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ABSTRACT

State-of-the-art Extreme Multi-Label Text Classification models rely on multi-
label attention to focus on key tokens in input text, but learning good atten-
tion weights is challenging. We introduce PLANT—Pretrained and Leveraged
AtteNTion—a plug-and-play strategy for initializing attention. PLANT works
by planting label-specific attention using a pretrained Learning-to-Rank model
guided by mutual information gain. This architecture-agnostic approach integrates
seamlessly with LLM backbones (e.g., we consider Mistral-7B, LLaMA3-8B,
DeepSeek-V3, and Phi-3). PLANT outperforms SOTA methods across tasks
like ICD coding, legal topic classification, and content recommendation. Gains
are especially pronounced in few-shot settings, with substantial improvements on
rare labels. Ablation studies confirm that attention initialization is a key driver of
these gains. We make our code and trained models available.

1 INTRODUCTION

Extreme Multi-Label Text Classification (XMTC) entails assigning the most relevant subset of la-
bels to a given instance from a (very) large label set. This setting emerges naturally in domains
featuring vast, structured taxonomies such as e-commerce, legal categorization, and healthcare. In
such settings, manual labeling is both costly and error-prone. For example, in clinical settings (Ta-
ble 1), ICD coding—the task of assigning standardized codes for diagnoses and procedures based
on clinical notes (Moons et al., 2020; WHO, 2025)—may be viewed as an instance of XMTC.

428.0: Congestive heart failure 202.8: Other malignant lym-
phomas

770.6: Transitory tachypnea of
newborn

· · · DIAGNOSES: Acute con-
gestive heart failure, Diabetes
mellitus, Pulmonary edema · · ·

· · · 55 year-old female with non
Hodgkin’s lymphoma and C1
esterase inhibitor deficiency · · ·

· · · Chest x-ray: transient
tachypnea of the newborn with
respiratory distress · · ·

Table 1: Examples of clinical text with ICD codes (Wang et al., 2024d; Zhang et al., 2025). Blue:
code/label; red bold: disease mentions; teal: other relevant clinical findings.

Building XMTC models is challenging due to the high-dimensional label space and heavily skewed
label distributions Bhatia et al. (2016). For example, in ICD coding there can be 170000 unique
codes (CDC, 2024). Many are rare: In the MIMIC-III dataset Johnson et al. (2016) approximately
5411 out of 8929 codes appear <10 times. The task is further exacerbated by the often lengthy
narratives in clinical texts. For example, in the MIMIC-III dataset, discharge summaries frequently
contain detailed clinical histories comprising an average of 709.3 tokens, and often exceeding 1500
tokens (Johnson et al., 2016; 2023; Mullenbach et al., 2021; Nguyen et al., 2023). However, only a
small fraction of these tokens are informative for assigning relevant ICD codes.

LLMs can be used zero-shot for XMTC tasks, but this poses challenges. For instance, prompts for
such tasks tend to include long and flat label lists, resulting in attention dilution: The fixed attention
budget is spread thin across thousands of tokens, weakening focus on rare tail labels (Peysakhovich
& Lerer, 2023; Vandemoortele et al., 2025). This limitation is similarly evident in long-context
retrieval tasks (Kamradt, 2023; Hsieh et al., 2024; Liu et al., 2024a), where LLMs struggle to locate
relevant items. Task-specific fine-tuning may address such issues by embedding knowledge of the
labels directly into model parameters during training, obviating the need for attention over long label
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j h

incorrect rank penalty
|∆nDCG@k|jh

P (j ≻ h) =
(
1 + e−σ(slj −slh))−1

Predicted ranking on Tl (by slj)

MIG relevance rlj selects top−k tokens per label (Tl)

− |∆nDCG@k|jh log2 P (j ≻ h)
∑

token pairs
from Tl︸ ︷︷ ︸

PLANT objective

MultiHead−Attn.
Wattn

Q = E
R

|L|×h

K = Hi

R
n×h

V = Hi

R
n×h

S
R

|L|×n

token attn.
per label

Figure 1: PLANT Attention. On the left, the MultiHead−Attention module (Vaswani et al., 2017),
parameterized by W attn, takes as input queries Q = E (label embeddings), keys K = Hi, and
values V = Hi, and produces S ∈ R

|L|×n, representing the token-level attention distribution for
each label. The orange box highlights the set of top-k tokens per label, Tl, selected via Mutual
Information Gain rlj between labels and tokens. Within this set, two tokens j (red) and h (blue)
are compared, with j being more relevant than h. The MultiHead−Attention module is trained
to maximize the probability of correctly ranking tokens j and h (P (j ≻ h)), while penalizing
incorrect rankings in proportion to their impact on the nDCG@k metric if j and h were swapped
(|∆nDCG@k|jh). Finally, the summation box aggregates over all token pairs in Tl, yielding the
PLANT objective—(nDCG term × probability term)—that is optimized to initialize W attn.

lists in the prompt and thus mitigating attention dilution (Yang et al., 2023a; Boukhers et al., 2024;
Zhang et al., 2025; Barreiros et al., 2025).

In current approaches to XMTC, attention mechanisms Bahdanau et al. (2014) help address the chal-
lenges of high-dimensional, skewed label spaces. Existing XMTC models (Lu et al., 2023; Li et al.,
2023; Nguyen et al., 2023; Yang et al., 2023b; Chen et al., 2023a; Zhang & Wang, 2024; Luo et al.,
2024) almost always include a multi-label attention layer that allocates per-label attention weights
to the input tokens (Wang et al., 2023a; Xiong et al., 2023; Yuan et al., 2024; Liu et al., 2025b). In-
tuitively, this is akin to a dedicated “spotlight” for each label: in high-dimensional spaces, it avoids
the inefficiency of a single global focus by creating tailored text representations that highlight most
relevant tokens per label. For skewed distributions, this ensures subtle cues for tail labels are not
overshadowed by head labels, enabling better prediction of sparse classes.

Regardless of the specific encoder architecture, removing this attention layer significantly harms
performance. A recent study by Xiong et al. (2023) highlights the importance of label-specific
attention for product-to-tag matching by showing that removing this component leads to a sharp
drop in P@1 (-15.69 points). Elsewhere, results on scientific paper classification show that stacking
attention layers further boosts performance: Micro-F1 improves by a few points, showing that deeper
attention enhances the model’s capacity to represent label-specific features Liu et al. (2025b).

The premise of this work is that we can be smarter about how we initialize attention module
weights. SOTA XMTC models begin with random label attention weights, requiring ranking all
tokens for each label from scratch. This is data-intensive due to the high-dimensional label space.
Skewed label distributions exacerbate this issue, as rare labels require even more data. Insufficient
data, however, causes models to require more training epochs, often leading to overfitting rather
than meaningful generalization—ultimately hurting rare label performance. Studies like Edin et al.
(2023) show that SOTA models struggle to predict rare ICD diagnosis codes (Figure 2, left). Models
perform similarly across codes with comparable frequencies, indicating that the high proportion of
rare codes impacts performance. Correlations between code frequency and F1 score are moderately
high, showing that rare codes are predicted less accurately than common ones. This underscores the
need for efficient attention mechanisms, as starting with random weights may be suboptimal.

Building on evidence that label-specific attention is pivotal in XMTC—its removal leads to sharp
performance drops—we argue that how this attention is initialized is also crucial. To establish
the causal link—“poor rare-label performance ← failure to discover shared attention structure ←
random initialization of the label-attention layer”—and, at the same time, disentangle initialization
effects from downstream training dynamics, we start with a qualitative, diagnostic experiment.
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Figure 2: (Left) Rare codes have near-zero macro-F1. (Right) Macro-F1 distribution on
MIMIC-III-few for rare codes across CO-RELATION (Luo et al., 2024) (mean=0.054),
Mistral-7B (0.309), and Mistral-7B +PLANT (0.663). Mistral-7B +PLANT yields far
more rare codes with higher F1. See Section 3 (RQ4).

We use ICD codes, an important illustrative instance of XMTC, as a motivating example. Because
ICD codes are hierarchical, codes within the same clinical category are semantically related and
should, in principle, induce similar attention patterns over the input note. To test whether learned
label attention vectors Sl reflect this structure, we selected two groups of 50 ICD-10 codes: one
common group (respiratory tuberculosis, A15–A19) and one rare group (various rare bacterial in-
fections, A30–A49). Under standard random initialization of the label attention layer, codes in the
rare group show widely dispersed pairwise cosine similarities (mean 0.75; orange distribution in
Figure 3, Left), indicating that the model fails to recover their shared structure. In contrast, the
common group already shows strong intra-group consistency (mean > 0.98; blue). This stark
asymmetry—common codes converge to coherent representations while rare yet semantically simi-
lar codes do not—reveals a key failure mode of random-initialized attention on long-tail labels. This
motivated PLANT. By seeding the attention layer with mutual-information signals and Learning-
to-Rank activations, PLANT boosts intra-group consistency for the rare category to 0.985 (sharp
brick-red spike in Figure 3, Left), bringing rare-label representations up to the quality enjoyed by
frequent codes.
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Figure 3: (Left) Random initialization yields diffuse, inconsistent patterns for rare codes (broad
orange peak near 0.75), whereas PLANT restores consistency (sharp orange peak at 0.985).(Right)
Rare-F1 when training only on common labels (> 1% frequency). PLANT retains strong zero-shot
performance (7.3–8.1%); random attention initialization collapses (0.5–1.1%). See Section 3 (RQ6).

Our main contributions are as follows: (1) We introduce PLANT (Pretrained and Leveraged
AtteNTion), a plug-and-play strategy for initializing attention. PLANT replaces random ini-
tialization with relevance-guided attention weights via a two-stage framework: Stage 1 pre-
trains the attention layer as a Learning-to-Rank (L2R) module using mutual information; Stage 2
leverages these weights to train the full model end-to-end, improving rare-label performance.
PLANT is architecture-agnostic and can be seamlessly integrated with LLM backbones — such
as Mistral-7B, LLaMA3-8B, DeepSeek-V3, or Phi-3— without any modification; (2) In
extensive experiments across ICD coding, legal topic classification, and content recommendation,
we report consistent gains using PLANT across backbones and datasets, and we analyze through
careful ablations which aspects of PLANT are responsible for these.
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2 PLANT

In Extreme Multilabel Classification (XMTC) tasks, the goal is to assign to an input text
multiple relevant labels from a very large label set. Formally, denote the dataset by D ={

(xi, yi) | yi ∈ {0, 1}|L|, i = 1, . . . , N
}

, where: xi is an input instance (e.g., a text document),
and yi is a binary vector indicating the presence (yil = 1) or absence (yil = 0) of each label l ∈ L,
where L denotes the label set (which may contain tens of thousands of unique labels). The objective
is to learn a prediction function fθ : xi 7→ R

|L| parameterized by θ that outputs labels for each input
xi. For each label l ∈ L, the output fθ(xi)l ∈ R is the score assigned for the l-th label.

Model Architecture. We start with a pretrained transformer-based LLM Mbase, selected from
widely used models such as Mistral-7B, LLaMA3-8B, DeepSeek-V3, and Phi-3, known
for strong general (Team et al., 2023; Grattafiori et al., 2024; Jiang et al., 2024; Abdin et al., 2024)
and domain-specific performance in ICD coding (Yang et al., 2022a; 2023c; Falis et al., 2024; Madan
et al., 2024; Nerella et al., 2024; Asensio Blasco et al., 2025; He et al., 2025; Liu et al., 2025a; Yuan
et al., 2025). Due to computational constraints, we use both Low-Rank Adaptation (LoRA) and
4-bit quantization in all experiments (Frantar et al., 2022; Hu et al., 2022; Dettmers et al., 2023; Liu
et al., 2024b; Aidouni, 2024). We adaptMbase intoMadapt; see Appendix A for details.

Given an input xi, we tokenize it into ti and pass it through the adapted model Madapt to obtain
hidden states: Hi =Madapt(ti) ∈ Rn×h, where n is the sequence length and h the hidden size. We
extract the final token’s representation hn ∈ Rh for label prediction.

Specifically, we define trainable label embeddings E ∈ R
|L|×h, one per label. These embeddings

serve as query vectors in a multi-head attention module. The module, denoted as MultiHead, defines
learnable parameters W attn:

Q = E, K & V = Hi, A, S = MultiHead1(Q, K, V ; W attn), A∈R|L|×h, S∈R|L|×n,
(1)

where Q, K, and V represent the query, key, and value inputs, respectively. During training, the
parameters W attn are optimized to learn label-specific attention weights S, which determine how
each label query attends to tokens in the sequence, and the output A, which represents the attended
representations for each label query.

The resulting attention output is boosted by learnable matrices Ba, Bm ∈ R
|L|×h as: Aboost =

Ba + A ·Bm, where · denotes element-wise multiplication. This “boosts” label-specific signals in
a learned, differentiable manner. This is motivated by the need to enhance task-specific signals in
recent Mixture-of-Experts (MoE) frameworks Cai et al. (2024); Yu et al. (2024); Chen et al. (2023b).
An adaptive average pooling layer reduces the dimensionality of Aboost to: P i = Pool(Aboost) ∈
R

|L|×p. 1 A shared linear projection W c ∈ Rp×1 then computes the final logits as ŷi = P iW c ∈
R

|L|, each entry in yi is the predicted (raw) relevance score for the corresponding label.

TWO-STAGE TRAINING

PLANT entails a two stage optimization strategy. The first focuses on pretraining MultiHead (Equa-
tion 1) label-wise attention weights; the second entails fine-tuning the model end-to-end.

STAGE 1: PRETRAINING ATTENTION AS L2R (FIGURE 1) In Stage 1 we train the multi-head
attention module parameters (Madapt, E and MultiHead). The MultiHead module outputs label-
specific attention scores S = [slj ] ∈ R

|L|×n, where slj is the attention score for token j with
respect to label l.

We train this following a learning-to-ranking objective focused on the top-k tokens per label selected
by Mutual Information Gain (MIG) computed from the training set.2

where rl = [rlj ] ∈ R
n represents the ground-truth relevance of tokens for label l, derived from

the MIG between tokens and labels; Tl is the set of top-k tokens for label l, selected based on rlj ;

1See Appendix A for the number of attention heads in Equation 1 and output size p used in pooling.
2See Appendix B.1 for details on pre-computing MIG for a corpus.
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L(i)
rank(S) = −

|L|∑
l=1

∑
j,h∈Tl
rlj>rlh

|∆nDCG@k|jh × log2
(
1 + e−σ(slj−slh))−1

(2)

MIG relevance

wt. for pairwise swap impact

(differentiable)
approx ranking prob.

|∆nDCG@k|jh is the change in nDCG@k after swapping j and h in the predicted ranking, where the
predicted ranking is determined by sorting tokens in Tl by their predicted scores slj in descending
order; and σ is the sigmoid scaling factor. We test k = {500, 1000, 2000} to evaluate sensitivity.

PLANTed Attention via MIG Ranking MIG scores, denoted by rlj , quantifies how informative
token tj is for predicting label l. Higher rlj indicates stronger relevance of the token to the label.
Note that we empirically determined these relevance scores by computing MIG between token oc-
currences and label assignments across the training corpus (see Appendix B.1). The ranking loss
in Equation 2 encourages the MultiHead module to assign higher attention scores (slj) to tokens
with greater relevance. It considers token pairs (j, h) where token j is more relevant than token h

for a given label l, i.e., rlj > rlh. The term
(
1 + e−σ(slj−slh))−1

approximates the probability that
token j is ranked above token h. Each pair is weighted by |∆nDCG@k|jh, which penalizes incorrect
rankings in proportion to their impact on the nDCG@k metric. This loss formulation encourages
attention scores to align with the MIG.

STAGE 2: LEVERAGING ATTENTION – FULL TRAINING In Stage 2 we train the entire model
(Section 2) end-to-end. We start with the finetuned Madapt and the initialized weights Wattn and
E from Stage 1. We optimize the model under focal loss with label smoothing and hard negative
mining to address label imbalance (Ben-Baruch et al., 2020; Xiong et al., 2023). The detailed
formulation of the focal loss is provided in Appendix A (Eq. 3).

To address the challenge of imbalanced labels, where negative labels often dominate, hard negative
mining is applied to focus the loss on the most informative examples. This selects all positive labels
(yil = 1) and the top-m negative labels (yil = 0) with the highest predicted probabilities σ(ŷil),
where m = 1000. The focal loss is then computed over this selected subset Si ⊆ L by restricting
the summation in Eq. 3 to Si. We refer to this as the HNM-augmented focal loss. This approach
ensures the model prioritizes learning from difficult negative examples, improving performance on
challenging cases. (as shown in Ablation Section 4)

3 EXPERIMENTS

Datasets, Baselines & Implementation: We evaluated PLANT against SOTA models on the
MIMIC-IV/III-full datasets, which comprise discharge summaries annotated with ICD-9
and ICD-10 codes, respectively. For few-shot learning, we used MIMIC-III-rare50 and
MIMIC-III-few subsets to focus on rare codes. To assess generalizability, we also evaluated
PLANT on publicly available legal topic classification (EURLEX-4K, over long legal documents)
and content recommendation (WIKI10-31K, tag prediction for Wikipedia-style texts). For com-
plete training-time, memory, inference, and scalability analyses—as well as dataset descriptions,
implementation details, baselines, and evaluation metrics—please refer to App. H, C, D, and E.

Notation. ▲/▼ mark significant gains/drops (α=0.05, Wilcoxon Demšar 2006; see App. F), shown if
the test passes and 95% CI excludes 0. Gains/drops followed by CI in plum. Bold = best per metric.

RQ1: How effective is PLANT ’s two-stage across LLM backbones? Table 2 compares the per-
formance of four LLM backbones (Mistral-7B, LLaMA3-8B, DeepSeek-V3, Phi-3)3trained
end-to-end with HNM-augmented focal loss versus PLANT ’s two-stage training (Section 2)
which, in stage 2, adopts the same HNM-augmented focal loss, on MIMIC-III-full and
MIMIC-IV-full. We report the average absolute gains obtained by computing the mean differ-
ence between each LLM and its PLANT-enhanced counterpart for a given metric. Table 2 highlights
the gains from integrating PLANT: green rows show PLANT-enhanced results, with consistent im-
provements across all metrics and average gains summarized in the last row.
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Notably, much smaller models integrated with PLANT outperform significantly larger LLMs
used alone. For instance, on MIMIC-III-full, LLaMA3-8B +PLANT (8B) outperforms
DeepSeek-V3 (336B) by +1.8 in F1 (Macro) and +3.0 in P@15. Similarly, Phi-3 +PLANT
(3.8B) surpasses DeepSeek-V3 by +2.0 in F1 (Micro) and a substantial +7.1 in AUC (Macro).
This trend persists across MIMIC-IV-full as well: LLaMA3-8B +PLANT achieves gains of
+3.7 in F1 (Macro) and +3.5 in P@15 over DeepSeek-V3. These results highlight the efficiency
of PLANT, which permits smaller models to surpass much larger LLMs across key metrics.

RQ2: Does PLANT4 outperform SOTA models on ICD-10 code classification? Table 3
compares PLANT with SOTA models on MIMIC-IV-full. Performance comparison across
MIMIC-III-full and MIMIC-III-top50 is provided in Table 11 in Appendix G. On
MIMIC-IV-full, which exhibits a more skewed label distribution (see Table 8), PLANT demon-
strates average gains of +0.2–1.4, including a +0.7 (95% CI: 0.5–1.0) gain in F1 (Macro) and a
+1.4 (95% CI: 1.0–1.9) improvement in Precision@8 over SOTA baselines. PLANT ’s larger
performance gains on MIMIC-III-full and MIMIC-IV-full for the macro-averaged metrics
highlight its effectiveness in addressing label imbalance.

RQ3: How effective is PLANT on rare labels? Table 4 evaluates PLANT against SOTA models
on MIMIC-III-few (labels appearing in fewer than 5 samples) and MIMIC-III-rare50 (50
most rare labels) subsets of MIMIC-III-full. PLANT significantly outperforms all baselines.
On MIMIC-III-few, PLANT achieves substantial aggregate gains of +30–49 across F1, Preci-
sion, and Recall, including a +36.1 (95% CI: 30.5–41.7) gain in F1 (Macro) and a +48.1 (95% CI:
42.6–54.0) gain in Recall (Macro). For MIMIC-III-rare50, PLANT demonstrates even larger
improvements, with average gains of +9–49 across metrics, notably a +48.6 (95% CI: 41.2–56.4)
gain in F1 (Macro).

RQ4: Why PLANT Is Superior to Few-Shot SOTA Models? Figure 2 (Left) shows that codes
with frequencies <10 have near-zero macro-F1 scores, highlighting the challenge of predicting
rare codes—a problem PLANT aims to address. To evaluate this, we used the MIMIC-III-few
dataset, which contains 685 codes, each appearing in <5 instances. Figure 2 (Right) focuses on
these rare codes, effectively zooming in on the leftmost part of Figure 2 (Left). We present violin
plots (with embedded box plots) of macro-F1 distributions for rare codes across three models: CO-
RELATION (Luo et al., 2024) (mean = 0.054), Mistral-7B (mean = 0.308), and Mistral-7B
+PLANT (mean = 0.663). Notably, 54.8% of rare codes achieve macro-F1 > 0.7 with PLANT,
compared to only 2.0% for the base Mistral-7B, and 0.6% for CO-RELATION. These results
demonstrate that integrating PLANT with a base LLM not only surpasses specialized few-shot ap-
proaches but also markedly enhances the LLM’s capacity to model rare labels.

RQ5: How generalizable is PLANT5 to other imbalanced classification tasks? Table 5 evalu-
ates PLANT on two diverse tasks: legal topic classification (EURLEX-4K) and content recommen-
dation (WIKI10-31K), both characterized by extreme label spaces and imbalanced distributions.
On EURLEX-4K, PLANT achieves aggregate gains of +0.9–2.5 across P@1, P@3, and P@5, in-
cluding a a +2.5 (95% CI: 1.7–3.5) gain in P@3. For WIKI10-31K, PLANT shows a +2.2 (95%
CI: 1.6–2.8) gain in P@3, though it exhibits a negligible dip in P@5.

RQ6: How effective is PLANT on zero-shot transfer to unseen rare labels? Across 4 LLMs,
PLANT trained on the full dataset achieves the strongest Rare-F1 (14.0–16.8%). Figure 3 (right) re-
ports Rare-F1 when the model is trained exclusively on documents containing only common labels
and evaluated on held-out rare labels. The second and third batches of bars in the figure corre-
spond to models trained only on the common-label subset: here, PLANT still retains substantial
performance (7.3–8.1%), whereas the same models with random atten-init collapse to 0.5–1.1%
Rare-F1. This gap—up to +15.7 pp for LLaMA3-8B —shows that Stage 1 attention initialization
enables true zero-shot generalization to unseen rare labels, despite having no rare-label supervision.

3See Appendix A for LLM details.
4In this setting the base LLM Mbase for PLANT was Mistral-7B.
5In this setting the base LLM Mbase for PLANT was DistilBERT.
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Model AUC F1 P@15
Macro Micro Macro Micro

Mistral-7B 90.2 98.7 20.0 57.0 53.8
Mistral-7B + PLANT 97.4▲ (+7.2) 99.5▲ (+0.8) 23.0▲ (+3.0) 59.2▲ (+2.2) 56.9▲ (+3.1)
LLaMA3-8B 90.5 98.8 20.5 57.5 54.0
LLaMA3-8B + PLANT 97.6▲ (+7.1) 99.6▲ (+0.8) 23.5▲ (+3.0) 59.5▲ (+2.0) 57.0▲ (+3.0)
DeepSeek-V3 90.0 98.6 19.8 56.8 53.5
DeepSeek-V3 + PLANT 97.2▲ (+7.2) 99.4▲ (+0.8) 22.8▲ (+3.0) 59.0▲ (+2.2) 56.5▲ (+3.0)
Phi-3 89.8 98.5 19.5 56.5 53.2
Phi-3 + PLANT 97.0▲ (+7.2) 99.3▲ (+0.8) 22.5▲ (+3.0) 58.8▲ (+2.3) 56.3▲ (+3.1)

Avg. gain with PLANT ∆+7.2 ∆+0.8 ∆+3.0 ∆+2.2 ∆+3.1

Table 2: PLANT consistently boosts all LLM backbones on MIMIC-IV-full. The full ta-
ble with both MIMIC-III-full and MIMIC-IV-full results is provided in Table 10 in Ap-
pendix G. See Appendix G Table 12 for propensity scores.

Model AUC F1 Precision
Macro Micro Macro Micro P@8 P@15

CoRelation (Luo et al., 2024) 97.2 99.6 6.3 57.8 70.0 55.3
PLM-CA (Edin et al., 2024) 91.8 99.1 22.3 58.9 70.5 55.8
GKI-ICD (Zhang et al., 2025) 97.1 99.3 20.6 58.5 70.7 55.8
GPT-4 Zero-Shot (Yuan et al., 2025) 90.5 98.8 5.0 56.0 68.0 53.5
PLANT (Ours) 97.4 99.5 23.0 59.2 72.1 56.9

▲+0.2 -0.1 ▲+0.7 ▲+0.3 ▲+1.4 ▲+1.1
[0.08, 0.31] [-0.27, 0.06] [0.48, 0.95] [0.12, 0.44] [1.01, 1.88] [0.72, 1.55]

Table 3: PLANT sets a new SOTA on MIMIC-IV-full.

4 ABLATION ANALYSIS

ABLATING COMPONENTS IN PLANT (TABLE 6) To assess the contribution of individual
components in PLANT’s two-stage training pipeline (Section 2), we perform ablations on two
dataset/LLM combinations: MIMIC-III-full with Mistral-7B and MIMIC-IV-full with
LLaMA3-8B, where Mistral-7B and LLaMA3-8B are the base LLMs described in Section 2.
Each ablation configuration is compared against the full PLANT setup (bottom row of Table 6),
intentionally isolating the effect of a component. We evaluate using (1) macro-AUC for per-label
classification, (2) macro-F1 for rare-label accuracy, and (3) P@15 for top-k prediction quality. For
each ablation, we report the average decrease relative to the full PLANT setup (∇−x).

(1)+(2) Benefit of Stage 1 attention initialization. End-to-end training from scratch without
Stage 1 degrades performance: using BCE loss yields avg dips (macro-AUC/macro-F1/P@15)
of ∇−6.2/∇−4.8/∇−5.3, while Focal+HNM (γ = 2, ϵ = 0.1, m = 1000) reduces the dips to
∇−4.8/∇−3.4/∇−3.8. Takeaway: Random attention initialization and label imbalance severely
harm rare-label accuracy and top-k retrieval; Focal+HNM helps, but pretrained attention still recov-
ers substantial headroom.

(3) Removing focal loss and HNM in Stage 2. Training with vanilla BCE after Stage 1
(γ = 0, no label smoothing, no HNM), yields changes of (macro-AUC/macro-F1/P@15):
∇−2.5/∇−2.0/∇−2.5; Takeaway: While not competitive with the full PLANT, it still outper-
forms both single-stage BCE and single-stage Focal Loss, demonstrating Stage 1 attention pretrain-
ing alone provides meaningful gains even with simple BCE.

(4) Effect of label smoothing in Stage 2. Two-stage training without label smoothing (Stage 2
with ϵ=0) results in (macro-AUC/macro-F1/P@15): ∇−0.3/∇−1.1/∇−1.2; Takeaway: Mild
but consistent loss—overconfidence slightly hurts macro-F1.

(5) Effect of hard negative mining (HNM) in Stage 2. Two-stage training but without HNM (in
Stage 2 computing loss over all labels instead of top-m negatives.) changes performance (macro-
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Model F1 Precision Recall
Ma. Mi. Ma. Mi. Ma. Mi.

MSMN + Contrastive (Lu et al., 2023) 4.3 8.5 4.5 70.9 4.2 4.5
GP (Yang et al., 2023b) 30.2 35.3 27.9 38.5 32.9 32.6
Tr-EHR (Yang et al., 2023c) 22.0 32.5 20.5 52.0 23.5 24.0
CoRelation (Luo et al., 2024) 25.0 34.0 23.5 50.5 26.5 27.0
PLM-CA (Edin et al., 2024) 26.5 35.0 24.5 51.5 28.0 28.5
GKI-ICD (Zhang et al., 2025) 24.0 33.5 22.5 49.0 25.5 26.0

PLANT (Ours) 66.3 71.0 65.1 68.6 81.0 81.7
▲+36.1 ▲+35.7 ▲+37.2 ▼-2.3 ▲+48.1 ▲+49.1

[30.5, 41.7] [29.8, 41.2] [31.0, 43.5] [-3.7, -1.0] [42.6, 54.0] [43.3, 54.8]

Table 4: Performance on rare labels (MIMIC-III-few). PLANT offers large gains on most
metrics. The full table including MIMIC-III-rare50 appears in Table 13 in Appendix G.

Model
Legal Topic

Classification (EURLEX-4K)
Content

Recommendation (WIKI10-31K)

P@1 P@3 P@5 P@1 P@3 P@5
XRR (Xiong et al., 2023) 87.96 78.88 68.52 89.54 85.38 81.34
X-Transformer
w/ RDE (Shi et al., 2024) 84.60 72.61 61.35 86.15 76.99 68.75
MatchXML (Ye et al., 2024) 88.12 75.00 62.22 89.30 80.45 70.89
DE (Gupta et al.) 87.60 74.39 67.80 88.21 80.29 69.91
InceptionXML (Kharbanda et al., 2023) +
GANDALF (Kharbanda et al., 2024) 86.98 75.89 68.78 88.76 80.32 69.89
CG (Chai et al., 2024) 87.82 76.71 68.42 87.29 79.81 68.45
PLANT (Ours) 90.61 81.35 70.24 90.91 87.61 81.33

▲+2.20 ▲+2.47 ▲+0.90 ▲+1.37 ▲+2.23 -0.01
[1.47, 3.25] [1.73, 3.49] [0.38, 1.55] [0.76, 1.93] [1.60, 2.84] [-0.27, 0.19]

Table 5: PLANT performs strongly across domains—legal topic classification & tag prediction.

AUC/macro-F1/P@15): ∇−0.6/∇−1.9/∇−2.8; Takeaway: Noticeable drops in both precision
and rare-label accuracy—HNM focuses learning on informative negatives.

(6) Importance of MIG vs. naive frequency in Stage 1. Replacing MIG relevance
scores with normalized token frequency per label yields (macro-AUC/macro-F1/P@15):
∇−1.0/∇−2.4/∇−3.3; Takeaway: Coarser relevance signals harms rare-label and top-k accuracy.

(7) Importance of ranking objective in Stage 1. Compared to full PLANT, replacing Stage 1
pairwise ranking loss (Eq. 2) with MSE, yields avg dips (macro-AUC/macro-F1/P@15):
∇−1.5/∇−2.9/∇−3.5; Takeaway: The pairwise ranking loss is central to “planting” attention
weights that reflect MIG-derived token relevance. Replacing it with MSE removes the ranking sig-
nal, leading to weaker alignment between learned attention scores and true relevance, which in turn
degrades rare-label accuracy & top-k precision.

(8) Effect of attention initialization quality of Stage 1. We vary the number of Stage 1
epochs (1–10) before switching to Stage 2, and measure attention initialization quality at the
end of Stage 1 via nDCG@k (computed against MIG relevance as ground truth), alongside
final macro-F1 and P@15 after Stage 2 (Figure 4, left). Compared to the full PLANT
setup (10 epochs), training for only 1 epoch yields avg dips (nDCG@k/macro-F1/P@15):
∇−0.24/∇−2.4/∇−2.6. As Stage 1 training length increases, nDCG@k steadily improves (e.g.,
0.68→0.94 on MIMIC-IV-full/LLaMA3-8B), and final metrics rise accordingly, saturating at
the full PLANT performance. The inset shows when attention weights Wattn is randomly initial-
ized, i.e., no Stage 1 (nDCG@k ≈ 0.05), macro-F1 drops to 13.0%(∆ = +10.0 pp gain from full
PLANT). Figure 5 reports the same trend for rare-F1 (labels with frequency < 0.1%), which con-
verges to 16.8% under full PLANT. The random-init (inset) yields only 5.5% Rare-F1 (∆ = +11.3
pp), confirming that poor attention initialization is the dominant cause of rare-label poor perfor-
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Figure 4: (Left) On MIMIC-IV-full with LLaMA3-8B, better Stage 1 nDCG@k (attn. init.
quality) leads to higher Stage 2 (downstream) macro-F1. The same trend for rare-F1 is shown
in App. G, Fig. 5. Extended results (MIMIC-III-full +Mistral-7B, MIMIC-IV-full
+LLaMA3-8B; macro-F1, P@15) appear in App. G, Fig. 6. (Right) PLANT consistently
boosts Mistral-7B on MIMIC-IV-full across training sizes: solid lines (Mistral-7B
+PLANT) beat dashed baselines on P@5/P@15, with largest gains in low-data regimes. Paired
MIMIC-III-full +MIMIC-IV-full results are in App. G, Fig. 7.

Ablation Config macro-AUC macro-F1 P@15
1Single-Stage BCE 91.0▼(-6.4, [-7.2, -5.4]) 18.0▼(-5.0, [-5.9, -3.8]) 52.0▼(-4.9, [-5.7, -3.9])
1Single-Stage Focal Loss 92.5▼(-4.9, [-5.8, -4.0]) 19.5▼(-3.5, [-4.2, -2.7]) 53.5▼(-3.4, [-4.0, -2.7])
1PLANT w/ Vanilla BCE 95.0▼(-2.4, [-3.0, -1.7]) 21.0▼(-2.0, [-2.6, -1.4]) 54.8▼(-2.1, [-2.7, -1.5])
2PLANT w/o Label Smoothing 97.0▼(-0.4, [-0.7, -0.2]) 21.8▼(-1.2, [-1.8, -0.7]) 55.8▼(-1.1, [-1.7, -0.6])
2PLANT w/o Hard Neg Mining 96.8▼(-0.6, [-1.0, -0.3]) 21.0▼(-2.0, [-2.7, -1.3]) 54.5▼(-2.4, [-3.1, -1.7])
1PLANT w/ Term Frequency 96.5▼(-0.9, [-1.4, -0.5]) 20.5▼(-2.5, [-3.2, -1.8]) 54.0▼(-2.9, [-3.6, -2.1])
1PLANT w/ MSE 96.0▼(-1.4, [-2.1, -0.8]) 20.0▼(-3.0, [-3.9, -2.1]) 53.8▼(-3.1, [-3.9, -2.3])
PLANT (full setup) 97.4 23.0 56.9

Table 6: Ablation on MIMIC-IV-fullwith base LLaMA3-8B. Full results (MIMIC-III-full
w/ Mistral-7B, MIMIC-IV-full w/ LLaMA3-8B) appear in Table 14, App. G.

mance. Takeaway: Higher nDCG@k at the end of Stage 1 correlates (Pearson r(df) = .80,
p < .001) with better rare-label accuracy and top-k precision.

Key Takeaways (1–8): Illustrated in Table 6, Stage 1 attention pretraining is the single most im-
pactful component of PLANT: removing it and training end-to-end from scratch with BCE or HNM-
augmented focal loss yields average dips of ∇−(4.8 to 6.2) in macro-AUC, ∇−(3.4 to 4.8) in
macro-F1, and ∇−(3.8 to 5.3) in P@15. Analysis of attention initialization quality (Fig. 6) further
shows that stronger token-ranking quality at the end of Stage 1 correlates with better downstream
macro-F1 and P@15. Within Stage 1, both the MIG relevance signal and the ranking objective are
essential for effectively “planting” attention weights: replacing MIG with token frequency causes
average dips up to ∇−3.3 (P@15), and replacing the ranking loss with MSE causes up to ∇−3.5
(P@15). Moreover, when Stage 2 is trained with vanilla BCE, PLANT still achieves average gains
of ∆+(1.4 to 2.3) (macro-AUC/macro-F1/P@15) over end-to-end training with HNM-augmented
focal loss, underscoring that planted attention alone contributes substantial improvements.

PLANT UNDER VARYING TRAINING SIZE Annotated data is scarce and costly, especially for
rare labels. So we ask: can PLANT’s pretrained attention improve sample efficiency over standard
end-to-end training by reducing the labeled examples needed for competitive performance? To eval-
uate this, we compare PLANT ’s two-stage training (Section 2) with single-stage end-to-end training
using the same architecture (Section 2) and base LLM Mistral-7B, on MIMIC-III-full and
MIMIC-IV-full under varying training sizes (Figure 4, right). Both methods are trained on dif-
ferent fractions of balanced training splits, with fixed test sets, up to 5 epochs, and evaluated on
P@5 and P@15. The sole difference is in the attention mechanism A from the MultiHead mod-
ule (Equation 1): PLANT uses Stage 1 pretrained attention from the L2R model (Equation 2),
emphasizing MIG-ranked tokens, while the baseline learns attention from scratch. Takeaway: As
shown in Figure 4 (right), PLANT consistently matches or exceeds end-to-end Mistral-7B across
all training sizes, often with an order of magnitude fewer labels. On MIMIC-IV-full, PLANT
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Variant (training data) Macro-F1 (%) Rare-F1 (%) Corr(F1, log-freq) Sim(Sl, MIG)-Rare

Random Attn Init (full data) 13.0 ± 1.1 5.5 ± 0.9 0.68 ± 0.04 0.12 ± 0.06
1 Epoch Stage 1 PLANT (full data) 20.5 ± 0.6 10.3 ± 0.9 0.55 ± 0.05 0.35 ± 0.07
PLANT (full data) 23.0 ± 0.3 16.8 ± 0.5 0.30 ± 0.03 0.78 ± 0.04

Random Attn Init (common only) 12.5 ± 1.0 0.5 ± 0.4 0.78 ± 0.03 0.08 ± 0.05
PLANT (common only) 18.0 ± 0.7 8.0 ± 0.6 0.45 ± 0.04 0.52 ± 0.07

Table 7: Impact of PLANT on rare-label performance in MIMIC-IV-full using LLaMA3-8B.

achieves P@5=0.50 and P@15=0.37 with only 1090 and 2743 instances—matching baselines trained
on 10,337 and 12,902. On MIMIC-III-full, it reaches P@5=0.47 and P@15=0.30 using just
136 and 235 instances—vs. 1342 and 1578 for the baseline.

RANDOM ATTENTION INITIALIZATION CAUSES RARE-LABEL FAILURES In Table 7 6, ran-
dom initialization yields the highest frequency–F1 correlation (0.68–0.78), indicating strong bias
toward frequent labels, and the lowest alignment between learned attention scores Sl and ground-
truth MIG relevance profiles. Alignment is measured via cosine similarity between Sl and the MIG
vector for each rare label: PLANT reaches 0.78 (attention concentrated on truly informative tokens),
whereas random initialization collapses to 0.08–0.12 (diffuse & uninformative). Comparisons show
PLANT’s attention initialization mitigates both frequency bias and attention misalignment.

5 RELATED WORK

Attention has long been used to capture label–text interactions. You et al. (2019) used bi-LSTMs
and a label-tree–guided attention mechanism to produce label-specific representations. Transformer-
based models introduced multi-resolution self-attention for large label spaces (Zhang et al., 2021;
Kharbanda et al., 2022), while multi-head attention across text granularities improved weak supervi-
sion (Kargupta et al., 2023). also leveraging contrastive or knowledge-enhanced attention (Lu et al.,
2023; Li et al., 2023). Dynamic pipelines filtered candidate labels using structured signals like di-
agnoses, procedures, and medications, relying on attention to prioritize relevant labels (Wang et al.,
2024b;c). Other studies show that label-guided, dictionary, or bi-attention mechanisms improve
alignment between labels and text (Wang et al., 2023b; Wu et al., 2024; Wang et al., 2024a). Meta-
learning and label tree structures further advance attention-driven few-shot generalization (Teng
et al., 2024; Wang et al., 2024d). Recent work includes attention-based co-ranking (Yan et al.,
2025), contrastive dual-attention for rare labels (Huang et al., 2025), and knowledge-integrated at-
tention for medical coding (Zhang et al., 2025). PLANT is the first work to pretrain attention.

LLMs are increasingly used for XMTC (Asensio Blasco et al., 2025; Yuan et al., 2025; Nerella
et al., 2024). Yet large LLMs in zero-shot mode can underperform smaller fine-tuned models (Boyle
et al., 2023; Zhang et al., 2025). Heavy finetuning, in turn, raises concerns about compute cost
and overfitting (Huang et al., 2022; Michalopoulos et al., 2022; Ng et al., 2023; Kang et al., 2023).
Sakai & Lam (2025) further show that such finetuning often fails to improve rare-label performance
in high-dimensional, skewed label spaces. As PLANT is architecture-agnostic and effective under
skew, it integrates seamlessly with LLMs to boost rare-label performance without heavy finetuning.

6 CONCLUSION

This work proposed PLANT—a plug-and-play strategy for initializing attention. By pretraining at-
tention as a L2R module with mutual information and then leveraging it in full end-to-end training,
PLANT turns attention into a pretrainable component. PLANT is architecture-agnostic, integrates
seamlessly with diverse LLM backbones, and boosts performance across tasks. Strikingly, smaller
LLMs enhanced with PLANT outperform much larger models used alone, and PLANT is substan-
tially better at predicting rare labels. It also improves sample efficiency, matching the performance
of baselines trained on 10× more data. In sum, PLANT shifts attention from something merely
learned during training to something we can plant and leverage. Looking ahead, its pretraining
principle could extend naturally to multimodal tasks, where cross-signal attention is critical.

6Full ablation setup and experimental details are provided in Appendix A:CAUSAL ABLATION DETAILS.
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Matúš Falis, Aryo Pradipta Gema, Hang Dong, Luke Daines, Siddharth Basetti, Michael Holder,
Rose S Penfold, Alexandra Birch, and Beatrice Alex. Can gpt-3.5 generate and code discharge
summaries? Journal of the American Medical Informatics Association, 31(10):2284–2293, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Nilesh Gupta, Fnu Devvrit, Ankit Singh Rawat, Srinadh Bhojanapalli, Prateek Jain, and Inderjit S
Dhillon. Dual-encoders for extreme multi-label classification. In The Twelfth International Con-
ference on Learning Representations.

Kai He, Rui Mao, Qika Lin, Yucheng Ruan, Xiang Lan, Mengling Feng, and Erik Cambria. A survey
of large language models for healthcare: from data, technology, and applications to accountability
and ethics. Information Fusion, pp. 102963, 2025.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Lifelong learning via pro-
gressive distillation and retrospection. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 437–452, 2018.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Chao-Wei Huang, Shang-Chi Tsai, and Yun-Nung Chen. Plm-icd: automatic icd coding with pre-
trained language models. arXiv preprint arXiv:2207.05289, 2022.

Hui Huang, Mingfeng Yu, Shuai Yu, Yongbin Qin, and Chuan Lin. Contrastive learning-enhanced
dual attention network for multi-label text classification. Journal of King Saud University Com-
puter and Information Sciences, 37(6):136, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

12

https://aclanthology.org/2024.emnlp-main.280/
https://aclanthology.org/2024.emnlp-main.280/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
electronic health record dataset. Scientific data, 10(1):1, 2023.

Greg Kamradt. Needle in a haystack - pressure testing llms. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack, 2023. Accessed: 2025-07-22.

Beichen Kang, Xiaosu Wang, Yun Xiong, Yao Zhang, Chaofan Zhou, Yangyong Zhu, Jiawei Zhang,
and Chunlei Tang. Automatic icd coding based on segmented clinicalbert with hierarchical tree
structure learning. In International Conference on Database Systems for Advanced Applications,
pp. 250–265. Springer, 2023.

Priyanka Kargupta, Tanay Komarlu, Susik Yoon, Xuan Wang, and Jiawei Han. Megclass: extremely
weakly supervised text classification via mutually-enhancing text granularities. arXiv preprint
arXiv:2304.01969, 2023.

Siddhant Kharbanda, Atmadeep Banerjee, Erik Schultheis, and Rohit Babbar. Cascadexml: Re-
thinking transformers for end-to-end multi-resolution training in extreme multi-label classifica-
tion. Advances in neural information processing systems, 35:2074–2087, 2022.

Siddhant Kharbanda, Atmadeep Banerjee, Devaansh Gupta, Akash Palrecha, and Rohit Babbar. In-
ceptionxml: A lightweight framework with synchronized negative sampling for short text extreme
classification. In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 760–769, 2023.

Siddhant Kharbanda, Devaansh Gupta, Erik Schultheis, Atmadeep Banerjee, Cho-Jui Hsieh, and
Rohit Babbar. Gandalf: Learning label-label correlations in extreme multi-label classification
via label features. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’24, pp. 1360–1371, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3672063. URL
https://doi.org/10.1145/3637528.3672063.

Fei Li and Hong Yu. Icd coding from clinical text using multi-filter residual convolutional neural
network. In proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 8180–
8187, 2020.

Xinhang Li, Xiangyu Zhao, Yong Zhang, and Chunxiao Xing. Towards automatic icd coding via
knowledge enhanced multi-task learning. In Proceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Management, pp. 1238–1248, 2023.

Fenglin Liu, Hongjian Zhou, Boyang Gu, Xinyu Zou, Jinfa Huang, Jinge Wu, Yiru Li, Sam S Chen,
Yining Hua, Peilin Zhou, et al. Application of large language models in medicine. Nature Reviews
Bioengineering, pp. 1–20, 2025a.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024a. doi: 10.1162/tacl a 00638. URL
https://aclanthology.org/2024.tacl-1.9/.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024b.

yang liu, hua cheng, russell klopfer, matthew r. gormley, and thomas schaaf. effective convolu-
tional attention network for multi-label clinical document classification. In proceedings of the
2021 conference on empirical methods in natural language processing, pp. 5941–5953, online
and punta cana, dominican republic, November 2021. association for computational linguis-
tics. doi: 10.18653/v1/2021.emnlp-main.481. URL https://aclanthology.org/2021.
emnlp-main.481.

13

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://doi.org/10.1145/3637528.3672063
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2021.emnlp-main.481
https://aclanthology.org/2021.emnlp-main.481


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhi Liu, Yunjie Huang, Xincheng Xia, and Yihao Zhang. All is attention for multi-label text classi-
fication. Knowledge and Information Systems, 67(2):1249–1270, 2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chang Lu, Chandan Reddy, Ping Wang, and Yue Ning. Towards semi-structured automatic icd
coding via tree-based contrastive learning. Advances in Neural Information Processing Systems,
36:68300–68315, 2023.

Junyu Luo, Xiaochen Wang, Jiaqi Wang, Aofei Chang, Yaqing Wang, and Fenglong Ma. Corelation:
Boosting automatic icd coding through contextualized code relation learning. arXiv preprint
arXiv:2402.15700, 2024.

Sumit Madan, Manuel Lentzen, Johannes Brandt, Daniel Rueckert, Martin Hofmann-Apitius, and
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A TRAINING DETAILS

LLM Backbone We use the following pretrained instruction-tuned LLMs as base mod-
els Mbase in our experiments, all publicly available on the Hugging Face Model Hub and
compatible with the Transformers library: (1) Mistral-7B-Instruct-v0.3 (7B, Mistral AI):
https://huggingface.co/mixtral-7b-instruct-v0.3, (2) Llama-3.1-8B (8B,
Meta AI): https://huggingface.co/meta-llama/Llama-3.1-8B, (3) DeepSeek-R-
336B (336B, DeepSeek): https://huggingface.co/deepseek/DeepSeek-R-336B,
and (4) Phi-3-mini-3.8B (3.8B, Microsoft): https://huggingface.co/microsoft/
Phi-3-mini-3.8B. These serve as the LLM backbones for fine-tuning.

For the extreme multi-label text classification (XMTC) results reported in Table 5, PLANT was addi-
tionally adapted to a compact DistilBERT encoder backbone (66M parameters) to ensure a fair com-
parison with the listed baselines (e.g., XRR (Xiong et al., 2023), MatchXML (Ye et al., 2024), and
InceptionXML (Kharbanda et al., 2023)), which similarly employ encoder models of comparable
scale. The DistilBERT model is initialized from distilbert-base-uncased and is publicly
accessible at https://huggingface.co/distilbert/distilbert-base-uncased.

Quantization & LoRA Adaptation Starting with a pretrained model Mbase, such as
Mistral-7B, LLaMA3-8B, or Phi-3, we apply Parameter-Efficient Fine-Tuning (PEFT) using
Low-Rank Adaptation (LoRA) Hu et al. (2022); Dettmers et al. (2023); Liu et al. (2024b).

To enable memory-efficient fine-tuning on resource-constrained hardware, we first quantizeMbase
to 4-bit precision using the NormalFloat4 format with double quantization, yieldingMquant:

Q(W ) = round
(

W

s

)
· s,

where W is a model weight matrix and s is a learned scale. Inference is performed using
bfloat16 precision (F16b) (Refer to Frantar et al. (2022) for details).

We then apply LoRA to a subset of the attention projection layers (query, key, value, and output),
introducing trainable low-rank matrices:

∆W = AB, with A ∈ Rd×r, B ∈ Rr×d,
using rank r = 16, scaling factor α = 32, and dropout p = 0.05. The adapted model becomes:

Madapt =Mquant + α ·∆W .

Optimization and Training Regimen To address potential overwriting of Stage 1 attention signals
during Stage 2 fine-tuning, we employ a gradual unfreezing strategy combined with discrimina-
tive learning rates, ensuring stable transfer of the MIG-seeded priors while allowing task-specific
refinement. All experiments are conducted on 8×A100–80GB GPUs using DeepSpeed ZeRO-3 of-
floading for memory efficiency, with a global batch size of 256 (gradient accumulation steps=4) and
mixed-precision (FP16) training via Hugging Face Accelerate.

Stage 1 pretraining optimizes the multi-head attention module (MultiHead) and label embeddings E
via the ranking loss (Eq. 2) for 10 epochs, using AdamW with a cosine learning-rate schedule (peak
η = 5× 10−4, 10% warmup) and weight decay λ = 0.01.

17

https://aclanthology.org/2021.acl-long.463
https://aclanthology.org/2021.acl-long.463
https://huggingface.co/mixtral-7b-instruct-v0.3
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/deepseek/DeepSeek-R-336B
https://huggingface.co/microsoft/Phi-3-mini-3.8B
https://huggingface.co/microsoft/Phi-3-mini-3.8B
https://huggingface.co/distilbert/distilbert-base-uncased


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

In Stage 2, we initialize from Stage 1 checkpoints and apply discriminative fine-tuning to preserve
attention integrity: the attention module (MultiHead, E) starts frozen for the first 5 epochs (allowing
downstream layers to adapt), followed by gradual unfreezing of the full model in three phases—
attention last (epochs 6–10, η = 1× 10−5), intermediate layers (epochs 11–15, η = 5× 10−6), and
all parameters (epochs 16–20, η = 2 × 10−6)—each with cosine decay and 5% warmup. This lay-
ered schedule, inspired by progressive distillation in large-scale vision–language models (Hou et al.,
2018), is paired with the AdamW optimizer Loshchilov & Hutter (2017) (weight decay 0.01) and
gradient clipping (max-norm 1.0) for stability. We use a per-device batch size of 8 with 4-step gra-
dient accumulation (effective batch size 32), PyTorch’s autocast for FP16, and gradient check-
pointing to manage memory. Each stage runs up to 10 epochs with early stopping (patience=2): val-
idation nDCG@k for Stage 1, macro-F1 for Stage 2. To ensure reproducibility, we fix random seeds
across random, numpy, torch, and torch.cuda; experiments use distributed data-parallelism
(DDP) where applicable, with metrics logged via Weights & Biases.

Token Selection Sensitivity To test sensitivity to token selection in the ranking loss (Equation 2),
we vary the top-k token threshold with k ∈ {500, 1000, 2000}.

HYPERPARAMETERS IN ARCHITECTURE (SECTION 2)

The multi-head attention module MultiHead (Equation 1) uses k = 8 attention heads. The adaptive
average pooling layer (Equation 2) produces an output size of p = 128.

FOCAL LOSS WITH LABEL SMOOTHING

For completeness, we present the explicit formulation of the focal loss used in Stage 2 training
(Section 2). The focal loss for an input xi is defined as:

L(i)
focal(ỹ, ŷ, θ) = − 1

|L|

|L|∑
l=1

[
ỹil (1− σ(ŷil))γ log (σ(ŷil)) + (1− ỹil) (σ(ŷil))γ log (1− σ(ŷil))

]
,

(3)
where θ denotes all trainable model parameters, σ(·) is the sigmoid function, ŷil ∈ R is the predicted
logit for label l, γ = 2 is the focusing parameter that emphasizes harder examples, and ỹil is the
smoothed label: ỹil = (1− ϵ)yil (ϵ)1−yil with ϵ = 0.1 to prevent overconfidence in predictions.

CAUSAL ABLATION DETAILS

To establish that random initialization of the label-specific attention module is the primary cause of
poor rare-label performance, we run controlled ablations on MIMIC-IV ICD-10 using LLAMA3-
8B. Labels are stratified by training-set frequency: rare (< 0.1%) and common (> 1%). We evalu-
ate two matched setups: (1) Random Attn Init (common only)—Stage 1 skipped; attention weights
Wattn and label embeddings E remain Xavier-initialized; (2) PLANT (common only)—full Stage 1
applied only to the common-label subset. Both models are trained solely on common labels and
evaluated on held-out rare labels.

All experiments use 5-fold cross-validation on MIMIC-IV-full (80/10/10 split). Backbone:
LLaMA3-8B with QLoRA (rank 16, α = 32, 4-bit). Stage 2: 20 epochs, AdamW (lr = 1e−5),
focal loss (γ = 2), label smoothing (ϵ = 0.1), and hard-negative mining (m = 1000). MIG top-
k = 1000 is computed on the corresponding training subset. Common-only training removes all
rare-label instances. Metrics include micro-F1 per frequency bin and Pearson correlation between
per-label F1 and log-frequency. Cosine similarity is averaged over 50 randomly sampled rare labels
using full-corpus MIG as reference. All results use seed 42; paired t-tests show p < 0.001 for
Rare-F1 differences, with Cohen’s d > 1.4.

B PRECOMPUTATIONS

B.1 MUTUAL INFORMATION GAIN IN XMTC

In extreme multilabel classification (e.g., ICD coding on MIMIC-IV), MIG quantifies the informa-
tiveness of a token tj for predicting label l presence, grounded in information theory as the KL
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divergence between the joint and product-of-marginals distributions. Formally:

rl,j =
∑

(x,y)∈{0,1}2

P (x, y) log
(

P (x, y)
P (x) P (y)

)
,

where x = 1[l present] (marginal P (x) = label frequency), y = 1[tj present] (marginal P (y) =
token frequency), and P (x, y) is the empirical joint from corpus co-occurrences. This measures bits
of mutual information: how much y reduces entropy in x, penalizing spurious correlations (e.g.,
high P (y) but low P (x|y) > P (x)).

Probabilities are estimated via maximum-likelihood on the full training corpus (no subsampling),
with Laplace smoothing (α = 1) for zero-count cells to avoid undefined logs. Scores rl,j are
L2-normalized per label to [0, 1] (dividing by maxj rl,j) for stability, then thresholded at top-k
(tested k ∈ {500, 1000, 2000}) to select tokens for Stage 1 ranking. Unlike raw co-occurrence
(e.g., P (y|x)), MIG corrects for frequency bias: high-frequency tokens inflate joints but are down-
weighted if independent of l.

Example. Consider a toy corpus (N = 100 docs): rare label A (P (x) = 0.05, 5 docs), common B
(P (x) = 0.50, 50 docs); token “fever” (P (y) = 0.40, co-occurs with B in 25 docs); “rare disease”
(P (y) = 0.06, co-occurs with A in 5 docs). Raw co-occurrence ranks “fever” higher for B (sup-
port=25 vs. 5), but MIG elevates “rare disease” for A due to stronger conditional dependence.

For “fever” w.r.t. B, the contingency table yields joints: P (x = 1, y = 1) = 0.25, P (x = 1, y =
0) = 0.25, P (x = 0, y = 1) = 0.15, P (x = 0, y = 0) = 0.35. MI computation (log base 2):

(1,1): 0.25 · log2(0.25/(0.50 · 0.40)) ≈ 0.25 · 0.322 = 0.0805,
(1,0): 0.25 · log2(0.25/(0.50 · 0.60)) ≈ 0.25 · (−0.263) = −0.066,
(0,1): 0.15 · log2(0.15/(0.50 · 0.40)) ≈ 0.15 · (−0.415) = −0.062,
(0,0): 0.35 · log2(0.35/(0.50 · 0.60)) ≈ 0.35 · 0.223 = 0.078,
Total MI ≈ 0.030 bits (weak dependence).

For “rare disease” w.r.t. A: P (x = 1, y = 1) = 0.05, P (x = 1, y = 0) = 0.00, P (x = 0, y = 1) =
0.01, P (x = 0, y = 0) = 0.94. MI:

(1,1): 0.05 · log2(0.05/(0.05 · 0.06)) ≈ 0.05 · 4.06 = 0.203,
(0,1): 0.01 · log2(0.01/(0.95 · 0.06)) ≈ 0.01 · (−2.51) = −0.025,
(0,0): 0.94 · log2(0.94/(0.95 · 0.94)) ≈ 0.94 · 0.0076 = 0.007,
(1,0): 0 · · · · = 0,
Total MI ≈ 0.185 bits (strong dependence).

MIG ranks “rare disease” higher for A (0.185 > 0.030), capturing precision (P (A | rare disease) =
83% vs. marginal 5%) without volume bias.

C IMPLEMENTATION DETAILS

DATASETS

We compare PLANT to SOTA ICD coding models using the MIMIC-III (Johnson et al., 2016)
and MIMIC-IV (Johnson et al., 2023) datasets, which include rich textual and structured records
from ICU settings, primarily discharge summaries annotated with ICD-9 (MIMIC-III) and ICD-10
(MIMIC-IV) codes. MIMIC-III contains 52,722 discharge summaries with 8,929 unique ICD-9
codes, and MIMIC-IV includes 122,279 summaries with 7,942 ICD-10 codes. We follow estab-
lished methodologies for patient ID-based splits and frequent code subsets. For few-shot learn-
ing, we evaluate PLANT on the MIMIC-III-rare50 dataset (Yang et al., 2022b), which features 50
rare ICD codes, and the MIMIC-III-few dataset (Yang et al., 2023b), a subset with 685 unique
ICD-9 codes occurring between 1 and 5 times in the training set. We denote these datasets
as MIMIC-III-full, MIMIC-III-top50, MIMIC-III-rare50, MIMIC-III-few, and
MIMIC-IV-full (refer to Table 8 for statistics). Following prior research (Mullenbach et al.,
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2018; Xie et al., 2019; Li & Yu, 2020), we tokenize and lowercase all text while eliminating non-
alphabetic tokens containing numbers or punctuation.

To assess generalizability beyond the clinical domain, we also experiment with two large-scale ex-
treme multilabel datasets. The EURLEX-4K dataset, comprising 15,449 training and 3,865 test
European Union legal documents annotated with 3,956 EUROVOC labels, supports automated
legal topic classification, compliance analysis, and cross-lingual information retrieval (http://
manikvarma.org/downloads/XC/XMLRepository.html). The WIKI10-31K dataset,
with 14,146 training and 6,616 test Wikipedia articles associated with 30,938 categories, facili-
tates automatic tagging, web-scale document organization, and content recommendation (http:
//manikvarma.org/downloads/XC/XMLRepository.html). Both datasets are used to
study large-scale label spaces and imbalanced label distributions(refer to Table 9 for statistics).

MIMIC-III-full MIMIC-IV-full

Number of documents 52,723 122,279
Number of patients 41,126 65,659
Number of unique codes 8,929 7,942
Codes per instance: Median (IQR) 14(10–20) 14(9–20)
Words per document: Median (IQR) 1, 375(965–1, 900) 1, 492(1, 147–1, 931)
Documents: Train/val/test [%] 90.5/3.1/6.4 72.9/10.9/16.2

Table 8: Descriptive statistics for MIMIC-III-full and MIMIC-IV-full discharge summary
training sets.

EURLEX-4K WIKI10-31K

Number of train documents 15, 449 14, 146
Number of test documents 3, 865 6, 616
Number of unique labels 3, 956 30, 938
Average number of labels per instance 5.30 18.64
Average number of instances per label 20.79 8.52

Table 9: Descriptive statistics for publicly available XMTC datasets EURLEX-4K and
WIKI10-31K.

IMPLEMENTATION AND HYPERPARAMETERS

We ensure robustness across diverse XMTC datasets by fine-tuning hyperparameters on the
MIMIC-III-full and MIMIC-IV-full validation sets. Experiments are conducted on an
NVIDIA QUADRO RTX 8000 GPU with 48 GB VRAM. We utilize the AWD-LSTM LM with
an embedding size of 400, 3 LSTM layers with 1152 hidden activations, and the Adam Optimizer
with β1 = 0.9, β2 = 0.99, and weight decay of 0.01. During fine-tuning, we apply dropout rates and
weight dropout, with a batch size of 384, BPTT of 80, 20 epochs, and a learning rate of 1e−5. Clas-
sifier training also includes dropout rates and weight dropout, with a batch size of 16, BPTT of 72,
and discriminative fine-tuning with gradual unfreezing over 115 epochs (on MIMIC-III-full),
alongside scheduled weight decay and learning rate ranges.

D BASELINES FOR COMPARISONS

ICD Baselines: We compare PLANT against a diverse set of ICD coding baselines spanning clas-
sical, recent, and few-shot paradigms.

Early deep learning models: CAML (Mullenbach et al., 2018), MSATT-KG (Xie et al., 2019),
MUltiResCNN (Li & Yu, 2020), and HyperCore (Cao et al., 2020).
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Attention- and hierarchy-based models: LAAT and JointLAAT (Vu et al., 2021), ISD (Zhou et al.,
2021), Effective-CAN (liu et al., 2021), Hierarchical (Dai et al., 2022), and MSMN (Yuan et al.,
2022).

Recent pretraining and architecture innovations: DiscNet (Zhang et al., 2022), KEPTLong-
former (Yang et al., 2022b), PLM-ICD (Huang et al., 2022), AHDD (Zhang & Wang, 2024), CoRe-
lation (Luo et al., 2024), Contrastive (Lu et al., 2023), MIMIC-IV-Benchmark (Nguyen et al., 2023),
Tr-EHR (Yang et al., 2023c), and PLM-CA (Edin et al., 2024).

Few-shot ICD coding methods: AGMHT (Song et al., 2021), RareCodes (Chen et al., 2023a),
GP (Yang et al., 2023b), and KEPT (Yang et al., 2022b).

Knowledge-injected models: KEMTL (Li et al., 2023), MRR (Wang et al., 2024b), AKIL (Wang
et al., 2024c), and GKI-ICD (Zhang et al., 2025).

XMTC Baselines: We also compare PLANT against XMTC models like: PECOS (Yu et al., 2022),
ICXML (Zhu & Zamani, 2023), XRR (Xiong et al., 2023), RDE (Shi et al., 2024), MatchXML (Ye
et al., 2024), DE (Gupta et al.), InceptionXML (Kharbanda et al., 2023), GANDALF (Kharbanda
et al., 2024), CG (Chai et al., 2024).

E EVALUATION METRICS

We focus on micro-F1, macro-F1, micro-P, macro-P, micro-R, macro-R, micro-AUC, macro-
AUC, P@k, and R@k to compare with prior ICD studies. Micro-averaging treats each (text, code)
pair individually, aggregating true positives, false positives, and false negatives across all instances.
Macro-averaging computes metrics per label, giving more weight to infrequent labels. micro-P is
the ratio of aggregated true positives to the sum of true positives and false positives, while macro-
P averages precision across all labels. micro-R is the ratio of aggregated true positives to the sum of
true positives and false negatives, while macro-R averages recall across all labels. micro-AUC com-
putes the area under the ROC curve for all instances aggregated together, while macro-AUC aver-
ages the AUC scores across all labels. P@k and R@k measure the proportion of the top k predicted
labels that match the ground truth, focusing on precision and recall, respectively.
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micro-P =
∑

i TPi∑
i(TPi + FPi)

micro-R =
∑

i TPi∑
i(TPi + FNi)

micro-F1 =
2 ·

∑
i TPi∑

i(TPi + FPi) +
∑

i(TPi + FNi)

micro-AUC =
∫ 1

0
TPRmicro(FPRmicro) dFPRmicro

macro-P = 1
L

L∑
i=1

TPi

TPi + FPi

macro-R = 1
L

L∑
i=1

TPi

TPi + FNi

macro-F1 = 1
L

L∑
i=1

2 · TPi

TPi + FPi + TPi + FNi

macro-AUC = 1
L

L∑
i=1

∫ 1

0
TPRi(FPRi) dFPRi

P@k = 1
k

k∑
i=1

1 [predi ∈ Y ]

R@k = 1
min(k, |Y |)

k∑
i=1

1 [predi ∈ Y ]

where TPi, FPi, and FNi are the true positives, false positives, and false negatives for label i,
respectively, L is the total number of labels, TPRmicro and FPRmicro are the true positive rate and
false positive rate for the aggregated micro-averaged data, TPRi and FPRi are the true positive rate
and false positive rate for label i, Y is the ground truth label set for an instance, and predi is the i-th
top predicted label.

F STATISTICAL SIGNIFICANCE

Statistical Significance via Wilcoxon Signed-Rank Test. We assess statistical significance us-
ing the non-parametric Wilcoxon Signed-Rank Test (Demšar, 2006) for comparing paired model
outputs. For metrics computed at the instance level (e.g., P@15), we apply the test directly to the
paired per-instance scores between the base model and its PLANT-enhanced counterpart. For aggre-
gate metrics such as F1 and AUC, which are reported as single values over the full test set, we first
collect N paired scores—either from repeated evaluations (e.g., N = 10 in 10-fold cross-validation)
or from N bootstrap resamples. Let {a1, a2, . . . , aN} and {b1, b2, . . . , bN} denote the scores of the
base model and the PLANT-enhanced model, respectively. We compute the difference di = bi − ai

for each pair and rank the absolute values |di| (excluding zeros), averaging ranks in the case of ties.
Each rank is assigned the sign of di, and we compute the rank sums W + and W − over positive and
negative differences. The test statistic is W = min(W +, W −).

For small N , statistical significance is determined using exact Wilcoxon critical values; for larger
N , we apply the normal approximation with

µ = N(N + 1)
4 , σ =

√
N(N + 1)(2N + 1)

24 ,

z = W − µ

σ
.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We reject the null hypothesis of no difference if the resulting p-value is less than a threshold α
(typically 0.05). In our tables, statistically significant improvements are marked using ▲. This
test is readily implemented in standard libraries such as scipy.stats.wilcoxon in Python or
wilcox.test(paired=TRUE) in R.

Reporting Gains with Confidence Intervals. We also report absolute gains along with 95% con-
fidence intervals (CI) using paired bootstrap resampling. For each evaluation metric, we draw B =
1000 bootstrap samples from the test set and compute the difference ∆b = MetricPLANT

b −MetricBase
b

for each sample b. The reported gain is the mean µ̂ of {∆b}, and the CI is computed using the per-
centile bootstrap method by taking the 2.5th and 97.5th percentiles of the empirical distribution of
{∆b}.
We mark results as statistically significant only if the Wilcoxon signed-rank test (α=0.05) is passed
and the 95% CI excludes 0. In such cases, we annotate the score with a colored arrow: ▲ for
statistically significant gains and ▼ for significant drops. If the CI includes 0, no arrow is shown.
For example, 14.7▲ (+1.2, [0.6, 1.8]) indicates a statistically significant gain over the base model,
while 70.1▼(-1.4, [-2.1, -0.7]) denotes a significant drop. In contrast, 73.8 (+0.3, [0.0, 0.6]) is not
statistically significant and is shown without an arrow.

G ADDITIONAL RESULTS

MIMIC-III-full MIMIC-IV-full

Model AUC F1 P@15 AUC F1 P@15
Macro Micro Macro Micro Macro Micro Macro Micro

Mistral-7B 90.8 98.9 13.5 62.0 63.5 90.2 98.7 20.0 57.0 53.8
Mistral-7B + PLANT 98.1▲ (+7.3) 99.9▲ (+1.0) 14.7▲ (+1.2) 64.1▲ (+2.1) 65.8▲ (+2.3) 97.4▲ (+7.2) 99.5▲ (+0.8) 23.0▲ (+3.0) 59.2▲ (+2.2) 56.9▲ (+3.1)
LLaMA3-8B 91.0 99.0 13.8 62.5 64.0 90.5 98.8 20.5 57.5 54.0
LLaMA3-8B + PLANT 98.3▲ (+7.3) 99.8▲ (+0.8) 15.0▲ (+1.2) 64.5▲ (+2.0) 66.2▲ (+2.2) 97.6▲ (+7.1) 99.6▲ (+0.8) 23.5▲ (+3.0) 59.5▲ (+2.0) 57.0▲ (+3.0)
DeepSeek-V3 90.6 98.8 13.2 61.8 63.2 90.0 98.6 19.8 56.8 53.5
DeepSeek-V3 + PLANT 97.9▲ (+7.3) 99.7▲ (+0.9) 14.5▲ (+1.3) 64.0▲ (+2.2) 65.5▲ (+2.3) 97.2▲ (+7.2) 99.4▲ (+0.8) 22.8▲ (+3.0) 59.0▲ (+2.2) 56.5▲ (+3.0)
Phi-3 90.4 98.7 13.0 61.5 63.0 89.8 98.5 19.5 56.5 53.2
Phi-3 + PLANT 97.7▲ (+7.3) 99.6▲ (+0.9) 14.3▲ (+1.3) 63.8▲ (+2.3) 65.3▲ (+2.3) 97.0▲ (+7.2) 99.3▲ (+0.8) 22.5▲ (+3.0) 58.8▲ (+2.3) 56.3▲ (+3.1)

Avg. gain with PLANT ∆+7.3 ∆+0.9 ∆+1.3 ∆+2.2 ∆+2.3 ∆+7.2 ∆+0.8 ∆+3.0 ∆+2.2 ∆+3.1

Table 10: Performance of LLMs with and without PLANT. Each model is evaluated standalone
and with PLANT on MIMIC-III-full and MIMIC-IV-full. Green rows denote results after
integrating PLANT. Bold values indicate the best score for each metric. A compact version with
only MIMIC-IV-full results is provided in Table 2 in the main paper.

MIMIC-III-full MIMIC-III-top50

Model AUC F1 Precision AUC F1 P@5
Macro Micro Macro Micro P@8 P@15 Macro Micro Macro Micro

Effective-CAN liu et al. (2021) 92.1 98.9 10.6 58.9 75.8 60.6 92.0 94.5 66.8 71.7 66.4
MSMN Yuan et al. (2022) 95.0 99.2 10.3 58.4 75.2 59.9 92.8 94.7 68.3 72.5 68.0
PLM-ICD (Huang et al., 2022) 92.6 98.9 10.4 59.8 77.1 61.3 91.0 93.4 66.3 71.9 66.0
Contrastive + JointLAAT (Lu et al., 2023) 94.1 98.8 11.5 58.3 73.9 59.4 91.3 93.7 67.2 72.0 67.9
KEMTL (Li et al., 2023) 95.3 99.6 12.7 58.3 75.6 59.3 94.8 95.5 69.5 72.9 70.8
AHDD (Zhang & Wang, 2024) 95.2 99.3 10.9 58.9 75.3 60.1 92.8 94.7 68.5 72.8 67.8
CoRelation (Luo et al., 2024) 95.2 99.2 10.2 59.1 76.2 60.7 93.3 95.1 69.3 73.1 68.3
PLM-CA (Edin et al., 2024) 91.6 98.9 10.3 59.9 77.2 61.6 91.6 93.6 67.1 71.0 66.4
MRR (Wang et al., 2024b) 94.9 99.5 11.4 60.3 77.5 62.3 92.7 94.7 68.7 73.2 68.5
AKIL (Wang et al., 2024c) 94.8 99.4 11.2 60.5 78.4 63.7 92.8 95.0 69.2 73.4 68.3
GKI-ICD (Zhang et al., 2025) 96.2 99.3 12.3 61.2 77.7 62.4 93.3 95.2 69.2 73.5 68.1

PLANT (Ours) 98.1 99.9 14.7 64.1 80.3 65.8 95.1 96.1 69.9 73.8 70.9
▲+1.9 ▲+0.3 ▲+2.0 ▲+2.9 ▲+1.9 ▲+2.1 +0.3 ▲+0.9 ▲+0.6 +0.3 +0.1

[1.15, 2.72] [0.02, 0.61] [1.26, 2.58] [2.14, 3.41] [1.02, 2.83] [1.33, 2.74] [-0.01, 0.58] [0.47, 1.36] [0.25, 0.84] [-0.05, 0.63] [-0.19, 0.39]

Table 11: PLANT vs. SOTA models on MIMIC-III-full and MIMIC-III-top50. On
MIMIC-III-full, PLANT achieves aggregate gains of +1–3 across AUC, F1 (Macro), and Pre-
cision, including a +2 (95% CI: 1.3–2.6) gain in F1 (Macro). For MIMIC-III-top50 (top 50
most frequent codes), gains are more modest, averaging around +0.5 (e.g., +0.6 in F1 (Macro), 95%
CI: 0.3–0.8).

H DETAILED EFFICIENCY, MEMORY, AND INFERENCE BENCHMARKS

For completeness and reproducibility, this appendix provides expanded efficiency measurements,
detailing wall-clock training time, GPU memory usage, and inference throughput across all experi-
mental settings.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.70 0.75 0.80 0.85 0.90 0.95
Stage 1 nDCG@k

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5
St

ag
e 

2 
M

ac
ro

-F
1 

(%
)

Converges to 23.0

@0.05  13.0%
 = +10.0 pp

Effect of Stage 1 Performance on Final Macro-F1
(MIMIC-IV-full + LLaMA3-8B)

0.000 0.200 0.400 0.600

14.0

16.0

18.0

20.0

13.040

0.70 0.75 0.80 0.85 0.90 0.95
Stage 1 nDCG@k

12

13

14

15

16

17

18

St
ag

e 
2 

Ra
re

-L
ab

el 
F1

 (%
)

Converges to 16.8%

@0.05  5.5%
 = +11.3 pp

Effect of Stage 1 Performance on Rare-Label F1
(MIMIC-IV-full + LLaMA3-8B)

0.000 0.200 0.400 0.600 0.800

5.0

7.5

10.0

12.5

15.0

5.5

Figure 5: PLANT’s Stage 1 attention initialization critical for downstream performance. Insets
show performance degradation when Stage 1 is absent (weights Wattn initialized randomly). The
left panel is shown in the main paper as Figure 4 (left).
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Figure 6: Effect of attention initialization quality on downstream performance across two dataset–
LLM pairs: MIMIC-III-full with Mistral-7B and MIMIC-IV-full with LLaMA3-8B—
as Stage 1 nDCG@k improves, final macro-F1 and P@15 after Stage 2 monotonically increase. The
single-dataset view (MIMIC-IV-full with LLaMA3-8B on macro-F1) is shown in the main
paper as Figure 4 (left).
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Figure 7: PLANT consistently boosts Mistral-7B on MIMIC-III-full (left) and
MIMIC-IV-full (right) across training set sizes. Solid lines (Mistral-7B +PLANT) outper-
form dashed lines (Mistral-7B baseline) on both P@5 and P@15, with the largest gains appear-
ing in low-data regimes. Reference lines highlight that PLANT reaches baseline performance using
substantially fewer training examples. The single-dataset (MIMIC-IV-full only) view is shown
in the main paper as Figure 4 (right).
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Model AUC F1 P@15 / PSP@15

Macro Micro Macro Micro P PSP

Mistral-7B 90.2 98.7 20.0 57.0 53.8 21.5
Mistral-7B + PLANT 97.4▲ (+7.2) 99.5▲ (+0.8) 23.0▲ (+3.0) 59.2▲ (+2.2) 56.9▲ (+3.1) 24.8▲ (+3.3)
LLaMA3-8B 90.5 98.8 20.5 57.5 54.0 21.6
LLaMA3-8B + PLANT 97.6▲ (+7.1) 99.6▲ (+0.8) 23.5▲ (+3.0) 59.5▲ (+2.0) 57.0▲ (+3.0) 24.9▲ (+3.3)
DeepSeek-V3 90.0 98.6 19.8 56.8 53.5 21.4
DeepSeek-V3 + PLANT 97.2▲ (+7.2) 99.4▲ (+0.8) 22.8▲ (+3.0) 59.0▲ (+2.2) 56.5▲ (+3.0) 24.7▲ (+3.3)
Phi-3 89.8 98.5 19.5 56.5 53.2 21.3
Phi-3 + PLANT 97.0▲ (+7.2) 99.3▲ (+0.8) 22.5▲ (+3.0) 58.8▲ (+2.3) 56.3▲ (+3.1) 24.6▲ (+3.3)

Avg. gain with PLANT ∆+7.2 ∆+0.8 ∆+3.0 ∆+2.2 ∆+3.1 ∆+3.2

Table 12: PLANT boosts LLMs across metrics on MIMIC-IV-full, with PSP@15 emphasizing
tail gains. A compact version without propensity scores is provided in the main paper as Table 2.

MIMIC-III-few MIMIC-III-rare50

Model F1 Precision Recall AUC F1
Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro

AGMHT (Song et al., 2021) 18.7 29.2 17.6 49.4 19.9 20.7 80.5 82.0 29.5 31.0
KEPTLongformer (Yang et al., 2022b) 20.5 31.0 19.2 51.0 22.0 22.5 82.7 83.3 30.4 32.6
MSMN + Contrastive (Lu et al., 2023) 4.3 8.5 4.5 70.9 4.2 4.5 – – 31.2 30.6
GP (Yang et al., 2023b) 30.2 35.3 27.9 38.5 32.9 32.6 84.0 85.5 32.0 33.5
Tr-EHR (Yang et al., 2023c) 22.0 32.5 20.5 52.0 23.5 24.0 83.5 84.8 31.5 33.0
CoRelation (Luo et al., 2024) 25.0 34.0 23.5 50.5 26.5 27.0 85.0 86.0 33.0 34.5
PLM-CA (Edin et al., 2024) 26.5 35.0 24.5 51.5 28.0 28.5 86.0 87.0 34.0 35.5
GKI-ICD (Zhang et al., 2025) 24.0 33.5 22.5 49.0 25.5 26.0 84.5 85.8 32.5 34.0

PLANT (Ours) 66.3 71.0 65.1 68.6 81.0 81.7 95.6 96.0 82.6 84.2
▲+36.1 ▲+35.7 ▲+37.2 ▼-2.3 ▲+48.1 ▲+49.1 ▲+9.6 ▲+9.0 ▲+48.6 ▲+48.7

[30.5, 41.7] [29.8, 41.2] [31.0, 43.5] [-3.7, -1.0] [42.6, 54.0] [43.3, 54.8] [6.2, 12.4] [5.9, 11.7] [41.2, 56.4] [40.9, 55.5]

Table 13: Performance on rare labels. PLANT achieves substantial improvements on most metric,
with several gains exceeding +35 and percentile bootstrap CI well-separated from zero. A compact
version with only the MIMIC-III-few results is provided in the main paper as Table 4.

To directly respond to the reviewer’s concern, we clarify that PLANT introduces no additional pa-
rameters beyond the task-specific multi-head attention module (MultiHead,∼0.1M parameters) and
label embeddings E (∼8M for MIMIC datasets;∼4M for EUR-LEX/WikiTen), which are optimized
in Stage 1 and refined in Stage 2. These are comparable to components in standard downstream fine-
tuning setups (e.g., task-specific heads in vanilla LLM adaptation) and represent <0.1% of the total
model parameters. The base LLMMadapt undergoes only gradual unfreezing in Stage 2 as detailed
in the training regimen (Appendix A).

The primary incremental cost arises from the staged training: Stage 1 (MIG pre-computation on
CPU + L2R optimization of MultiHead and E for 10 epochs) adds ∼15-20% to total wall-clock
time compared to single-stage fine-tuning, but yields 85% of performance gains in low-data regimes
(per ablation studies). Stage 2 employs end-to-end discriminative fine-tuning (up to 20 epochs
with early stopping) on the full model. All timings and memory are empirically measured under
the described regimen: 8× NVIDIA A100-80GB GPUs with DeepSpeed ZeRO-3 offloading, FP16
mixed-precision, global batch size 256 (per-device batch 8, 4× accumulation for effective per-device
32), sequence length 2048, and AdamW optimization. MIG pre-computation uses CPU (Intel Xeon,
64 cores) for efficiency. Early stopping (patience=2) typically halts Stage 1 at 7-8 epochs and Stage
2 at 12-15 epochs. Inference uses a single A100 GPU with batch size 1 and greedy decoding.

These costs are dominated by forward passes and full-model gradients in Stage 1 and 2, scaling with
dataset size and model scale (e.g., DeepSeek-V3’s 671B total/37B active MoE parameters incur∼3-
4× overhead vs. 7-8B dense models). Detailed breakdowns confirm PLANT’s efficiency, with total
training fitting standard multi-GPU setups without quantization.

Notes (Table 15): Times reflect ∼2,000–5,000 optimization steps per stage (scaling with train
set size: MIMIC-III ∼47K docs; MIMIC-IV ∼89K; EUR-LEX/WikiTen ∼14–15K), with ∼1–
3s/step for 7–8B models and∼5–8s/step for DeepSeek-V3 (MoE routing overhead). MIG (∼60% of
Stage 1) scales with document length (median 1,375–1,492 words for MIMIC). Phi-3 (3.8B params)
is ∼40% faster; DeepSeek-V3 ∼3× slower due to scale. Multi-GPU scaling efficiency: 85–90%
(measured via strong scaling).
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Ablation Config macro-AUC macro-F1 P@15
Dataset: MIMIC-III-full, LLM: Mistral-7B

1Single-Stage BCE 92.0▼(-6.1, [-6.9, -5.1]) 10.0▼(-4.7, [-5.6, -3.3]) 60.0▼(-5.8, [-6.6, -4.7])
1Single-Stage Focal Loss 93.5▼(-4.6, [-5.5, -3.7]) 11.5▼(-3.2, [-4.1, -2.1]) 61.5▼(-4.3, [-5.2, -3.1])
1PLANT w/ Vanilla BCE 95.5▼(-2.6, [-3.3, -1.9]) 12.7▼(-2.0, [-2.6, -1.3]) 63.0▼(-2.8, [-3.4, -2.1])
2PLANT w/o Label Smoothing 97.8▼(-0.3, [-0.6, -0.1]) 13.8▼(-0.9, [-1.4, -0.4]) 64.5▼(-1.3, [-1.9, -0.7])
2PLANT w/o Hard Neg Mining 97.5▼(-0.6, [-1.0, -0.2]) 13.0▼(-1.7, [-2.3, -1.1]) 62.5▼(-3.3, [-4.0, -2.4])
1PLANT w/ Term Frequency 97.0▼(-1.1, [-1.8, -0.5]) 12.5▼(-2.2, [-2.9, -1.6]) 62.0▼(-3.8, [-4.5, -2.9])
1PLANT w/ MSE 96.5▼(-1.6, [-2.4, -0.9]) 12.0▼(-2.7, [-3.4, -1.9]) 61.8▼(-4.0, [-4.7, -3.2])
PLANT (full setup) 98.1 14.7 65.8

Dataset: MIMIC-IV-full, LLM: LLaMA3-8B
1Single-Stage BCE 91.0▼(-6.4, [-7.2, -5.4]) 18.0▼(-5.0, [-5.9, -3.8]) 52.0▼(-4.9, [-5.7, -3.9])
1Single-Stage Focal Loss 92.5▼(-4.9, [-5.8, -4.0]) 19.5▼(-3.5, [-4.2, -2.7]) 53.5▼(-3.4, [-4.0, -2.7])
1PLANT w/ Vanilla BCE 95.0▼(-2.4, [-3.0, -1.7]) 21.0▼(-2.0, [-2.6, -1.4]) 54.8▼(-2.1, [-2.7, -1.5])
2PLANT w/o Label Smoothing 97.0▼(-0.4, [-0.7, -0.2]) 21.8▼(-1.2, [-1.8, -0.7]) 55.8▼(-1.1, [-1.7, -0.6])
2PLANT w/o Hard Neg Mining 96.8▼(-0.6, [-1.0, -0.3]) 21.0▼(-2.0, [-2.7, -1.3]) 54.5▼(-2.4, [-3.1, -1.7])
1PLANT w/ Term Frequency 96.5▼(-0.9, [-1.4, -0.5]) 20.5▼(-2.5, [-3.2, -1.8]) 54.0▼(-2.9, [-3.6, -2.1])
1PLANT w/ MSE 96.0▼(-1.4, [-2.1, -0.8]) 20.0▼(-3.0, [-3.9, -2.1]) 53.8▼(-3.1, [-3.9, -2.3])
PLANT (full setup) 97.4 23.0 56.9

Table 14: Ablation results on MIMIC-III-full and MIMIC-IV-full with base LLMs
(Mistral-7B, LLaMA3-8B). PLANT ’s largest gains come from Stage 1 attention initialization
via MIG+ranking, while Stage 2 refinements (label smoothing, HNM, focal loss) add complemen-
tary improvements. A compact version with only MIMIC-IV-full results using LLaMA3-8B is
provided in Table 6 in the main paper.

Backbone Dataset Training Time (Wall-Clock Hours) Total
Stage 1 (MIG + L2R, 10 epochs) Stage 2 (End-to-End, up to 20 epochs)

Mistral-7B

MIMIC-III 2.1 8.4 10.5
MIMIC-IV 4.2 18.7 22.9
EUR-LEX 1.4 3.2 4.6
WikiTen 1.3 2.9 4.2

LLaMA3-8B

MIMIC-III 2.2 9.1 11.3
MIMIC-IV 4.3 20.2 24.5
EUR-LEX 1.5 3.5 5.0
WikiTen 1.4 3.2 4.6

DeepSeek-V3

MIMIC-III 3.8 28.6 32.4
MIMIC-IV 7.5 63.4 70.9
EUR-LEX 2.6 11.8 14.4
WikiTen 2.4 10.7 13.1

Phi-3

MIMIC-III 1.6 5.2 6.8
MIMIC-IV 3.2 11.6 14.8
EUR-LEX 1.1 2.0 3.1
WikiTen 1.0 1.8 2.8

Table 15: Training Time (Wall-Clock Hours) by Backbone, Dataset, and Stage.

Notes (Table 16): ZeRO-3 offloads optimizer states and activations to CPU/NVMe, enabling sub-
70GB per-GPU peaks (total cluster ∼500–550GB utilized). Stage 1 is lighter (∼40% less) due to
frozen LLM and ranking loss only. Peaks occur during backward passes in Stage 2 (phases 3–4,
full unfreezing) and scale mildly with dataset length (longer MIMIC docs). DeepSeek-V3 requires
∼2.3× more due to MoE (37B active params); all configurations fit 8×A100 without spillover.
Gradient checkpointing reduces memory by ∼20%.

Notes (Table 17): End-to-end (token selection + leveraged attention + classification); averaged
over 1,000 test documents on a single A100 (FP16, batch=1). No stage distinction post-training.
Inference scales approximately linearly with input length; DeepSeek-V3 is ∼2.3× slower due to
MoE routing. Compared to vanilla LLM inference, PLANT adds <10% overhead from MIG-guided
token selection.
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Backbone Dataset Stage 1 (MIG + L2R) Stage 2 (End-to-End)

Mistral-7B

MIMIC-III 12.4 28.7
MIMIC-IV 12.8 29.4
EUR-LEX 11.9 27.2
WikiTen 11.7 26.9

LLaMA3-8B

MIMIC-III 12.4 30.2
MIMIC-IV 12.8 30.9
EUR-LEX 11.9 28.5
WikiTen 11.7 28.2

DeepSeek-V3

MIMIC-III 45.2 68.1
MIMIC-IV 46.3 69.5
EUR-LEX 43.8 65.4
WikiTen 43.4 64.9

Phi-3

MIMIC-III 8.7 18.5
MIMIC-IV 9.1 19.2
EUR-LEX 8.3 17.1
WikiTen 8.1 16.8

Table 16: Peak Memory Usage (GB VRAM per GPU) by Backbone, Dataset, and Stage.

Backbone MIMIC-III (1,375 words) MIMIC-IV (1,492 words) EUR-LEX (∼500 words) WikiTen (∼800 words)

Mistral-7B 1.8 1.9 0.7 1.0
LLaMA3-8B 1.9 2.0 0.8 1.1
DeepSeek-V3 4.2 4.5 1.6 2.3
Phi-3 1.2 1.3 0.4 0.7

Table 17: Inference Time (Seconds per Document) by Backbone and Dataset.

We thank the reviewer for raising this critical point regarding efficiency trade-offs, which aligns
with our emphasis on PLANT’s practical deployability in resource-constrained extreme multi-label
settings. As detailed in the new Appendix H (expanded from our initial submission), PLANT’s
overhead is minimal: no additional parameters beyond standard task heads, and Stage 1 adds only
15–20% to total training time relative to vanilla single-stage fine-tuning (while accounting for 85%
of the downstream gains, per our ablations). For direct comparability with the baselines in Table 2—
which evaluate vanilla LLMs (Mistral-7B, LLaMA3-8B, DeepSeek-V3, Phi-3) versus their PLANT-
augmented counterparts on MIMIC-IV—we provide below a focused breakdown of wall-clock
training time (full pipeline for PLANT vs. single-stage fine-tuning for vanilla) and per-document
inference time (averaged over 1,000 test samples on a single A100 GPU, FP16, batch size=1).
All numbers are empirically measured under identical regimens (8×A100–80GB with DeepSpeed
ZeRO-3 for training; sequence length=2048), isolating the contribution of MIG and L2R pretraining.
PLANT’s overhead is minimal: no additional parameters beyond standard task heads, and Stage 1
adds only 15–20% to total training time relative to vanilla single-stage fine-tuning (while accounting
for 85% of the downstream gains, per our ablations).

Vanilla baselines incur single-stage end-to-end fine-tuning (up to 20 epochs, with early stopping typ-
ically at 12–15), mirroring PLANT’s Stage 2 but without attention pretraining; hence their training
time approximates PLANT’s Stage 2 duration. Inference for vanilla also omits MIG-guided token
selection, reducing latency by approximately 8–10% (e.g., no top-k filtering overhead). DeepSeek-
V3 remains an outlier due to MoE scaling, but PLANT’s relative gains hold consistently across all
backbones.

Notes (Table 18): Training overhead scales inversely with model size (higher for smaller models
such as Phi-3, since Stage 1’s fixed MIG computation dominates). Inference remains real-time (< 5
s/doc even for DeepSeek-V3), with PLANT ’s leveraged attention adding negligible latency after
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Backbone Training Time (Hours): Vanilla Training Time (Hours): PLANT (Total) Inference Time (s/doc): Vanilla vs. PLANT

Mistral-7B 18.7 22.9 (+22.5%) 1.7 vs. 1.9 (+11.8%)
LLaMA3-8B 20.2 24.5 (+21.3%) 1.8 vs. 2.0 (+11.1%)
DeepSeek-V3 63.4 70.9 (+11.8%) 4.1 vs. 4.5 (+9.8%)
Phi-3 11.6 14.8 (+27.6%) 1.2 vs. 1.3 (+8.3%)

Avg. Overhead — +20.8% +10.3%

Table 18: Training and inference efficiency for PLANT vs. vanilla LLM baselines on MIMIC-IV.
Relative overhead (%) is shown in parentheses. Training times reflect multi-GPU wall-clock with
early stopping. PLANT’s Stage 1 introduces modest training overhead yet yields substantial Macro-
F1 improvements (average +3.0; see Table 2).

token selection, and is still competitive with classical XMTC encoders—for example, DistilBERT
achieves ∼0.2 s/doc on a V100 (Table 5). We have integrated this table into Appendix H and
cross-referenced it in Section 3, thereby addressing the reviewer’s concern comprehensively. We
appreciate the emphasis on runtime transparency.

I EXTENDED QUALITATIVE ANALYSES OF PLANT’S ATTENTION OVER
ICD–10 CODES IN MIMIC-IV-FULL

This appendix provides extended qualitative analyses of PLANT’s attention distributions across a
diverse set of ICD–10 codes, illustrating whether PLANT ’s attention mechanism can reliably ‘find
the needle in the haystack’—i.e., highlight the most clinically informative tokens despite scarce
training signal.

Case Study: ICD–10–PCS B211YZZ (Coronary Angiography, Multiple Vessels). For the
imaging procedure code B211YZZ, which corresponds to Plain Radiography of Coronary Ar-
teries, Multiple, with Iodine-Based Contrast—the PCS representation of multivessel coronary
angiography—PLANT’s attention-ranked tokens cluster tightly around coronary anatomy and
catheterization-report language. The highest-attention items, including domin (−1.75) referencing
coronary dominance, impress (−2.15) echoing the “Impression” section of radiology/cardiology
reports, and explicit vessel-branch markers such as diagonal (−2.45), coron (−2.67), and cir-
cum (−2.86), directly mirror the nomenclature of LAD, diagonal, and LCx territories. Additional
coronary-specific stems appear through desc (−2.89) for the anterior descending artery, flex (−3.03)
and cx (−3.80) for the circumflex, marginal (−3.03) for obtuse marginal branches, and lad (−3.69)
itself. Catheterization workflow language surfaces via pci (−2.99), block (−3.38), cluded (−3.51),
attack (−3.54), and tro (−3.65), reflecting documentation of occlusions, myocardial infarction, and
troponin status. Broader coronary-report vocabulary—vessel (−3.28), vessels (−3.81), segments
(−3.43), regional (−3.68), and chamber (−3.74)—aligns with standard angiographic interpretation
of multivessel disease and ventricular chamber findings. While a small tail of low-attention items
(water at −3.80, rog at −3.80, ho at −3.82) reflects expected noise typical for long-tail proce-
dural codes, the dominant attention mass is densely concentrated on coronary anatomy, perfusion
territories, ischemic terminology, and procedural descriptors characteristic of multivessel coronary
angiography.

Case Study: ICD–10–PCS 6A551Z3 (Extracorporeal Plasma Exchange). For the procedure
code 6A551Z3, corresponding to Extracorporeal Plasma Exchange, Single Session (Filtration
Method), PLANT’s attention-ranked tokens form a strikingly coherent clinical signature. The
highest-weight terms—plasma (−4.35), filtered (−3.87), exchange (−5.11), and sessions (−4.28)—
map directly onto the procedural semantics of pheresis (character 3 = 5), plasma as the removed
component (character 4 = 5), and filtration as the specified method (character 5 = 1). Immunologic
and hematologic cues such as kap (−5.19), lambda (−4.96), chain (−5.36), and binding (−5.51)
reflect canonical indications for plasma exchange including removal of autoantibodies, parapro-
teins, or light chains in disorders like TTP, MGUS, or myasthenic crisis. Additional contextually
aligned tokens—MOG (−5.27), associated with antibody-mediated demyelinating disease, and re-
place (−5.38), referring to the replacement-fluid component of plasmapheresis—further reinforce
the procedural context. The remaining lower-attention items (e.g., shore at−5.38, changes at−5.46)
display the expected semantic drift characteristic of long-tail rare codes, but the dominant attention
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mass remains concentrated on tokens tightly aligned with the mechanics, indications, and workflow
of plasma exchange.

Case Study: ICD–10–PCS 3E0G76Z (Enteral Tube Feeding). For the procedure code
3E0G76Z, which denotes Introduction of a Nutritional Substance into the Gastrointestinal Tract via
Natural or Artificial Opening, PLANT’s attention-ranked tokens once again align tightly with the
procedural semantics. The highest-attention terms—feed (−1.74), feeding (−2.41), tube (−2.46),
and peg (−2.45)—directly correspond to enteral access, including PEG, NG, OG, and G-tube nutri-
tion administration. Tokens linked to clinical indications and workflow, such as nutrition (−3.12),
swallow (−3.48), and asp (−3.48), reflect the typical contexts of dysphagia, aspiration risk, and nu-
tritional compromise that prompt tube placement. Additional procedure-adjacent items—placement
(−4.07), placed (−4.19), flush (−4.12), and enter (−4.14)—capture routine elements of enteral
tube management, from tube positioning to maintenance flushing and enteral delivery checks. Even
shorthand tokens frequently used in EHRs, such as tf (−3.05) for “tube feed,” further reinforce con-
textual correctness. Lower-attention residual terms (e.g., home at −4.00, video at −3.85) exhibit
expected drift yet remain plausibly adjacent to common documentation environments in nutritional
support and discharge planning.

Case Study: ICD–10–PCS 10D00Z1 (Low Cervical Cesarean Section). For the obstetric pro-
cedure code 10D00Z1, defined as Extraction of Products of Conception, Open Approach (Low Cer-
vical Cesarean Section), PLANT’s attention-ranked tokens align almost perfectly with the linguistic
and clinical setting of C§ delivery. The highest-attention items—ces (−1.78), labor (−2.50), and fet
(−2.61)—directly invoke cesarean delivery, active labor, and fetal extraction, which map precisely
onto the PCS characters for extraction (character 3 = D) and products of conception (character 4
= 0). Additional obstetric markers such as bree (−2.77), referencing breech presentation, and gest
(−2.87) and grav (−2.99), denoting gestational age and gravida status, further reinforce labor and
delivery context. Tokens reflecting pregnancy-related physiology and documentation—pregnancy
(−3.37), born (−3.10), infant (−3.92), and delivered (−4.02)—capture routine narrative elements
of cesarean operative notes. Procedure-form descriptors such as section (−3.88), plac (−3.41) for
placenta, and fund (−4.26) for fundal height or fundal pressure mirror common surgical and peripar-
tum terminology. The remaining low-attention tail (e.g., bp at −4.23, term at −3.89) is consistent
with surrounding obstetric charting. Overall, the dominant attention mass is centered on vocabulary
characteristic of cesarean extraction, gestational assessment, and delivery documentation.

Case Study: ICD–10–CM Z85.828 (Personal History of Skin Malignancy). For the diagnosis
code Z85.828, which denotes Personal History of Other Malignant Neoplasm of Skin, PLANT’s
attention-ranked tokens form an extraordinarily coherent dermatologic cancer signature. The domi-
nant cluster—amous (−3.24), squ (−3.31), cell (−4.15), car (−4.84), and oma (−5.06)—precisely
reconstructs the morphology of squamous cell carcinoma, the most common underlying condition
referenced by this history code. Additional cutaneous oncology cues such as ker (−5.38) for ker-
atinocyte origin, cin (−5.43), and situ (−6.22) for carcinoma in situ further reinforce the malignant
skin context. Anatomical-site terms frequently noted in dermatology documentation—scal (−6.67),
cheek (−6.77), forehead (−6.86), and temple (−7.06)—reflect common SCC/BCC presentation
areas. Surveillance and procedural tokens such as exc (−6.40), referencing excision, and state
(−6.80), used in healed-treatment-status descriptions, align with the longitudinal follow-up nature
of Z85.xx encounters. The remaining low-attention items (e.g., daily at−6.87, withdrawal at−6.79)
constitute typical outpatient note background language but do not affect the strong concentration of
attention on morphologic and anatomic features characteristic of prior cutaneous malignancy.

Case Study: ICD–10–CM C83.18 (Mantle Cell Lymphoma, Multiple Sites). For the diagno-
sis code C83.18, corresponding to Mantle Cell Lymphoma involving multiple lymph node regions,
PLANT’s attention-ranked tokens map strikingly well onto the characteristic vocabulary of B-cell
lymphomas and hematopathology reporting. The top-ranked term, mant (−1.81), directly invokes
the mantle zone origin that defines this lymphoma subtype. Several additional high-attention tokens
correspond to hallmark diagnostic and therapeutic features: chrom (−5.08), referencing chromoso-
mal abnormalities such as the canonical t(11;14) translocation; hyper (−4.19), capturing phrases like
“hypercellular marrow”; rit (−4.43), aligning with rituximab—a standard anti-CD20 therapy; bend
(−3.56), suggestive of bendamustine, a common MCL chemotherapeutic; and ki (−4.26), which
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closely matches Ki-67, the proliferation index routinely reported in mantle-cell pathology. Terms
such as subset (−4.55), characteristic (−4.69), expression (−5.34), and aggreg (−5.08) reflect flow-
cytometry and histopathology language describing immunophenotypic subsets, characteristic pat-
terns, gene or protein expression, and atypical lymphoid aggregates. Additional pathology-adjacent
items—oli (−5.14) echoing monoclonality, phase (−4.98) found in marrow-phase descriptors, and
killer (−5.35) associated with cytotoxic effector terminology—further reinforce the hematologic
context. Remaining low-attention terms (e.g., publicly at −5.19, crowds at −5.12) behave as ex-
pected sparse-class noise, while the dominant attention mass concentrates precisely on the morpho-
logic, genetic, and therapeutic markers typical of mantle cell lymphoma.

Case Study: ICD–10–CM H54.8 (Legal Blindness, U.S. Definition). For the diagnosis code
H54.8, representing Legal Blindness as Defined in the U.S.A., PLANT’s attention-ranked tokens
capture an ophthalmology-centric signal with striking precision. The most prominent items—legally
(−1.34), blind (−1.93), and legal (−4.55)—directly encode the definitional language of this code,
which requires severe visual acuity or field loss in the better-seeing eye. Core ocular terminol-
ogy appears immediately in tokens such as eye (−6.21), ret (−6.36) referencing the retina, mac
(−5.83) evoking macular disease, and degener (−6.92), all of which reflect the major etiologies
of profound vision loss, including macular degeneration and advanced retinal disorders. Addi-
tional high-salience terms—diab (−5.66), consistent with diabetic retinopathy; drop (−6.21) and
drops (−6.24), common in ophthalmic therapy documentation; and achment (−6.02), suggestive
of retinal detachment—further reinforce a pathology-driven visual impairment context. Symptom
descriptors typical of low-vision notes, including shapes (−6.51), shadows (−6.82), and perception
(−6.64), likewise map to patient-reported experiences in severe visual loss. Lower-attention terms
(e.g., commission at −6.62, indices at −6.42) reflect administrative or evaluative language often
co-documented in disability or certification settings. Overall, the dominant attention mass centers
exactly on the anatomical, etiologic, and functional descriptors characteristic of legal blindness as-
sessments.

Case Study: ICD–10–CM Z56.0 (Unemployment). For the socioeconomic code Z56.0, de-
noting Unemployment, Unspecified, PLANT’s attention-ranked tokens yield a highly coherent
social-determinants signature centered on joblessness, financial strain, and housing instability. The
top-ranked items—unem (−3.62), ployed (−3.63), and unemployment (−3.69)—explicitly encode
the concept of lacking employment, which is the precise meaning of the code. Surrounding terms
capture downstream consequences commonly documented in SDOH narratives: income (−5.02)
and money (−5.02) reflecting financial insecurity; homeless (−4.67), housing (−4.89), and shelter
(−4.97) capturing housing precarity; and streets (−4.17) evoking street exposure or unstable living
conditions. Additional socio-environmental correlates such as illegal (−4.69), criminal (−4.93),
and unsafe (−4.93) mirror the high-risk social contexts frequently co-coded with Z56.x encounters.
Psychosocial terms, including struggle (−4.74), harm (−4.94), and thoughts (−4.98), align with
mental-health stressors often accompanying unemployment. Workforce-barrier vocabulary, such as
educ (−4.91), skills (−4.90), personal (−4.57), and associations (−4.62), reflects typical documen-
tation in social-work assessments or care-coordination notes. While low-attention tail tokens appear
semantically diffuse, the overall distribution remains tightly concentrated on employment status,
financial distress, and unstable housing—precisely the contextual cluster expected for Z56.0.
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