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ABSTRACT

State-of-the-art Extreme Multi-Label Text Classification models rely on multi-
label attention to focus on key tokens in input text, but learning good atten-
tion weights is challenging. We introduce PLANT—Pretrained and Leveraged
AtteNTion—a plug-and-play strategy for initializing attention. PLANT works
by planting label-specific attention using a pretrained Learning-to-Rank model
guided by mutual information gain. This architecture-agnostic approach integrates
seamlessly with LLM backbones (e.g., we consider Mi st ral-"7B, LLaMA3-8B,
DeepSeek-V3, and Phi—3). PLANT outperforms SOTA methods across tasks
like ICD coding, legal topic classification, and content recommendation. Gains
are especially pronounced in few-shot settings, with substantial improvements on
rare labels. Ablation studies confirm that attention initialization is a key driver of
these gains. We make our code and trained models javailable.

1 INTRODUCTION

Extreme Multi-Label Text Classification (XMTC) entails assigning the most relevant subset of la-
bels to a given instance from a (very) large label set. This setting emerges naturally in domains
featuring vast, structured taxonomies such as e-commerce, legal categorization, and healthcare. In
such settings, manual labeling is both costly and error-prone. For example, in clinical settings (Ta-
ble[T), ICD coding—the task of assigning standardized codes for diagnoses and procedures based
on clinical notes (Moons et al.l 2020; WHO, [2025)—may be viewed as an instance of XMTC.

428.0: Congestive heart failure 202.8:  Other malignant lym- 770.6: Transitory tachypnea of

phomas newborn
- DIAGNOSES: Acute con- --- 55 year-old female with non --- Chest x-ray: transient
gestive heart failure, Diabetes Hodgkin’s lymphoma and C1 tachypnea of the newborn with
mellitus, Pulmonary edema - - - esterase inhibitor deficiency - - - respiratory distress - - -

Table 1: Examples of clinical text with ICD codes (Wang et al., [2024d; |[Zhang et al., |2025). Blue:
code/label; red bold: disease mentions; teal: other relevant clinical findings.

Building XMTC models is challenging due to the high-dimensional label space and heavily skewed
label distributions Bhatia et al.|(2016). For example, in ICD coding there can be 170000 unique
codes (CDC, |2024). Many are rare: In the MIMIC-III dataset Johnson et al.| (2016) approximately
5411 out of 8929 codes appear <10 times. The task is further exacerbated by the often lengthy
narratives in clinical texts. For example, in the MIMIC-III dataset, discharge summaries frequently
contain detailed clinical histories comprising an average of 709.3 tokens, and often exceeding 1500
tokens (Johnson et al., |2016j 2023} [Mullenbach et al., 2021; Nguyen et al., 2023). However, only a
small fraction of these tokens are informative for assigning relevant ICD codes.

LLMs can be used zero-shot for XMTC tasks, but this poses challenges. For instance, prompts for
such tasks tend to include long and flat label lists, resulting in attention dilution: The fixed attention
budget is spread thin across thousands of tokens, weakening focus on rare tail labels (Peysakhovich
& Lerer, 2023} [Vandemoortele et al., [2025). This limitation is similarly evident in long-context
retrieval tasks (Kamradt, 2023} Hsieh et al.| [2024; Liu et al.,|[2024a)), where LLMs struggle to locate
relevant items. Task-specific fine-tuning may address such issues by embedding knowledge of the
labels directly into model parameters during training, obviating the need for attention over long label
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Figure 1: PLANT Attention. On the left, the MultiHead — Attention module (Vaswani et al., 2017),
parameterized by W ., takes as input queries Q = E (label embeddings), keys K = H;, and
values V = H;, and produces S € RI£I*™ representing the token-level attention distribution for
each label. The orange box highlights the set of top-k tokens per label, 7;, selected via Mutual
Information Gain 7;; between labels and tokens. Within this set, two tokens j (red) and h (blue)
are compared, with ;7 being more relevant than h. The MultiHead —Attention module is trained
to maximize the probability of correctly ranking tokens j and i (P(j > h)), while penalizing
incorrect rankings in proportion to their impact on the nDCG@k metric if j and h were swapped
(|AnDCGQE|;). Finally, the summation box aggregates over all token pairs in 7;, yielding the
PLANT objective—(nDCG term x probability term)—that is optimized to initialize W n.

lists in the prompt and thus mitigating attention dilution (Yang et al., | 2023a; Boukhers et al.| 2024;
Zhang et al.||2025]; [Barreiros et al., 2025).

In current approaches to XMTC, attention mechanisms|Bahdanau et al.[(2014) help address the chal-
lenges of high-dimensional, skewed label spaces. Existing XMTC models (Lu et al., 2023} Li et al.,
2023 |Nguyen et al., 2023} |Yang et al., [ 2023b; |Chen et al.,2023aj; /Zhang & Wang|, |2024; |Luo et al.,
2024])) almost always include a multi-label attention layer that allocates per-label attention weights
to the input tokens (Wang et al.,|2023a} [Xiong et al.,|2023;|Yuan et al.} 2024} Liu et al.,[2025b). In-
tuitively, this is akin to a dedicated “spotlight” for each label: in high-dimensional spaces, it avoids
the inefficiency of a single global focus by creating tailored text representations that highlight most
relevant tokens per label. For skewed distributions, this ensures subtle cues for tail labels are not
overshadowed by head labels, enabling better prediction of sparse classes.

Regardless of the specific encoder architecture, removing this attention layer significantly harms
performance. A recent study by Xiong et al.| (2023) highlights the importance of label-specific
attention for product-to-tag matching by showing that removing this component leads to a sharp
drop in PQ@1 (-15.69 points). Elsewhere, results on scientific paper classification show that stacking
attention layers further boosts performance: Micro-F1 improves by a few points, showing that deeper
attention enhances the model’s capacity to represent label-specific features Liu et al.[(2025b)).

The premise of this work is that we can be smarter about how we initialize attention module
weights. SOTA XMTC models begin with random label attention weights, requiring ranking all
tokens for each label from scratch. This is data-intensive due to the high-dimensional label space.
Skewed label distributions exacerbate this issue, as rare labels require even more data. Insufficient
data, however, causes models to require more training epochs, often leading to overfitting rather
than meaningful generalization—ultimately hurting rare label performance. Studies like Edin et al.
(2023) show that SOTA models struggle to predict rare ICD diagnosis codes (Figure [2a)). Models
perform similarly across codes with comparable frequencies, indicating that the high proportion of
rare codes impacts performance. Correlations between code frequency and F1 score are moderately
high, showing that rare codes are predicted less accurately than common ones. This underscores the
need for efficient attention mechanisms, as starting with random weights may be suboptimal.

Building on evidence that label-specific attention is pivotal in XMTC—its removal leads to sharp
performance drops—we argue that how this attention is initialized is also crucial. By PLANT ing
attention (i.e., seeding it with mutual-information signals and pretrained Learningto-Rank activa-
tions), we inject label-specific priors that boosts rare label performance, similar to how fine-tuning
pretrained models outperforms training from scratch.

2
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Figure 2: (a) Rare codes have near-zero macro-F1. (b) Macro-F1 distribution on

MIMIC-III-few for rare codes across CO-RELATION (Luo et al) [2024) (mean=0.054),
Mistral-75 (0.309), and Mistral-78 +PLANT (0.663). Mistral-78 +PLANT yields far
more rare codes with higher F1. See Section E] (RQ4).

Our main contributions are as follows: (1) We introduce PLANT (Pretrained and Leveraged
AtteNTion), a plug-and-play strategy for initializing attention. PLANT replaces random ini-
tialization with relevance-guided attention weights via a two-stage framework: Stage 1 pre-
trains the attention layer as a Learning-to-Rank (L2R) module using mutual information; Stage 2
leverages these weights to train the full model end-to-end, improving rare-label performance.
PLANT is architecture-agnostic and can be seamlessly integrated with LLM backbones — such
as Mistral-7B, LLaMA3-8B, DeepSeek-V3, or Phi-3— without any modification; (2) In
extensive experiments across ICD coding, legal topic classification, and content recommendation,
we report consistent gains using PLANT across backbones and datasets, and we analyze through
careful ablations which aspects of PLANT are responsible for these.

2 PLANT

In Extreme Multilabel Classification (XMTC) tasks, the goal is to assign to an input text
multiple relevant labels from a very large label set. Formally, denote the dataset by D =
{(mi,yi) |y, € {0, 1} i=1,... ,N}, where: x; is an input instance (e.g., a text document),
and y, is a binary vector indicating the presence (y;; = 1) or absence (y;; = 0) of each label | € L,
where £ denotes the label set (which may contain tens of thousands of unique labels). The objective
is to learn a prediction function fj : &; — RIZl parameterized by 6 that outputs labels for each input
@;. For each label [ € L, the output fy(x;); € R is the score assigned for the {-th label.

Model Architecture. We start with a pretrained transformer-based LLM Mp,se, selected from
widely used models such as Mistral-7B, LLaMA3-8B, DeepSeek-V3, and Phi-3, known
for strong general (Team et al.| 2023} |Grattafiori et al., |2024; Jiang et al.| 2024} [Abdin et al., [2024)
and domain-specific performance in ICD coding (Yang et al., 2022a;/2023c; [Falis et al.,[2024; | Madan
et al.| 2024} Nerella et al.| 2024 |Asensio Blasco et al.,[2025; |He et al.,[2025; [Liu et al.l|[2025a; | Yuan
et al., [2025). Due to computational constraints, we use both Low-Rank Adaptation (LoRA) and
4-bit quantization in all experiments (Frantar et al., [2022; |Hu et al., [2022} |Dettmers et al., [2023} |Liu
et all [2024b} [Aidounil [2024). We adapt Mpase into Mqgapt; see Appendix@for details.

Given an input x;, we tokenize it into ¢; and pass it through the adapted model M ,g,pt to Obtain
hidden states: H; = Mqapt(t;) € R™*" where n is the sequence length and h the hidden size. We
extract the final token’s representation h,, € R" for label prediction.

Specifically, we define trainable label embeddings E € RI“I*" one per label. These embeddings

serve as query vectors in a multi-head attention module. The module, denoted as MultiHead, defines
learnable parameters W ,in:

Q=E, K&V =H,;, A,S=MultiHead|Q,K,V;W_.,), AeRIx" gecRlExn,
(1)
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where Q, K, and V represent the query, key, and value inputs, respectively. During training, the
parameters W ., are optimized to learn label-specific attention weights S, which determine how
each label query attends to tokens in the sequence, and the output A, which represents the attended
representations for each label query.

The resulting attention output is boosted by learnable matrices B,,B,, € RIZIXM a5t Apoost =
B, + A - B,,, where - denotes element-wise multiplication. This “boosts” label-specific signals in
a learned, differentiable manner. This is motivated by the need to enhance task-specific signals in
recent Mixture-of-Experts (MoE) frameworks Cai et al.| (2024)); |Yu et al.|(2024);|Chen et al.|(2023b).
An adaptive average pooling layer reduces the dimensionality of Apyos t0: P; = Pool(Apoost) €

RI£IxP_ 1 A shared linear projection W, € RP*! then computes the final logits as ¢, = P;W . €
RIZI| each entry in y; is the predicted (raw) relevance score for the corresponding label.

TwoO-STAGE TRAINING

PLANT entails a two stage optimization strategy. The first focuses on pretraining MultiHead (Equa-
tion[I)) label-wise attention weights; the second entails fine-tuning the model end-to-end.

STAGE 1: PRETRAINING ATTENTION AS L2R (FIGUREE]) In Stage 1 we train the multi-head
attention module parameters (Mgqpi, F5 and MultiHead). The MultiHead module outputs label-

specific attention scores S = [slj] S R‘E‘X”, where s;; is the attention score for token j with
respect to label [.

We train this following a learning-to-ranking objective focused on the top-k tokens per label selected
by Mutual Information Gain (MIG) computed from the training set

wt. for pairwise swap impact

I£]
[,5;2“((5) =— Z Z |AnDCG@k|;; x log, (1+ e_"(slj_slh))_l )
=1 , )
MIG relevance — ﬁthfﬂ (differentiable) JA
approx ranking prob.
where r; = [r;;] € R" represents the ground-truth relevance of tokens for label [, derived from

the MIG between tokens and labels; 7; is the set of top-k tokens for label [, selected based on r;;;
|AnDCG@Qk|,, is the change in nDCG@k after swapping j and h in the predicted ranking, where the
predicted ranking is determined by sorting tokens in 7; by their predicted scores s;; in descending
order; and o is the sigmoid scaling factor. We test & = {500, 1000, 2000} to evaluate sensitivity.

PLANTed Attention via MIG Ranking MIG scores, denoted by r;;, quantifies how informative
token ¢; is for predicting label /. Higher r;; indicates stronger relevance of the token to the label.
Note that we empirically determined these relevance scores by computing MIG between token oc-
currences and label assignments across the training corpus (see Appendix [B.I). The ranking loss
in Equation 2| encourages the MultiHead module to assign higher attention scores (s;;) to tokens
with greater relevance. It considers token pairs (j, h) where token j is more relevant than token h

for a given label [, i.e., r;; > 7yp,. The term (1 + e—U(Szj—Szh)) o approximates the probability that
token j is ranked above token /. Each pair is weighted by |AnDCG@k| 1, which penalizes incorrect
rankings in proportion to their impact on the nDCG@k metric. This loss formulation encourages
attention scores to align with the MIG.

STAGE 2: LEVERAGING ATTENTION — FULL TRAINING In Stage 2 we train the entire model
(Section E]) end-to-end. We start with the finetuned Mg,y and the initialized weights W, and
E from Stage 1. We optimize the model under focal loss with label smoothing and hard negative
mining to address label imbalance (Ben-Baruch et al., 2020; Xiong et al., |2023). The detailed
formulation of the focal loss is provided in Appendix [A| (Eq. [3).

'See Appendix ﬂ for the number of attention heads in Equation|1|and output size p used in pooling.
2See Appendix for details on pre-computing MIG for a corpus.
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To address the challenge of imbalanced labels, where negative labels often dominate, hard negative
mining is applied to focus the loss on the most informative examples. This selects all positive labels
(yy = 1) and the top-m negative labels (y; = 0) with the highest predicted probabilities o (),
where m = 1000. The focal loss is then computed over this selected subset S; C L by restricting
the summation in Eq. [3|to S;. We refer to this as the HNM-augmented focal loss. This approach
ensures the model prioritizes learning from difficult negative examples, improving performance on
challenging cases. (as shown in Ablation Section )

3 EXPERIMENTS

Datasets, Baselines & Implementation: We evaluated PLANT against SOTA models on the
MIMIC-IV/III-full datasets, which comprise discharge summaries annotated with ICD-9
and ICD-10 codes, respectively. For few-shot learning, we used MIMIC-III-rare50 and
MIMIC-III-few subsets to focus on rare codes. To assess generalizability, we also evaluated
PLANT on publicly available legal topic classification (EURLEX-4K, over long legal documents)
and content recommendation (WIKI10-31K, tag prediction for Wikipedia-style texts). Dataset
descriptions, implementation, baselines & evaluation metrics are in App.[C] [D]and [E] respectively.

Notation. */7 mark significant gains/drops (a«=0.05, Wilcoxon [Demsar|2006; see App. ), shown
only if the test passes and the 95% CI excludes 0. Gains/drops are followed by the CI in plum. Bold
= best per metric.

RQ1: How effective is PLANT ’s two-stage across LLM backbones? Table[2|compares the per-
formance of four LLM backbones (Mistral-7B, LLaMA3-8B,DeepSeek-V3, Phi{%ﬂrained
end-to-end with HNM-augmented focal loss versus PLANT ’s two-stage training (Section
which, in stage 2, adopts the same HNM-augmented focal loss, on MIMIC-III-full and
MIMIC-IV-full. We report the average absolute gains obtained by computing the mean differ-
ence between each LLM and its PLANT-enhanced counterpart for a given metric. Table2]highlights
the gains from integrating PLANT: green rows show PLANT-enhanced results, with consistent im-
provements across all metrics and average gains summarized in the last row.

Notably, much smaller models integrated with PLANT outperform significantly larger LLMs
used alone. For instance, on MIMIC-III-full, LLaMA3-8B +PLANT (8B) outperforms
DeepSeek-V3 (336B) by +1.8 in F1 (Macro) and +3.0 in P@15. Similarly, Phi—3 +PLANT
(3.8B) surpasses DeepSeek—-V3 by +2.0 in F1 (Micro) and a substantial +7.1 in AUC (Macro).
This trend persists across MIMIC-IV—-full as well: LLaMA3-8B +PLANT achieves gains of
+3.7 in F1 (Macro) and +3.5 in P@15 over DeepSeek-V3. These results highlight the efficiency
of PLANT, which permits smaller models to surpass much larger LLMs across key metrics.

RQ2: Does PLANT[]| outperform SOTA models on ICD-10 code classification? Table
compares PLANT with SOTA models on MIMIC-IV—-full. Performance comparison across
MIMIC-III-full and MIMIC-III-top50 is provided in Table [I0] in Appendix [G] On
MIMIC-IV-full, which exhibits a more skewed label distribution (see Table[7), PLANT demon-
strates average gains of +0.2-1.4, including a +0.7 (95% CI: 0.5-1.0) gain in F1 (Macro) and a
+1.4 (95% CI: 1.0-1.9) improvement in Precision@8 over SOTA baselines. PLANT ’s larger
performance gains on MIMIC-III-full and MIMIC-IV-full for the macro-averaged metrics
highlight its effectiveness in addressing label imbalance.

RQ3: How effective is PLANT on rare labels? Tabled|evaluates PLANT against SOTA models
on MIMIC-III-few (labels appearing in fewer than 5 samples) and MIMIC-III-rare50 (50
most rare labels) subsets of MIMIC-ITI-full. PLANT significantly outperforms all baselines.
On MIMIC-III-few, PLANT achieves substantial aggregate gains of +30-49 across F1, Preci-
sion, and Recall, including a +36.1 (95% CI: 30.5-41.7) gain in F1 (Macro) and a +48.1 (95% CI:
42.6-54.0) gain in Recall (Macro). For MIMIC-TIII-rare50, PLANT demonstrates even larger
improvements, with average gains of +9—49 across metrics, notably a +48.6 (95% CI: 41.2-56.4)
gain in F1 (Macro).

3See Appendix E]for LLM details.
“In this setting the base LLM Maee for PLANT was Mistral-7B.
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AUC F1

Model P@15
Macro Micro Macro Micro

Mistral-7B 90.2 98.7 20.0 57.0 53.8
Mistral-7B +PLANT  97.44 (+7.2) 99.5% (+0.8) 23.0* (+3.0) 59.2% (+2.2) 56.9% (+3.1)
LLaMA3-8B 90.5 98.8 20.5 57.5 54.0
LLaMA3-8B + PLANT 97.6% (+7.1) 99.6* (+0.8) 23.5% (+3.0) 59.5% (+2.0) 57.0* (+3.0)
DeepSeek-V3 90.0 98.6 19.8 56.8 53.5
DeepSeek-V3 + PLANT  97.24 (+7.2) 99.4%4 (+0.8) 22.8% (+3.0) 59.0* (+2.2) 56.5% (+3.0)
Phi-3 89.8 98.5 19.5 56.5 53.2
Phi-3 + PLANT 97.04 (+7.2) 9934 (+0.8) 22.5% (+3.0) 58.8% (+2.3) 56.3% (+3.1)
Avg. gain with PLANT A+7.2 A+0.8 A+3.0 A+2.2 A+3.1

Table 2: PLANT consistently boosts all LLM backbones on MIMIC—-IV-£full. The full table
with both MIMIC-TIT-full and MIMIC-IV-full results is provided in Table[]in Appendix|[G}

RQ4: Why PLANT Is Superior to Few-Shot SOTA Models? Figure [2a shows that codes with
frequencies <10 have near-zero macro-F1 scores, highlighting the challenge of predicting rare
codes—a problem PLANT aims to address. To evaluate this, we used the MIMIC-III-few
dataset, which contains 685 codes, each appearing in <5 instances. Figure [2b] focuses on these
rare codes, effectively zooming in on the leftmost part of Figure We present violin plots (with
embedded box plots) of macro-F1 distributions for rare codes across three models: CO-RELATION
(Luo et al., [2024) (mean = 0.054), Mistral-7B (mean = 0.308), and Mistral-78B +PLANT
(mean = 0.663). Notably, 54.8% of rare codes achieve macro-F1 > 0.7 with PLANT, compared
to only 2.0% for the base Mistral-7B, and 0.6% for CO-RELATION. These results demonstrate
that integrating PLANT with a base LLM not only surpasses specialized few-shot approaches but
also markedly enhances the LLM’s capacity to model rare labels.

RQ5: How generalizable is PLANT to other imbalanced classification tasks? Table 5] evalu-
ates PLANT on two diverse tasks: legal topic classification (EURLEX—-4K) and content recommen-
dation (WIKI10-31K), both characterized by extreme label spaces and imbalanced distributions.
On EURLEX-4K, PLANT achieves aggregate gains of +0.9-2.5 across P@1, P@3, and P@5, in-
cluding a a +2.5 (95% CIL: 1.7-3.5) gain in P@3. For WIKI10-31K, PLANT shows a +2.2 (95%
CL: 1.6-2.8) gain in P@3, though it exhibits a negligible dip in P@5.

AUC F1 Precision

Model

Macro Micro Macro Micro P@s8 P@15
CoRelation (Luo et al.||2024) 97.2 99.6 6.3 57.8 70.0 55.3
PLM-CA (Edin et al.[[2024) 91.8 99.1 22.3 58.9 70.5 55.8
GKI-ICD (Zhang et al.|[2025) 97.1 99.3 20.6 58.5 70.7 55.8
GPT-4 Zero-Shot (Yuan et al.|[2025)  90.5 98.8 5.0 56.0 68.0 53.5
PLANT (Ours) 97.4 99.5 23.0 59.2 72.1 56.9

A02 0.1 Aoz Ai03 Aila Avra

[0.08,0.31]  [-0.27,0.06]  [0.48,0.95]  [0.12,0.44]  [1.01, 1.88]  [0.72, 1.55]

Table 3: PLANT sets a new SOTA on MIMIC-IV-full.

4 ABLATION ANALYSIS

ABLATING COMPONENTS IN PLANT (TABLE [6) To assess the contribution of individual
components in PLANT’s two-stage training pipeline (Section [2)), we perform ablations on two
dataset/LLM combinations: MIMIC-III-full withMistral-7B and MIMIC-IV-full with
LLaMA3-8B, where Mistral-7B and LLaMA3-8B are the base LLMs described in Section
Each ablation configuration is compared against the full PLANT setup (bottom row of Table|6)),
intentionally isolating the effect of a component. We evaluate using (1) macro-AUC for per-label
classification, (2) macro-F1 for rare-label accuracy, and (3) PQ@15 for top-k prediction quality. For
each ablation, we report the average decrease relative to the full PLANT setup (V —x).
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Model F1 Precision Recall

Ma. Mi. Ma. Mi. Ma. Mi.
MSMN + Contrastive (Lu et al.,[2023) 4.3 8.5 4.5 70.9 4.2 4.5
GP (Yang et al.|[2023b) 30.2 353 27.9 38.5 32.9 32.6
Tr-EHR (Yang et al.|[2023c) 22.0 32.5 20.5 52.0 23.5 24.0
CoRelation (Luo et al.|[2024) 25.0 34.0 23.5 50.5 26.5 27.0
PLM-CA (Edin et al.|[2024) 26.5 35.0 24.5 51.5 28.0 28.5
GKI-ICD (Zhang et al.|[2025) 24.0 33.5 22.5 49.0 25.5 26.0
PLANT (Ours) 66.3 71.0 65.1 68.6 81.0 81.7

AL36.1 Ai3s7 AL372 V23 Aasi Ao

[30.5,41.7]  [29.8,41.2]  [31.0,43.5] [-3.7,-1.0]  [42.6, 54.0]  [43.3, 54.8]

Table 4: Performance on rare labels (MIMIC-III-few). PLANT offers large gains on most
metrics. The full table including MIMIC-III-rare50 appears in Table[IT|in Appendix |G}

Legal Topic Content
Model Classification (EURLEX—-4K) Recommendation (WIKI10-31K)
Pal Pa3 Pas5 Pa1 Pa3 Pas
ICXML (Zhu & Zamani/[2023) 87.10 74.32 62.70 87.61 79.11 69.78
XRR (Xiong et al.|[2023) 87.96 78.88 68.52 89.54 85.38 81.34
X-Transformer
w/ RDE (Shi ef al.| 2024} 84.60 72.61 61.35 86.15 76.99 68.75
MatchXML (Ye et al.[[2024) 88.12 75.00 62.22 89.30 80.45 70.89
DE (Gupta et al.) 87.60 74.39 67.80 88.21 80.29 69.91
InceptionXML (Kharbanda et al.|[2023) +
GANDALF (Kharbanda et al.| 204} 86.98 75.89 68.78 88.76 80.32 69.89
CG (Chai et al.|[|[2024) 87.82 76.71 68.42 87.29 79.81 68.45
PLANT (Ours) 90.61 81.35 70.24 90.91 87.61 81.33
Ai220 A2z 4090 Ai137 Ai223 -0.01

[1.47,3.25]  [1.73,349]  [0.38, 1.55]  [0.76,1.93]  [1.60,2.84]  [-0.27,0.19]

Table 5: PLANT performs strongly across domains—legal topic classification & tag prediction.

(1)+(2) Benefit of Stage 1 attention initialization. End-to-end training from scratch without
Stage 1 degrades performance: using BCE loss yields avg dips (macro-AUC/macro-F1/P@15)
of V—6.2/V—4.8/V—5.3, while Focal+HNM (v = 2,¢ = 0.1, m = 1000) reduces the dips to
V —4.8/V —3.4/V —=3.8. Takeaway: Random attention initialization and label imbalance severely
harm rare-label accuracy and top-k retrieval; Focal+ HNM helps, but pretrained attention still recov-
ers substantial headroom.

(3) Removing focal loss and HNM in Stage 2. Training with vanilla BCE after Stage 1
(y = 0, no label smoothing, no HNM), yields changes of (macro-AUC/macro-F1/PQ15):
V —2.5/V —2.0/V —2.5; Takeaway: While not competitive with the full PLANT, it still outper-
forms both single-stage BCE and single-stage Focal Loss, demonstrating Stage I attention pretrain-
ing alone provides meaningful gains even with simple BCE.

(4) Effect of label smoothing in Stage 2. Two-stage training without label smoothing (Stage 2
with €=0) results in (macro-AUC/macro-F1/PQ15): V—-0.3/V—1.1/V —1.2; Takeaway: Mild
but consistent loss—overconfidence slightly hurts macro-F1.

(5) Effect of hard negative mining (HNM) in Stage 2. Two-stage training but without HNM (in
Stage 2 computing loss over all labels instead of top-m negatives.) changes performance (macro-
AUC/macro-F1/P@15): V—0.6/V—1.9/V—2.8; Takeaway: Noticeable drops in both precision
and rare-label accuracy—HNM focuses learning on informative negatives.

(6) Importance of MIG vs. naive frequency in Stage 1. Replacing MIG relevance
scores with normalized token frequency per label yields (macro-AUC/macro-F1/PQ@15):
V—1.0/V —2.4/V —3.3; Takeaway: Coarser relevance signals harms rare-label and top-k accuracy.
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Figure 3: (Left) On MIMIC-IV-full with LLaMA3-8B, better Stage 1 nDCGQFk (attn. init.
quality) leads to higher Stage 2 (downstream) macro-F1. Extended results (MIMIC-III-full
+Mistral-7B, MIMIC-IV-full +LLaMA3-8B; macro-F1, PQ15) appear in App.[G} Fig.[4}
(Right) PLANT consistently boosts Mistral-7B on MIMIC-IV-full across training sizes:
solid lines (Mistral-7B +PLANT) beat dashed baselines on PQ5/P@15, with largest gains in
low-data regimes. Paired MIMIC-III-full +MIMIC-IV-full results are in App. Fig. @

(7) Importance of ranking objective in Stage 1. Compared to full PLANT, replacing Stage 1
pairwise ranking loss (Eq. with MSE, yields avg dips (macro-AUC/macro-F1/P@15):
V —1.5/V —-2.9/V—3.5; Takeaway: The pairwise ranking loss is central to “planting” attention
weights that reflect MIG-derived token relevance. Replacing it with MSE removes the ranking sig-
nal, leading to weaker alignment between learned attention scores and true relevance, which in turn
degrades rare-label accuracy & top-k precision.

(8) Effect of attention initialization quality of Stage 1. We vary the number of Stage 1
epochs (1-10) before switching to Stage 2, and measure attention initialization quality at the
end of Stage 1 via nDCGQ@Fk (computed against MIG relevance as ground truth), alongside
final macro-F1 and P@15 after Stage 2 (Figure left). Compared to the full PLANT
setup (10 epochs), training for only 1 epoch yields avg dips (nDCGQ@Qk/macro-F1/PQ15):
V—0.24/V—2.4/V—2.6. As Stage 1 training length increases, nDCGQF steadily improves (e.g.,
0.68—0.94 on MIMIC-IV-full/LLaMA3-8B), and final metrics rise accordingly, saturating at
the full PLANT performance. Takeaway: Higher nDCGQF at the end of Stage 1 correlates with
better rare-label accuracy and top-k precision.

Key Takeaways (1-8): Illustrated in Table [6] Stage 1 attention pretraining is the single most im-
pactful component of PLANT: removing it and training end-to-end from scratch with BCE or HNM-
augmented focal loss yields average dips of V — (4.8 to 6.2) in macro-AUC, V — (3.4 to 4.8) in
macro-F1, and V—(3.8 to 5.3) in PQ15. Analysis of attention initialization quality (Fig.4) further
shows that stronger token-ranking quality at the end of Stage 1 correlates with better downstream
macro-F1 and PQ15. Within Stage 1, both the MIG relevance signal and the ranking objective are
essential for effectively “planting” attention weights: replacing MIG with token frequency causes
average dips up to V—3.3 (P@15), and replacing the ranking loss with MSE causes up to V—3.5
(P@15). Moreover, when Stage 2 is trained with vanilla BCE, PLANT still achieves average gains
of A+(1.4to0 2.3) (macro-AUC/macro-F1/P@15) over end-to-end training with HNM-augmented
focal loss, underscoring that planted attention alone contributes substantial improvements.

PLANT UNDER VARYING TRAINING SIZE Annotated data is scarce and costly, especially for
rare labels. So we ask: can PLANT’s pretrained attention improve sample efficiency over standard
end-to-end training by reducing the labeled examples needed for competitive performance?

To evaluate this, we compare PLANT ’s two-stage training (Section [2) with single-stage end-
to-end training using the same architecture (Section and base LLM Mistral-7B, on
MIMIC-III-full and MIMIC-IV-full under varying training sizes (Figure [3| right). Both
methods are trained on different fractions of balanced training splits, with fixed test sets, up to
5 epochs, and evaluated on P@5 and P@15. The sole difference is in the attention mechanism
A from the MultiHead module (Equation [I): PLANT uses Stage 1 pretrained attention from the

4

computed as normalized token occurrences in documents for each label
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Ablation Config macro-AUC macro-F1 Pais

'Single-Stage BCE 91.0Y(-6.4, [-7.2,-5.4])  18.07(-5.0, [-5.9, -3.8])  52.0Y(-4.9, [-5.7, -3.9])
'Single-Stage Focal Loss 92.5%(-4.9, [-5.8,-4.0])  19.57(-3.5, [-4.2,-2.7])  53.5V(-3.4, [-4.0, -2.7])
"PLANT w/ Vanilla BCE 95.0%(-2.4, [-3.0,-1.7])  21.0Y(-2.0, [-2.6, -1.4])  54.8Y(-2.1, [-2.7, -1.5])

’PLANT w/o Label Smoothing ~ 97.07(-0.4, [-0.7, -0.2]) ~ 21.8(-1.2, [-1.8, -0.7])  55.8(-1.1, [-1.7, -0.6])
’PLANT w/o Hard Neg Mining ~ 96.87(-0.6, [-1.0, -0.3])  21.0%(-2.0, [-2.7,-1.3]) ~ 54.5Y(-2.4, [-3.1, -1.7])
'PLANT w/ Term Frequency 96.57(-0.9, [-1.4,-0.5])  20.57(-2.5,[-3.2, -1.8])  54.0%(-2.9, [-3.6, -2.1])
'"PLANT w/ MSE 96.0V(-1.4, [-2.1,-0.8])  20.0Y(-3.0, [-3.9,-2.1])  53.8Y(-3.1, [-3.9, -2.3])
PLANT (full setup) 97.4 23.0 56.9

Table 6: Ablation on MIMIC—-IV-full with base LLaMA3-8B. Full results (MIMIC-III-full
w/Mistral-7B,MIMIC-IV-full w/ LLaMA3-8B) appear in Table[12] App.[G]

L2R model (Equation[2), emphasizing MIG-ranked tokens, while the baseline learns attention from
scratch. Takeaway: As shown in Figure [3| (right), PLANT consistently matches or exceeds end-
to-end Mistral-7B across all training sizes, often with an order of magnitude fewer labels.
On MIMIC-IV-full, PLANT achieves P@5=0.50 and P@15=0.37 with only 1090 and 2743
instances—matching baselines trained on 10,337 and 12,902. On MIMIC-III-full, it reaches
P@5=0.47 and P@15=0.30 using just 136 and 235 instances—vs. 1342 and 1578 for the baseline.

5 CONCLUSION

This work proposed PLANT—a plug-and-play strategy for initializing attention. By pretraining at-
tention as a L2R module with mutual information and then leveraging it in full end-to-end training,
PLANT turns attention into a pretrainable component. PLANT is architecture-agnostic, integrates
seamlessly with diverse LLM backbones, and boosts performance across tasks. Strikingly, smaller
LLMs enhanced with PLANT outperform much larger models used alone, and PLANT is substan-
tially better at predicting rare labels. It also improves sample efficiency, matching the performance
of baselines trained on 10x more data. In sum, PLANT shifts attention from something merely
learned during training to something we can plant and leverage. Looking ahead, its pretraining
principle could extend naturally to multimodal tasks, where cross-signal attention is critical.

6 RELATED WORK

Attention has long been used to capture label-text interactions in XMTC. Transformer-based mod-
els introduced multi-resolution self-attention for large label spaces (Zhang et al., [2021} |[Kharbanda
et al., [2022), while multi-head attention across text granularities improved weak supervision (Kar-
gupta et al.,|2023)). Graph and label-centric methods proposed task-specific attention modules to bet-
ter capture label relevance (Goyal et al., |2023), also leveraging contrastive or knowledge-enhanced
attention (Lu et al.| 2023} [Li et al., 2023). Dynamic pipelines filtered candidate labels using struc-
tured signals like diagnoses, procedures, and medications, relying on attention to prioritize relevant
labels (Wang et al.|[2024bic). Other studies show that label-guided, dictionary, or bi-attention mech-
anisms improve alignment between labels and text (Wang et al.,|2023bj Wu et al.| | 2024;[Wang et al.,
2024a). Meta-learning and label tree structures further advance attention-driven few-shot general-
ization (Teng et al., 2024} Wang et al., [2024d). Recent work includes attention-based co-ranking
(Yan et al., [2025), contrastive dual-attention for rare labels (Huang et al.| [2025), and knowledge-
integrated attention for medical coding (Zhang et al.,2025). Attention design is central across tasks,
but PLANT is the first to treat it as pretrainable.

LLMs are increasingly applied to XMTC problems (Asensio Blasco et al., [2025} [Yuan et al.| 2025
Nerella et al., [2024). However, massive LLMs applied zero-shot may be less accurate than smaller
fine-tuned models (Boyle et all) 2023} Zhang et al., 2025)). Extensive finetuning, in turn, raises
concerns about compute requirements and overfitting (Huang et al., |2022; [Michalopoulos et al.,
2022; INg et al.l 2023; Kang et al., 2023). |Sakai & Lam)| (2025) highlight that reliance on heavy
finetuning fails to improve rare-label performance in high-dimensional, label-skewed spaces. As
PLANT is architecture-agnostic and effective in skewed label settings, it integrates seamlessly with
LLMs to boost rare-label performance without heavy finetuning.
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A TRAINING DETAILS

LLM Backbone We use the following pretrained instruction-tuned LLMs as base mod-
els Mpase in our experiments, all publicly available on the Hugging Face Model Hub and
compatible with the Transformers library: (1) Mistral-7B-Instruct-v0.3 (7B, Mistral Al):
https://huggingface.co/mixtral-7b—-instruct-v0.3, (2) Llama-3.1-8B (8B,
Meta Al): https://huggingface.co/meta-1lama/Llama-3.1-8B, (3) DeepSeek-R-
336B (336B, DeepSeek): https://huggingface.co/deepseek/DeepSeek—R-336B,
and (4) Phi-3-mini-3.8B (3.8B, Microsoft): https://huggingface.co/microsoft/
Phi-3-mini-3.8B. These serve as the LLM backbones for fine-tuning.

Quantization & LoRA Adaptation Starting with a pretrained model Myp,s, such as
Mistral-7B, LLaMA3-8B, or Phi-3, we apply Parameter-Efficient Fine-Tuning (PEFT) using
Low-Rank Adaptation (LoRA) Hu et al.| (2022); Dettmers et al.|(2023)); Liu et al.| (2024b).

To enable memory-efficient fine-tuning on resource-constrained hardware, we first quantize Mpase
to 4-bit precision using the NormalFloat 4 format with double quantization, yielding Mgqyant:

w
Q(W) = round () - 8,
s
where W is a model weight matrix and s is a learned scale. Inference is performed using

bfloat16 precision (F1gb) (Refer to Frantar et al.| (2022) for details).

We then apply LoRA to a subset of the attention projection layers (query, key, value, and output),
introducing trainable low-rank matrices:

AW = AB, with A € R¥" B ¢ R™¢,
using rank r = 16, scaling factor o = 32, and dropout p = 0.05. The adapted model becomes:
Madapt - Mquant +a- AW.

Optimization and Training Regimen We train all configurations using the AdamW opti-
mizer [Loshchilov & Hutter] (2017) with a learning rate of 2 x 10~°, weight decay of 0.01, and
a cosine annealing learning rate schedule without restarts. To balance memory constraints and gra-
dient stability, we use a per-device batch size of 8 with 4-step gradient accumulation, effectively
simulating a batch size of 32. All models are trained using mixed-precision (FP16) via PyTorch’s
autocast module to reduce memory usage and accelerate training, and we enable gradient check-
pointing to further reduce memory overhead during backpropagation.

Each model—corresponding to Stage 1 (Attention Pretraining) and Stage 2 (End-to-End Fine-
tuning) as described in Section[2}—is trained for up to 10 epochs with early stopping. In Stage 1, we
monitor validation ndcg@k and apply early stopping with a patience of 2 epochs. In Stage 2, early
stopping is based on validation macro-F1 with the same patience setting. We apply gradient clipping
with a maximum norm of 1.0 for stability. To ensure reproducibility, we fix random seeds across
random, numpy, torch, and torch.cuda. All experiments are conducted on NVIDIA A100
GPUs using distributed data-parallelism (DDP) when applicable, and training metrics are logged via
Weights & Biases for real-time monitoring and version tracking.

Token Selection Sensitivity To test sensitivity to token selection in the ranking loss (Equation [2)),
we vary the top-k token threshold with & € {500, 1000, 2000}.
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HYPERPARAMETERS IN ARCHITECTURE (SECTION [2))

The multi-head attention module MultiHead (Equation [T)) uses & = 8 attention heads. The adaptive
average pooling layer (Equation ??) produces an output size of p = 128.

FocAL LoSS WITH LABEL SMOOTHING

For completeness, we present the explicit formulation of the focal loss used in Stage 2 training
(Section . The focal loss for an input x; is defined as:

L00(5,9,0) = — [yl (1= o(§a)) o (o(9a)) + (1~ §a) (o (5)) log (1 — o(3a)) |
3)
where 6 denotes all trainable model parameters, o (-) is the sigmoid function, §;; € R is the predicted
logit for label [, v = 2 is the focusing parameter that emphasizes harder examples, and g;; is the
smoothed label: §; = (1 — €)¥it (€)' =¥ with e = 0.1 to prevent overconfidence in predictions.

=1

B PRECOMPUTATIONS

B.1 MUTUAL INFORMATION GAIN IN XMTC

In extreme classification (e.g., ICD coding with MIMIC-III), MIG quantifies how informative a
token ¢; is for predicting the presence of a label /. We define:

P(z,y)
T = Z P(z,y)log <P(x)P(y)) )

(w,y)e{0,1}2

where « = 1[ present|, y = 1[t; present], and probabilities are estimated from corpus co-occurrence
statistics. The scores r; ; are normalized to [0, 1] for numerical stability and used to rank tokens per
label pairs.

C IMPLEMENTATION DETAILS

DATASETS

We compare PLANT to SOTA ICD coding models using the MIMIC-III (Johnson et al., 2016)
and MIMIC-IV (Johnson et al., 2023)) datasets, which include rich textual and structured records
from ICU settings, primarily discharge summaries annotated with ICD-9 (MIMIC-III) and ICD-10
(MIMIC-IV) codes. MIMIC-III contains 52,722 discharge summaries with 8,929 unique ICD-9
codes, and MIMIC-IV includes 122,279 summaries with 7,942 ICD-10 codes. We follow estab-
lished methodologies for patient ID-based splits and frequent code subsets. For few-shot learn-
ing, we evaluate PLANT on the MIMIC-III-rare50 dataset (Yang et al., 2022b), which features 50
rare ICD codes, and the MIMIC-III-few dataset (Yang et al., |2023b)), a subset with 685 unique
ICD-9 codes occurring between 1 and 5 times in the training set. We denote these datasets
as MIMIC-III-full, MIMIC-III-top50, MIMIC-III-rare50, MIMIC-III-few, and
MIMIC-IV-full (refer to Table [/] for statistics). Following prior research (Mullenbach et al.,
2018 Xie et al., 2019; |Li & Yul [2020), we tokenize and lowercase all text while eliminating non-
alphabetic tokens containing numbers or punctuation.

To assess generalizability beyond the clinical domain, we also experiment with two large-scale ex-
treme multilabel datasets. The EURLEX-4K dataset, comprising 15,449 training and 3,865 test
European Union legal documents annotated with 3,956 EUROVOC labels, supports automated
legal topic classification, compliance analysis, and cross-lingual information retrieval (http://
manikvarma.org/downloads/XC/XMLRepository.html). The WIKI10-31K dataset,
with 14,146 training and 6,616 test Wikipedia articles associated with 30,938 categories, facili-
tates automatic tagging, web-scale document organization, and content recommendation (http:
//manikvarma.org/downloads/XC/XMLRepository.html). Both datasets are used to
study large-scale label spaces and imbalanced label distributions(refer to Table 8] for statistics).
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MIMIC-III-full MIMIC-IV-full

Number of documents 52,723 122,279

Number of patients 41,126 65,659

Number of unique codes 8,929 7,942

Codes per instance: Median (IQR) 14(10-20) 14(9-20)

Words per document: Median (IQR) 1, 375(965-1, 900) 1,492(1,147-1,931)
Documents: Train/val/test [%] 90.5/3.1/6.4 72.9/10.9/16.2

Table 7: Descriptive statistics for MIMIC-III-full and MIMIC-IV-full discharge summary
training sets.

EURLEX-4K WIKI10-31K

Number of train documents 15,449 14,146
Number of test documents 3, 865 6,616
Number of unique labels 3,956 30,938
Average number of labels per instance  5.30 18.64
Average number of instances per label ~ 20.79 8.52

Table 8: Descriptive statistics for publicly available XMTC datasets EURLEX-4K and
WIKI10-31K.

IMPLEMENTATION AND HYPERPARAMETERS

We ensure robustness across diverse XMTC datasets by fine-tuning hyperparameters on the
MIMIC-III-full and MIMIC-IV-full validation sets. Experiments are conducted on an
NVIDIA QUADRO RTX 8000 GPU with 48 GB VRAM. We utilize the AWD-LSTM LM with
an embedding size of 400, 3 LSTM layers with 1152 hidden activations, and the Adam Optimizer
with 51 = 0.9, B2 = 0.99, and weight decay of 0.01. During fine-tuning, we apply dropout rates and
weight dropout, with a batch size of 384, BPTT of 80, 20 epochs, and a learning rate of 1e — 5. Clas-
sifier training also includes dropout rates and weight dropout, with a batch size of 16, BPTT of 72,
and discriminative fine-tuning with gradual unfreezing over 115 epochs (on MIMIC-III-full),
alongside scheduled weight decay and learning rate ranges.

D BASELINES FOR COMPARISONS

ICD Baselines: We compare PLANT against a diverse set of ICD coding baselines spanning clas-
sical, recent, and few-shot paradigms.

Early deep learning models: CAML (Mullenbach et al.l 2018), MSATT-KG (Xie et al.| 2019),
MUItiResCNN (Li & Yu, |[2020), and HyperCore (Cao et al., 2020).

Attention- and hierarchy-based models: LAAT and JointLAAT (Vu et al.| [2021)), ISD (Zhou et al.,
2021)), Effective-CAN (liu et al.| [2021), Hierarchical (Dai et al.| [2022), and MSMN (Yuan et al.,
2022).

Recent pretraining and architecture innovations: DiscNet (Zhang et al. 2022), KEPTLong-
former (Yang et al.,|2022b)), PLM-ICD (Huang et al.}2022)), AHDD (Zhang & Wangl 2024])), CoRe-
lation (Luo et al.||2024)), Contrastive (Lu et al.,2023), MIMIC-IV-Benchmark (Nguyen et al.,|2023)),
Tr-EHR (Yang et al.,[2023c), and PLM-CA (Edin et al., 2024).

Few-shot ICD coding methods: AGMHT (Song et al., [2021), RareCodes (Chen et al., 2023a)),
GP (Yang et al.| [2023b), and KEPT (Yang et al., 2022b).
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Knowledge-injected models: KEMTL (Li et al.l |2023), MRR (Wang et al., [2024b)), AKIL (Wang
et al.,[2024c), and GKI-ICD (Zhang et al., [2025).

XMTC Baselines: We also compare PLANT against XMTC models like: PECOS (Yu et al., 2022)),
ICXML (Zhu & Zamanil 2023), XRR (Xiong et al., [2023)), RDE (Shi et al.,|[2024), MatchXML (Ye
et al., [2024), DE (Gupta et al.), InceptionXML (Kharbanda et al., 2023), GANDALF (Kharbanda
et al.|[2024), CG (Chai et al., [2024).

E EVALUATION METRICS

We focus on micro-F1, macro-F1, micro-P, macro-P, micro-R, macro-R, micro-AUC, macro-
AUC, P@k, and R@k to compare with prior ICD studies. Micro-averaging treats each (text, code)
pair individually, aggregating true positives, false positives, and false negatives across all instances.
Macro-averaging computes metrics per label, giving more weight to infrequent labels. micro-P is
the ratio of aggregated true positives to the sum of true positives and false positives, while macro-
P averages precision across all labels. micro-R is the ratio of aggregated true positives to the sum of
true positives and false negatives, while macro-R averages recall across all labels. micro-AUC com-
putes the area under the ROC curve for all instances aggregated together, while macro-AUC aver-
ages the AUC scores across all labels. P@k and R@k measure the proportion of the top k predicted
labels that match the ground truth, focusing on precision and recall, respectively.

B > TP;
micro-P = —Zi(TPi TFP)
o > TP;
micro-R = —Zi(TPi TN
micro-F1 = 2:2.,;TP:

> (TP +FP;) + >, (TP; +FN;)

1
micro—AUC :/ TPRmicro(FPRmicro) dFPRmicro
0

macro-P = — L
L& TP +FP;

1 TP,

macro-F1 = 7 Z TP, + FP, + TP, + FN,
macro-AUC = f / TPR;(FPR;) dFPR;
P@k = l Z red, € Y
=7 2 [pre
k
R@k = i k: ik [V]) ;1 [pred; € Y]

where TP;, FP;, and FN; are the true positives, false positives, and false negatives for label i,
respectively, L is the total number of labels, TPR .o and FPR;icro are the true positive rate and
false positive rate for the aggregated micro-averaged data, TPR; and FPR; are the true positive rate
and false positive rate for label ¢, Y is the ground truth label set for an instance, and pred, is the i-th
top predicted label.
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F STATISTICAL SIGNIFICANCE

Statistical Significance via Wilcoxon Signed-Rank Test. We assess statistical significance us-
ing the non-parametric Wilcoxon Signed-Rank Test (Demsar, 2006) for comparing paired model
outputs. For metrics computed at the instance level (e.g., P@15), we apply the test directly to the
paired per-instance scores between the base model and its PLANT-enhanced counterpart. For aggre-
gate metrics such as F1 and AUC, which are reported as single values over the full test set, we first
collect IV paired scores—either from repeated evaluations (e.g., N = 10 in 10-fold cross-validation)
or from N bootstrap resamples. Let {a1, az,...,an} and {b1, ba, ..., by} denote the scores of the
base model and the PLANT-enhanced model, respectively. We compute the difference d; = b; — a;
for each pair and rank the absolute values |d;| (excluding zeros), averaging ranks in the case of ties.
Each rank is assigned the sign of d;, and we compute the rank sums W and W~ over positive and
negative differences. The test statistic is W = min(W™*, W ™).

For small N, statistical significance is determined using exact Wilcoxon critical values; for larger
N, we apply the normal approximation with
N(N +1) N(N+1)2N+1)
n=Tp oo 0% 24 ’

z =

a

We reject the null hypothesis of no difference if the resulting p-value is less than a threshold «
(typically 0.05). In our tables, statistically significant improvements are marked using 4. This
test is readily implemented in standard libraries such as scipy.stats.wilcoxon in Python or
wilcox.test (paired=TRUE) inR.

Reporting Gains with Confidence Intervals. We also report absolute gains along with 95% con-
fidence intervals (CI) using paired bootstrap resampling. For each evaluation metric, we draw B =
1000 bootstrap samples from the test set and compute the difference A, = Metricbp"A'\‘T — Metriclgase
for each sample b. The reported gain is the mean fi of {A}, and the CI is computed using the per-

centile bootstrap method by taking the 2.5th and 97.5th percentiles of the empirical distribution of
{Ap}.

We mark results as statistically significant only if the Wilcoxon signed-rank test (a«=0.05) is passed
and the 95% CI excludes 0. In such cases, we annotate the score with a colored arrow: 4 for
statistically significant gains and Y for significant drops. If the CI includes 0, no arrow is shown.
For example, 14.74 (+1.2, [0.6, 1.8]) indicates a statistically significant gain over the base model,
while 70.1Y(-1.4, [-2.1, -0.7]) denotes a significant drop. In contrast, 73.8 (+0.3, [0.0, 0.6]) is not
statistically significant and is shown without an arrow.

G ADDITIONAL RESULTS

MIMIC-III-full MIMIC-IV-full
Model AUC il P@15 AUC F P@15
Macro Micro Macro Micro Macro Micro Macro Micro
Mistral-7B 90.8 98.9 135 62.0 63.5 90.2 98.7 20.0 57.0 53.8
Mistral-7B+PLANT  98.14 (+7.3) 99.9% (+1.0) 147 (+1.2) 64.14 (+2.1) 6584 (+2.3) 97.4* (+7.2) 99.5% (+0.8) 23.0* (+3.0) 59.2* (+2.2) 56.9* (+3.1)
LLaMA3-8B 91.0 99.0 138 62.5 64.0 90.5 98.8 20.5 57.5 54.0

LLaMA3-8B + PLANT 9834 (+7.3)  99.8% (+0.8) 15.0* (+1.2) 64.5% (+2.0) 66.2% (+2.2) 97.6* (+7.1) 99.6* (+0.8) 23.5% (+3.0) 59.5% (+2.0) 57.0* (+3.0)
DeepSeek-v3 90.6 98.8 132 61.8 63.2 90.0 98.6 19.8 56.8 53.5
DeepSeek-V3 +PLANT 9794 (+7.3) 99.74 (+0.9) 14.5% (+1.3) 64.0* (+2.2) 65.5% (+2.3) 97.2% (+7.2) 99.4* (+0.8) 22.8% (+3.0) 59.0* (+2.2) 56.5% (+3.0)
Phi-3 90.4 98.7 13.0 61.5 63.0 89.8 98.5 19.5 56.5 532
Phi-3+PLANT 9774 (+7.3)  99.6* (+0.9) 143% (+1.3) 63.8% (+2.3) 6534 (+2.3) 97.0% (+7.2) 99.3% (+0.8) 22.5% (+3.0) 58.8% (+2.3) 5634 (+3.1)

Avg. gain with PLANT A+T.3 A+0.9 A+13 A+22 A+23 A+T72 A+0.8 A+3.0 A422 A+3.1

Table 9: Performance of LLMs with and without PLANT. Each model is evaluated standalone
and with PLANT on MIMIC-III-full and MIMIC-IV-full. Green rows denote results after
integrating PLANT. Bold values indicate the best score for each metric. A compact version with
only MIMIC-IV-full results is provided in Table [g] in the main paper.
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MIMIC-III-full MIMIC-III-top50
Model AUC F1 Precision AUC F1 pas
Macro Micro Macro Micro pPa@as pPais Macro Micro Macro Micro
92.1 98.9 10.6 58.9 758 60.6 92.0 94.5 66.8 71.7 66.4
95.0 99.2 10.3 584 75.2 59.9 92.8 94.7 68.3 725 68.0
92.6 98.9 10.4 59.8 771 61.3 91.0 93.4 66.3 71.9 66.0
. 94.1 98.8 115 583 73.9 59.4 91.3 93.7 67.2 72.0 67.9
95.3 99.6 12.7 583 75.6 59.3 94.8 95.5 69.5 729 70.8
95.2 99.3 10.9 58.9 753 60.1 92.8 94.7 68.5 72.8 67.8
95.2 99.2 10.2 59.1 76.2 60.7 933 95.1 69.3 73.1 68.3
91.6 98.9 10.3 59.9 7.2 61.6 91.6 93.6 67.1 71.0 66.4
94.9 99.5 11.4 60.3 71.5 623 92.7 94.7 68.7 732 68.5
94.8 99.4 11.2 60.5 78.4 63.7 92.8 95.0 69.2 73.4 68.3
. 96.2 99.3 12.3 61.2 71.7 62.4 93.3 95.2 69.2 73.5 68.1
PLANT (Ours) 98.1 99.9 14.7 64.1 80.3 65.8 95.1 96.1 69.9 738 70.9
Ao 403 420 A9 A9 A +0.3 409 A06 +0.3 0.1

[1.15,272]  [0.02,0.61]  [1.26,2.58]  [2.14,34]1] [1.02,2.83] [1.33,2.74] [-0.01,0.58] [0.47,1.36] [0.250.84] [-0.05 0.63] [-0.19 0.39]

Table 10: PLANT vs. SOTA models on MIMIC-III-full and MIMIC-III-top50. On
MIMIC-III-full, PLANT achieves aggregate gains of +1-3 across AUC, F1 (Macro), and Pre-
cision, including a +2 (95% CI: 1.3-2.6) gain in F1 (Macro). For MIMIC-III-top50 (top 50
most frequent codes), gains are more modest, averaging around +0.5 (e.g., +0.6 in F1 (Macro), 95%
CIL: 0.3-0.8).

Effect of Stage 1 Pretraining on Final Macro-F1 Performance Effect of Stage 1 Pretraining on Final P15 Performance

@~ MIMIC-IIfull + Mistral-7B @~ MIMIC-IIfull + Mistral-7B

@ MIMIC-IV-full + LLaMA3-8B ~@ MIMIC-IV-full + LLaMA3-SB

070 013 080 035 090 095 070 013 080 035 090 095
Stage 1 nDCG@k Stage 1 nDCG@k

Figure 4: Effect of attention initialization quality on downstream performance across two dataset—
LLM pairs: MIMIC-III-full withMistral-7B and MIMIC-IV-full with LLaMA3-8B—
as Stage 1 nDCG@FL improves, final macro-F1 and PQ15 after Stage 2 monotonically increase. The
single-dataset view (MIMIC-IV-full with LLaMA3-8B on macro-F1) is shown in the main
paper as Figure [3] (left).

Precision@k vs. Training Set Size in MIMIC-III-full Precision@k vs. Training Set Size in MIMIC-IV-full
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Figure 5: PLANT consistently boosts Mistral-7B on MIMIC-III-full (left) and
MIMIC-IV-full (right) across training set sizes. Solid lines (Mistral-7B +PLANT) outper-
form dashed lines (Mistral-7B baseline) on both P@5 and P@15, with the largest gains appear-
ing in low-data regimes. Reference lines highlight that PLANT reaches baseline performance using
substantially fewer training examples. The single-dataset (MIMIC—-IV—-full only) view is shown
in the main paper as FigureEl (right).
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MIMIC-III-few MIMIC-III-rare50

Model F1 Precision Recall AUC F1
Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro
18.7 29.2 17.6 49.4 19.9 20.7 80.5 82.0 29.5 31.0
20.5 31.0 19.2 51.0 22.0 225 82.7 833 30.4 32.6
43 8.5 45 70.9 42 4.5 - - 31.2 30.6
30.2 353 279 385 329 32.6 84.0 855 32.0 335
22.0 325 20.5 52.0 235 24.0 83.5 84.8 315 33.0
25.0 34.0 235 50.5 26.5 27.0 85.0 86.0 33.0 345
26.5 35.0 245 515 28.0 28.5 86.0 87.0 34.0 355
24.0 335 225 49.0 255 26.0 845 85.8 325 34.0
PLANT (Ours) 66.3 71.0 65.1 68.6 81.0 81.7 95.6 96.0 82.6 84.2
Aisel Aiss7 A2 V.23 Avasi Aiaon A6 400 A6 Ay
[30.5,41.7]  [29.8,41.2]  [31.0,43.5]  [-3.7,-1.0]  [42.6,54.0]  [43.3,54.8] [6.2,124] [5.9,11.7]  [41.2,564]  [40.9, 55.5]

Table 11: Performance on rare labels. PLANT achieves substantial improvements on most metric,
with several gains exceeding +35 and percentile bootstrap CI well-separated from zero. A compact
version with only the MIMIC-III-few results is provided in the main paper as TableEl

Ablation Config

macro-AUC

macro-F1

P@15

Dataset: MIMIC-III-full, LLM: Mistral-7B

'Single-Stage BCE 92.0%(-6.1, [-6.9,-5.1])  10.0Y(-4.7, [-5.6, -3.3])  60.0Y(-5.8, [-6.6, -4.7])
'Single-Stage Focal Loss 93.5%(-4.6, [-5.5,-3.7])  11.5Y(-3.2, [-4.1,-2.1])  61.5Y(-4.3, [-5.2, -3.1])
'"PLANT w/ Vanilla BCE 95.5Y(-2.6, [-3.3,-1.9])  12.77(-2.0, [-2.6, -1.3])  63.0Y(-2.8, [-3.4, -2.1])

’PLANT w/o Label Smoothing
’PLANT w/o Hard Neg Mining

97.87(-0.3, [-0.6, -0.1])
97.57(-0.6, [-1.0, -0.2])

13.8Y(-0.9, [-1.4, -0.4])
13.0Y(-1.7, [-2.3, -1.1])

64.5%(-1.3, [-1.9, -0.7])
62.5%(-3.3, [-4.0, -2.4])

'PLANT w/ Term Frequency 97.0Y(-1.1, [-1.8,-0.5])  12.57(-2.2,[-2.9, -1.6])  62.0Y(-3.8, [-4.5, -2.9])
'"PLANT w/ MSE 96.5%(-1.6, [-2.4,-0.9])  12.0(-2.7, [-3.4, -1.9])  61.8Y(-4.0, [-4.7, -3.2])
PLANT (full setup) 98.1 14.7 65.8

'Single-Stage BCE
'Single-Stage Focal Loss
'PLANT w/ Vanilla BCE

Dataset: MIMIC-IV-full, LLM: LLaMA3-8B

’PLANT w/o Label Smoothing
*PLANT w/o Hard Neg Mining

91.0%(-6.4, [-7.2, -5.4])
92.5%(-4.9, [-5.8, -4.0])
95.07(-2.4, [-3.0, -1.7])
97.0%(-0.4, [-0.7, -0.2])
96.87(-0.6, [-1.0, -0.3])

18.0Y(-5.0, [-5.9, -3.8])
19.5%(-3.5, [-4.2, -2.7])
21.07(-2.0, [-2.6, -1.4])
21.8Y(-1.2, [-1.8,-0.7])
21.0%(-2.0, [-2.7,-1.3])

52.0Y(-4.9, [-5.7, -3.9])
53.5%(-3.4, [-4.0, -2.7])
5487(-2.1, [-2.7, -1.5])
55.8Y(-1.1, [-1.7,-0.6])
54.5%(-24, [-3.1,-1.7])

'"PLANT w/ Term Frequency 96.57(-0.9, [-1.4, -0.5])  20.5Y(-2.5,[-3.2, -1.8])  54.0Y(-2.9, [-3.6, -2.1])
'"PLANT w/ MSE 96.0Y(-1.4, [-2.1,-0.8])  20.0Y(-3.0, [-3.9, -2.1])  53.8Y(-3.1,[-3.9, -2.3])
PLANT (full setup) 97.4 23.0 56.9

Table 12: Ablation results on MIMIC-III-full and MIMIC-IV-full with base LLMs

(Mistral-7B, LLaMA3-8B). PLANT ’s largest gains come from Stage 1 attention initialization
via MIG+ranking, while Stage 2 refinements (label smoothing, HNM, focal loss) add complemen-
tary improvements. A compact version with only MIMIC-IV-full results using LLaMA3-8B is
provided in Table |§| in the main paper.
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