−p

n .

Consider a function f : Rp≥0 → Rp≥0. We call a function f good, if and only if
p∑
i=1

1

f(λ⃗)iα(λ⃗) + 1− p
n − α(λ⃗)

<

p∑
i=1

1

λiα(λ⃗) + 1− p
n − α(λ⃗)

. (E.28)

We claim that if f is good, then

α(f(λ⃗)) < α(λ⃗). (E.29)

Proof of the claim. Consider a good function f . Then, we have
p∑
i=1

1

f(λ⃗)iα(λ⃗) + 1− p
n − α(λ⃗)

<

p∑
i=1

1

λiα(λ⃗) + 1− p
n − α(λ⃗)

= n

(
n− ns

n− p− nα(λ⃗)
− 1

)
.

Furthermore, setting α = 0 we get
p∑
i=1

1

f(λ⃗)i · 0 + 1− p
n − 0

= p
n

n− p

> n
p− ns
n− p

= n

(
n− ns

n− p− n · 0
− 1

)
.

By continuity, there exists α0 ∈ (0, α(λ⃗)) for which
p∑
i=1

1

f(λ⃗)iα0 + 1− p
n − α0

= n

(
n− ns

n− p− nα0
− 1

)
,

implying α(f(λ⃗)) = α0 < α(λ⃗), which concludes the proof. ♣

Next, for i, j ∈ [p] s.t. i < j, we introduce a function f i,jc : Rp≥0 → Rp≥0 defined as

f i,jc (λ⃗)k =


λi − c k = i,

λj + c k = j,

λk k ̸= i, j,

where c > 0. We now claim that f i,jc is good for any i, j ∈ [p] and c > 0, such that λi > λj + c.

Proof of the claim. The claim is equivalent to
1

(λi − c)α(λ⃗) + 1− p
n − α(λ⃗)

+
1

(λj + c)α(λ⃗) + 1− p
n − α(λ⃗)

<
1

λiα(λ⃗) + 1− p
n − α(λ⃗)

+
1

λjα(λ⃗) + 1− p
n − α(λ⃗)

.
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For simplicity, let δ := 1− p
n − α(λ⃗) and α := α(λ⃗). Then,

1

(λi − c)α+ δ
+

1

(λj + c)α+ δ
<

1

λiα+ δ
+

1

λjα+ δ

⇐⇒ α(λi + λj) + 2δ

(λiα− cα+ δ)(λjα+ cα+ δ)
<

α(λi + λj) + 2δ

(λiα+ δ)(λjα+ δ)

⇐⇒ (λiα+ δ)(λjα+ δ) < (λiα− cα+ δ)(λjα+ cα+ δ)

⇐⇒ cα(λiα+ δ)− cα(λjα+ δ)− c2α2 > 0

⇐⇒ cα2(λi − λj) > c2α2

⇐⇒ λi > λj + c,

which proves the claim. ♣

This implies that, for t ∈ (0, 1), transformations of the form
(λi, λj) → (tλi + (1− t)λj , (1− t)λi + tλj), (E.30)

are good.

Let us denote by λ⃗′ := [1, . . . , 1], which corresponds to eigenvalues of M ′ := Ip ∈ M. Pick any
λ⃗′′ ̸= λ⃗′ that corresponds to some matrix M ′′ ∈ M, so it satisfies λ′′1 ≥ λ′′2 ≥ · · · ≥ λ′′p , as well as∑p
i=1 λ

′′
i = p.

We recall the definition of majorization, as it will be used to conclude the proof. Namely, we say that
x⃗ ∈ Rp is majorized by y⃗ ∈ Rp whenever for all k ∈ [p]

k∑
i=1

xi ≤
k∑
i=1

yi,

and
p∑
i=1

xi =

p∑
i=1

yi.

Firstly, we claim that λ⃗′ is majorized by λ⃗′′. Suppose otherwise, that for some k ∈ [p]
k∑
i=1

λ′′i <

k∑
i=1

1 = k,

implying also that λ′′k < 1. Then, we have

p =

p∑
i=1

λ′′i < (p− k)λ′′k + k < (p− k) + k = p,

which is a contradiction.

Next, as λ⃗′ is majorized by λ⃗′′, λ⃗′ can be derived from λ⃗′′ by a finite sequence of steps of the form in
(E.30) with t ∈ [0, 1], see [Marshall et al., 1979, Chapter 4, Proposition A.1]. Since both vectors λ⃗′

and λ⃗′′ are non-increasing, the t = 0 transformation can always be omitted. Moreover, t = 1 is just
the identity transformation, so it can also be omitted and we actually have t ∈ (0, 1). In formulas, we
have that

λ⃗′ = f il,jlcl
(. . . f i1,j1c1 (λ⃗′′) . . . ).

Since each of the functions above is good, we have that α(λ⃗′) < α(λ⃗′′). As Ru(M) is increasing
with α, the smallest Ru(M) is achieved for λ⃗′ := [1, . . . , 1], that is, Ip = arginfM∈M Ru(M).

E.5 Proof of Ru(ηM) ≤ Ru(M)

Consider the function gη : Rp≥0 → Rp≥0 defined as gη(λ⃗) = ηλ⃗, for some η > 1. Note that, for all i,
1

gη(λ⃗)iα+ 1− p
n − α

=
1

ηλiα+ 1− p
n − α

<
1

λiα+ 1− p
n − α

.
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Thus, gη(λ⃗) = ηλ⃗ is good in the sense of (E.28). From (E.29), we obtain that α(ηλ⃗) < α(λ⃗). This
implies the desired result as Ru is monotonically increasing in α from (E.27).

E.6 Coefficient defining system of equations of Theorem D.1

The (a1, a2, a3, a4) is the unique solution, with a1, a2 positive, to the following system of equations:

0 = 1− 1

γ

∫
a1λ

s + a2λ
t

a1λs + a2λt + 1
dĤp(λ

s, λt), 0 =
γs
γ

− 1

γ

∫
a1λ

s

a1λs + a2λt + 1
dĤp(λ

s, λt),

(E.31)

a1+a2=− 1

γ

∫
a3λ

s + a4λ
t

(a1λs+a2λt+1)2
dĤp(λ

s, λt), a1=− 1

γ

∫
a3λ

s+λsλt(a3a2−a4a1)
(a1λs+a2λt+1)2

dĤp(λ
s, λt),

and (b1, b2, b3, b4) is the unique solution, with b1, b2 positive, to the following system of equations:

0 = 1− 1

γ

∫
b1λ

s + b2λ
t

b1λs + b2λt + 1
dĤp(λ

s, λt), 0 =
γs
γ

− 1

γ

∫
b1λ

s

b1λs + b2λt + 1
dĤp(λ

s, λt),

(E.32)

0=

∫
λs(b3−b1λt)+λt(b4−b2λt)

(b1λs + b2λt + 1)2
dĤp(λ

s, λt), 0=

∫
λs(b3−b1λt)+λsλt(b3b2−b4b1)

(b1λs + b2λt + 1)2
dĤp(λ

s, λt).

E.7 Proof of Theorem D.1

Recall from (E.2) that bias and variance for non-zero centered data can be expressed as

BX(β̂;β) = β⊤Π(Σt + µtµ
⊤
t )Πβ and VX(β̂;β) =

σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )],

where Σ̂ = X⊤X/n and Π = I − Σ̂+Σ̂ (projection on the null space of X). To obtain the wanted
result, we make a connection to zero-mean data and then use results from Song et al. [2024] to handle
the zero-mean case. Unlike in the under-parametrized case, the bias term does not necessarily vanish.
Thus, we start off by breaking it down into two terms

BX(β̂;β) = B1
X(β̂;β) +B2

X(β̂;β),

where B1
X(β̂;β) = β⊤ΠΣtΠβ and B2

X(β̂;β) = β⊤Πµtµ
⊤
t Πβ. Moreover, we split the variance

term as
VX(β̂;β) = V 1

X(β̂;β) + V 2
X(β̂;β),

with V 1
X(β̂;β) = σ2

n Tr[Σ̂+Σt] and V 2
X(β̂;β) = σ2

n Tr[Σ̂+µtµ
⊤
t ]. We will deal with each of these

terms individually.

Bounding the term B2
X(β̂, β). Recall that X̃n = X√

n
. Then, similarly to (E.12), we can write the

SVD of Σ̂ as

Σ̂ =

k∑
i=1

σ2
i (X̃n)vi(X̃n)vi(X̃n)

⊤,

where k ≤ min(n, p) = n is the number of non-zero singular values of X̃n. As in (E.10), we can
conclude that k = n. Therefore, we have

I − Σ̂+Σ̂ = I −
n∑
i=1

vi(X̃n)vi(X̃n)
⊤ =

p∑
i=n+1

vi(X̃n)vi(X̃n)
⊤.

By definition, it holds that Πµt = (I − Σ̂+Σ̂)µt, from which it follows

Πµt =

p∑
i=n+1

vi(X̃n)
〈
vi(X̃n), µt

〉
.

Due to Proposition E.2, it holds almost surely that∣∣∣∣∣ ⟨v1(X̃n), µs⟩
∥µs∥2

∣∣∣∣∣
2

+

∣∣∣∣∣ ⟨v2(X̃n), µs⟩
∥µs∥2

∣∣∣∣∣
2

≥ 1− 1

c · p
,
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from which it follows

∥Πµt∥22 =

p∑
i=n+1

∣∣∣〈vi(X̃n), µt

〉∣∣∣2 ≤ 1

c · p
∥µt∥22 = c.

Since β sampled independently from a sphere of constant radius and Πµt is of bounded norm, it is
standard result that |⟨β,Πµt⟩|2 is sub-exponential and, using Bernstein inequality, we can get that

B2
X(β̂, β) =

∥∥β⊤Πµt
∥∥2
2
= |⟨β,Πµt⟩|2 = O

(
1

p

)
, (E.33)

with high probability over the sampling of β.

Bounding the term B1
X(β̂, β). We first introduce an object coming from a bias term of a ridge

regression estimator with coefficient λ:

B1
X(λ) := λ2β⊤(Σ̂ + λI)−1Σt(Σ̂ + λI)−1β, (E.34)

defined for any λ > 0. It is more convenient to work with B1
X(λ) than B1

X(β̂, β) and, in addition,
B1
X(λ) approximates well B1

X(β̂, β) for small λ. We formalize the second claim as∣∣∣B1
X(β̂, β)−B1

X(λ)
∣∣∣ = O(λ) (E.35)

proved in the same manner as [Song et al., 2024, D.82]. For convenience we also carry out the proof
here.

Proof of the claim in (E.35). Let us write the SVD Σ̂ = UDU⊤. Moreover, we denote by 1D=0

and 1D>0 the diagonal matrices such that

(1D=0)i,i =

{
0, Di,i ̸= 0

1, Di,i = 0
(1D>0)i,i =

{
1, Di,i ̸= 0

0, Di,i = 0

Then it holds that
B1
X(β̂;β) = β⊤(I − Σ̂+Σ̂)Σt(I − Σ̂+Σ̂)β

= β⊤U1D=0U
⊤ΣtU1D=0U

⊤β

= β⊤U1D=0A1D=0U
⊤β

= ∥A1/21D=0U
⊤β∥22,

where we set A := U⊤ΣtU . Furthermore, we have
B1
X(λ) = λ2β⊤(Σ̂ + λI)−1Σt(Σ̂ + λI)−1β

= λ2β⊤U(D + λI)−1A(D + λI)−1U⊤β

= ∥A1/2λ(D + λI)−1U⊤β∥22.

Therefore, we have∣∣√B1
X(β̂;β)−

√
B1
X(λ)

∣∣ ≤ ∥A1/2(1D=0 − λ(D + λI)−1)U⊤β∥2

≤ c∥A∥1/22 ∥λ(D + λI)−11D>0∥2

≤ c
λ

σn(Σ̂)
= O(λ),

where the third inequality holds as ∥A∥2 = ∥Σt∥2 = O(1) and the last inequality follows from
Proposition E.1 in the same manner as (E.11). Notice that B1

X(λ), B1
X(β̂;β) = O(1), since

∥β∥2 , ∥Σt∥2 = O(1) and σn(Σ̂) > c. This finally implies∣∣∣B1
X(β̂;β)−B1

X(λ)
∣∣∣ = O(λ),

proving the claim. ♣
The next step is to prove the claim that, for 1 > λ > p−0.49, it holds that

B1
X(λ) = λ2β⊤(Σ̂0 + λI)−1Σt(Σ̂0 + λI)−1β +O

(
λ−2

p

)
. (E.36)
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Proof of the claim in (E.36). Towards this end, we have

Σ̂ =
1

n
(X⊤X)

=
1

n
(X0 + 1nt

µ⊤
t + 1ns

µ⊤
s )

⊤(X0 + 1nt
µ⊤
t + 1ns

µ⊤
s )

=

(
X0⊤X0

n
+
X0⊤1nt

µ⊤
t

n
+
X0⊤1ns

µ⊤
s

n
+
µt1

⊤
nt
X0

n
+
µs1

⊤
ns
X0

n
+
γt
γ
µtµ

⊤
t +

γs
γ
µsµ

⊤
s

)
,

where abusing notation we write 1ns
= [1, . . . , 1, 0, . . . , 0]⊤ ∈ Rn×1 (ns ones followed by nt

zeros) and 1nt
= [0, . . . , 0, 1, . . . , 1]⊤ ∈ Rn×1 (ns zeros followed by nt ones).

All the terms above, except the first one, have rank 1, so we use Woodbury formula to take them
out of the inverse when computing (Σ̂ + λI)−1. We consider the case φ ̸= 1, as the case φ = 1 is
analogous (it is in fact easier as some steps can be omitted). We first focus on the term (Σ̂ + λI)−1

and demonstrate how to handle X0⊤
1ntµ

⊤
t

n +
µt1

⊤
nt
X0

n + γt
γ µtµ

⊤
t . For this purpose, we introduce the

following notation

A := Σ̂ + λI − X0⊤1ntµ
⊤
t

n
−
µt1

⊤
nt
X0

n
− γt
γ
µtµ

⊤
t ,

u :=
µt√
n
, v :=

X0⊤1nt√
n

,

U := [u v] ∈ Rp×2, and C :=

[
nγtγ 1
1 0

]
∈ R2×2.

(E.37)

Under this notation it holds
X0⊤1nt

µ⊤
t

n
+
µt1

⊤
nt
X0

n
+
γt
γ
µtµ

⊤
t = UCU⊤.

Then, using Woodbury formula, we have

(Σ̂ + λI)−1 =

(
A+ uv⊤ + vu⊤ + n

γt
γ
uu⊤

)−1

= (A+ UCU⊤)−1

= A−1 −A−1U (C−1 − U⊤A−1U)−1U⊤A−1.

We now compute the 2× 2 block

C−1 − U⊤A−1U =

[
−u⊤A−1u 1− u⊤A−1v

1− v⊤A−1u −nγtγ − v⊤A−1v

]
=

[
−a 1− b
1− b −nγtγ − d

]
,

where

a := u⊤A−1u, b := v⊤A−1u = u⊤A−1v, d := v⊤A−1v. (E.38)

Hence

(C−1 − U⊤A−1U)−1 =
1

∆

[
−nγtγ − d b− 1
b− 1 −a

]
, ∆ := a

(
n
γt
γ

+ d

)
− (1− b)2. (E.39)

Plugging back and simplifying gives the explicit formula:

(Σ̂ + λI)−1 = A−1 − 1

∆
A−1

((
−nγt

γ
− d

)
uu⊤ − (1− b) (uv⊤ + vu⊤)− a vv⊤

)
A−1,

which is valid whenever ∆ ̸= 0, i.e., whenever C−1 − U⊤A−1U is invertible.

We will now analyze the a, b, d terms. First, recall that

A =
X0⊤X0

n
+
X0⊤1ns

µ⊤
s

n
+
µs1

⊤
ns
X0

n
+
γs
γ
µsµ

⊤
s + λI = Σ̂s + λI,
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where Σ̂s :=
(X0+1nsµ

⊤
s )⊤(X0+1nsµ

⊤
s )

n . Thus, we have∥∥A−1
∥∥
2
≤ λ−1.

From this, it follows that

|a| =
∣∣u⊤A−1u

∣∣ = ∥∥∥∥ µ⊤
t√
n
A−1 µt√

n

∥∥∥∥
2

≤
∥∥∥∥ µt√

n

∥∥∥∥
2

∥∥A−1
∥∥
2

∥∥∥∥ µt√
n

∥∥∥∥
2

≤ cλ−1.

Similarly, we have

|b| =
∣∣v⊤A−1u

∣∣
=

∥∥∥∥ µ⊤
t√
n
A−1X

0⊤1nt√
n

∥∥∥∥
2

≤
∥∥∥∥ µt√

n

∥∥∥∥
2

∥A−1∥2
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

≤ c λ−1√p,

where the last inequality follows with high probability over the sampling of X0, since X0⊤1nt√
n

is a
vector with p i.i.d entries of mean zero and O(1) variance. Finally, we have

|d| =
∣∣v⊤A−1v

∣∣
=

∥∥∥∥∥1⊤nt
X0

√
n

A−1 X
0⊤1nt√
n

∥∥∥∥∥
2

≤
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

∥A−1∥2
∥∥∥∥X0⊤1nt√

n

∥∥∥∥
2

≤ c λ−1p,

again with high probability.

From a slight adjustment of the second part of Proposition E.2, it holds for the top singular value

σ1(A) = σ1(Σ̂s) + λ =

(
σ1

(
X0 + 1ns

µ⊤
s√

n

))2

+ λ = Θ(p),

and for the corresponding right singular vector∣∣∣∣〈v1(A), µs
∥µs∥2

〉∣∣∣∣ = ∣∣∣∣〈v1(Σ̂s), µs
∥µs∥2

〉∣∣∣∣ = ∣∣∣∣〈v1(X0 + 1ns
µ⊤
s√

n

)
,
µs

∥µs∥2

〉∣∣∣∣ =
√

1−O

(
1

p

)
.

Note that, for φ < 1, it holds that
∣∣∣〈 µs

∥µs∥2
, µt

∥µt∥2

〉∣∣∣ = φ < 1. Using the triangle inequality and
Cauchy-Schwarz gives∣∣∣∣〈v1(A), µt

∥µt∥2

〉∣∣∣∣ ≤ ∣∣∣∣〈 µs
∥µs∥2

,
µt

∥µt∥2

〉∣∣∣∣+ ∥∥∥∥v1(A)− µs
∥µs∥2

∥∥∥∥
2

∥∥∥∥ µt
∥µt∥2

∥∥∥∥
2

≤ φ+O

(
1

p

)
.
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Therefore, it holds that

|a| =
∣∣u⊤A−1u

∣∣ = ∥∥∥∥ µ⊤
t√
n
A−1 µt√

n

∥∥∥∥
2

=

p∑
i=1

1

σi(A)

∣∣∣∣〈vi(A), µt√
n

〉∣∣∣∣2
= c ·

p∑
i=1

1

σi(A)

∣∣∣∣〈vi(A), µt
∥µt∥2

〉∣∣∣∣2
≥ c

p∑
i=2

1

σi(A)

∣∣∣∣〈vi(A), µt
∥µt∥2

〉∣∣∣∣2
≥ c

1

σ2(A)

p∑
i=2

∣∣∣∣〈vi(A), µt
∥µt∥2

〉∣∣∣∣2
≥ c

(
1−

(
φ+O

(
1

p

))2
)
> 0,

since σ2(A) = σ2(Σ̂s) + λ = O(1) due to the second part of Proposition E.2. Note that, for φ = 1,
we do not need this argument, as the µs terms are taken out of the inverse as well. In that case, we
take A =

(
X0⊤

X0

n + λI
)

, which immediately gives σ1(A) < c.

We can now prove that, with high probability, ∆ = Ω(p). Using Cauchy-Schwarz, it holds that

b2 = |⟨u, v⟩|A−1 ≤ ∥u∥A−1 ∥v∥A−1 = ad,

from which it follows that

∆ = a

(
n
γt
γ

+ d

)
− (1− b)2 ≥ an

γt
γ

− 1 + 2b = Ω(p),

since a is lower bounded by a constant and |b| ≤ cλ−1√p ≤ cp0.99.

At this point, we have all the necessary bounds and we work towards proving the claim. We first
expand the bias term

B1
X(λ) = λ2β⊤(Σ̂ + λI)−1Σt(Σ̂ + λI)−1β

= λ2β⊤(Σ̂ + λI)−1Σt(A+ UCU⊤)−1β

= λ2β⊤(Σ̂ + λI)−1Σt
(
A−1 −A−1U (C−1 − U⊤A−1U)−1U⊤A−1

)
β

= λ2β⊤(Σ̂ + λI)−1ΣtA
−1β + S,

where S := −λ2β⊤(Σ̂ + λI)−1ΣtA
−1U (C−1 − U⊤A−1U)−1U⊤A−1β.

We now prove that S is small. To do so, we decompose

S = −λ2β⊤(Σ̂ + λI)−1ΣtA
−1U (C−1 − U⊤A−1U)−1U⊤A−1β

= λ2β⊤(Σ̂ + λI)−1Σt
1

∆
A−1

((
n
γt
γ

+ d

)
uu⊤ + (1− b) (uv⊤ + vu⊤) + a vv⊤

)
A−1β

= Tu,u + Tu,v + Tv,v,

where Tu,u is the summand corresponding to uu⊤, Tu,v to uv⊤ + vu⊤, and Tv,v to vv⊤. Zooming
in on one of the terms, it holds that

Tu,u = λ2β⊤(Σ̂ + λI)−1Σt
(nγt/γ + d)

∆
A−1 uu⊤A−1β

=

〈
β, λ2(Σ̂ + λI)−1Σt

(nγt/γ + d)

∆
A−1 u

〉〈
u⊤A−1, β

〉
.
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Note that∥∥∥∥λ2(Σ̂ + λI)−1Σt
(nγt/γ + d)

∆
A−1 u

∥∥∥∥
2

≤ λ2
∥∥∥(Σ̂ + λI)−1

∥∥∥
2
∥Σt∥2

(nγt/γ + d)

∆

∥∥A−1
∥∥
2
∥u∥2

≤ cλ−1,

and
∥∥u⊤A−1

∥∥
2
≤ cλ−1. Using this, we get that, with high probability, it holds

|Tu,u| ≤ c
λ−2

p
.

This is similar to how we obtained (E.33), since β is sampled independently from a sphere of constant
radius. With analogous passages, we have that

|Tu,v| ≤ c
λ−2

p
, |Tv,v| ≤ c

λ−2

p

holds with high probability over the sampling of β. Putting all together, we get

B1
X(λ) = λ2β⊤(Σ̂ + λI)−1ΣtA

−1β +O

(
λ−2

p

)
.

Using the same argumentation applied now to (Σ̂ + λI)−1 in λ2β⊤(Σ̂ + λI)−1ΣtA
−1β gives

B1
X(λ) = λ2β⊤A−1ΣtA

−1β +O

(
λ−2

p

)
.

Lastly, doing all of this again to take out the terms containing µs from A, i.e., by taking

Ã := A− X0⊤1ns
µ⊤
s

n
−
µs1

⊤
ns
X0

n
− γs

γ
µsµ

⊤
s = Σ̂0 + λI,

we get

B1
X(λ) = λ2β⊤Ã−1ΣtÃ

−1β +O

(
λ−2

p

)
,

proving the claim. ♣
From [Song et al., 2024, D.82], it follows that∣∣∣∣β⊤Π0ΣtΠ0β − λ2β⊤

(
Σ̂0 + λI

)−1

Σt

(
Σ̂0 + λI

)−1

β

∣∣∣∣ = O(λ), (E.40)

where Π0 = I − Σ̂+
0 Σ̂0. Thus, by combining (E.35), (E.36) and (E.40), we conclude that∣∣∣B1
X(β̂, β)− β⊤Π0ΣtΠ0β

∣∣∣ = O(λ) +O

(
λ−2

p

)
= O(p−1/3), (E.41)

where the last step is obtained by taking p = λ−1/3 (this also satisfies 1 > λ > p−0.49, which was
required to obtain (E.36)). As BX(β̂, β) = B1

X(β̂, β) + B2
X(β̂, β) and B2

X(β̂, β) = O(1/p) with
high probability by (E.33), we conclude that∣∣∣BX(β̂, β)− β⊤Π0ΣtΠ0β

∣∣∣ = O(p−1/3) (E.42)

holds with high probability over the sampling of β andX . Plugging in the expression of β⊤Π0ΣtΠ0β
given in [Song et al., 2024, Theorem 4.1] yields, with high probability,

BX(β̂, β) =

∫
b3λ

s + (b4 + 1)λt

(b1λs + b2λt + 1)2
dĜp(λ

s, λt) +O(p−c),

where (b1, b2, b3, b4) is the unique solution, with b1, b2 positive, to (E.32). Taking the limit p, n→ ∞
gives the desired result for the bias term.

Bounding the term V 2
X(β̂, β). Notice that the term V 2

X(β̂, β) coincides with T2 from Proposition
E.3. Moreover, we can follow the proof of the bound on T2 verbatim, only substituting p for n in
appropriate places (as we are now in an over-parametrized setting) to get

V 2
X(β̂, β) =

σ2

n
Tr[Σ̂+

0 µtµ
⊤
t ] = O

(
1

p

)
. (E.43)
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Bounding the term V 1
X(β̂, β). To make a connection with zero-centered data, we will first prove

that, with high probability, it holds

V 1
X(β̂, β) =

σ2

n
Tr[Σ̂+Σt] =

1

n
Tr
[
Σ̂+

0 Σt
]
+O

(
1

p1/7

)
. (E.44)

Similarly to the computation for B1
X(β̂, β), we introduce an object coming from a variance term of a

ridge regression estimator with coefficient λ:

V 1
X(λ) :=

1

n
Tr[(Σ̂ + λI)−2Σ̂Σt],

defined for any λ > 0. It is more convenient to work with V 1
X(λ) than V 1

X(β̂, β) and, in addition,
V 1
X(λ) approximates V 1

X(β̂, β) well for small λ. We formalize the second claim as∣∣∣V 1
X(β̂, β)− V 1

X(λ)
∣∣∣ = O(λ), (E.45)

proved in the same manner as [Song et al., 2024, D.78]. For convenience we also carry out the proof
here.

Proof of claim in (E.45). Let us write the SVD Σ̂ = UDU⊤. Then it holds that

V 1
X(β̂, β) =

1

n
Tr(UD+U⊤Σt),

V 1
X(λ) =

1

n
Tr[U(D + λI)−2DU⊤Σt].

Therefore, we have∣∣∣V 1
X(β̂, β)− V 1

X(λ)
∣∣∣ = 1

n

∣∣Tr [U⊤ΣtU
(
D+ − (D + λI)−2D

)]∣∣
≤
∥∥U⊤ΣtU

∥∥
2

1

n

n∑
i=1

[
1

λi(D)
− λi(D)

(λi(D) + λ)2

]
≤ 1

τ

2λ

λn(D)2

= c · λ

λn(Σ̂)2
= O(λ).

Here, we used the inequality x−1 − (x+ λ)−2x ≤ 2λ/x2 and the fact that Σ̂ has n non-zero singular
values, each bounded below by a constant, which follows from (E.10). This completes the proof of
the claim. ♣
Relying on the derivations in [Song et al., 2024, D.2] we have that

V 1
X(λ) =

d

dλ

(
λ

n
Tr
(
Σt(Σ̂ + λI)−1

))
.

Let us denote by

Ṽ 1
X(λ) :=

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
.

We claim that, for any t > 0, it holds∣∣∣∣V 1
X(λ)− 1

tλ

(
Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)
)∣∣∣∣ = O(tλ−2). (E.46)
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Proof of claim in E.46. We begin by transforming the LHS:
1

tλ
(Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)) =
1

n
Tr

(
Σt

1

tλ

(
(λ+ tλ)

(
Σ̂ + (λ+ tλ)I

)−1

− λ
(
Σ̂ + λI

)−1
))

=
1

n
Tr

(
Σt

1

tλ

((
1

λ+ tλ
Σ̂ + I

)−1

−
(
1

λ
Σ̂ + I

)−1
))

=
1

n
Tr

(
Σt

1

tλ

((
1

λ
Σ̂ + I

)−1(
1

λ
Σ̂ + I − 1

λ+ tλ
Σ̂− I

)(
1

λ+ tλ
Σ̂ + I

)−1
))

=
1

n
Tr

(
Σt

(
Σ̂ + λI

)−1

Σ̂
(
Σ̂ + (λ+ tλ)I

)−1
)

=
1

n
Tr

((
Σ̂ + (λ+ tλ)I

)−1 (
Σ̂ + λI

)−1

Σ̂Σt

)
,

where the last line follows from the cyclic property of the trace and the commutativity of Σ̂,(
Σ̂ + λI

)−1

and
(
Σ̂ + (λ+ tλ)I

)−1

. Plugging this into the LHS of (E.46) yields∣∣∣∣V 1
X(λ)− 1

tλ

(
Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)
)∣∣∣∣

=

∣∣∣∣ 1n Tr

(((
Σ̂ + λI

)−1

−
(
Σ̂ + (λ+ tλ)I

)−1
)
(Σ̂ + λI)−1Σ̂Σt

)∣∣∣∣
=

∣∣∣∣ tλn Tr

((
Σ̂ + (λ+ tλ)I

)−1

(Σ̂ + λI)−2Σ̂Σt

)∣∣∣∣
≤
∥∥∥∥Σt (Σ̂ + (λ+ tλ)I

)−1

(Σ̂ + λI)−2

∥∥∥∥
2

tλ

n
Tr Σ̂ = O(tλ−2),

where the last line follows from the bound 1
n Tr Σ̂ = O(1), which holds due to Proposition E.2. ♣

Let us denote the zero-centered counterparts of the corresponding V 1
X terms as

V 0
X(β̂, β) :=

1

n
Tr[Σ̂+

0 Σt]

V 0
X(λ) :=

1

n
Tr[(Σ̂0 + λI)−2Σ̂0Σt] =

d

dλ

(
λ

n
Tr
(
Σt(Σ̂0 + λI)−1

))
,

Ṽ 0
X(λ) :=

λ

n
Tr
(
Σt(Σ̂0 + λI)−1

)
.

Analogously to (E.45) and (E.46), it holds that∣∣∣V 0
X(β̂, β)− V 0

X(λ)
∣∣∣ = O(λ),

∣∣∣∣V 0
X(λ)− 1

tλ

(
Ṽ 0
X(λ+ tλ)− Ṽ 0

X(λ)
)∣∣∣∣ = O(tλ−2). (E.47)

The next step is to prove that, for 1 > λ > p−0.49,

Ṽ 1
X(λ) = Ṽ 0

X(λ) +O

(
λ−2

n

)
. (E.48)

Proof of the claim in (E.48). Expanding the expression, we want to prove that

Ṽ 1
X(λ) =

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
=
λ

n
Tr
(
Σt(Σ̂0 + λI)−1

)
+O

(
λ−2

n

)
.

Notice that Ṽ 1
X(λ) crucially contains (Σ̂ + λI)−1 in its expression, which we have already analyzed

in the context of B1
X(β̂, β). Recalling the definitions of A, u, v, U,C, a, b, d, and ∆ from (E.37),
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(E.38), and (E.39), we can then expand Ṽ 1
X(λ) as

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
=
λ

n
Tr
(
Σt(A+ UCU⊤)−1

)
=
λ

n
Tr
(
Σt
(
A−1 −A−1U (C−1 − U⊤A−1U)−1U⊤A−1

))
=
λ

n
Tr
(
ΣtA

−1
)
+ Ŝ,

where Ŝ := −λ
n Tr

(
ΣtA

−1U (C−1 − U⊤A−1U)−1U⊤A−1
)
.

We now prove that Ŝ is small. To do so, we decompose

Ŝ =
λ

n
Tr

(
Σt

1

∆
A−1

((
n
γt
γ

+ d

)
uu⊤ + (1− b) (uv⊤ + vu⊤) + a vv⊤

)
A−1

)
= T̂u,u + T̂u,v + T̂v,v,

where T̂u,u is the summand corresponding to uu⊤, T̂u,v to uv⊤ + vu⊤, and T̂v,v to vv⊤. Zooming
in on one of the terms, it holds that

T̂u,u =
λ

n
Tr

(
Σt

1

∆
A−1

(
n
γt
γ

+ d

)
uu⊤A−1

)
=
λ

n

nγtγ + d

∆
Tr
(
ΣtA

−1uu⊤A−1
)

=
λ

n

nγtγ + d

∆
u⊤A−1ΣtA

−1u.

Note that ∥∥A−1ΣtA
−1
∥∥
2
≤ λ−2

τ
,

and ∥u∥2 ≤ c. Using this, we get that, with high probability, it holds

|T̂u,u| ≤ c
λ−2

n
.

With analogous passages, we have that

|T̂u,v| ≤ c
λ−2

n
, |T̂v,v| ≤ c

λ−2

n
holds with high probability over the sampling of Z. Putting all together, we get

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
=
λ

n
Tr
(
ΣtA

−1
)
+O

(
λ−2

n

)
.

Lastly, doing all of this again to take out the terms containing µs from A, i.e., by taking

Ã = A− X0⊤1ns
µ⊤
s

n
−
µs1

⊤
ns
X0

n
− γs

γ
µsµ

⊤
s = Σ̂0 + λI,

we get

λ

n
Tr
(
Σt(Σ̂ + λI)−1

)
=
λ

n
Tr

(
Σt

(
Σ̂0 + λI

)−1
)
+O

(
λ−2

n

)
,

proving the claim. ♣
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Finally, combining (E.45), (E.46), (E.47) and (E.48), for 1 > λ > p−0.49 and t > 0, we have that∣∣∣V 1
X(β̂, β)− V 0

X(β̂, β)
∣∣∣ ≤ ∣∣∣V 1

X(β̂, β)− V 1
X(λ)

∣∣∣+ ∣∣V 1
X(λ)− V 0

X(λ)
∣∣+ ∣∣∣V 0

X(β̂, β)− V 0
X(λ)

∣∣∣
≤ O(λ) +

∣∣∣∣Ṽ 1
X(λ)− 1

tλ

(
Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)
)∣∣∣∣

+

∣∣∣∣Ṽ 0
X(λ)− 1

tλ

(
Ṽ 0
X(λ+ tλ)− Ṽ 0

X(λ)
)∣∣∣∣

+

∣∣∣∣ 1tλ (Ṽ 1
X(λ+ tλ)− Ṽ 1

X(λ)
)
− 1

tλ

(
Ṽ 0
X(λ+ tλ)− Ṽ 0

X(λ)
)∣∣∣∣

≤ O(λ)+O

(
t

λ2

)
+

1

tλ

∣∣∣Ṽ 1
X(λ+tλ)−Ṽ 0

X(λ+tλ)
∣∣∣+ 1

tλ

∣∣∣Ṽ 1
X(λ)−Ṽ 0

X(λ)
∣∣∣

= O(λ)+O(tλ−2)+O

(
t−1λ−3

n

)
.

Taking t = λ3 and λ = n−1/7, we get
∣∣∣V 1
X(β̂, β)− V 0

X(β̂, β)
∣∣∣ = O(n−1/7), proving the claim from

(E.44). As VX(β̂;β) = V 1
X(β̂;β) + V 2

X(β̂;β), and V 2
X(β̂, β) = O(1/p) by (E.43) we conclude that

VX(β̂;β) =
σ2

n
Tr[Σ̂+(Σt + µtµ

⊤
t )] =

σ2

n
Tr[Σ̂+

0 Σt] +O
(
p−1/7

)
.

Plugging in the expression of σ
2

n Tr[Σ̂+
0 Σt] given in [Song et al., 2024, Theorem 4.1] yields, with

high probability,

VX(β̂;β) = −σ
2

γ

∫
λt(a3λ

s + a4λ
t)

(a1λs+ a2λt + 1)2
dĤp(λ

s, λt) +O(p−c),

where (a1, a2, a3, a4) is the unique solution, with a1, a2 positive, to (E.31). Taking the limit p, n→
∞ gives the desired result for the variance term and concludes the proof.

E.8 Proof of Theorem D.2

For Σt = Ip and Σs ∈ Rp×p≻0 , it holds that
Ro(Σs, Ip, β) = V(Σs, Ip) + B(Σs, Ip, β).

We analyze each of the two terms separately.

Calculating B(Σs, Ip, β). Note that Σt = Ip implies λti = 1 in all the equations in (E.32). Plugging
this in, one gets that the third and fourth equation in (E.32) are satisfied for b4 = b2 and b3 = b1.
From the uniqueness of a solution (b1, b2, b3, b4) to the whole system of equations in (E.32), and the
fact that b3 and b4 only show up in the mentioned third and fourth equation, we get that it must hold
b4 = b2 and b3 = b1. Plugging this into the bias term we get that

B(Σs, Ip, β) =
∫

b3λ
s + (b4 + 1)λt

(b1λs + b2λt + 1)2
dĜp(λ

s, λt)

=

∫
b1λ

s + b2 + 1

(b1λs + b2 + 1)2
dĜp(λ

s, λt)

=

p∑
i=1

⟨β, ui⟩2

b1λsi + b2 + 1
,

noting that ui ∈ Rp is the eigenvector of the matrix Σs corresponding to the eigenvalue λsi .

Recall that we have assumed in the setup of Section D that β is sampled from a sphere of constant
radius, which we will denote by rSp−1, i.e., r = ∥β∥2. We now prove concentration of B(Σs, Ip, β)
over this sampling of β. Towards this end, we introduce a matrix A ∈ Rp×p such that

B(Σs, Ip, β) = β⊤Aβ, A :=

p∑
i=1

1

b1λsi + b2 + 1
uiu

⊤
i .
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Notice that first equation of (E.32) yields

1

γ p

p∑
i=1

b1λ
s
i + b2

b1λsi + b2 + 1
= 1,

which gives

Tr (A) =

p∑
i=1

1

b1λsi + b2 + 1
= p− n.

Since both b1 and b2 are positive, as stated in Theorem D.1, it holds

∥A∥2 = λ1(A) =
1

b1λsp + b2 + 1
≤ 1.

Note that

Eβ∼rSp−1β⊤Aβ = E
p∑
i=1

⟨β, ui⟩2

b1λsi + b2 + 1

=

p∑
i=1

1

b1λsi + b2 + 1
E ⟨β, ui⟩2

=
1

p

p∑
i=1

1

b1λsi + b2 + 1
r2

=
p− n

p
r2. (E.49)

Furthermore, the function β → β⊤Aβ is Lipschitz over the sphere. Namely, for two vectors
β1, β2 ∈ rSp−1, it holds that
|β⊤

1 Aβ1−β⊤
2 Aβ2| ≤ |β⊤

1 A(β1−β2)|+|β⊤
2 A(β1−β2)| ≤ 2r ∥A∥2 ∥β1 − β2∥2 ≤ 2r ∥β1 − β2∥2 .

Then, due to the concentration of Lipschitz functions over the sphere [Vershynin, 2018, Theorem
5.1.4], we get that, with overwhelming probability,∣∣β⊤Aβ − Eβ⊤Aβ

∣∣ = O(n−c1),

for any constant c1 < 1/2. Plugging (E.49) gives

B(Σs, Ip, β) = β⊤Aβ =
p− n

p
r2 +O(n−c1),

with overwhelming probability. We can readily calculate the bias term for Σs = Ip:

B(Ip, Ip, β) =
p∑
i=1

⟨β, ui⟩2

b1 + b2 + 1
=
p− n

p
r2.

Thus, for any Σs ∈ Rp×p≻0 , we have

B(Ip, Ip, β) ≤ B(Σs, Ip, β) +O(n−c1), (E.50)
with overwhelming probability.

Calculating V(Σs, Ip). Note that

V(Σs, Ip) = −σ2 1

γ

∫
λt(a3λ

s + a4λ
t)

(a1λs + a2λt + 1)2
dĤp(λ

s, λt)

= −σ2 1

γ

∫
a3λ

s + a4
(a1λs + a2 + 1)2

dĤp(λ
s, λt)

= σ2(a1 + a2), (E.51)

where the last equality follows from the third equation in (E.31) and the fact that λti = 1 for all i ∈ [p].
Moreover, subtracting the second from the first equation in (E.31) yields

0 = 1− γs
γ

− 1

γ p

p∑
i=1

a2
a1λsi + a2 + 1

. (E.52)
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Analyzing just the first equation in (E.31), we get

1

γ p

(
p−

p∑
i=1

1

a1λsi + a2 + 1

)
=

1

γ p

p∑
i=1

a1λ
s
i + a2

a1λsi + a2 + 1
= 1,

which gives
p∑
i=1

1

a1λsi + a2 + 1
= p− n.

Plugging this into (E.52) we get that a2 = γt
1−γ . Therefore, a1 is the unique solution to

p∑
i=1

1

a1λsi + c2
= p− n, (E.53)

for c2 = γt
1−γ + 1 > 0. From (E.51), we have that V(Σs, Ip) only depends on Σs through a1, with

which it monotonically increases. To conclude this section, we will apply the majorization argument
from the proof of Theorem 3.2 with a slight modification. Almost all parts of the argument are
analogous, and we restate them mainly for convenience.

Let us denote by λ⃗s :=
[
λs1, . . . , λ

s
p

]
. Then, for fixed n, p and λ⃗s, we will refer to a1(λ⃗s) as the

positive solution to (E.53). Note that from Theorem D.1 we have that this solution is unique. Consider
a function f : Rp≥0 → Rp≥0. We call a function f good, if and only if

p∑
i=1

1

a1(λ⃗s)f(λ⃗s)i + c2
<

p∑
i=1

1

a1(λ⃗s)λsi + c2
. (E.54)

We claim that, if f is good, then

a1(f(λ⃗
s)) < a1(λ⃗

s). (E.55)

Proof of the claim. Consider a good function f . Then, we have
p∑
i=1

1

a1(λ⃗s)f(λ⃗s)i + c2
<

p∑
i=1

1

a1(λ⃗s)λsi + c2
= p− n.

Furthermore, setting a1 = 0 we get
p∑
i=1

1

0 · f(λ⃗s)i + c2
= p

1
γt

1−γ + 1

= p
p− n

p− ns
> p− n.

By continuity, there exists a′1 ∈ (0, a1(λ⃗
s)) for which

p∑
i=1

1

a′1f(λ⃗
s)i + c2

= n− p,

implying a1(f(λ⃗s)) = a′1 < a1(λ⃗
s), which concludes the proof. ♣

Next, for i, j ∈ [p] s.t. i < j, we introduce a function f i,jc : Rp≥0 → Rp≥0 defined as

f i,jc (λ⃗)k =


λsi − c k = i,

λsj + c k = j,

λsk k ̸= i, j,

where c > 0 is a constant. We now claim that f i,jc is good for any i, j ∈ [p] and c > 0, such that
λsi > λsj + c.

Proof of the claim. The claim is equivalent to
1

a1(λ⃗s)(λsi − c) + c2
+

1

a1(λ⃗s)(λsj + c) + c2
<

1

a1(λ⃗s)λsi + c2
+

1

a1(λ⃗s)λsj + c2
.
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For simplicity, let us denote a := a1(λ⃗
s). Then,

1

a(λsi − c) + c2
+

1

a(λsj + c) + c2
<

1

aλsi + c2
+

1

aλsj + c2

⇐⇒
a(λsi + λsj) + 2c2

(λsia− ca+ c2)(λsja+ ca+ c2)
<

a(λsi + λsj) + 2c2

(λsia+ c2)(λsja+ c2)

⇐⇒ (λsia+ c2)(λ
s
ja+ c2) < (λsia− ca+ c2)(λ

s
ja+ ca+ c2)

⇐⇒ ca(λsia+ c2)− ca(λsja+ c2)− c2a2 > 0

⇐⇒ ca2(λsi − λsj) > c2a2

⇐⇒ λsi > λsj + c,

which proves the claim. ♣
This implies that, for t ∈ (0, 1), transformations of the form

(λsi , λ
s
j) → (tλsi + (1− t)λsj , (1− t)λsi + tλsj) (E.56)

are good. Let us denote by λ⃗id := [1, . . . , 1], which corresponds to the matrix Ip. Pick any λ⃗s ̸= λ⃗id

that corresponds to some matrix Σs ∈ S , so it satisfies λs1 ≥ λs2 ≥ · · · ≥ λsp, as well as
∑p
i=1 λ

s
i = p.

Firstly, we claim that λ⃗id is majorized by λ⃗s. Suppose otherwise, that for some k ∈ [p]
k∑
i=1

λsi <

k∑
i=1

1 = k,

implying also that λsk < 1. Then, we have

p =

p∑
i=1

λsi < (p− k)λsk + k < (p− k)1 + k = p,

which is a contradiction.

Next, as λ⃗id is majorized by λ⃗s, λ⃗id can be derived from λ⃗s by a finite sequence of steps of the form
in (E.56) with t ∈ [0, 1], see [Marshall et al., 1979, Chapter 4, Proposition A.1]. Since both vectors
λ⃗id and λ⃗s are non-increasing, the t = 0 transformation can always be omitted. Moreover, t = 1 is
just the identity transformation, so it can also be omitted and we actually have t ∈ (0, 1). In formulas,
we have that

λ⃗id = f il,jlcl
(. . . f i1,j1c1 (λ⃗s) . . . ).

Since each of the functions above is good, we have that a1(λ⃗id) < a1(λ⃗
s). As V(Σs, Ip) is increasing

with a1, this directly implies that, for any Σs ∈ Rp×p≻0 ,
V(Ip, Ip) ≤ V(Σs, Ip).

Combining this with (E.50), we get
Ro(Ip, Ip, β) ≤ Ro(Σs, Ip, β) + o(1),

with overwhelming probability, which concludes the proof.
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F Additional numerical results

Setup details. We train for 200 epochs using SGD as optimizer, and we use cosine annealing; the
initial learning rate is 0.1 for Scratch (0.2 for the experiment of Table 2a) and 0.01 for Distillation and
Pretrained. The Distillation teacher is a ResNet-50 trained on CIFAR-10. We use an early stopping
with patience 20 based on a validation subset (10% of the full training dataset). We avoid up-scaling
images in the Pretrained experiments to better demonstrate the effect of synthetic data augmentation.
On the generation side, to generate the images by T2I models, we use CLIP’s text encoder prompt
template on CIFAR-10 and ImageNet labels. Moreover, as models like StableDiffusion1.4 sometimes
generate low quality data or images discarded by the safety checker, before applying all the algorithms,
we do an initial pruning of 2% of the generated pool based on the distance to the CLIP embedding of
the label. For RxRx1, we used images from four common perturbations (1108, 1124, 1137, 1138)
on HUVEC cells as the real training samples and train a linear classifier on frozen features from an
ImageNet-pretrained ResNet. For each class, MorphGen [Demirel et al., 2025] generates a pool of
500 synthetic images; we augment the real training set (30 images/class) with 60 selected synthetic
images/class and evaluate on a disjoint test set of 20 images/class. We repeat the experiment 10 times
by resampling the real subset from 120 images/class. As in the main setup, CLIP features are used
for the selection algorithms.

Table 2: Covariance matching performs on par with the best baselines for two additional datasets.
In (a), we train a ResNet-18 from scratch on ImageNet-100 with synthetic images from StyleGAN-
XL and T2I models. In (b), we train a linear model on top of an ImageNet-pretrained ResNet for
perturbation classification on a small subset of RxRx1 [Sypetkowski et al., 2023] augmented with
synthetic images from MorphGen [Demirel et al., 2025].

Method Truncated models T2I models

No synthetic 40.78± 1.29

Center matching [He et al., 2023] 53.39± 0.37 53.96± 1.06
DS3 [Hulkund et al., 2025] 57.47± 0.87 53.51± 0.31
Random 54.14± 0.82 49.84± 1.32
Text matching [Lin et al., 2023] 53.39± 0.99 53.37± 0.72
Covariance matching (ours) 57.52± 0.36 53.07± 0.89

Real upper bound 62.67± 0.65

(a) ImageNet-100 dataset

Method MorphGen

No synthetic 86.83± 2.44

Center matching [He et al., 2023] 88.17± 2.35
Random 87.33± 2.03
K-means [Lin et al., 2023] 89.00± 1.70
DS3 [Hulkund et al., 2025] 89.67± 1.45
Center sampling [Lin et al., 2023] 88.75± 2.27
Covariance matching (ours) 90.00± 1.86

(b) RxRx1 dataset

Baseline Details. We briefly describe all baselines compared against Covariance matching in the
main text.

• Center matching [He et al., 2023]: selects the ns generated images nearest to the centroid of the nt
real training features.

• Center sampling [Lin et al., 2023]: samples generated images with probability proportional to their
cosine similarity to the nt real training features.

• DS3 [Hulkund et al., 2025]: clusters the generated pool into 200 clusters; for each real image,
retains its nearest cluster and uniformly samples ns images from the retained set.

• K-means [Lin et al., 2023]: clusters the generated pool into ns clusters and selects one representative
per cluster.

• Random: uniformly samples ns images from the generated pool. The methods “No-filtering,”
“Match-dist,” and “Match-label” [Hulkund et al., 2025] are equivalent to this baseline in our setting,
since each class has the same number of data points.

• Text matching [Lin et al., 2023]: selects the ns generated images nearest to the class text embedding.

• Text sampling [Lin et al., 2023]: samples generated images with probability proportional to their
cosine similarity to the class text embedding.

• No synthetic: uses only nt real samples from the training distribution (synthetic data discarded).

• Real upper bound: uses nt + ns real samples from the training distribution (synthetic data replaced
by in-distribution data).

39



F.1 Controlled experiments

In Table 3, we consider zero-diversity generators. Specifically, for each class, we combine 2K
StyleGAN2-Ada images with a total of 8K images produced by two zero-diversity generators. Each
of these generators emits a single prototype per class: one near the class center of the real samples,
and one near the class label’s CLIP embedding. This yields high precision, but low diversity relative
to the real distribution. Our results show that, again, covariance matching performs well as it avoids
selecting many samples with low diversity (collapsed clusters). In contrast, not fully taking into
account the diversity of selected samples, methods like DS3 perform rather poorly. In Figure 2, we
consider inserting images from the target distribution into the pool of synthetic images and test the
ability of different methods to select them. Specifically, we form a pool of 4K StableDiffusion1.4
images and 1K images from the target distribution (different from the nt = 200 images forming the
training distribution), letting each method take ns = 800. Our results show that covariance matching
selects the highest fraction of images coming from the target distribution, whereas other selectors
largely fail to do so.

Zero-diversity generators. To assess the importance of filtering low-diversity data, we construct a
pool per CIFAR-10 class with 2K images from StyleGAN2-Ada and 8K images from two collapsed
generators. The first collapsed model emits the image whose CLIP embedding is closest to the class
label; the second produces images near the mean embedding of the class’s real subset. We sample 4K
images from each collapsed generator, yielding a total 10K images per class. As shown in Table 3,
most baselines over-select from the collapsed generators because they ignore the diversity of selected
samples. In particular, DS3 retains the two clusters formed by the collapsed outputs and thus fails to
filter them. By contrast, K-means and Covariance matching draw more from the 2K non-collapsed
subset and achieve higher classification accuracy.

Table 3: Covariance matching performs on par with the best baselines across three training paradigms
on CIFAR-10, when the synthetic data is generated via a StyleGAN2-Ada model and two zero-
diversity generators.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching [He et al., 2023] 45.33± 2.43 47.50± 0.55 62.96± 1.26
Center sampling [Lin et al., 2023] 46.88± 2.59 51.11± 0.60 65.38± 1.14
DS3 [Hulkund et al., 2025] 53.74± 1.92 59.16± 1.56 69.43± 0.93
K-means [Lin et al., 2023] 60.20± 1.35 65.03± 0.81 72.83± 0.48
Random 50.31± 1.28 51.82± 0.91 66.27± 1.21
Text matching [Lin et al., 2023] 42.89± 1.89 47.38± 0.76 62.82± 1.31
Text sampling [Lin et al., 2023] 48.13± 1.81 50.81± 0.77 66.12± 1.06
Covariance matching (ours) 58.97± 1.67 64.85± 0.63 72.38± 0.66

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56

Leak experiment. We consider inserting (“leaking”) images from the target distribution into
the pool of synthetic images and test the ability of different methods to select them. We use 1K
leaked CIFAR-10 images, disjoint from the 200 (nt) real reference samples. From a pool of 4K
StableDiffusion1.4 images and 1K leaked images, each method selects 800 (ns). Figure 2 shows,
for each method, the fraction of selected samples drawn from the leak. Because replacing synthetic
with real augmentations yields the best accuracy (Real upper bound), an effective selector should
prioritize leaked real images: covariance matching does, achieving the highest leaked fraction among
all methods.

F.2 Ablations

In Tables 5-6, we repeat the experiments of Table 1 with DINO instead of CLIP features, demon-
strating that the gains of covariance matching are not tied to a particular feature extractor. In Table
7, we compare covariance matching with the direct optimization of the objective given by Theorem
3.1. As the outcomes of these two procedures are largely similar, this further justifies the covariance
matching objective. In Table 8, we show that our findings replicate in an over-parameterized regime.
Finally, in Table 9, we examine the distribution of selections produced by each method, quantifying
alignment with the test distribution and identifying which metrics best predict downstream accuracy.
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Figure 2: The portion of samples chosen from the set of leaked images shows that our proposed
algorithm reliably selects real samples among the pool of generated examples.

Transformer-based models. In Table 4, we use the same setup as Table 1, but instead of ResNet,
we train a ViT and a Swin-T model from scratch. We use a patch size of 4 and Adam optimizer with
learning rate 0.0001 for this experiment. We observe that, in accordance with our previous findings,
covariance matching surpasses other algorithms.

Table 4: Covariance matching outperforms all baselines when fully training a transformer model on
a mix of real and synthetic data.

Method ViT Swin-T

Scratch Distillation Scratch Distillation

No synthetic 40.11± 0.59 40.32± 1.01 40.02± 0.70 40.84± 0.73

Center matching [He et al., 2023] 43.89± 0.97 45.61± 0.68 44.39± 0.54 46.64± 0.53
Center sampling [Lin et al., 2023] 43.89± 0.95 46.29± 0.80 43.94± 1.76 46.97± 0.59
DS3 [Hulkund et al., 2025] 45.92± 0.49 48.61± 0.67 46.57± 0.68 49.55± 0.72
K-means [Lin et al., 2023] 44.24± 1.13 47.44± 0.97 44.71± 0.32 48.49± 0.64
Random 44.07± 0.82 46.50± 0.78 44.38± 0.77 47.35± 0.50
Text matching [Lin et al., 2023] 44.57± 0.57 46.02± 1.00 45.15± 0.58 46.55± 2.52
Text sampling [Lin et al., 2023] 43.80± 0.98 46.00± 0.98 44.59± 0.93 47.62± 0.71
Covariance matching (ours) 46.09± 0.91 49.53± 0.61 46.64± 0.96 50.73± 0.44

Real upper bound 51.85± 0.47 53.11± 0.43 52.43± 1.39 54.80± 0.69

Changing the feature extractor. In the main experiments, we use CLIP features for all selection
methods. To test the dependence on the feature extractor, we repeat the setup of Table 1 with DINO-v2
features. As shown in Tables 5-6, covariance matching matches or surpasses the best baseline across
settings, indicating that its effectiveness is not tied to a specific feature extractor. We also repeat the
leak experiment of Figure 2, see the bar plot in (b), showing again similar results.

Table 5: Covariance matching outperforms all baselines across three training paradigms on CIFAR-
10, when the synthetic data is generated via truncated generative models and features are extracted
with DINO-v2.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching [He et al., 2023] 50.06± 1.45 54.50± 0.62 66.23± 0.72
DS3 [Hulkund et al., 2025] 52.93± 1.65 58.69± 0.81 68.04± 0.71
K-means [Lin et al., 2023] 51.66± 2.10 55.97± 0.58 67.00± 0.84
Random 49.97± 2.45 54.79± 0.68 66.57± 0.92
Text matching [Lin et al., 2023] 51.52± 1.67 55.17± 0.57 67.13± 0.45
Covariance matching (ours) 54.97± 2.60 59.41± 0.81 68.87± 0.41

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56
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Table 6: Covariance matching performs on par with the best baseline across three training paradigms
on CIFAR-10, when the synthetic data is generated via text-to-image (T2I) generative models and
features are extracted with DINO-v2.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching [He et al., 2023] 51.75± 2.01 55.67± 0.63 66.00± 0.58
DS3 [Hulkund et al., 2025] 52.33± 2.07 58.80± 0.96 66.68± 0.63
K-means [Lin et al., 2023] 51.14± 1.90 56.93± 0.46 65.71± 0.71
Random 50.45± 1.41 55.86± 0.73 65.67± 0.82
Text matching [Lin et al., 2023] 51.38± 1.51 55.81± 0.65 65.76± 1.00
Covariance matching (ours) 52.65± 1.47 58.78± 0.53 67.04± 0.83

Real upper bound 61.08± 2.54 65.38± 0.51 74.35± 0.56

Optimizing the theoretical objective. We also implement a greedy algorithm that, at each step,
adds the sample minimizing the objective in (3.1) (Alpha matching). This method requires computing
the eigenvalues of the current sample covariance and is therefore more costly than Covariance
matching. As in Covariance matching, we first fit PCA on the real samples and project all features,
then iteratively add the sample that yields the smallest value of (3.1). Without loss of generality, we
drop the noise variance term since it scales all candidates equally. The results of Table 7 show that
Alpha matching performs similarly to Covariance matching.

Table 7: Covariance matching performs on par with Alpha matching across the experiments on
CIFAR-10.

Experiment Method Scratch Distillation Pretrained

Zero-diversity models Covariance matching 58.97± 1.67 64.85± 0.63 72.38± 0.66
Alpha matching 59.30± 2.50 64.72± 0.55 72.76± 0.73

Truncated models Covariance matching 54.00± 1.89 59.77± 0.61 69.20± 0.56
Alpha matching 52.25± 2.11 59.18± 0.68 68.32± 0.58

T2I models Covariance matching 54.45± 2.11 59.17± 0.64 66.69± 0.70
Alpha matching 53.37± 1.85 59.03± 0.64 66.23± 0.66

Over-parameterized setting. We repeat the setup of Table 1 taking ns = 200 (instead of ns = 800).
This gives a total of ns + nt = 400 samples, which is less than the number of features p = 512, thus
placing us in an over-parameterized regime. As shown in Table 8, the quantitative trends mirror those
in the under-parameterized case.

Table 8: Covariance matching outperforms all baselines across three training paradigms on CIFAR-
10, when the synthetic data is generated via truncated StyleGAN2-Ada models [Karras et al., 2019]
in the over-parameterized regime with 200 training and 200 augmenting synthetic samples.

Method Scratch Distillation Pretrained

No synthetic 44.36± 1.51 47.33± 0.57 63.40± 1.33

Center matching [He et al., 2023] 46.45± 1.97 50.83± 0.50 64.40± 1.11
Center sampling [Lin et al., 2023] 47.29± 1.33 50.89± 0.78 65.64± 0.74
DS3 [Hulkund et al., 2025] 48.09± 2.04 52.65± 0.61 66.41± 1.35
K-means [Lin et al., 2023] 47.75± 0.82 51.56± 0.68 65.47± 0.99
Random 47.39± 1.63 50.96± 0.22 65.49± 1.12
Text matching [Lin et al., 2023] 47.56± 1.09 51.67± 0.65 65.74± 0.78
Text sampling [Lin et al., 2023] 46.93± 1.95 50.64± 0.49 65.13± 1.13
Covariance matching (ours) 48.95± 1.28 53.28± 0.45 66.62± 0.57

Real upper bound 50.79± 1.70 54.66± 0.91 68.97± 0.88

Distribution of selected samples. Beyond accuracy, we assess how well each method’s selections
match the test distribution. In the CIFAR-10 setup of Table 1, each method selects 800 samples per
class given 200 real samples. We then calculate how well these samples match the CIFAR-10 training
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dataset. The selection obtained via Covariance matching consistently achieves lower FID/KID and
covariance distance than all other baselines. Metrics that couple fidelity and diversity (e.g., FID/KID)
show larger gains than quality metrics (e.g., Precision [Kynkäänniemi et al., 2019], Density [Naeem
et al., 2020]), indicating improved distributional alignment rather than mere sample quality. The
results are reported in Table 9.

Table 9: Covariance matching selects samples that better match the target distribution according to
various evaluation metrics.

Method FID ↓ KID ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑ Covariance Shift ↓
K-means [Lin et al., 2023] 366.52± 2.62 0.59± 0.04 0.77± 0.01 0.41± 0.00 0.87± 0.04 0.58± 0.01 118.91± 0.62
Center matching [He et al., 2023] 544.56± 5.57 0.83± 0.06 0.78± 0.01 0.33± 0.01 0.82± 0.03 0.49± 0.01 212.55± 3.03
Center sampling [Lin et al., 2023] 450.27± 3.86 0.61± 0.04 0.77± 0.01 0.44± 0.01 0.86± 0.03 0.53± 0.01 150.49± 0.79
DS3 [Hulkund et al., 2025] 273.59± 6.72 0.42± 0.04 0.79± 0.01 0.45± 0.01 0.84± 0.03 0.64± 0.01 106.52± 2.44
Random 458.39± 4.16 0.63± 0.04 0.77± 0.02 0.44± 0.01 0.86± 0.05 0.53± 0.01 150.66± 1.08
Text matching [Lin et al., 2023] 454.23± 2.66 0.69± 0.05 0.81± 0.01 0.36± 0.00 0.90± 0.03 0.54± 0.01 172.70± 0.66
Text sampling [Lin et al., 2023] 447.53± 3.99 0.61± 0.04 0.77± 0.01 0.44± 0.01 0.86± 0.03 0.53± 0.01 149.98± 0.95
Covariance matching (ours) 242.09± 1.93 0.41± 0.04 0.78± 0.01 0.50± 0.01 0.84± 0.03 0.68± 0.01 95.55± 0.58

G Future work

Future work could extend the analysis to multiple Gaussian mixtures, which corresponds to optimizing
the actual risk as opposed to modeling individual classes. We speculate that this may yield different
insights when the training data have extremely imbalanced or fine-grained classes. It would also
be interesting to introduce a model shift (different β between synthetic and real samples). In fact,
synthetic data often has small differences compared to real data, which a model may overfit on, and
the phenomenon could be the cause of the collapse sometimes observed in practice [Shumailov et al.,
2024]. Finally, we have only focused on generalization, but other quantities may be studied in this
framework, including uncertainty calibration [Nixon et al., 2019], differential privacy [Dwork, 2006],
fairness [Barocas et al., 2020], and validity for prediction-powered causal inference [Cadei et al.,
2025].
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