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Abstract

The ability to design novel proteins with higher fitness on a given task would be1

revolutionary for many fields of medicine. However, brute-force search through2

the combinatorially large space of sequences is infeasible. Prior methods constrain3

search to a small mutational radius from a reference sequence, but such heuristics4

drastically limit the design space. Our work seeks to remove the restriction on5

mutational distance while enabling efficient exploration. We propose Bi-level6

Gibbs sampling with Graph-based Smoothing (BiGGS), which uses the gradients7

of a trained fitness predictor to sample many mutations towards higher fitness.8

Bi-level Gibbs first samples sequence locations then sequence edits. We introduce9

graph-based smoothing to remove noisy gradients that lead to false positives. Our10

method is state-of-the-art in discovering high-fitness proteins with up to 8 mutations11

from the training set. We study the GFP and AAV design problems, ablations, and12

baselines to elucidate the results.13

1 Introduction14

In protein design, fitness is loosely defined as performance on a desired property or function. Ex-15

amples of fitness include catalytic activity for enzymes [1, 20] and fluorescence for biomarkers [27].16

Protein engineering seeks to design proteins with high fitness by altering the underlying sequences of17

amino acids. However, the number of possible proteins increases exponentially with sequence length,18

rendering it infeasible to perform brute-force search to engineer novel functions which often requires19

many mutations (i.e. at least 3 [11]). Directed evolution [3] has been successful in improving protein20

fitness, but it requires substantial labor and time to gradually explore many mutations.21

We aim to find shortcuts to generate high-fitness proteins that are many mutations away from what is22

known but face several challenges. Proteins are notorious for highly non-smooth fitness landscapes:123

fitness can change dramatically with just a single mutation, and most protein sequences have zero24

fitness [29]. As a result, machine learning (ML) methods are susceptible to learning noisy fitness25

landscapes with false positives [18] and local optimums [6] which poses problems to optimization26

and search. The 3D protein structure, if available, can help provide helpful constraints in navigating27

the noisy fitness landscape, but it cannot be assumed in the majority of cases – current protein folding28

methods typically cannot predict the effects on structure of point mutations [25].29

Our work proposes a sequence-based method that can optimize over a noisy fitness landscape and30

efficiently sample large mutational edits. We introduce two methodological advances summarized in31

Figure 1. The first is Graph-based Smoothing (GS) that regularizes the noisy landscape. We consider32

it as a noisy graph signal and apply L1 graph Laplacian regularization. This encourages sparsity and33

local consistency in the landscape; most protein sequences have zero fitness, and similar sequences34

1Landscape refers to the mapping from sequence to fitness.
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Figure 1: BiGGS overview. (A) Protein engineering is often challenged with a noisy fitness landscape
on which the starting dataset (unblurred) is a fraction of landscape with the highest fitness sequences
hidden (blurred). (B) We develop Graph-based Smoothing (GS) to estimate a smoothed fitness
landscape from the starting data. Intuitively, the gradients allow extrapolation towards higher fitness
sequences. (C) A fitness predictor is trained on the smoothed fitness landscape. (D) Gradients from
the fitness predictor are used in an iterative sampling procedure called Iterative Extrapolation (IE)
where Bi-level Gibbs sampling (BiG) is performed on each step with renewed gradient computations.
(E) Each round of IE samples mutations towards higher fitness.

have similar fitness [42]. The effect is a smooth fitness landscape learned by the ML model on which35

gradients accurately approximate the direction towards high-fitness sequences. To reach high-fitness36

sequences requiring many mutations, we use the improved gradients in our second advancement,37

Bi-level Gibbs (BiG), to approximate the proposal distribution in a Gibbs sampling procedure – as38

inspired by Gibbs with Gradients (GWG) [12]. BiG uses bi-level sampling to propose up to 5 indices39

to mutate simultaneously. Local improvements from the gradients help select beneficial mutations to40

guide low-fitness sequences towards higher fitness while sampling allows exploration. Following the41

intuition of directed evolution, we apply multiple rounds of sampling over clustered sequences in a42

procedure we call Iterative Extrapolation (IE).43

We find BiG and GS are complementary in enabling long-range exploration while avoiding the pitfalls44

of a noisy fitness landscape; the combination of both is referred to as BiGGS. We introduce a set45

of tasks using the Green Fluorescent Proteins (GFP) dataset [30] to simulate challenging protein46

design scenarios by starting with low-fitness sequences that require many (5 or more) mutations to47

the best fitness. We primarily study GFP because of (1) its difficulty as one of the longest proteins in48

fitness datasets and (2) its comprehensive fitness measurements of up to 15 mutations. To assess the49

generalizability of our method, we additionally study the Adeno-Associated Virus (AAV) dataset [7]50

based on gene delivery fitness. We evaluate BiGGS and prior works on our proposed benchmarks51

to show that BiGGS is state-of-the-art in GFP and AAV fitness optimization. Our contributions are52

summarized as follows:53

• We develop a novel sequence-based protein fitness optimization algorithm, BiGGS, based on54

BiG to efficiently sample multiple mutations, GS to regularize the fitness landscape, and IE to55

progressively mutate towards higher-fitness (Section 2).56

• We study GFP by proposing a set of design benchmarks of different difficulty with varying57

starting sequence distribution (Section 3). While our focus is GFP, we develop benchmarks on58

AAV to evaluate a new fitness criteria (Appendix C).59

• We show BiGGS is state-of-the-art in GFP and AAV fitness optimization while exhibiting diversity60

and novelty from the training set. We analyze the contributions of BiG and GS towards successful61

fitness optimization over challenging fitness landscapes (Section 5).62
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2 Method63

We begin with the problem formulation in Section 2.1. Our method uses two components bi-level64

Gibbs sampling (Section 2.2) and graph-based smoothing (Section 2.3). Together they are part of65

a iterative sampling method called iterative extrapolation (Section 2.4) as a way to progressively66

extrapolate towards novel sequences. The full algorithm, BiGGS, is presented in Algorithm 1.67

2.1 Problem formulation68

Let the starting set of length L protein sequences and their fitness measurements be denoted as69

D0 = (X0,Y0) where X0 ⇢ VL with vocabulary V = {1, . . . , 20} and Y0 ⇢ R. We use subscripts70

to distinguish sequences, xi 2 VL, while a paranthetical subcript denotes the token, (xi)j 2 V where71

j 2 {1, . . . , L}. Note our method can readily be extended to other modalities, e.g. nucleic acids.72

For in-silico evaluation, we denote the set of all known sequences and fitness measurements as73

D⇤ = (X ⇤
,Y⇤). We assume there exists a black-box function g : VL ! R such that g(x⇤) = y

⇤,74

which is approximated by an oracle g�. In practice, the oracle is a model trained with weights � to75

minimize prediction error on D⇤. The starting dataset only includes low fitness sequences and is a76

strict subset of the oracle dataset D0 ⇢ D⇤ to simulate fitness optimization scenarios. Given D0, our77

task is to generate a set of sequences X̂ = {x̂i}
Nsamples
i=1 with higher fitness than the starting set.78

2.2 BiG: Bi-level Gibbs (with Gradients)79

To generate new sequences, we propose a modified version of Gibbs With Gradients (GWG) [12].80

The first step is to train a fitness predictor, f✓ : VL ! R, using D0 to act as the learned unnormalized81

probability (i.e. negative energy) from sequence to fitness. We use the Mean-Squared Error (MSE)82

loss to train the predictor which we parameterize as a deep neural network. We found it beneficial to83

employ negative data augmentation since both the dataset and the range of fitness values are small.84

Specifically, we double the size of the dataset by sampling random sequences, xneg
i ⇠ Uniform(VL),85

and assigning them the lowest possible fitness value, µ.86

Our goal is to sample from log p(x) = f✓(x)� logZ where Z is the normalization constant. Higher87

fitness sequences will be more likely under this distribution while sampling over many mutations will88

induce diversity and novelty. GWG uses Gibbs sampling with locally informed proposals:89

q
r(x0|x) / e

(x0)>d✓(x)
2 1(x0 2 H(x)), d✓(x)ij = rxf✓(x)ij � x

T
i rf✓(x)i, (1)

where d✓(x)ij is a first order Taylor approximation of the log-likelihood ratio of mutating the ith90

index of x to token j. Treating x, x
0 as one-hot, (x0)>d✓(x) =

P
i(x

0
i)

>
d✓(x)i is the sum over the91

local differences where x
0 differs from x. The proposal q(x0|x) can be efficiently computed when92

H(·) is the 1-Hamming ball2: a single backward pass is needed to compute the Jacobian in eq. (1).93

Sampling M > 1 mutations in the same fashion would require estimating the gradients for each94

mutation individually resulting in exponentially more computations. Instead, we find a simple bi-level95

sampling scheme to be effective. The first level samples mutation indices, `m, with a categorical96

tempered-softmax distribution over the column-wise maxima, d✓(x)i = maxj2{1,...,L} d✓(x)ij . The97

second level samples token-wise mutations (x0)`m over the vocabulary the same way as the first level98

using d✓(x)`mj .99

First level: `m
iid⇠ q(·|x) = Cat

 
Softmax

 ⇢
d✓(x)i

⌧

�L

i=1

!!
, m 2 {1, . . . ,M}

Second level: (x0)`m ⇠ q(·|x, `m) = Cat

 
Softmax

 ⇢
d✓(x)`mj

⌧

�|V|

j=1

!! (2)

where ⌧ is a temperature hyperparameter. Indices are sampled iid which means the same index may100

get sampled twice. An improvement left for future work is to model conditional dependencies across101

2Defined as a ball using the hamming distance.
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locations. Each proposed sequence is accepted or rejected using Metropolis-Hasting (MH)102

min

 
exp(f✓(x

0)� f✓(x))

QM
m=1 q((x

0)`m |x, `m)q(`m|x)
QM

m=1 q((x)`m |x0, `m)q(`m|x0)
, 1

!
. (3)

To summarize, our method Bi-level Gibbs (BiG) first samples Nprop sequences each with up to M103

mutations from eq. (2) then returns a set of accepted sequences, X 0, according to eq. (3). Forcing BiG104

to make M mutations may make it skip sequences that are less than M mutations away. We found it105

best to run BiG over all values leading up to M . The full algorithm is provided in algorithm 2.106

A concern is the accuracy of the 1st order Taylor approximation, d✓(x)ij , for M > 1. We observed107

the performance of BiG is highly dependent on the performance of the predictor for gradients that108

correlate with higher fitness. The next two sections focus on the development of a robust predictor109

(Section 2.3) and an iterative framework to improve the Gibbs sampling approximation (Section 2.4).110

2.3 GS: Graph-based smoothing111

The efficacy of the gradients in BiG to guide sampling towards high fitness sequences depends on112

the smoothness of the mapping from sequence to fitness learned by the predictor. Unfortunately, the113

high-dimensional sequence space coupled with few data points and noisy labels results in a noisy114

predictor that is prone to sampling false positives [18] or getting stuck in local optima [6]. To address115

this, we use techniques from graph signal processing to smooth the learned mapping by promoting116

similar sequences to have similar fitness [42] while penalizing noisy predictions [17].117

Suppose we have trained a noisy predictor with weights ✓0 on the initial dataset D0. To construct118

our graph G = (V,E), we first construct the nodes V by iteratively applying pointwise mutations119

to each sequence in the initial set X0 to simulate a local landscape around each sequence. We call120

this routine Perturb with a hyperparameter Nperturb for the number of perturbations per sequence121

(see Algorithm 5). The edges, E, are a nearest neighbor graph with Nneigh neighbors where edge122

weights are inversely proportional to their sequence distance, !ij = !((vi, vj)) = 1/dist(vi, vj);123

edge weights are stored in a similarity matrix W = {!ij 8vi, vj 2 V }.124

The normalized Laplacian matrix of G is L = I �D
�1/2

WD
�1/2 where I is the identity and D125

is a diagonal matrix with i-th diagonal element Dii =
P

j !ij . An eigendecomposition of L gives126

L = U⌃UT where ⌃ is a diagonal matrix with sorted eigenvalues along the diagonal and U is a127

matrix of corresponding eigenvectors along the columns. An equivalent eigendecomposition with128

symmetric matrix B (and edges E arranged into an adjacency matrix) is129

L = (⌃1/2
U

T )T⌃1/2
U

T = B
T
B, B = ⌃1/2

U
T
.

Next, we formulate smoothing as an optimization problem. For each node, we predict its fitness130

S = {f✓0(v) 8v 2 V }, also called the graph signal, which we assume to have noisy values. Our goal131

is to solve the following where S is arranged as a vector and S⇤ is the smoothed signal,132

S⇤ = argmin
Ŝ

kBŜk1 + �kŜ � Sk1 (4)

Equation (4) is a form of graph Laplacian regularization that has been studied for image segmentation133

with weak labels [17]. B has eigenvalue weighted eigenvectors as rows. Due to the L1-norm kBŜk1134

is small if Ŝ is primarily aligned with slowly varying eigenvectors whose eigenvalues are small. This135

term penalizes large jumps in fitness between neighboring nodes hence we call it smoothness sparsity136

constraint. The second term, kŜ�Sk1, is the signal sparsity constraint that remove noisy predictions137

with hyperparameter �. The L1-norm is applied to reflect that most sequences have zero fitness.138

At a high level, eq. (4) is solved by introducing auxiliary variables which allows for an approximate139

solution by solving multiple LASSO regularization problems [34]. Technical details and algorithm140

are described in Appendix B. Once we have S⇤, we retrain our predictor with the smoothed dataset141

D = (V,S⇤) on which the learned predictor is smoother with gradients much more amenable for142

gradient-based sampling, BiG. We refer to our smoothing algorithm as Graph-based Smoothing (GS).143

2.4 IE: Iterative Extrapolation144

The 1st order Taylor approximation of eq. (1) deteriorates the more we mutate from the parent145

sequence. Inspired by directed evolution [3], we propose to alleviate this by performing multiple146
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rounds of sampling where successive rounds use sequences from the previous round. Each round147

re-centers the Taylor approximation and extrapolates from the previous round. We first train a148

predictor f✓ using GS (Section 2.3). Prior to sampling, we observe the number of sequences may be149

large and redundant. To reduce the number of sequences, we perform hierarchical clustering [22] and150

take the sequence of each cluster with the highest fitness using f✓. Let C be the number of clusters.151

Reduce( {X c}Cc=1; ✓) =
C[

c=1

{argmax
x2X c

f✓(x)} where {X c}Cc=1 = Cluster(X ; C).

Each round r reduces the sequences from the previous round and performs BiG sampling.152

X 0
r+1 =

[

x2X̃r

BiG(x; ✓), X̃r = Reduce({X c
r }Cc=1; ✓), {X c

r }Cc=1 = ClusterX 0
r+1(X 0

r; C).

One cycle of clustering, reducing, and sampling is a round of extrapolation,153

X 0
r+1 = Extrapolate(X 0

r; ✓, C) (5)
where the initial round r = 0 starts with X 0

0 = X0. After R rounds, we select our candidate sequences154

by taking the Top-Nsamples sequences based on ranking with f✓. We call this procedure Iterative155

Extrapolation (IE). While IE is related to previous directed evolution methods [31], it differs by156

taking larger mutational edits on each round with BiG and encouraging diversity by mutating the best157

sequence of each cluster. The full candidate generation, Bi-level Gibbs with Graph-based Smoothing158

(BiGGS), with IE is presented in Algorithm 1.159

Algorithm 1 BiGGS: Bi-level Gibbs with Graph-based Smoothing
Require: Starting dataset: D0 = (X0,Y0)
Require: BiG hyperparameters: Nprop, ⌧ , M
Require: GS hyperparameters: Nneigh, Nperturb, �
Require: IE hyperparameters: Nsamples, R, C

1: D  D0 [ {(xneg
i , µ)}|D0|

i=1 . Construct negative data
2: ✓0  argmax✓̃ E(x,y)⇠D

⇥
(y � f✓̃(x))

2
⇤

. Initial training.
3: ✓  Smooth(X0; ✓0) . GS Algorithm 3.
4: {X0}Cc=1  Cluster(X0; C) . Initial round of IE
5: X̃ c

0  Reduce({X0}Cc=1; ✓)
6: X 0

0  [x2X̃ c
0
BiG(x; ✓) . BiG algorithm 2

7: for r = 1, . . . , R do
8: X 0

r  Extrapolate(X 0
r�1; ✓) . Remaining rounds of IE eq. (5)

9: end for
10: X̂  TopK([Rr=1X 0

r) . Return Top-Nsamples sequences based on predicted fitness f✓.
11: Return X̂

3 Benchmarks160

We use the Green Fluoresent Protein (GFP) dataset from Sarkisyan et al. [30] containing over 56,806161

log fluorescent fitness measurements, with 51,715 unique amino-acid sequences due to sequences162

having multiple measurements. We quantify the difficulty of a protein fitness optimization task by163

introducing the concept of a mutational gap, which we define as the minimum Levenshtein distance164

between any sequence in the training set to any sequence in the 99th percentile:165

Gap(X0;X 99th) = min({dist(x, x̃) : x 2 X , x̃ 2 X 99th})
A mutational gap of 0 means that the training set, D0 may contain sequences that are in the 99th166

percentile of fitness. Solving such tasks is easy because methods may sample high-fitness sequences167

from the training set. Prior work commonly uses the GFP task introduced by design-bench (DB)168

evaluation framework [36] which has a mutational gap of 0 (see Appendix A). To compare to previous169

work, we include the DB task as "easy" difficulty in our experiments, but we introduce "medium"170

and "hard" optimization tasks which have lower starting fitness ranges in the 20-40th and 10-30th171

percentile of known fitness measurements alongside much higher mutational gaps. Our proposed172

difficulties are summarized in Table 1 and visualized in Figure 5.173
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Table 1: Proposed GFP tasks

Difficulty Range (%) |D0| Gap

Medium 20th-40th 2828 6
Hard 10th-30th 1636 7

The oracle in design-bench (DB) uses a Transformer-174

based architecture from Rao et al. [26]. When using this175

oracle, we noticed a concerning degree of false positives176

and a thresholding effect of its predictions. We propose177

a simpler CNN architecture as the oracle that achieves178

superior performance in terms of Spearman correlation179

and fewer false positives as seen in Figure 6. Our CNN180

consists of a 1D convolutional layer that takes in a one-hot encoded sequence, followed by max-181

pooling and a dense layer to a single node that outputs a scalar value. It uses 256 channels throughout182

for a total of 157,000 parameters – 15 fold fewer than DB oracle.183

Our experiments in Section 5 benchmark on GFP easy, medium, and hard with our CNN oracle. In184

Appendix C we summarize an additional benchmark using Adeno-Associated Virus (AAV) dataset185

[7] which focuses on optimizing a 28-amino acid segment for DNA delivery. We use the same task186

set-up and train our CNN oracle on AAV.187

4 Related work188

Optimization in protein design. Approaches in protein design can broadly be categorized in189

using sequence, structure or both [9]. Advances in structure-based protein design have been driven190

by a combination of geometric deep learning and generative models [37, 13, 39, 8]. Sequence-191

based protein design has been explored through the lens of reinforcement learning [2, 16], latent192

space optimization [32, 16, 19], GFlowNets [14], bayesian optimization [38], generative models193

[6, 5, 23, 21], and model-based directed evolution [31, 4, 24, 28, 35]. Together they face the common194

issue of a noisy landscape to optimize over. Moreover, fitness labels are problem-dependent and195

scarce, apart from well-studied proteins [5]. Our method addresses small amounts of starting data196

and noisy landscape by regularization with GS. We focus on sequence-based methods where we use197

locally informed Markov Chain Monte Carlo (MCMC) methods [40] method based on Gibbs With198

Gradients (GWG) [12] which requires a smooth energy function for strong performance guarantees.199

Concurrently, Emami et al. [10] used GWG to sample higher fitness sequences by optimizing over200

a product of experts distribution, a mixture of a protein language model and a fitness predictor.201

However, they eschewed the need for a smooth energy function which we address with GS.202

Discrete MCMC. High-dimensional discrete MCMC can be inefficient with slow mixing times.203

GWG showed discrete MCMC becomes practical by utilizing learned gradients in the sampling204

distribution, but GWG in its published form was limited to sampling in a proposal window of size 1.205

Zhang et al. [41] proposed to modify GWG with langevin dynamics to allow for the whole sequence to206

mutate on every step while Sun et al. [33] augmented GWG with a path auxiliary proposal distribution207

to propose a series of local moves before accepting or rejecting. We find that BiGGS with bi-level208

sampling is simpler and effective in achieving a proposal window size beyond 1.209

5 Experiments210

We study the performance of BiGGS on the GFP tasks from Section 3. Furthermore, to ensure211

that we did not over-optimize to the GFP dataset, we benchmark BiGGS using AAV benchmark in212

Appendix C. In the subsequent sections, we outline our experiments on GFP, while corresponding213

results for AAV are in Appendix C. Section 5.1 compares the performance of BiGGS on GFP to214

a representative set of baselines while Section 5.2 performs ablations on components of BiGGS.215

Finally, Section 5.3 analyzes BiGGS’s performance.216

BiGGS training and sampling. Following section 3, we use the oracle CNN architecture for our217

predictor (but trained on different data). To ensure a fair comparison, we use the same predictor218

across all model-based baselines. We use the following hyperparameters as input to Algorithm 1219

across all tasks: Nprop = 100, ⌧ = 0.01, M = 5, Nneigh = 500, Nperturb = 1000 Nsamples = 128220

R = 3, C = 500. We were unable to perform extensive exploration of hyperparameters. Reducing221

the number of hyperparameters and finding optimal values is an important future direction. Training222

is performed with batch size 1024, ADAM optimizer [15] (with �1 = 0.9,�2 = 0.999), learning223

rate 0.0001, and 1000 epochs using a single A6000 Nvidia GPU. Initial predictor training takes 10224

minutes while graph-based smoothing takes around 30 minutes depending on convergence of the225
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numerical solvers. Training with the smoothed data takes 4 to 8 hours. Sampling takes under 30226

minutes and can be parallelized.227

Baselines. We choose a representative set of prior works with publicly available code: GFlowNets228

(GFN-AL) [14], model-based adaptive sampling (CbAS) [6], greedy search (AdaLead) [31], bayesian229

optimization with quasi-expected improvement acquisition function (BO-qei) [38], conservative230

model-based optimization (CoMs) [35], and proximal exploration (PEX) [28].231

Metrics. Each method generates Nsamples = 128 samples X̂ = {x̂i}
Nsamples
i=1 to evaluate. Here, dist is232

the Levenshtein distance. We report three metrics:233

• (Normalized) Fitness = median({⇠(x̂i;Y⇤)}Nsamples
i=1 ) where ⇠(x̂;Y⇤) = g�(x̂i)�min(Y⇤)

max(Y⇤)�min(Y⇤) is the234

min-max normalized fitness.235

• Diversity = mean({dist(x, x̃) : x, x̃ 2 X̂ , x 6= x̃}) is the average sample similarity.236

• Novelty = median({⌘(x̂i;X0)}
Nsamples
i=1 ) where ⌘(x;X0) = min({dist(x, x̃) : x̃ 2 X ⇤

, x̃ 6= x})237

is the minimum distance of sample x to any of the starting sequences X0.238

We use median for outlier robustness. Diversity and novelty were introduced in Jain et al. [14]. We239

emphasize that higher diversity and novelty is not equivalent to better performance. For instance, a240

random algorithm would achieve maximum diversity and novelty.241

5.1 Results242

All methods are evaluated on 128 generated candidates, as done in design-bench. We run 5 seeds and243

report the average metric across all seeds including the standard deviation in parentheses. Results244

using our GFP oracle are summarized in table 2. Results using the DB oracle are in appendix C.245

Table 2: GFP optimization results (our oracle).

GFP Task Method

Difficulty Metric GFN-AL CbAS Adalead BO-qei CoMs PEX BiGGS

Easy
Fit. 0.16 (0.0) 0.81 (0.0) 0.92 (0.0) 0.77 (0.0) 0.06 (0.3) 0.71 (0.0) 0.92 (0.0)
Div. 27.9 (2.0) 4.5 (0.4) 2.1 (0.2) 5.9 (0.0) 129 (16) 2.2 (0.1) 2.2 (0.0)
Nov. 215 (2.9) 1.4 (0.5) 1.0 (0.0) 0.0 (0.0) 164 (80) 1.0 (0.0) 1.0 (0.0)

Medium
Fit. 0.13 (0.0) 0.21 (0.0) 0.53 (0.0) 0.17 (0.0) -0.1 (0.0) 0.51 (0.0) 0.86 (0.0)
Div. 30.9 (2.7) 9.2 (1.5) 9.3 (0.1) 20.1 (7.1) 142 (15.5) 2.0 (0.0) 4.0 (0.2)
Nov. 214 (3.3) 7.0 (0.7) 1.0 (0.0) 0.0 (0.0) 190 (10.5) 1.0 (0.0) 5.9 (0.2)

Hard
Fit. 0.17 (0.0) -0.08 (0.0) 0.03 (0.0) 0.01 (0.0) -0.1 (0.2) -0.11 (0.0) 0.43 (0.0)
Div. 29.3 (2.2) 98.7 (16) 6.6 (0.6) 84.0 (7.1) 140 (7.1) 2.0 (0.0) 4.1 (0.1)
Nov. 212 (2.0) 46.2 (9.4) 1.0 (0.0) 0.0 (0.0) 198 (2.9) 1.0 (0.0) 7.0 (0.0)

BiGGS substantially outperforms other baselines on the medium and hard difficulties, consistently246

navigating the mutational to achieve high fitness, while maintaining diversity and novelty from the247

training set. The unique extrapolation capabilities of BiGGS on the hardest difficulty level warranted248

additional analysis, and we investigate this further in Section 5.3. Adalead overall performed second-249

best, matching the performance of BiGGS on the easy difficulty with PEX only slightly worse.250

Notably, both Adalead and PEX suffer from a low novelty in the medium and hard settings.251

Regarding the other baselines, GFN-AL exhibits subpar performance across all difficulty levels. We252

were unable to reproduce their published results.3 Its performance notably deteriorates on medium253

and hard difficulty levels, a trend common amongst all baselines. CbAS explores very far, making on254

average 46 mutations, resulting in poor fitness. BO-qei is unable to extrapolate beyond the training255

set, and CoMs presents instability, as indicated by their high standard deviations, and collapse.4256

We further analyze the distribution of novelty and fitness among CbAS, Adalead, and our method,257

BiGGS, in Figure 2. Adalead tends to be conservative, while CbAS is excessively liberal. BiGGS, on258

3We contacted the authors but there was no resolution. Lee et al. [16] also were unable to reproduce GFN-AL.
4CoMs managed to generate only between 7 and 65 unique sequences.
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Figure 2: Comparison of GFP novelty and fitness on samples from AdaLead, BiGGS, and CbAS.
From left to right, we observe increasing exploration behaviour from the respective methods. However,
only BiGGS maintains high fitness while exploring the novel sequences. Nearly all samples from
CbAS on hard are beyond 10 novelty and have very low fitness.

the other hand, manages to find the middle ground, displaying high fitness in its samples while also259

effectively exploring across the mutational gap at each difficulty level.260

5.2 Ablations261

We perform ablations on each component of BiGGS on the hard difficulty task. In the first ablation,262

we replace BiG with GWG but use an equivalent number of samples by running R = 15 of IE for a263

fair comparison. The second ablation removes GS and starts sampling after initial predictor training.264

The last ablation removes iterative extrapolation by setting R = 1, M = 15, Nsample = 300 which265

maintains the number of samples but without iterative rounds. Our results are shown in Table 3. We

Table 3: Ablation results (our oracle).

Difficulty Metric BiGGS with GWG without IE without GS

Hard
Fitness 0.43 (0.0) 0.38 (0.0) 0.21 (0.0) 0.0 (0.0)
Diversity 4.1 (0.1) 4.0 (0.1) 8.3 (0.1) 18.4 (0.6)
Novelty 7.0 (0.0) 7.1 (0.2) 4.0 (0.0) 6.0 (0.0)

266
see GS is crucial for BiGGS on the hard difficulty level. Additional analysis is provided in section 5.3.267

Removing IE also results in a large decrease in performance. Unsurprisingly, GWG greatly benefits268

from GS and IE due to its similarity with BiG. However, using BiG results in improved fitness. We269

conclude each component of BiGGS contributes to its performance.270

5.3 Analysis271

We analyze BiGGS in the hard GFP task and demonstrate that (1) GS results in gradients from BiG272

that point towards higher fitness sequences and (2) BiG’s ability to sample large mutations (M � 3)273

enables efficient traversal of large mutational distances in a high dimensional space.274

Figure 3A, B shows how GS leads to a smooth fitness landscape, enabling BiG to sample high-fitness275

mutations. Often but not always, GS allows BiGGS to assign high probability to higher-fitness276

mutations that are low-probability without GS. We use the GFP wildtype (WT) as a representative of277

high-fitness sequences in the 99th percentile. The smoothed f✓ (fig. 3A) assigns high probability to278

the mutation that changes the current residue to the WT residue at a given proposed position, while279
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Figure 3: Analysis of BiGGS for Hard Task. (A, B) Proposed mutation probability of WT residue
vs. non-WT residues for subsequently accepted mutations with and without GS. The non-smoothed
predictor gives the WT residue only slightly higher probability than other residues. (C) Single vs.
quadruple mutations accepted by BiGGS. Quadruple mutations lead to more large improvements.

giving low probability to other (lower fitness) mutations. The non-smoothed predictor proposes to280

mutate the current residue to the WT residue only slightly more often than other mutations (fig. 3B).281

In Figure 3C, we show that BiGGS’s ability to consider large mutations (M � 3) facilitates efficient282

exploration. We use the oracle to analyze all single (M = 1) and quadruple (M = 4) mutations283

accepted during the course of running BiGGS. We choose M = 4 as it represents the largest portion284

of BiGGS-accepted mutations among large mutations (M � 3). According to the oracle, the largest285

quadruple mutation fitness increases are bigger than the largest single mutation fitness increases.286

Quadruple mutations also result in a greater number of substantial fitness increases. We note a287

somewhat larger count of substantially negative mutations for quadruple mutations vs. for single288

mutations. This is expected given BiGGS’s stochasticity, and the tendency of large mutations to be289

more deleterious than small ones. Similar analysis for M up to 5 is in Appendix D.290

6 Discussion291

In this work, we presented BiGGS, a method for optimizing protein fitness by incorporating ideas292

from MCMC, graph Laplacian regularization, and directed evolution. We outlined a new benchmark293

on GFP that introduces the challenge of starting with poor-fitness sequences, many edits from the top294

fitness sequences. BiGGS discovered higher fitness sequences than in the starting set, even in the hard295

difficulty of our benchmark where prior methods struggled. We analyzed the two methodological296

advancements, Graph-based Smoothing (GS) and Bi-level Gibbs (BiG) (which includes Iterative297

Extrapolation), as well as ablations to conclude each of these techniques aided BiGGS’s performance.298

There are multiple extensions of BiGGS. The first is to improve BiG by removing the independence299

assumption across residues and instead modeling joint probabilities of epistatic interactions. One300

possibility for learning epistatic interactions is to incorporate 3D structure information (if available) to301

bias the sampling distribution. Secondly, the effectiveness of GS in our ablations warrants additional302

exploration into better regularization techniques for protein fitness predictors. Our formulation of GS303

is slow due to the nearest neighbor graph construction and its L1 optimization. Lastly, investigating304

BiGGS to handle variable length sequences, multiple objectives, and multiple rounds of optimization305

is of high importance towards real protein engineering problems. Our code is included in the306

supplementary data and will be publicly available upon acceptance.307
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