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Abstract

We introduce RObotic Pose Estimation via Score-Based Causal Representation
Learning (ROPES), a framework for recovering robot pose from raw images
without sample-level labels. Existing vision-based estimators achieve high
accuracy but rely on supervision or fiducials, limiting robustness due to domain
shift, occlusion, and deployment at scale. ROPES adopts a generative view:
images reflect latent factors such as geometry, lighting, background, and robot
joints. The goal is to recover controllable latent variables, i.e., those linked to
actuation. Interventional Causal Representation Learning (CRL) theory establishes
that comparing distributions induced by interventions enables identifiability. In
robotics, such interventions arise naturally by commanding actuators of various
joints and recording images under varied controls. ROPES learns a disentangled
6-dimensional representation of a robot arm’s state via a three-stage pipeline: (i)
compressing images with an autoencoder, (ii) contrasting across interventional
domains to estimate score differences, and (iii) refining these into six structured
variables, where the final step is regularized using score differences to align
estimated latent variables with the true joint angles. In semi-synthetic manipulator
experiments, ROPES recovers latent representations that are highly disentangled,
strongly correlated with true joint angles, and stable across settings. Crucially, this
is achieved by leveraging only distributional changes, without using a single pose
label at any step. This paper concludes by outlining challenges and positioning
robot pose estimation as a near-practical testbed for measuring progress in CRL.

1 Introduction

Reliable knowledge of a robot’s configuration, known as pose, is critical for a vast range of tasks, from
robotic manipulation to safe human-robot interaction. Conventional pose estimation solutions include
fiducial marker systems (e.g., ArUco [1]]), geometric and sensor-fusion methods, and more recently,
deep neural networks that regress poses or detect keypoints and infer joint angles. Pre-deep learning
methods suffer from various issues. For instance, fiducial approaches require careful calibration and
often fail at extreme orientations or under occlusion; even well-engineered marker pipelines can yield
unstable estimates without tightly controlled imaging conditions.

While deep supervised methods have made substantial advances in the pose estimation problem, they
typically rely on extensive labeled data and often depend on depth data or 3D CAD models. They are
also sensitive to domain shifts, occlusions, and modeling assumptions (symmetry handling, reliance
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on depth, or bespoke post-processing). This reliance on specific conditions limits their generality:
models trained for one workspace or lighting regime often degrade when deployed elsewhere, and
bridging that sim-to-real gap remains an active challenge [2,|3]. Because such methods are tightly
coupled to labeled regimes or engineered cues, they also offer limited guarantees about which internal
representations the model learns (e.g., whether a latent dimension corresponds cleanly to a single
physical joint). This raises the following question: can we recover interpretable and identifiable pose
variables from images without per-sample supervision?

A generative viewpoint on pose. We frame pose estimation from a generative viewpoint, based
on which each observed image z is generated by an unknown mapping © = f(z) from a vector
of latent variables z. This latent vector captures all factors of variation in the scene, e.g., lighting,
camera intrinsics/extrinsics, background objects, and robot degrees of freedom (DoF). By modeling
joint angles as latent factors embedded in a larger generative process, we can explicitly ask whether
and how these variables can be recovered without explicit labels, and we can further allow causal
interactions between those joints. This perspective reframes pose estimation as a problem of causal
representation learning: recovering (a subset of) latent variables and their causal roles from high-
dimensional observations, without direct supervision. Adopting this view offers a path toward not
only label-free pose estimation, but also stronger interpretability and robustness properties grounded
in formal identifiability results from the CRL literature.

Interventions as controllable variables. A central insight from recent CRL theory is that
interventional data can enable identifiability of latent causal factors, even when the observation
function f is unknown and highly nonlinear [4H6]]. An intervention denotes a localized change
in the latent data generation mechanism, and is a distribution-level phenomenon. Therefore, in
contrast to per-sample labeling, this paradigm only requires dataset-level contrasts, e.g., sets of
images recorded under different generative regimes or conditions. In robotics, interventions can be
realized by grouping data collected under different actuation policies into different datasets. Each
such control protocol yields a dataset whose distribution differs from others in ways that primarily
reflect the changes in the altered, or intervened, latent factors.

Data availability and identifiability. While a robot’s joint angles are part of the true data-generating
factors, they are not the only ones; variables like camera pose and lighting also contribute if they are
not fixed. Given this potentially large and unknown set of latent variables, we target the subset of latent
variables for which interventions exist, i.e., controllable variables. This focus aligns with the practical
reality of robotics, where an operator can command specific actuators to generate the necessary
distributional contrasts. This approach is also grounded in fundamental CRL theory. Specifically,
unsupervised disentanglement (in this case, the recovery of latent variables without mixing) is ill-
posed without interventions or additional inductive biases [7]. Conversely, a wide variety of CRL
results show that suitably designed interventional collections can yield identifiability for the intervened
latents (up to well-understood ambiguities). Our approach is built on this principle: we do not claim
to recover all latent factors (lighting, unknown background objects, sensor noise), but we do aim to
recover the controllable subset, which are the variables directly implicated in robot pose and those that
are manipulated by actuator-based interventions, and to align specific latent variables with those joints.

Methodology. We propose RObotic Pose Estimation via Score-Based Causal Representation
Learning (ROPES) to learn a disentangled 6D representation of a robot arm’s state from images.
First, we collect interventional datasets by changing the distribution of one joint at a time. Then, we
follow a three-stage pipeline summarized in Fig.[2] Inspired by score-based CRL [8]], we leverage the
sparsity of the (Stein) score function differences across these interventional datasets. A convolutional
autoencoder compresses images into a latent space, and a classification network contrasts these latent
mid-step representations to estimate score function differences, which is the key building block for
score-based CRL. Then, a second autoencoder refines the initial latent encoding using these score sig-
nals into 6 variables, where each variable aligns with a joint angle (up to scale), enabling pose recovery.

Contributions. This paper makes the following contributions:

* Formulation: We formalize pose estimation as a CRL problem in which robot joint angles are
treated as a controllable subset of latent causal variables embedded in a larger generative mapping

z = f(2).
* Method: We propose ROPES, an autoencoder-based architecture augmented with interventional

regularizers based on pre- and post-intervention score functions that encourage individual latent
dimensions to align with intervened degrees of freedom.



* Empirical validation: Through semi-synthetic experiments using a multi-joint manipulator ren-
dered with realistic variability, we show that ROPES recovers latent variables that correlate strongly
with ground-truth joint angles.

* No reliance on pose labels: Our work shows disentanglement by detecting distributional changes
and therefore requires no conventional supervision from pose labels.
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Figure 1: Conceptual overview of ROPES, highlighting its three-stage pipeline. The output visualiza-
tion marks the specific joints targeted for intervention, along with their respective axes of rotation.

2 Related Work

Pose estimation in robotics. Various classes of methods, such as classical and learning-based, exist
for robot pose estimation. Classical approaches, such as those using markers (ArUco [1]]), rely on
attaching fiducial markers to the robot’s joints and locating them in the pixel space to estimate the
joint positions. These methods are precise under controlled conditions but degrade with occlusion,
calibration errors, or marker loss [9]. Learning-based approaches eliminate the need for physical
markers by estimating the joint positions directly from images: DREAM [10] frames the problem as
2D keypoint detection, training a neural network to produce belief maps for each joint location using
an Lo loss against ground truth pixel coordinates. RoboPose [[11]] uses an iterative refinement strategy,
directly minimizing an Lo loss between the predicted and ground truth angles, while RoboPEPP
[12] leverages a powerful pretrained encoder (I-JEPA [[13]) before supervised regression. Despite
their promising accuracy, all such methods depend on labeled data — either joint angles or keypoints —
making them expensive to deploy broadly and sensitive to shifts in appearance or environment. In
contrast, our approach learns directly from unlabeled images by exploiting distributional differences
induced by robot actuation.

Interventional CRL. A substantial literature studies causal representation learning (CRL) with in-
terventions, showing that latent factors become identifiable once data from multiple environments are
available. Most results clarify conditions under which CRL is possible, and often remain theoretical
or require assumptions impractical for complex domains. Among the algorithmic frameworks that
can handle general transformations [4} |6} [14, [15]], score-based CRL [8]] provides a principled and
practical approach: it avoids restrictive assumptions on the latent causal model and offers provable
recovery guarantees, and therefore is the most amenable framework for this application.

Importantly, this paper helps close the gap between theory and practice in CRL by showing scaled-
up results on the robot pose estimation problem. Specifically, most experimental settings in CRL
literature typically operate on toy datasets (e.g., low-dimensional synthetic variables or image datasets)
that fail to reflect real-world complexity. Although our experimental setting uses a simulator, the data
consists of realistic, high-dimensional images of a robotic arm under diverse actuation regimes. By
showing that CRL can successfully recover joint angles, we provide evidence that these methods can
scale to visually rich and structured domains.

3 Problem Setting: CRL for Robotic Pose Estimation

In this work, we have z € R? as the d-dimensional movable joint angles of a robotic arm, and x as
the RGB image captured by a camera mounted at a fixed position. Hence, f is the unknown rendering
function that maps the joint angles to the corresponding image i.e. = f(z). For robot planning,
reinforcement learning and applying control policies on the robotic arm, it is desirable to know the
physical state space of the arm, i.e. z. As described in the related work, largely current works assume
some form of supervision to learn f (or its inverse) in a calibration phase.



Hence, our objective is to recover the joint angles z from the image x using tools from interventional
causal representation learning by estimating a good approximation h ~ f~! for inverse mapping. To
do so, we assume that we can perform single-joint RCT-style interventions on a set of random robot
poses (denoted by random vector Z) by manipulating one joint angle independently randomly at a
time (akin to an RCT) while allowing the variations of other joint angles to be distributionally similar
to original set of robot poses. This new set of poses forms the interventional dataset. Note that this is
a realistic assumption in robotic applications, as we can typically manipulate a specific joint angle
randomly and independently. Formally, if we have interventional dataset (thus created) for a joint ¢,
the angle of which corresponds to Z;, then we aim to learn a mapping h; : X — R, such that h;(X)
is a function of Z; only by simply using the original random set of poses and the intervened set of
random poses considered as observational and interventional distribution. Except for the knowledge
that some specific joint has been distributionally intervened on, we require no pose label (not even a
single one). In short, the goal is to recover joint angles using images from different interventional
distributions in the latent space of joint angles, without requiring any explicit pose annotation.

4 Methodology

Latent causal generative model. In causal representation learning, we consider a set of latent
causal random variables Z = [Zy, ..., Z4] with an unknown transformation f : RY — R™ that
generates a high dimensional observation X = [X7,..., X,;] via X = f(Z). Denote the probability
density functions (pdfs) of Z, X by p, px, respectively. As standard in the CRL literature, we assume
that n > d, and f is invertible and differentiable.

Distribution of latent random variable Z factorizes with respect to a directed acyclic graph (DAG)
that consists of d nodes and is denoted by G where node i € [d] of G represents Z;. Directed edges
of G capture the cause-effect relationships in the sense that if one were to physically intervene (fix
a specific joint angle to a specific angle), the descendants of the intervened joint will see a change
while the other joints (non-descendants) will be undisturbed. Then, according to causal Bayesian

network formalism [L6]], p factorizes as p(z) = H?:l Pi(2i | Zpa(i)) Where pa(i) denotes the set
of parents of node 7. Note that the generation of Z; is governed by the conditional distribution
Pi(2i | Zpas))> Which is often called the causal mechanism of node i. The generic goal of CRL is to
recover the latent variables Z and the causal graph G from samples of X. As this goal is known to be
unachievable without additional supervision or diversity in the data [7]], various branches of CRL
consider different types of additional information (see [[17} 18] for a detailed review). One important
branch is interventional CRL, which is the setting of this paper.

Single-node stochastic hard interventions. This is the most commonly studied type of intervention
in the CRL literature [5, 16} 8} [19]. Specifically, a stochastic hard intervention on node ¢ removes the
effects of its parents and replaces the causal mechanism p;(z; | zpa(;y) With a distinct mechanism
gi(z;). The resulting interventional distribution is given by:

d
q(z) = Qi(zi)Hpj(zj | Zpa(s)) - (1
i#]

By modifying the latent distribution p in this way, such interventions introduce the desired statistical
diversity in the observed data required for CRL. Question then becomes: Given the local independen-
cies created by hard interventions in the latent space, and observed in the X space through the same
function f, can we invert this mapping f? A recent line of work leverages the fact that a hard inter-
vention renders the intervened variable independent of its ancestors. Therefore, when multiple hard
interventions are applied to the same variable, the correct causal representation is characterized by a
sparse change in the latent score space—the score functions of the latent variables. This induced spar-
sity can be exploited to learn causal representations. We briefly describe the key ideas formally below.

4.1 Score-Based CRL

Score function of the latent variables Z is given by V , log p(z), the gradient of the log-pdf. Following
the methodology of Varici et al. [8], we adopt a score difference based technique for regularizing the
latent space of the autoencoders for recovering the latent variables. In this framework, we use two
hard stochastic interventions (specified in Equation (I))) for node z;, denoted by ¢; and g;. We require



q; and g; to be sufficiently different in distribution, formally defined via interventional discrepancy
assumption [20, [8].

Definition 1 (Interventional Discrepancy). V., (log¢;(z;) — log §;(z;:)) can be zero only on a set of
Lebesgue measure 0.

Essentially, this condition states that the two interventions have different statistical imprints. Now,
we aim to recover z; (the joint angle in the pose estimation case). As such, for a particular joint
of interest z;, we create a pair of environments with the same camera modes but sampled from the
two corresponding hard interventional distributions ¢ and g for that particular joint i. Denote the
score functions of these interventional distributions by s,, s : R? — R, As a direct consequence of
Equation (TJ), (8, Lemma 7(iii)] implies the following sparse score changes property:

E[’sq(z)—sq(z)’]j £0 <<= j=1i. 2)
In other words, the score difference is a one-sparse vector in coordinate ¢. Therefore, a coordinate-wise

scaled version of the true representation is a minimizer of the following loss (and it attains 0)

2

L= H]E qu(z) — Sq(z)H — €|, 3

where ¢; is the standard unit vector in dimension d with a one at position i ]

To algorithmically exploit this observation, we need to find the score difference in the true latent
space. To this end, we propose to first find the score difference in the image space. Leveraging [,
Lemma 8], we can transform the score difference in X space to the unknown true Z space via

52,(2) = 52,(2) = Jy(2) " - (53, (2) = sx,()),  wherez = f(2) Q)

where J¢(z) denotes the Jacobian of f at point z. Let h(z) = Z be the candidate encoder and
g(2) =  be the candidate decoder. Hence, the final loss function is derived from the score difference
estimation transformation property Equation (@) and sparsity loss, which yields a score function
regularized autoencoder learning problem given by optimization of the following loss:

L(h,g) =E[||lgo h(z) - z|?] +AH1E[|JQ(2)T ~(sq(2) —Sq(x)>|} —€1H2 : )

Reconstruction Loss

Sparsity Loss
This loss is a weighted sum of reconstruction loss of the autoencoder and score difference sparsity loss.

Theorem 1. /8 Theorem 22 (reworded)] Assume that the latent distribution p has non-zero density
over RY, f is a diffeomorphism onto its image and that pair (q, q) satisfies interventional discrepancy.
Then, the global optimizer (h*, g*) of L(h, g) recovers latent z; up to an elementwise transform, that
is, [h(2)]; = w(z;) for some p : R — R.

We demonstrate the efficacy of this result in a scaled-up practical problem of robot pose estimation
(using data generated by robot simulators) in the rest of the paper.

4.2 Data Generation

Our training process is unsupervised with respect to precise joint angles, meaning we do not require
pose-labeled images. The core of our method relies on a dataset built from hard interventions. To
create this data, it suffices to manipulate each robot joint individually and capture the resulting
images. The images generated from hard interventions on joint ¢ are labeled discretely based on the
intervention identity. Following Section .1] for each joint ¢ we have two interventional distributions,
q; and @;, and we assign labels ‘0’ and ‘1’ to the images drawn from ¢; and §;, respectively. The
observational distribution p(-) is formed by a random collection of robot arm poses. Then, for an
interventional dataset on a specific joint, that joint’s angle is resampled from a distribution different
from its marginal in the observational setting. Importantly, our learning algorithm does not use
metadata or even the statistics of these angle distributions, making it unsupervised in the sense that it
requires no pose labels. Details of these distributions are described next, and exact parameterizations
are given in the Appendix [C]

2The nonzero score entry can be set to 1 by rescaling z appropriately: Multiplying z by ¢ scales sqby1/ec.



We generated our dataset using a Franka Emika Panda arm in the panda-gym [21] simulator. The
arm has six primary joint angles, which we set to create each image. The six joint angles have been
marked in Fig.[I] Our data generation process was conducted in two stages. We initially focused on
a simplified setup with a single camera, generating interventions for joints whose movements are
largely confined to the camera’s plane. To address the out-of-plane motions from other joints, which
cannot be captured from a single viewpoint, we extended the dataset using a multi-view approach
with two camera angles. The images in the dataset are converted to grayscale, resulting in a shape of
128 x 128 x 1 for each image.

In-Plane Joints with a Single Camera. We first focused on a simplified task involving only joints
2,4, and 6, as their movement primarily results in motion within a single plane for which a single
camera view is sufficient. Each data point in this initial dataset is a set of six interventional images
(2 for each joint) anchored by a single observational state. This observational state is generated
by sampling a configuration for all six joints from a base truncated normal distribution. From this
anchor, we create two distinct "hard interventions" for each of the target joints (2, 4, and 6). To
perform an intervention on a specific joint, its angle is resampled from a distribution with a mean
shifted far from the observational mean, while all other joint angles are held constant. This results
in one observational image and six interventional images (3 joints X 2 interventions) per data point.
Figure[6]in appendix shows a sample intervention on joint 4.

Full 6-DOF with Two Cameras. To extend our analysis to all six degrees of freedom, we
considered joints 1, 3, and 5, whose actuation causes significant out-of-plane motion. To ensure full
observability, we captured every pose from two distinct camera angles (45° and 135° yaw). The data
generation process was extended accordingly. Each data point now begins with an observational pose
captured from both cameras (2 images). Subsequently, we perform two hard interventions on each of
the six joints (j € {1,...,6}), with each of these 12 interventional pose distributions also captured
from both camera angles. Thus, a single complete data point in this extended dataset consists of 26
images: 2 observational images plus 24 interventional images (6 joints X 2 interventions/joint X
2 cameras/pose). Figure[/|in the appendix shows a sample intervention on joint 3 captured from 2
camera angles.

4.3 ROPES End to End Framework

Autoencoder-1 (AE1): Dimensionality reduction. The first stage compresses the high-dimensional
visual data into a more manageable latent space. We train a deep convolutional autoencoder (AE1)
to map a grayscale image z € R128%128x1 (g Jatent features z; € R8*8%!, The encoder (E;) and
decoder (D;) are symmetric, featuring a multi-stage architecture with residual blocks and group
normalization for stable training. AE1 is trained on the entire dataset D by minimizing the mean
squared error (MSE) reconstruction loss:

Lazr = Eoopllz = DiE @), - ©)

The trained encoder E; serves as a fixed feature extractor for the next stage. Note that this stage is iden-
tical for both the single-camera and two-camera cases in terms of its input, output, and latent shapes.

Score difference estimator. It is well-established that a binary classifier trained to distinguish
between two distributions learns their log-density ratio [22]. We leverage this principle to estimate
the score difference between our two intervention types for each joint. For each joint 7, we train a
separate binary classifier, a Log-Density Ratio (LDR) estimator, fi pgr, following the methodology of
[8]]. This classifier is trained to distinguish whether a given latent vector z; = Ej(x) was generated
from the first (¢g;) or second ¢; interventional distribution. The classifier is optimized using a standard
binary cross-entropy loss. After training, the gradient of the classifier’s logit output, V., fipr(21),
provides a direct estimate of the score difference between the two distributions. It is important to
note that this score difference is computed in the latent space of AE1, not the original pixel space.
The input to the LDR network is adapted based on the experimental setup. In the single-camera
configuration, the LDR directly processes the 8 x 8 x 1 latent feature map, z;. In the two-camera
configuration, any given “sample” yields two latent vectors corresponding to the two camera angles.
These are concatenated along the channel axis to produce a single 8 x 8 x 2 input tensor for the LDR.

Autoencoder-2 (AE2): Latent space disentanglement. In the last stage, AE2 is trained with the
compressed image z; in stage 1 as the input with the main objective in Equation (5) to minimize
the reconstruction loss and score difference sparsity loss. The input to AE2 also depends on the
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Figure 2: An overview of the ROPES pipeline, which begins with a shared Autoencoder 1 (AE1)
compressing each 128 x 128 x 1 image into an 8 x 8 x 1 latent feature map. The subsequent data
processing depends on the experimental setup. For the single-camera case (analyzing 3 joints),
this 8 x 8 x 1 map is directly fed into both the LDR network and Autoencoder 2 (AE2). AE2 then
produces the final 3 x 1 disentangled pose vector. For the two-camera case (analyzing 6 joints), the
latent maps from both camera views are concatenated along the channel axis, creating an 8 X 8 X 2
input tensor for the LDR and AE2. In this pathway, AE2 outputs a 6 X 1 pose vector.

setup we are using: it is the 8 x 8 x 1 latent map for single-camera experiments, or a channel-wise
concatenation of the two views, forming an 8 x 8 x 2 tensor, for the two-camera experiments.
We perform a hyper-parameter search over the weight A in Equation (5) for the best performance.
Theoretically, the optimal latent space z»’s coordinate j gives us a monotonic transformation of the
disentangled joint j angle. Empirically, we observe that this mapping is well-modeled by an affine
transformation, enabling calibration via a small labeled dataset of ground truth samples.

Finally, the details of the AE1, LDR, and AE2 network architectures are given in Appendix [A]

4.4 Empirical Takeways

Before presenting our final results, we present our main empirical takeaways.

* In our experimental setup, we established distinct requirements for the two autoencoders. It is
critical for the first autoencoder, AE1, to achieve high-quality data reconstruction. The second
autoencoder, AE2, however, need not that highly optimized for reconstruction loss. Instead,
its primary objective is to learn good enough representation that can effectively distinguish the
dynamics of different joint movements.

* A significant challenge arose from the nature of the interventions used for training. When the
interventions were starkly different, the model learned to distinguish them easily, reflected by a
strong LDR loss signal. However, this apparent success was misleading, as the lack of any overlap
between the intervention data led to poor performance in the actual joint disentanglement task. This
issue was particularly evident in the six-joint experiments, where we found that two camera angles
were necessary to resolve ambiguity between interventions. Certain joints performed out-of-plane
rotations, which a single camera could not capture. The additional viewpoint provided crucial
information that gave a lower cross-entropy for the optimized LDR loss, enabling the model to
correctly differentiate the movements.



* On a practical note, the training process for AE2 exhibited high sensitivity to hyperparameter
selection, especially the learning rate and the relative weights of the loss terms. We did a learning
rate sweep from 103 to 106, Other hyperparameters like the choice of the optimizer, architecture
are described in the supplement.

Furthermore, we found that integrating residual networks into the encoder and decoder architectures

was an effective strategy for reducing reconstruction error and stabilizing training.

5

Our framework disentangled only those joint angles whose interventions were used in the loss
function Equation (3). Our framework achieves such partial disentanglement empirically at this
scale. We are not aware of any larger scale demonstration of causal representation learning that
shows such partial and incremental disentanglement when relevant interventions/actions/changes

are available.

Results

We provide a qualitative analysis of the model’s reconstruction performance in Appendix [D} The
results show good quality reconstructions for both experimental setups, with a minor performance
decrease on the more visually diverse two-camera dataset, as detailed in the appendix.
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To quantitatively assess disentanglement, we plot the learned latent variables against their correspond-
ing ground-truth joint angles. Each scatter plot is annotated with the Mean Correlation Coefficient
(MCC) and the Mean Squared Error (MSE) with respect to a linear best-fit line. Figure [3] presents
these results for the three in-plane joints from the single-camera experiments. We observe that MCC
is consistently above 0.93 for the single camera setup which is much better than results reported in
prior experiments in CRL on much smaller scale image datasets before (see Table 14 in [8]]). Figure[4]
shows the results for all six joints from the multi-view experiments. Table[T]also presents these MCC
and MSE values. In the two-camera experiments, we observe that the MCC scores for joints 3 and 5
are notably lower than those for the other joints. We attribute this performance discrepancy to less
precise score estimates from the LDR network, an interpretation supported by the fact that these
two joints exhibited a comparatively higher classification loss during LDR training. This suggests
that the images of the hard interventions for joints 3 and 5 are less distinct, making them inherently
more challenging to classify. Notably, the MCC scores for joints 2, 4, and 6 remain robust when
transitioning from the single-camera to the two-camera setup. This result is significant because we
are now disentangling 6 joint angles instead of 3 joint angles. The stability of these scores suggests
that our method scales effectively, leveraging the multi-view information.

Table 1: MCC and MSE (in degrees) for single and two-camera setups for different joints

Training Setup Joint 1 Joint2 Joint3 Joint4 Joint5 Joint 6

MCC Single Camera - 0.94 - 0.97 - 0.94
Two Cameras 0.88 0.97 0.61 0.94 0.69 0.88
MSE Single Camera 3.85 - 1.87 3.54

Two Cameras 4.20 1.23 11.94 2.17 9.53 4.95

6 Conclusion

In this work, we extend the Causal Representation Learning (CRL) approach from toy datasets to a
semi-synthetic, close-to-real-world robotics simulator. We demonstrate that our method can recover
the majority of robot joints, achieving a significantly high MCC and a very low MSE as shown in
equation [I] Notably, this recovery is accomplished using only interventions, eliminating the need
for explicit labels. This advancement holds significant potential for recent video world models in
robotics, such as DreamGen [23]]. These models typically operate by imagining future trajectories in
a high-dimensional image space, which then serves as input for a Vision-Language-Action model
to predict subsequent states. Our CRL-based approach can enhance this pipeline by enabling direct
prediction of the robot’s underlying state, i.e., its joint configuration. This dimensionality reduction of
the observation space—from high-dimensional images to as few as six joint values—can substantially
accelerate the learning process for the RL-diffusion policies. However, a key challenge is the
sensitivity of the CRL framework to the quality of score estimates learned by the LDR module and
hence the gradient calculation of the LDR output in the forward pass w.r.t the latent of Autoencoder
(AEI). This sensitivity renders hyperparameter tuning for stable training to be particularly difficult.
Furthermore, we observe instances where some joints exhibit slightly inferior recovery performance
compared to others, even when their visual reconstructions appear to be of high fidelity. We believe
this work opens several promising avenues for future research. One direction involves improving
the model architecture, for instance, by replacing the CNN-based autoencoder with more advanced
Vision Transformer (ViT) based networks. Concurrently, developing more robust and accurate
methods for score estimation would directly address the aforementioned stability issues. Another
compelling direction is to explore interventions in the action space rather than the state space of the
robotic simulator. This shift could provide finer control over the generated trajectories and unlock
the potential to leverage the causal relationships between actions to accomplish specific tasks more
effectively.
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A Architecture Details

Table |z| details the architecture of the first autoencoder (AE1), which is identical for both the single-
and two-camera experiments. The architectures for the Log-Density Ratio (LDR) network and the
second autoencoder (AE2), which are adapted for each setup, are presented in Table |§| and Table EL
respectively.

Table 2: Autoencoder] architecture ResNet-style with GroupNorm

Component Layer-wise Details

Block Def. ResBlockGN(f):
GroupNorm — ReLU — Conv(features=f, ks=3, pad="SAME")
— GroupNorm — ReLU — Conv(features=f, ks=3, pad="SAME")
— Add residual input
(Note: ‘ks‘=kernel size, ‘s‘=stride, ‘pad‘="SAME’)

Encoder Input: Image X € R'28%128x1

Conv(features=64, ks=3, pad="SAME’)

ResBlockGN(64) x 2

Conv(features=64, ks=3, s=2, pad="SAME’), ReLU  // Downsample 128 — 64
Conv(features=128, ks=3, pad="SAME")

ResBlockGN(128) x 2

Conv(features=128, ks=3, s=2, pad="SAME’), ReLU // Downsample 64 — 32
Conv(features=256, ks=3, pad="SAME")

ResBlockGN(256) x 2

Conv(features=256, ks=3, s=2, pad="SAME’), ReLU  // Downsample 32 — 16
Conv(features=512, ks=3, pad="SAME")

ResBlockGN(512) x 2

Conv(features=1, ks=3, s=2, pad="SAME’), ReLU // Downsample 16 — 8
Output: Latent z; € R3*8x!

Decoder Input: Latent z; € R8*8%!

Conv(features=512, ks=3, pad="SAME")

ResBlockGN(512) x 2

ConvTranspose(features=512, ks=4, s=2, pad="SAME’), ReLU  // Upsample 8§ — 16
Conv(features=256, ks=3, pad="SAME")

ResBlockGN(256) x 2

ConvTranspose(features=256, ks=4, s=2, pad="SAME’), ReLU  // Upsample 16 — 32
Conv(features=128, ks=3, pad="SAME")

ResBlockGN(128) x 2

ConvTranspose(features=128, ks=4, s=2, pad="SAME’), ReLU  // Upsample 32 — 64
Conv(features=64, ks=3, pad="SAME’)

ResBlockGN(64) x 2

ConvTranspose(features=64, ks=4, s=2, pad="SAME’), ReLU  // Upsample 64 — 128
Conv(features=1, ks=3, pad="SAME’), ReLU // Final convolution to 1 channel
Reshape to (batch, 128 x 128 x 1)

Output: Reconstructed Image X € R!28x128x1

Training Adam optimizer with learning rate = 1 x 10~*
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Table 3: LDR Network Architectures for Single- and Two-Camera Setups.

Component

Layer-wise Details

Input Processing The input shape depends on the camera setup:

Single-Camera: Input z; € R3*8%! is used directly.

Two-Camera: Two z; maps are concatenated to form an input € R3*8%2,

Core Architecture The following layers are applied to the processed input:

Conv(features=32, ks=3), ReLU  // Spatial dim: 8x8 — 6x6
Conv(features=64, ks=3), ReLU  // Spatial dim: 6x6 — 4x4
Conv(features=128, ks=3), ReLU  // Spatial dim: 4x4 — 2x2
Flatten

Dense(features=128), ReLU

Dense(features=1)

Output: Logit € R!

Training Adam optimizer with learning rate = 1 x 107>,
Minimize binary cross-entropy with logits loss on the output.
Table 4: Autoencoder 2 (AE2) Architectures for Single- and Two-Camera Setups.
Component Layer-wise Details
Block Def. ResBlockGN(f):
GroupNorm — ReLU — Conv(features=f, ks=3, pad="SAME’)
— GroupNorm — ReLU — Conv(features=f, ks=3, pad="SAME’)
— Add residual input
(Note: ‘ks‘=kernel size, ‘s‘=stride, ‘pad‘="SAME’)
Encoder Input: z; € R¥*8XC%n where Cy, is 1 (single-cam) or 2 (two-cam).
Conv(features=64, ks=3, pad="SAME’)
ResBlockGN(64) x 2
Conv(features=64, ks=3, s=2, pad="SAME’), ReLU  // Downsample 8 — 4
Conv(features=128, ks=3, pad="SAME’)
ResBlockGN(128) x 2
Conv(features=128, ks=3, s=2, pad="SAME’), ReLU // Downsample 4 — 2
Conv(features=256, ks=3, pad="SAME")
ResBlockGN(256) x 2
Conv(features=256, ks=3, s=2, pad="SAME’), ReLU // Downsample 2 — 1
Flatten to (batch, 256)
Dense(features=Djqtent), Where Digient i 3 (single-cam) or 6 (two-cam).
Output: Latent z, € RPtatent
Decoder Input: Latent z, € RPtatent
Dense(features=256), ReLU
Reshape to (batch, 1 x 1 x 256)
Conv(features=512, ks=3, pad="SAME")
ResBlockGN(512) x 2
ConvTranspose(features=512, ks=4, s=2, pad="SAME’), ReLU  // Upsample 1 — 2
Conv(features=256, ks=3, pad="SAME’)
ResBlockGN(256) x 2
ConvTranspose(features=256, ks=4, s=2, pad="SAME’), ReLU  // Upsample 2 — 4
Conv(features=128, ks=3, pad="SAME")
ResBlockGN(128) x 2
ConvTranspose(features=128, ks=4, s=2, pad="SAME’), ReLU  // Upsample 4 — 8
Conv(features=C'y,, ks=3, pad="SAME’), ReLU
Reshape to (batch, 8 x 8 x Cjy,)
Output: Reconstructed 2, € R3*8*Cin
Training Adam optimizer with learning rate = 7 x 107°.
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B Training Details

All models were trained on TPUs. We performed a hyperparameter search for the optimal learning
rate, testing values in the range of 1e— Ttole — 3. Our dataset consists of 10,000 observational images.
As detailed in Section 4.2} we generated corresponding interventional images for two experimental
setups. In the single-camera setup, each observational image yields 6 interventional images. In the
two-camera setup, it yields 24 interventional images. The training process involved three stages.
First, Autoencoder-1 was trained on 70k images (single-camera) and 250k images (two-camera) with
a batch size of 256. Second, we trained a separate Low-Dimensional Representation (LDR) model
for each joint, using 20k samples (single-camera) and 40k samples (two-camera) with a batch size of
64. Finally, for each joint, we trained a corresponding Autoencoder-2 alongside its specific LDR.
This final stage used 30k samples (single-camera) and 50k samples (two-camera) consisting of both
observational and interventional images, with a batch size of 128.

C Interventional Distributions

Tables [5]and [6] detail the observational and interventional distributions used to sample the joint angles
for the single- and two-camera setups, respectively. We use a truncated normal distribution, denoted
by TN (a5 (1, o2), which represents a normal distribution with mean g and variance o truncated to
the interval [a, b].

Table 5: Sampling distributions for observational and interventional settings for single camera setup.

Joint  Scenario Distribution
Observational TNZ15,1.5(0, 1)
2 Intervention 1 TN[,M,, 1_5](—0.75, 0.5)

Intervention 2 TN[_15 1.5( 0.75,0.5)

Observational TN-15,15/(0, 1)

4 Intervention I~ TN|_151.5(—0.75, 0.5)
Intervention 2 TN |_15 1.5( 0.75, 0.5)

Observational TN,3(1.5, 1)

6 Intervention 1 TN, 3(2.25, 0.5)
Intervention 2 TN, 3( 0.75, 0.5)
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Table 6: Sampling distributions for observational and interventional settings where we include two
camera angles.

Joint  Scenario Distribution
Observational TN,3(1.2,0.4)
1 Intervention 1 TN,3(2.0,0.4)

Intervention 2 TNo,3( 0.6,0.4)

Observational TN (15,150, 0.4)

2 Intervention 1 TN |-15,1.5(0.7, 0.4)
Intervention 2 TN'[_15,1.5( —0.7, 0.4)

Observational TN 15,150, 0.4)

3 Intervention 1 TN |-15,1.5(0.7, 0.4)
Intervention 2 TN'[_15,1.5( —0.7, 0.4)

Observational TN [-15,15(0,0.4)

4 Intervention 1 TN Z15,1.5(0.9, 0.4)
Intervention 2 TN'[_15,1.5( —0.9, 0.4)

Observational TN [-15,15(0, 0.4)

5 Intervention 1 TN |—15,1.5(0.9, 0.4)
Intervention 2 TN[_15 1.5( —0.9, 0.4)

Observational TN, 3(0.5,0.4)
)

6 Intervention 1 TNo,3(24, 0.4
Intervention 2 TN,3( 0.7,0.4)

(a) Intervention 1 (label 0) (a) Intervention 1 (45°) (b) Intervention 2 (45°)

(b) Intervention 2 (label 1) (c) Intervention 1 (135°) (d) Intervention 2 (135°)

Figure 6: Two different hard Figure 7: Two different hard interventions on Joint 3, each
interventions on Joint 4. shown from two camera angles.
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D Additional Dataset Figures

Figures 8| and [9] provide a qualitative analysis of our pipeline’s reconstruction performance. Specif-
ically, Figure [§| compares an original image to its reconstructions from AE1 and AE2 for the
single-camera setup, while Figure 9] shows the equivalent comparison for the two-camera setup. We
observe a slight degradation in the reconstruction quality of AE1 when trained on the two-camera
dataset compared to the single-camera setup. As the final autoencoder, AE2, is trained on the latent
representations from AEI, this reduction in quality of AE1 consequently affects the quality of the
final AE2 reconstructions as well. We hypothesize that this performance difference is attributable to
the increased data complexity of the multi-view dataset. The inclusion of multiple viewpoints intro-
duces greater visual variance, presenting a more challenging reconstruction task for the autoencoder
compared to the more constrained single-view data.

(a) Observational Image (b) AE1 Reconstruction (c) AE2 Reconstruction

Figure 8: Visual comparison of the reconstruction quality at each stage of our pipeline. (a) The original
input image. (b) The reconstruction from the first autoencoder (AE1). (c) The final reconstruction
from the second autoencoder (AE2)

THW TRV S TR

(a) Observational Image (b) AE1 Reconstruction (c) AE2 Reconstruction

Figure 9: Visual comparison of the reconstruction quality at each stage of our pipeline using the
models trained on the dataset generated using 2 camera angles

E Licenses

1. Panda-gym :

« Citation : Gallouédec et al. [21]]
¢ License : MIT
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The main claims reflect the paper’s scope and contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in Section [3and [6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we have disclosed all the information needed to reproduce the main
experimental results of the paper in Section[d] [5] and Appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We provide sufficient amount of details about hyper parameters and detailed
architecture to be reproducible at this point.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the required experimental details have been provided in Section[d [5] and
Appendix
Guidelines:
* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to lack of resources at the moment we were unable to perform multiple
experiments needed for error bar calculation. However we will include it in the final version.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

19


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The details have been provided in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow the guidelines in the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no direct societal impact of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no risk of misuse
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the packages (like panda-gym) used and have also included the
licenses in the Appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: No new assets are being introduced in the paper. Existing open source
framework panda-gym is being used for data generation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or any research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or any research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We have not used LLMs in our research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Problem Setting: CRL for Robotic Pose Estimation
	Methodology
	Score-Based CRL
	Data Generation
	ROPES End to End Framework
	Empirical Takeways

	Results
	Conclusion
	Architecture Details
	Training Details
	Interventional Distributions
	Additional Dataset Figures
	Licenses

