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ABSTRACT

Recent advancements in DeepFakes attribution technologies have significantly en-
hanced forensic capabilities, enabling the extraction of traces left by generative
models (GMs) in images, making DeepFakes traceable back to their source GMs.
Meanwhile, several attacks have attempted to evade attribution models (AMs) for
exploring their limitations, calling for more robust AMs. However, existing at-
tacks fail to eliminate GMs’ traces, thus can be mitigated by defensive measures.
In this paper, we identify that untraceable DeepFakes can be achieved through a
multiplicative attack, which can fundamentally eliminate GMs’ traces. Therefore,
by leveraging the structural prior from content-coupled fingerprints, we design
a multiplicative attack framework that instills an explicit inductive bias into the
adversarial model, guiding it to eliminate fingerprints within DeepFakes, thereby
evading AMs even enhanced with defensive measures. This framework trains
the adversarial model solely using real data, applicable for various GMs and ag-
nostic to AMs. Experimental results demonstrate the outstanding attack capabil-
ity and universal applicability of our method, achieving an average attack suc-
cess rate (ASR) of 97.08% against 6 advanced AMs across 12 GMs. Even in
the presence of defensive mechanisms, our method maintains an ASR exceeding
72.39%. Our work underscores the potential challenges posed by multiplicative
attacks and highlights the need for more robust AMs. The code is available at
https://anonymous.4open.science/r/TEST-F4B1.

1 INTRODUCTION

With the rapid development of GMs, such as generative adversarial networks (GANs) (Karras et al.,
2018; Miyato et al., 2018; Binkowski et al., 2018) and diffusion models (DMs) (Rombach et al.,
2022), creating realistic and diverse high-quality images is becoming easily accessible. However,
this progress also enables misuse, leading to issues such as misinformation and intellectual property
infringement. Therefore, dedicated research efforts are being paid to forensics, such as DeepFakes
detection for authenticity identification (Wang et al., 2025).

DeepFakes attribution, a method that surpasses DeepFakes detection by identifying both the au-
thenticity of an image and the specific model or type of models used to generate it, is a promising
approach for enhancing accountability among malicious content creators. This technology captures
distinctive traces left by GMs within images, known as the model fingerprint, thereby attributing
generative content to its source model. Additionally, it supports intellectual property protection by
identifying unauthorized use of copyrighted models or their generative content.

With significant advances in DeepFakes attribution, research into the vulnerability of AMs, known
as attribution attacks, has emerged to explore their limitations, thereby fostering more robust attri-
bution methods and effective countermeasures. Current attacks evade AMs by adding perturbations
into images, called additive attacks, demonstrating considerable attack performance. However, our
analysis and preliminary experiments reveal a fundamental flaw: they are easy to defend against be-
cause they fail to eliminate the fingerprints that are essential for attribution. This implies that while
existing methods can temporarily circumvent attribution, their inability to eliminate fingerprints ren-
ders them inherently fragile and circumventable due to persistent forensic traces.

Therefore, this paper further explores attack methods against attribution methods, developing an
attack strategy to achieve untraceable DeepFakes via fingerprint elimination that not only evades
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AMs but also circumvents defense mechanisms. To achieve this objective, three critical issues must
be addressed: 1) The trade-off between fingerprint elimination and visual imperceptibility. While
more extensive modifications generally enhance attack performance, they can also compromise im-
age quality. Moreover, failing to eliminate the fingerprint undermines the effectiveness of the attack.
2) The broad spectrum of GMs and their diverse fingerprint characteristics present significant com-
plexity. It is impractical to design a model-specific method, therefore, ensuring the universality of
our approach enhances its applicability to DeepFakes generated by various GMs without requiring
customization. 3) Additionally, the adversary often lacks knowledge of the attribution mechanisms
in practical scenarios. Thus, designing a model-agonist attack that is independent of specific AMs
is essential for ensuring its effectiveness in evading various unknown AMs.

To address these challenges, we propose a universal and black-box attack strategy targeting AMs
and defensive mechanisms by fingerprint elimination. By leveraging the structural prior that model
fingerprints are content-coupled modulations, we identify the multiplicative attack that can elimi-
nate traceable fingerprints while preserving perceptual integrity through an adversarial matrix. We
rigorously prove the existence of multiplicative adversarial matrices and demonstrate that defend-
ing against this attack is fundamentally constrained by statistical limits: 1) Without paired clean
and adversarial images, inverting the multiplicative attack is non-identifiable; 2) Even with paired
data, achieving low estimation error requires a prohibitively large sample size, rendering practical
defense unreliable. Subsequently, we design a universal and black-box multiplicative attack frame-
work that leverages this structural prior to instill an inductive bias into the adversarial model, guiding
it to learn to effectively eliminate fingerprints within DeepFakes while preserving the visual fidelity.
This framework constructs the model using exclusively real data without requiring any DeepFakes
or GMs. Specifically, this framework comprises three modules: 1) Data synthesis: employs sam-
pling and transformation units to create synthetic data from real data, mimicking the characteristics
of DeepFakes without access to GMs. 2) Model Construction: trains the model to eliminate arti-
ficial fingerprints within synthetic images through explicit joint optimization of both visual fidelity
and fingerprint elimination, thereby enabling genuine fingerprint elimination rather than mere ob-
scuring. 3) Fingerprint Elimination: given DeepFakes generated by any GMs, the resulting model
effectively serves as the adversarial matrix to eliminate fingerprints rather than merely obscuring,
thus evading unknown AMs even with the presence of the defensive mechanisms.

Our main contributions are summarized as follows:

• We reveal that current attacks against AMs are constrained to additive perturbations through
analysis and preliminary experiments. This additive nature inherently preserves model-
specific fingerprints, rendering them highly susceptible to effective defensive mechanisms.

• We theoretically identify that the multiplicative attack can provably eliminate GMs’ finger-
prints by leveraging their content-coupled modulations, and prove this attack is statistically
non-invertible, rendering it intrinsically evasive against AMs, even under defenses.

• We propose a universal and black-box multiplicative attack method which instills the in-
ductive bias into the adversarial model, enabling it to effectively eliminate traceable finger-
prints while preserving visual fidelity without requiring any DeepFakes or access to AMs.

• We experimentally validate our method’s effectiveness against 6 advanced AMs across 12
GMs with an ASR of 97.08%, surpassing SOTA methods. Crucially, it achieves an ASR of
more than 72.39% against defensive measures. Quantitative analysis further confirms that
our method can effectively eliminate fingerprints and validate its multiplicative nature.

2 RELATED WORKS

2.1 DEEPFAKES ATTRIBUTION

DeepFakes attribution technologies focus on extracting a unique fingerprint left by GMs within
DeepFakes to determine its source model. The pioneering work introduced model fingerprints and
designed the AttNet framework to trace the source model. Building upon this foundation, sub-
sequent research studies actively inserted transferable fingerprints into GMs, thereby enabling the
decoupling of the fingerprint from the generated content (Yu et al., 2021; 2022). To enhance the
capabilities of AMs in identifying unseen GMs, researchers explored DeepFakes attribution under
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an open-set setting (Girish et al., 2021; Yang et al., 2023). Instead of attributing images to specific
models, these studies aimed at architecture-level attribution, attributing images back to their source
architectures (Frank et al., 2020; Yang et al., 2022; Bui et al., 2022; Asnani et al., 2023). DCT
revealed that architecture fingerprints cause severe artifacts in the frequency domain and performed
attribution within this domain (Frank et al., 2020). DNA-Det identified the global consistency of
architectural fingerprints and developed a patch-wise contrastive learning-based framework for attri-
bution (Yang et al., 2022). Meanwhile, some studies achieved this goal through a mixing represen-
tation strategy and reverse engineering, respectively (Bui et al., 2022; Asnani et al., 2023). Recently,
the rise of DMs spurred research into attributing images generated by DMs. For example, the image
and its description are simultaneously utilized for DeepFakes detection and attribution (Sha et al.,
2023). Besides, reconstruction errors were used to infer the source model, as well-reconstructed
images are likely generated from the inspected model (Wang et al., 2024; Laszkiewicz et al., 2024).

2.2 ANTI FORENSICS

DeepFakes forensics are critical for curbing misuse and establishing responsibility, driving many
efforts devoted to exploring the vulnerabilities of existing forensic approaches, thus promoting more
advanced forensic technologies, including DeepFakes detection and attribution. Early anti-forensic
work utilized adversarial examples like FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018)
to add perturbations into DeepFakes for evading detectors (Neekhara et al., 2021; Liao et al.,
2021). DiffAttack subsequently used DMs to generate highly transferable perturbations (Chen
et al., 2024a). Similarly, imperceptible semantic level perturbations were designed through latent
space optimization (Meng et al., 2024). Some studies (Wesselkamp et al., 2022; Liu et al., 2023)
evaded detectors by reducing detectable artifacts rather than adding perturbations. For instance,
FakePolisher learned real representation from real images to construct a dictionary for reducing arti-
facts (Huang et al., 2020). StealthDiffusion (Zhou et al., 2024) achieved this by optimizing both the
latent space and the frequency domain, enabling images indistinguishable from real images. How-
ever, research on the vulnerability of AMs remains limited. Specifically, the vulnerability faced with
transformation-based methods like compression were explored (Yu et al., 2019; Yang et al., 2022).
Transferable adversarial samples were also attempted to attack AMs (Wu et al., 2024). TraceEvader,
a universal attack method by inserting perturbations into high frequency information and blurring
low frequency information of images, thus confusing traceable fingerprints to evade AMs (Wu et al.,
2024).

Although existing methods achieve high ASR, they fail to eliminate the underlying model finger-
prints within DeepFakes. In this paper, we propose a universal, black-box attack against AMs that
fundamentally eliminates these fingerprints. Consequently, our method is significantly more chal-
lenging to defend against, as demonstrated by both theoretical analysis and extensive experiments.

3 PRELIMINARY STATEMENT

3.1 THREAT MODEL

Defender’s Goals and Capabilities: The goal of the defender is to trace the source model of Deep-
Fakes, determining which model instance or type of architecture the image is from. The defender 1)
trains attribution models with available clean DeepFakes and 2) attempts to alleviate the vulnerabil-
ity of AMs through defensive strategies such as adversarial training. The defender may also collect
or create some adversarial DeepFakes for enhancing attribution robustness.

Adversary’s Goals and Capabilities: The goal of the attack is to generate DeepFakes and enhance
untraceability to evade AMs even under defensive measures, thereby avoiding responsibility. The
attacker 1) has full ownership of GMs and knowledge of training data, 2) has no access to or in-
formation about any AMs, and 3) aims to develop a universal and black-box attack that eliminates
model fingerprints, rendering untraceable DeepFakes without altering content perceptibly.

3.2 PROBLEM FORMULATION

Inspired by camera fingerprint studies (Qian et al., 2023), an image x generated by a model M can
be modeled as: x = x0 + x0fM + Θ, where x0 represents the visual content of the image, fM
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Figure 1: Spectral analysis of (top to bottom): original, additive attack images, and images processed
with our method. See A.1.2 (Figures 6,7,8) and A.4.2 (Figure 15) for more.

denotes the model-specific fingerprint left by model M, and Θ captures other noise components.
For brevity, we will use fM to refer to the entire fingerprint term. Based on this formulation, we
provide definitions for DeepFake attribution and attribution attack as follows:
Definition 1 (DeepFake Attribution). Let F : RCHW → P(M), where P(M) denotes the power
set of all possible GMs, be an attribution model that identifies the source GMs M responsible for
generating x. F aims to extract fM from x through

F(x) 7→ fM s.t. ∥F(x)− fM∥ < ϵ,

where ϵ is a tolerance threshold for estimation errors.

Definition 2 (Attribution Attack). Let T : RCHW → RCHW be an attack model that generates an
adversarial image T (x) to mislead F while preserving visual fidelity, that is

||F(T (x))−F(x)|| ≥ ϵ and D(T (x), x) ≤ ∆,

where D(·, ·) is a metric bounding the visual distortion and ∆ bounds the allowable perturbation.

This paper aims to design an attack method that is applicable to images generated by any GMs
(universal) and capable of misleading all AMs without prior knowledge (black-box).

3.3 EXISTING ATTACK ANALYSIS

In this section, we establish that existing attacks are fundamentally additive in nature and, crucially,
fail to eliminate the underlying model fingerprint, rendering them inherently vulnerable to defense.
Definition 3 (Additive Attack). Let Tadd : RCHW → RCHW be an additive attack model that
generates adversarial images through inserting the perturbation into images: Tadd(x) = x+ p.

In this context, a clean image x generated is attacked as Tadd(x) = x0 + fM + p + Θ. The
success of additive attack methods lies in their ability to add a carefully crafted perturbation p that
obscures the fingerprint within DeepFakes, thereby misleading AMs. It is important to note that this
merely confuses the fingerprint, increasing the difficulty of extracting the fingerprint, however, the
fingerprint itself remains intact within DeepFakes.

We identify that existing attack methods are additive (Detailed analysis can be found in the Ap-
pendix A.1.1), therefore, they are easily defended against as they fail to eliminate the fingerprint
within DeepFakes. Our defensive experiments and frequency analysis (Experimental details in the
Appendix A.1.2) both reveal the limitations of them: 1) easily defended against and 2) fail to elimi-
nate the fingerprint:

1) Defensive Evaluations: We employ adversarial training to enhance the DNA-Det (Yang et al.,
2022) and evaluate the effectiveness of additive attacks against defensive mechanisms. Experimental
results reveal that additive attacks can be easily and effectively countered by a defensive strategy.
As summarized in Fig 3, the performance of all tested attacks experiences a significant decline
following adversarial training. For instance, TraceEvader’s ASR drops from 98.28% to 25.10%
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against the defensive mechanism. By incorporating adversarial training, defenders can significantly
enhance the robustness of AMs to handle additive attacks.

2) Frequency Analysis: Model fingerprints exhibit pronounced characteristics in the frequency do-
main, manifesting as distinct patterns (Frank et al., 2020). Our frequency analysis provides evidence
of the persistence of these fingerprints within adversarial images. As illustrated in Figure 1, images
attacked by TraceEvader (Wu et al., 2024) still exhibit high similarity in the frequency domain with
their original counterparts, demonstrating that additive attacks fail to eliminate the fingerprint.

Therefore, merely confusing the fingerprint is insufficient to truly evade AMs. Conversely, we argue
that true non-traceability can only be achieved by eliminating the fingerprint within DeepFakes.

4 METHODOLOGY

In this section, we first prove the existence of multiplicative attacks that provably eliminate GMs’
fingerprints and show that it is statistically non-invertible, rendering defense fundamentally limited.
We then present a universal black-box framework that uses only real data to synthesize fingerprint-
mimicking data and train an adversarial model to eliminate fingerprints across diverse GMs.

4.1 MULTIPLICATIVE ATTACK

The principle of attribution methods is the extraction of the fingerprint fM from DeepFakes. There-
fore, we argue that true untraceability requires eliminating these fingerprints at their source rather
than merely obscuring them. To achieve this, we propose a multiplicative attack:

Definition 4 (Multiplicative Attack). Let Tmul : RCHW → RCHW be a multiplicative attack model
that generates adversarial images with an adversarial matrix W : Tmul(x) = x⊙W.

Structural Prior from Content-Coupled Fingerprints : This formulation leverages a critical property
of generative fingerprints: GMs’ fingerprints are not independent noise but are intrinsically coupled
with the image content. They arise from content-dependent operations such as up-sampling, which
manifest as structured modulations (e.g., grid-like patterns) (Odena et al., 2016; Frank et al., 2020).

The Inductive Bias for Elimination: The multiplicative attack leverages this structural prior as an
explicit inductive bias, directly disrupting this modulation mechanism through a multiplicative op-
eration with an adversarial matrix. Specifically, in this context, a clean image x is attacked as:
Tmul(x) = x0⊙W + fM⊙W + Θ. Here, f ′

M = fM⊙W is the altered fingerprint, by optimiz-
ing the adversarial matrix W , making f ′

M distinct from the original fM. the source GMs can not be
traced because f ′

M ̸= fM. By eliminating the original fingerprint, this attack removes all residual
source-specific information, rendering attribution impossible even under advanced defenses.

Theoretical Existence of Adversarial Matrix: We prove that there always exists a multiplicative
adversarial matrix W capable of constructing an adversarial image as x′ = x⊙W to evade F while
preserving visual fidelity. This is formally established in Theorem 1 and proved in Appendix A.2.

4.2 DEFENSE DIFFICULTY ANALYSIS

We show that the multiplicative attack is statistically non-invertible, making inversion and approxi-
mate inversion defenses infeasible, rendering it intrinsically evasive against both AMs and defenses:

1) Inversion Defense: Let x′ = P (x ⊙ W ) + η, where P denotes standard pre-processing and η
represents noise. Without paired supervision, inverting x from x′ is non-identifiable. In practice,
access to such paired samples is unrealistic. Even with N paired samples and a per-pixel Gaussian
model x′

j = xjWj+ηj , ηj ∼ N (0, σ2), any unbiased estimator satisfies Var(Ŵj) ≥ σ2/
(
N E[x2

j ]
)
.

Consequently, achieving MSE ≤ ε2 requires N ≳ σ2/(ε2 E[x2
j ]). Details in Appendix A.2.2.

2) Approximate Inversion : Using a neural network to approximate W−1 also requires a large num-
ber of image pairs, which is impractical. Moreover, using a network to invert images imprints its
fingerprints onto the recovered content, further degrading defense efficacy. Our experiments show
that even with simultaneous access to both clean and adversarial images, defenders still cannot reli-
ably attribute the source of DeepFakes. Details in Section 5.3 and Appendix A.4.2.
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Figure 2: Overview of our multiplicative attack framework. (1): Data synthesis via sampling Us

and transformation Ut units to generate fingerprint-mimicking data xs. (2): Adversarial model Φ
trained with a multi-domain loss. (3): Φ attacks a DeepFakes x into x′, which evades AMs A while
preserving realism. G denotes the source GMs; G is a post-processing smoothing operator.

4.3 MULTIPLICATIVE ADVERSARIAL ATTACK FRAMEWORK

4.3.1 PARAMETERIZING THE MULTIPLICATIVE MATRIX

While Definition 4 and Theorem 1 establish the existence of a multiplicative matrix W that elim-
inates fingerprints, directly optimizing such a matrix faces two fundamental challenges: 1) Com-
putationally Infeasible: It is impractical to optimize and store the multiplicative matrix for every
potential input. AMs are often inaccessible for optimization, and huge storage requirements render
deployment physically impossible. 2) Limited Generalization: a fixed W matrix optimized on one
image would lack generalization capability as fingerprint patterns vary across diverse GMs.

To overcome these limitations, we propose parameterizing W as an input-dependent function W (x)
and modeled via a neural network Φ that implements the multiplicative attack: Φ(x) = x⊙W (x).
By modeling W (x) with a compact neural network, we avoid the infeasible storage (only requir-
ing fixed parameters) and computational cost per image implied by a fixed-matrix approach. The
input-dependent nature of Φ(x) inherently enables generalization across diverse inputs, resolving
the fixed-matrix limitation. Critically, learning Φ(x) = x ⊙ W (x) preserves the multiplicative
attack structure while ensuring numerical stability, as validated quantitatively in Section 5.4.

4.3.2 FRAMEWORK DESIGN

Objective The primary objective of this framework is to construct an adversarial model that serves
as the adversarial matrix to eliminate fingerprints within DeepFakes, thus evading AMs, even under
enhanced defenses. This model must satisfy: 1) Imperceptibility-Effectiveness Trade-off: Main-
taining visual fidelity while ensuring effective fingerprint elimination in both pixel and frequency
domains.2) Universality: Eliminating fingerprints across diverse GMs without model-specific cus-
tomization; 3) Black-Box: Effectively against various AMs without prior knowledge. Therefore,
our framework is explicitly designed to embed a targeted inductive bias into the adversarial model,
guiding it to learn how to effectively eliminate fingerprints by leveraging their content-coupled struc-
tural prior. This design enables end-to-end construction without relying on any DeepFakes, GMs, or
access to specific AMs, ensuring universal applicability across diverse GMs.

Overview As illustrated in Figure 2, our framework implements an end-to-end pipeline with tightly
coupled modules that collectively achieve fingerprint elimination. Our framework proceeds in three
sequential steps: First, the data synthesis module generates fingerprint-mimicking images by apply-
ing sampling and transformation operations to real data, effectively simulating the artifacts left by
diverse GMs without requiring access to any GM. Second, the model construction module trains
an adversarial network on these synthetic pairs to eliminate artificial traces through joint optimiza-
tion in perceptual, spatial, and frequency domains. Crucially, each loss term explicitly targets a
fingerprint-carrying characteristic: perceptual loss preserves semantics while enabling modification,
spatial loss and spectral loss suppresses low-level pixel artifacts and high-frequency traces respec-
tively, ensuring genuine fingerprint elimination rather than mere visual fidelity. Finally, the trained
model functions as a parameterized multiplicative operator that intrinsically removes traceable fin-
gerprints from any DeepFake, producing untraceable outputs while maintaining perceptual quality.
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Insight The following motivation drives us to mimic the fingerprints of GMs: 1) Sampling Oper-
ations in GMs: GMs primarily rely on down/up-sampling operations to generate images, such as
nearest neighbor sampling, which introduces grid-like patterns in both the spatial and frequency do-
mains (Odena et al., 2016; Frank et al., 2020). These patterns are inherent artifacts of the sampling
processes used by GMs. 2) Image Transformation Similarities: Certain transformation operations
exhibit characteristics similar to those found in GMs. For example, blurring and adding noise using
kernels closely resemble the convolution computations (Yang et al., 2022). These transformations
share spatial properties with the operations within GMs. Therefore, the traces left by sampling and
transformation operations exhibit properties that are analogous to the fingerprints of GMs.

Data Synthesis To effectively mimic the fingerprints of GMs, we design sampling and transforma-
tion units within the data synthesis module, as illustrated in Figure 2. This module first applies the
sampling unit Us to real images, followed by the transformation unit Ut to yield synthetic images:

1) The Sampling Unit Us(·) employs three sampling techniques: nearest-neighbor, bilinear, and bi-
cubic interpolation. Given a real image xr ∈ RCHW , it is first down-sampled to xdown ∈ RC′H′W′

,
where C′ = C,H′ = H/2, and W ′ = W/2. And then the image is up-sampled back to its orig-
inal dimensions, resulting in xup ∈ RCHW . Specifically, the sampling unit stochastically applies
down/up-sampling with probability p1: xup = Us(xr, sdown, sup, p1), where sdown, sup are selected
randomly to introduce diverse spatial artifacts and enhance robustness.

2) The Transformation Unit Ut(·) incorporates a series of image transformation techniques to in-
troduce diverse and realistic variations: (a) Gaussian noise sampled from N (0, σ2), where σ2 is
randomly selected from [5.0, 20.0]; (b) Gaussian filtering with a kernel size randomly chosen
from{1,3,5}; (c) Randomly crops with an offset between 5-20% of the image lengths; (d) JPEG
compression using a quality factor randomly sampled from [10,75]; (e) Relighting (adjusts bright-
ness, contrast, and saturation) with random factors from [0.5, 1.5]; (f) Combination processes in
the following order: relight, cropping, blurring, compression and adding noise. one of the above
operation t is randomly selected and applied with probability p2: xs = Ut(xup, t, p2).

By utilizing sampling and transformation operations, we can effectively simulate the properties of
GM-generated data without access to specific GMs, avoiding limitations to any particular GM.

Model Construction The adversarial model Φ is trained end-to-end on real/synthetic image pairs
(xr, xs) to eliminate artificial fingerprints within synthetic images while preserving perceptual fi-
delity. Φ comprises an encoder-decoder architecture. The encoder includes 3 convolutional layers
and 5 residual layers to extract feature maps. The decoder utilizes 2 up-sampling layers and a con-
volutional layer to reconstruct images. More details in the Appendix A.3 and Table 2. The model is
optimized to target both visual fidelity and fingerprint elimination explicitly:

1) Fidelity Preserving: To ensure visual and semantic similarity between Φ(xs) and xr, we employ
a perceptual loss function with a pretrained 16-layer VGG network as the backbone to extract high-
level features. The perceptual loss is defined as: Lperceptual =

∑
i∈F wi||f i

Φ(xs)
− f i

xr
||2, where

f i
x denotes the feature extracted from the selected layer F = {f i1 , f i2 . . . f ij} of the perceptual

network for image x, and wi =
1
|F | represents the weight.

2) Fingerprint Elimination: Given that synthesis operations and GMs introduce content-coupled
artifacts in both spatial and frequency domains, we design a spatial loss to remove low-level ar-
tifacts within the pixel domain and a multi-scale spectral loss for frequency domain optimiza-
tion. Specifically, the spatial loss is formulated as Lspatial = ||Φ(xs) − xr||2. For frequency
domain artifacts elimination, we apply the Fourier Transform to obtain the frequency represen-
tation of a scaled image xs with scale factor s ∈ S = {1, 0.5, 0.25}, calculating the magni-
tude of the frequency components, and applying logarithmic scaling to stabilize numerical com-
putations. And a small constant ε is added to prevent taking the logarithm of zero values. The
final spectral loss is formulated as Lspectral =

∑
si∈S wi||L(Φ(xs), si) − L(xr, si)||1, where

L(x, si) = log(|fft(xsi)| + ε), wi ∈ {0.5, 0.3, 0.2} represents the weight. The total training loss
function is formulated as: Ltotal = β1Lperceptual + β2Lspatial + β3Lspectral.

By training the model with a multi-domain optimization strategy, we instill in the attack model
Φ an inductive bias for fingerprint elimination, enabling it to remove artificial fingerprints while
preserving visual fidelity, thereby realizing the core principle of multiplicative attack: eliminating
the fingerprint left by GMs rather than merely obscuring.
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Table 1: Comparison of ASR (%) across various AMs. The best and second-best results are marked
in bold and underlined. The symbol ‘-’ within the table indicates not applicable or limited by
computational overhead. The performance of AMs on clean samples is presented in Table 4.

DNA-Det AttNet DCT Reverse POSE LTracer Average SSIM LPIPS

PGD - 99.98 66.16 59.77 6.75 - 58.17 0.912 0.401
BIM - 0.75 47.25 43.78 3.40 - 23.79 0.910 0.401
MIFGSM - 8.90 80.25 67.58 1.30 - 39.51 0.911 0.401
DiffAttack - 100.00 66.75 25.40 56.8 - 62.24 0.962 0.095
Transformation 43.70 99.96 61.21 54.89 47.01 98.79 67.60 0.941 0.151
FakePolisher 75.00 40.95 53.70 90.33 95.85 - 71.17 0.994 0.067
Regeneration 93.30 99.95 84.46 81.05 39.71 0.00 78.60 0.912 0.210
TraceEvader 98.28 65.45 92.40 88.80 86.81 90.89 87.11 0.995 0.038
Ours 98.56 100.00 100.00 89.54 95.52 98.89 97.08 0.963 0.093

Ours (w/o Us) 98.10 100.00 100.00 84.75 93.76 - 95.32 0.970 0.076
Ours (w/o Ut) 91.69 100.00 100.00 81.48 95.83 - 93.80 0.968 0.083
Ours (w/o GBMS) 86.15 100.00 100.00 67.83 95.14 - 89.82 0.965 0.102
Ours (w/o Lspatial) 86.34 100.00 100.00 87.80 96.89 - 94.21 0.964 0.102
Ours (w/o Lspectral) 92.45 100.00 61.16 50.04 97.92 - 80.31 0.950 0.089

Fingerprint Elimination After training, given a clean and traceable generative image x, the at-
tack model Φ eliminates the fingerprints left by the corresponding source GMs, thereby achieving
an untraceable adversarial image for evading DeepFakes attribution. Furthermore, to eliminate im-
perfection or distortion artifacts and enhance the evasion capability, we implement a hybrid image
smoothing operation combining Gaussian Blur and Mean Shift filtering (GBMS) G(·). The adver-
sarial image is generated as: x′ = Tmul(x|Φ) = G(Φ(x)).
Guided by the structural prior that model fingerprints are content-coupled modulations, our frame-
work realizes the multiplicative attack principle by parameterizing the adversarial matrix W as a
neural function. This design instills an inductive bias that enables effective fingerprint elimination
without compromising perceptual fidelity, while overcoming the computational infeasibility and
poor generalization inherent in directly optimizing the matrix W .

5 EXPERIMENTS

We conduct comprehensive experiments to evaluate our attack in evading diverse AMs and defensive
mechanisms. Additionally, quantitative analysis in both spatial and frequency domains demonstrates
that our method is multiplicative and effectively eliminates fingerprints in generated images.

5.1 EXPERIMENTS SETUP

Our experiments span 7 GANs, 5 DMs, and 4 datasets against 6 advanced AMs, and implement
8 attack methods, including 4 transferable attacks (PGD, BIM, MIFGSM, DiffAttack (Chen et al.,
2024a)), 3 black-box methods (transformation, FakePolisher (Huang et al., 2020), TraceEvader (Wu
et al., 2024)), and 1 regeneration attack Zhao et al. (2024). Besides, we retrain DNA-Det for attribut-
ing 3 latest DMs (SD3 (Esser et al., 2024), FLUX (Labs et al., 2025), PixArt (Chen et al., 2024b))
with DiTFake dataset (Li et al., 2025), named DNA-Det-DMs for verifying the effectiveness of our
method in eliminating fingerprints of DMs. Details in the Appendix A.4.1, Table 3.

5.2 EFFECTIVENESS AGAINST ATTRIBUTION METHODS

We evaluate the effectiveness of our proposed method in evading DeepFakes attribution technologies
while preserving image quality and demonstrating its universality across diverse GANs and DMs.

1) Effectiveness: Our method achieves superior evasion performance against AMs in black-box
settings. As shown in Table 1, it attains the highest ASR on four AMs and the second-highest on
two others, significantly outperforming existing SOTA methods. Notably, our method achieves an
average ASR of 97.08%, substantially higher than TraceEvader’s 87.11%. While the regeneration
attack achieves considerable ASR in partial AMs, its performance remains suboptimal compared
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to our approach. Particularly, its ASR degrades to 39.71% and 0.0% against POSE and LTracer,
respectively, highlighting the necessity of fingerprint elimination for attack.

2) Universality: Our method effectively eliminates fingerprints from both GAN- and DM-generated
DeepFakes, demonstrating broad applicability across diverse GMs. Notably, it achieves 98.89%
ASR against LTracer and near-100% ASR on DNA-Det-DMs, attacking DeepFakes into real or SD3-
generated images, validating its efficacy in eliminating DM-specific fingerprints. More in A.4.2.

3) Imperceptibility: Both quantitative and visual evaluations confirm the imperceptibility of our at-
tack. As shown in Table 1, our method matches TraceEvader in image fidelity, achieving 0.963 SSIM
and 0.093 LPIPS. Visual comparisons (original vs. adversarial) are provided in Appendix A.4.2,
Figure 13, confirming high visual quality preservation. Additionally, confusion matrices in Ap-
pendix A.4.2, Figure 11 quantitatively demonstrate that our attack reliably misleads AMs into clas-
sifying adversarial DeepFakes as real images, empirically validating perceptual indistinguishability.

5.3 EFFECTIVENESS AGAINST DEFENSIVE MECHANISMS
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Figure 3: ASR of our method against enhanced
AMs. (a) ASR of our attack against AMs en-
hanced with the augmentation samples indicated
on the x-axis. (b) ASR of different attack meth-
ods under the white-box setting.

To better assess our attack against the adaptive
defense, we identify two distinct scenarios:
1) Black-Box Scenario: the defender is unaware
of the existence of our attack and can not di-
rectly utilize our attack model to generate ad-
versarial images for improving the robustness
of AMs. However, the defender can attempt
to enhance AMs by creating adversarial im-
ages through all other known attacks. 2) White-
Box Scenario: the defender is fully aware of
our method and can directly utilize adversarial
images created by the proposed method to en-
hance AMs.
1) Against Adversarial Training: Experimental results show neither white-box nor black-box de-
fenses can effectively resist our attacks through adversarial training. As shown in Fig 3, our attack
achieves over 72.39% ASR in black-box scenarios. Even when defenders directly use our adver-
sarial images to enhance DNA-Det, no mitigation effect is observed, because the adversarial image
contains no information related to the source model, and the ASR even reaches 100%.
2) Against Approximate Inversion: We demonstrate that training deep neural networks to recover
the original image from the adversarial image is infeasible. The inverted images maintain an ASR
of 97.68% and 99.97%, respectively, validating the defensive resistance of our method. This is con-
sistent with the conclusion of our defense difficulty analysis. More details in the Appendix A.4.2.

5.4 ABLATION STUDY AND QUANTITATIVE ANALYSIS
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Figure 4: Ablation study on the weighting pa-
rameters β2 and β3 with β1 fixed at 0.5, showing
their impact on ASR, SSIM, and LPIPS.

Ablation Study Analysis: Experimental re-
sults validate the importance of compo-
nents (Us,Ut, GBMS) and function design
(Lspatial,Lspectral) in our framework. As
shown in Table 1, while removing individ-
ual components does not degrade image qual-
ity, it significantly reduces ASR. For in-
stance, although removing GBMS still achieves
SOTA, the average ASR drops from 97.08%
to 89.82%. Notably, without Lspectral, our
method achieves only 50.04% ASR against Reverse AMs. These results conclusively demonstrate
the necessity of all designed components and loss functions.

Furthermore, the parameter configuration (β1, β2, β3)=(0.5,0.1,0.4) is empirically verified as the
optimal choice, achieving the best trade-off between attack effectiveness and perceptual quality.
As shown in Figure 4, this setting yields the highest ASR of 97.1%, outperforming all alternative
configurations. Crucially, this gain in ASR is achieved without compromising perceptual quality:
SSIM and LPIPS remain stable at 0.963–0.964 and 0.092–0.097, respectively.
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It is worth noting that our method fundamentally operates by eliminating fingerprints, which inher-
ently requires more modifications than subtle perturbations. While our approach introduces slightly
more distortion than TraceEvader, it still achieves perceptual quality superior to many existing meth-
ods, striking a favorable balance between attack strength and visual integrity. We will further inves-
tigate more efficient fingerprint-elimination mechanisms with minimal distortion in future work.

Frequency Domain Analysis: Analysis results indicate that our attack can effectively eliminate
the fingerprint left by GANs and DMs. As shown in Figure 1, images attacked by our method
exhibit significant differences from the original ones in the frequency domain. This visual evidence
indicates that our attack successfully eliminates the source model’s fingerprint from DeepFakes.
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Figure 5: Distribution of L2 distances between ∆
(left) and Pearson Correlation Coefficient (PCC)
between ∆ and original images (right). See A.1.2
and Figure 9,10 for more.

Image Domain Analysis: Distance and corre-
lation analysis both demonstrate that the pro-
posed attack method exhibits multiplicative
characteristics rather than additive:
1) L2 distance among Residual Components:
The residual component ∆ = T (x) − x veri-
fies attack nature: fixed/stable ∆ indicates ad-
ditive attacks, while variable ∆ signifies mul-
tiplicative behavior. As visualized in Figure 5,
our attack exhibits significantly higher variance
than TraceEvader’s stable residuals, confirming
its multiplicative characteristics as the L2 dis-
tance mainly within [10,30].
2) Correlation between ∆ and Original Images: The residual components caused by multiplicative
attack ∆ = x ⊙W − x = x ⊙ (W − 1) exhibit higher correlation with original images than those
caused by additive attack ∆ = p. As shown in Figure 5, the ∆ caused by our method exhibits
high correlation with original images, with the absolute value of PCC mainly within [0.5,1]. This
strong correlation is a distinctive signature of multiplicative operations, contrasting sharply with
TraceEvader’s residuals (PCC mainly within [0,0.25]).

Computational Efficiency Analysis Our method achieves high computational efficiency by elimi-
nating fingerprints in a single forward pass, enabling simultaneous evasion of all AMs in a black-box
setting. In contrast, transferable adversarial attacks typically require multiple iterative optimiza-
tion steps and access to the target AMs. Compared to existing black-box approaches, our method
achieves substantially higher inference efficiency: it takes only 60.6s to generate 20k adversarial
images, significantly faster than the 732.7s required by TraceEvader. (More results in the Table 7.)

6 CONCLUSION AND LIMITATION

In this paper, we analyze the principles underlying existing attack methods and reveal a critical struc-
tural limitation: current attacks are additive, inherently preserving GMs’ fingerprints, making them
vulnerable to defense. We argue that true untraceability in DeepFakes can be achieved via multi-
plicative attacks, and provide theoretical evidence that such attacks are statistically non-invertible,
posing a fundamental challenge to existing defensive strategies. Building on this insight, we design
a universal attack framework in which the adversarial model learns to eliminate GM fingerprints
using only real data, requiring no knowledge of AMs and ensuring broad applicability across di-
verse GMs. Experiments show our method achieves an ASR of 97.08% across 6 SOTA AMs and 12
GMs, surpassing existing SOTA approaches. It remains highly effective under defense, maintaining
an ASR exceeding 72.39%. Our work highlights the emerging threat of multiplicative attacks and
underscores the urgent need for more robust attribution mechanisms.

While our method successfully eliminates model fingerprints, it requires more structural modifica-
tions than additive attacks. Although visually imperceptible, we aim to optimize efficiency in future
work and explore more advanced attack-defense co-evolution strategies.
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ETHICS STATEMENT

This work investigates the elimination of traceable fingerprints in DeepFake generation, a capability
that inherently raises ethical concerns. On one hand, techniques for producing untraceable synthetic
media could be misused to facilitate disinformation, impersonation, and privacy violations. On
the other hand, we argue that rigorously probing the limits of existing attribution technologies is
essential for developing more robust and trustworthy countermeasures.

To mitigate potential misuse, we emphasize the following: 1) Intended Purpose: Our method is de-
veloped strictly for research, aiming to expose vulnerabilities in current DeepFake attribution frame-
works. 2) Restricted Scope: All experiments use only publicly available datasets under controlled
settings; no real-world personal or sensitive data are involved. 3) Dual-Use Awareness: While our
work demonstrates the feasibility of fingerprint elimination, its primary contribution lies in alert-
ing the community to critical weaknesses in existing attribution technologies. By revealing these
limitations, we hope to catalyze research into stronger watermarking, authentication, and regula-
tory safeguards. 4) Responsible Disclosure: We provide sufficient implementation details to ensure
academic reproducibility, but deliberately omit end-to-end tooling that could be readily weaponized.

We fully acknowledge the dual-use nature of this research and urge the community to interpret
our findings not as a blueprint for malicious DeepFake creation, but as a proactive step toward
anticipating adversarial capabilities and building more resilient defense mechanisms.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the following resources: 1) Code:
Our code implementation is publicly available at https://anonymous.4open.science/r/TEST-F4B1
(anonymized for review). 2) Datasets: All datasets used in our experiments are publicly accessible.
3) Theoretical Proofs: The details of Theorem 1 and its proof are provided in Appendix A.2.1. The
details of defense difficulty analysis are provided in Appendix A.2.2, demonstrating our attack is
statistically non-invertible. 4) Model Architecture: Details of the model architecture are provided
in Appendix A.3. 5) Experimental Settings: Details of the experimental settings, including victim
models (AMs), baseline methods, and implementation details, are provided in Appendix A.4.1.
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Figure 6: Spectral analysis of high-frequency components (part 1).

A APPENDIX

In this appendix, we provide the following supplementary materials:

• A.1 presents a detailed analysis of existing attack methods. Specifically, in A.1.1, we cat-
egorize and summarize prior approaches; in A.1.2, we empirically validate their additive
nature through multiple analyses, including L2 distance between residual components, cor-
relation between residuals and original images, and frequency-domain characterization,
demonstrating their fundamental limitation in effectively eliminating model-specific fin-
gerprints.

• A.2 provides details of the theoretical analysis of the multiplicative attack. Specifically, in
A.2.1 we provide a complete proof of Theorem 1, establishing the theoretical existence of
the multiplicative adversarial matrix. In A.2.2, we provide a proof for the defense difficulty
analysis.

• A.3 details the architectural design of our attack model.

• A.4 elaborates on experimental configurations and presents extended results and discus-
sions. Concretely, A.4.1 specifies the AMs and baseline attacks used in our evaluation,
along with implementation details of our framework, defense mechanisms, and inversion
model architectures. In A.4.2, we provide an in-depth analysis of our method’s effec-
tiveness in evading both state-of-the-art AMs and defensive strategies, demonstrating its
capability to eliminate fingerprints from both GANs and DMs while preserving high visual
fidelity.

• Finally, we disclose the role of large language models (LLMs) in the preparation of this
manuscript.

A.1 ANALYSIS OF EXISTING ATTACK

A.1.1 METHOD ANALYSIS

Existing attacks against AMs fundamentally rely on additive perturbations, which can be summa-
rized as follows:
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Figure 9: Distribution of L2 distances between residual components.
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Figure 10: Pearson Correlation Coefficient (PCC) between residual components and the original
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1) Transformation-based attack: Five types of transformation operations: noise, blurring, cropping,
JPEG compression, relighting and random combination of them are employed to perturb images (Yu
et al., 2019; Yang et al., 2022). Crucially, these transformations either directly add perturbations to
the image (e.g., Gaussian noise δ where x′ = x+ δ) or can be reformulated as additive operations in
transformed domains. For instance, blurring operations apply additive noise in frequency domain,
while JPEG compression introduces quantization errors that manifest as additive perturbations in
pixel space.
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Figure 7: Spectral analysis of high-frequency
components (part 2).

2) Transferable adversarial example: The
BIM and MI-FGSM are leveraged to gener-
ate adversarial examples in a white-box setting
against (Wu et al., 2024). Specifically, they
solve optimization problems of the form x′ =
argmaxx+δ L(x + δ, y) subject to ||δ||p ≤ ϵ,
where δ is the additive perturbation. These per-
turbations are then transferred to other AMs in
black-box settings, maintaining their additive
nature.

3) Black-box and universal attack: (Wu et al.,
2024) adds a universal perturbation learned
from DeepFakes to the high-frequency compo-
nents of images. This perturbation follows the
additive model ∆x = δ, where δ is a fixed
noise pattern added to all images. Similarly,
Gaussian blurring and mean shift applied to
low-frequency components can be viewed as
domain-specific additive perturbations.

All these methods operate within the additive
perturbation paradigm, where adversarial ex-
amples are generated as x′ = x+ δ.

A.1.2 EXPERIMENTAL ANALYSIS

Through analysis of the L2 distance between
residual components and the correlation between residuals and original images, we establish that all
existing adversarial attacks fundamentally operate within the additive perturbation paradigm. More-
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over, through frequency domain analysis of high-frequency components before and after adversarial
attacks, we demonstrate that existing attack methods fail to eliminate model fingerprints.

ProGAN StarGAN StyleGAN3-r

DiffAttack-ProGAN FakePolisher-StarGAN FakePolisher-StyleGAN3-r

Figure 8: Spectral analysis of high-frequency
components (part 3).

1) L2 distance among Residual Components:
Additive attacks generate adversarial examples
by directly superimposing a perturbation p onto
original images, resulting in x′ = x+p. Conse-
quently, the residual component ∆x = x′ − x
should precisely equal the added perturbation
p. A defining characteristic of additive attacks
is that the L2 distance between residual com-
ponents across different samples remains rela-
tively stable within a constrained range.

As demonstrated in Figure 9, all existing attack
methods exhibit this stability pattern. Specifi-
cally, the L2 distances of residual components
for PGD, BIM, MI-FGSM, and TraceEvader
consistently concentrate within the narrow in-
terval [0, 10]. DiffAttack shows slightly higher
values within [10, 20], while transformation-
based attacks, which incorporate multiple operations, display a broader distribution. Nevertheless,
most of the residuals still fall within the [0, 20] range, maintaining the characteristic stability of
additive perturbations.

This consistent concentration of L2 distances provides empirical evidence that these attacks adhere
to the additive perturbation model x′ = x + p, where the residual ∆x directly corresponds to the
added perturbation p.

2) Correlation between ∆ and Original Images: In the additive attack framework, the residual
component ∆x = p should exhibit minimal correlation with the original image x. To quantify this
relationship, we employ the Pearson Correlation Coefficient (PCC), where values approaching 0
indicate no linear correlation, while absolute values closer to 1 indicate stronger correlation.

Figure 10 reveals that residuals generated by existing attack methods consistently demonstrate low
correlation with original images. Specifically, PGD and MI-FGSM produce residuals with PCC
values approaching zero, while DiffAttack and TraceEvader yield slightly higher but still minimal
correlations ( absolute value of PCC within [0,0.25] ).

This consistently low correlation pattern across diverse attack methods provides compelling evi-
dence that existing approaches operate within the additive perturbation paradigm.

3) Frequency Analysis: Model fingerprints exhibit pronounced characteristics in the frequency do-
main, manifesting as distinct patterns (Frank et al., 2020). Our comprehensive evaluation spans
9 GMs, including 7 GAN variants and 2 DMs. As shown in Figures 6, 7 and 8, the high-
frequency spectra of adversarial examples generated by all existing methods, including additive
attacks, reconstruction-based approaches (FakePolisher) and regeneration attack maintain remark-
able similarity to those of original DeepFakes.

These empirical findings collectively demonstrate that existing adversarial attack methods fail to
effectively eliminate model fingerprints, which are critical for DeepFakes attribution. This finding
provides critical insight into the limitations of current attribution attack methods against AMs and
motivates our proposed multiplicative attack approach.

A.2 DETAILS OF THEORETICAL ANALYSIS OF MULTIPLICATIVE ATTACK

A.2.1 EXISTENCE OF ADVERSARIAL MATRIX W

We define the adversarial attack optimization problem as follows:
W ∗ = argmax

W
∥F(x⊙W )−F(x)∥ s.t. ∥∆x∥2 ≤ ∆,

where ∆x = x⊙ (W − I) is the residual component between the adversarial image and the original
image, and ∥ · ∥2 is the L2 norm. Assuming F(x) is differentiable at x, the first-order Taylor
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expansion around x is:
F(x⊙W ) ≈ F(x) + J(x) ·∆x,

where J(x) ∈ Rm×n is the Jacobian matrix:

J(x)ij =
∂Fi(x)

∂xj
.

The optimization problem can be rewritten as:

W ∗ = argmax
W

∥J(x) ·∆x∥ s.t. ∥∆x∥2 ≤ ∆.

We now prove the existence of an adversarial matrix W satisfying this goal.
Theorem 1 (Existence of Multiplicative Adversarial Matrix). Let F (x) be differentiable in a neigh-
borhood of x, and let the Jacobian matrix J(x) ∈ Rm×n be locally Lipschitz around x. If
the input x ∈ Rn satisfies the non-degeneracy condition: There exists at least one coordinate
j ∈ {1, 2, . . . , n} such that xj ̸= 0 and ∂Fi(x)

∂xj
̸= 0 for some i, equivalently, the restricted spectral

norm γ = max∥v∥2=1, v∈S ∥J(x) v∥2 > 0, then there exists a multiplicative perturbation matrix
W such that for any ϵ ∈ (0, γ ·∆],

∥J(x) ·∆x∥2 ≥ ϵ and ∥∆x∥2 ≤ ∆,

where we set ∆x := x⊙ (W − 1) and S = { v ∈ Rn | vj = 0 whenever xj = 0 } is the admissible
perturbation subspace, and the restricted Jacobian JS(x) has spectral norm γ > 0 as defined above.
Moreover, choosing ∆ small enough and constructing W by Wj = 1 + ∆xj/xj for xj ̸= 0 (and
Wj = 1 otherwise) keeps x⊙W in the valid pixel range, and the first–order Taylor error is bounded
by O(∆2).

Proof. We proceed in five steps to construct W and validate the inequality.

1. Structural Constraints on ∆x: Define ∆x = x ⊙ (W − 1). For components where xj = 0, we
have ∆xj = 0. Thus, ∆x is restricted to the subspace S = {v ∈ Rn | vj = 0 if xj = 0}.

2. Admissible Perturbation Directions: By the non-degeneracy condition, the projection JS(x)
(retaining only columns of J(x) where xj ̸= 0) satisfies ∥JS(x)∥F > 0. Hence, there exists a
non-zero direction v ∈ S such that ∥J(x) · v∥ > 0.

3. Optimal Perturbation via SVD: Let JS(x) = UΣV ⊤ be the SVD of JS(x), where σ1 = ∥JS(x)∥2
is the largest singular value and v1 ∈ S is the corresponding right singular vector. Define:

∆x = ∆ · v1.

Then ∥∆x∥2 = ∆, and:

∥J(x) ·∆x∥ = ∆ · ∥JS(x) · v1∥ = ∆ · σ1.

Set γ = σ1, so ∥J(x) ·∆x∥ = γ ·∆.

4. Constructing W : From ∆x = x⊙ (W − I), solve for W :

Wj =

{
1 +

∆xj

xj
, xj ̸= 0,

1, xj = 0.

This ensures ∆x = x⊙ (W − I) and ∥∆x∥2 ≤ ∆.

5. Validating Arbitrary ϵ ∈ (0, γ ·∆]: For any ϵ ∈ (0, γ ·∆], let δ = ϵ/γ ≤ ∆. Define:

∆x′ = δ · v1.

Then ∥∆x′∥2 = δ ≤ ∆, and:
∥J(x) ·∆x′∥ = γ · δ = ϵ.

Construct W ′ using the same formula as above.

If JS(x) ̸= 0 (i.e., γ > 0), there exists a perturbation ∆x ∈ S with ∥∆x∥2 ≤ ∆ such that
∥J(x) ·∆x∥ ≥ ϵ for all ϵ ∈ (0, γ ·∆].
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A.2.2 PROOFS FOR DEFENSE DIFFICULTY ANALYSIS

Proposition 1 (Non-identifiability without paired supervision). Assume x′=P (x⊙W )+η, where P
is a deterministic pre-processing operator and η is measurement noise. In the idealized case P =I ,
η=0, the decomposition of x′ into (x,W ) is not identifiable: there exist infinitely many (x̃, W̃ ) such
that x̃⊙ W̃ = x′.

Proof. Let S = {j : xj ̸= 0}. For any δ ∈ Rn with ∥δ∥∞ < 1 and δj = 0 for j /∈ S, define
x̃ = x ⊙ (1 + δ) and W̃ = W ⊙ (1 + δ)−1. Then x̃ ⊙ W̃ = x ⊙ (1 + δ) ⊙ W ⊙ (1 + δ)−1 =
x ⊙ W = x′. Varying δ yields infinitely many valid decompositions, hence non-identifiability.
This non-identifiability persists under any deterministic P , because if x1 ⊙ W1 = x2 ⊙ W2, then
P (x1 ⊙W1) = P (x2 ⊙W2). The presence of noise η only exacerbates the ambiguity.

Lemma 1 (Pre-processing does not fix identifiability). If P is deterministic and injective on the
image range of interest, then non-identifiability of (x,W ) from x′ under P = I, η=0 implies non-
identifiability under x′ = P (x⊙W ) as well.

Proof. If x1 ⊙ W1 = x2 ⊙ W2, then P (x1 ⊙ W1) = P (x2 ⊙ W2) by determinism. Injectivity is
only needed if one tries to recover x⊙W from x′; it does not help distinguish different (x,W ) pairs
producing the same product before P .

Proposition 2 (CRLB-style lower bound with paired supervision). Consider the per-pixel model
x′
j = xjWj + ηj , where ηj ∼ N (0, σ2) i.i.d.represents measurement noise (e.g., from image acqui-

sition or pre-processing). Given N i.i.d. pairs (x(k), x′(k)), any unbiased estimator Ŵj ,

Var(Ŵj) ≥ σ2

N E
[
(x

(k)
j )2

] .

Consequently, to achieve E(Ŵj −Wj)
2 ≤ ε2 one needs N ≳ σ2/(ε2 E[(x(k)

j )2]).

Sketch. The log-likelihood of {x′(k)
j }Nk=1 given Wj is Gaussian with mean x

(k)
j Wj and variance

σ2. The Fisher information is Ij(Wj) = 1
σ2

∑N
k=1(x

(k)
j )2. The Cramér–Rao lower bound yields

Var(Ŵj) ≥ Ij(Wj)
−1; taking expectation over the data distribution gives the stated bound.

Remark 1 (Effect of standard pre-processing). If P is L-Lipschitz and F is locally Lipschitz, then
for a feasible ∆x = x⊙ (W − 1) with ∥∆x∥2 ≤ ∆, ∥F (P (x⊙W ))− F (P (x))∥2 ≤ L ∥∆x∥2 +
O(∆2). Thus P changes constants but not the identifiability conclusion of Proposition 1.

A.3 THE DETAILS OF THE MODEL ARCHITECTURE

Table 2: Proposed adversarial model architecture. H and W denote input image height and width;
InstNorm = Instance Normalization; ×5 = repeated 5 times; Dual = two sequential convolutional
operations per block.

Component Layer Kernel Stride Padding Output Shape Activation/Normalization

Encoder ConvLayer (Input) 9× 9 1 Reflect 32×H ×W ReLU + InstNorm
ConvLayer (Downsample) 3× 3 2 Reflect 64× H

2 × W
2 ReLU + InstNorm

ConvLayer (Downsample) 3× 3 2 Reflect 128× H
4 × W

4 ReLU + InstNorm

Residual Blocks ResidualLayer ×5 3× 3 (dual) 1 Reflect 128× H
4 × W

4 Layer 1: ReLU + InstNorm;
Layer 2: Linear + InstNorm;
Skip connection

Decoder DeconvLayer (Upsample 1) 3× 3 1 Reflect 64× H
2 × W

2 ReLU + InstNorm
DeconvLayer (Upsample 2) 3× 3 1 Reflect 32×H ×W ReLU + InstNorm
ConvLayer (Output) 9× 9 1 Reflect 3×H ×W Linear

As systematically documented in Table 2, our adversarial model comprises an encoder-decoder ar-
chitecture.
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Table 3: Summary of Attribution Models, Generative Models, and those used in the experiments.
SDv1-5 and SDv2-base respectively, indicate Stable Diffusion v1-5 and Stable Diffusion v2-base.
Besides, we retrain DNA-Det to attributing (SD3 (Esser et al., 2024), FLUX (Labs et al., 2025),
PixArt (Chen et al., 2024b)) with DiTFake dataset (Li et al., 2025).

ProGAN SNGAM MMDGAN CramerGAN InfoMaxGAN StarGAN StyleGAN3 SDv1-5 SDv2base

DNA-Det ✓ ✓ ✓ ✓
AttNet ✓ ✓ ✓ ✓
DCT ✓ ✓ ✓ ✓

Reverse ✓ ✓ ✓ ✓
POSE ✓ ✓ ✓

LTracer ✓ ✓

The encoder processes the input image through a cascade of convolutional and residual layers to
extract features. It comprises: 1) Three initial convolutional layers: The first layer employs a 9×9
kernel with stride 1, transforming the 3-channel input into 32 feature maps. The subsequent two
layers use 3×3 kernels with stride 2 for spatial downsampling, progressively expanding the channel
depth to 64 and then 128 while halving the spatial resolution at each step. All convolutional layers
utilize reflection padding, instance normalization, and ReLU activation. 2) Five residual refinement
blocks: Each block processes the 128-channel features through two sequential 3×3 convolutional
layers with stride 1. The first layer in each block applies ReLU activation, while the second operates
linearly (without activation) to preserve gradient flow. Skip connections sum the block input with
the processed features, mitigating degradation in deep networks and preserving details. Instance
normalization is applied after each convolutional operation to ensure consistent feature distributions.

The decoder reconstructs the high-resolution output via two upsampling stages and an output syn-
thesis layer: 1)Upsampling stages: Stage 1: Upsamples the 128-channel encoder output to 64 chan-
nels, followed by a 3×3 convolutional layer, instance normalization, and ReLU activation. Stage
2: Further upsamples to 32 channels through an identical operation sequence (interpolation, 3×3
convolution, normalization, ReLU). 2) Output synthesis layer: A final 9×9 convolutional layer with
stride 1 and linear activation maps the 32-channel features to the 3-channel output image.

A.4 THE DETAILS OF THE EXPERIMENTS

A.4.1 EXPERIMENTAL SETUP DETAILS

This section comprehensively details the experimental framework employed in our evaluation, in-
cluding the victim models under attack, benchmark adversarial methodologies, and implementation
details utilized for validation. We systematically describe the implementation specifics of both ad-
versarial training and approximate inversion techniques (Defense technology). The core source code
for our methodology is publicly available at: https://anonymous.4open.science/r/TEST-F4B1

1) Victim Model (AMs): We conduct experiments against 6 advanced attribution technologies, in-
cluding DNA-Det (Yang et al., 2022), AttNet (Yu et al., 2019), DCT (Frank et al., 2020), Re-
verse (Asnani et al., 2023), POSE (Yang et al., 2023), and LTracer Wang et al. (2024). As sum-
marized in Table 3, our experiments span 7 GANs, 5 DMs and 4 datasets. All GANs employed in
our evaluation were pre-trained on established facial datasets. Specifically, StyleGAN was trained
on the high-fidelity FFHQ dataset, while alternative GAN architectures were trained on the CelebA
dataset. The two DMs were trained on the large-scale LAION dataset. We leveraged these pre-
trained generative models to generate DeepFakes for comprehensive experimental evaluation. And
for all AMs, we follow their original default Settings.

In addition, we implement DNA-Det for attributing 3 latest DMs (SD3 (Esser et al., 2024),
FLUX (Labs et al., 2025), PixArt (Chen et al., 2024b)) with DiTFake dataset (Li et al., 2025) by
ourselves, which is used to verify the effectiveness of our method in eliminating fingerprints of dif-
fusion models. We used DiTFake dataset to train it into a four-class classification model (real, SD3,
FLUX, PixArt), 5000 images per class, 20,000 images in total) to train DNA-Det. We used 16,000
images for model training and 2000 for validation. 2000 for testing and attacking. We adopted
the same default training settings as for the CelebA dataset. The attribution accuracy of the trained
model is 96.65%.
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Table 4: Performance of attribution models on clean (non-adversarial) samples

DNA-Det AttNet DCT Reverse POSE LTracer

Accuracy 100.0 99.43 99.07 99.66 85.43 98.89

2) Baseline (Attack methods): For comparative analysis, we implement 8 attack methods, including 4
transferable attacks (PGD, BIM, MIFGSM, DiffAttack (Chen et al., 2024a)), and 3 black-box meth-
ods, including transformation-based attack, FakePolisher (Huang et al., 2020) and TraceEvader (Wu
et al., 2024). Besides, we adopt 1 regeneration attack for comparison Zhao et al. (2024). For trans-
ferable methods, adversarial images are created by attacking the DNA-Det in a white-box setting
and transferred against other AMs aligned with (Wu et al., 2024). Due to the high computational
overhead of DiffAttack, we limited its application to generating adversarial examples specifically
against ProGAN-generated DeepFakes. Similarly, FakePolisher’s implementation is constrained to
facial imagery through its domain-specific dictionary construction; consequently, we evaluated this
attack exclusively on facial DeepFakes while excluding LTracer due to dataset domain mismatch.
For regeneration attacks, we employed Stable Diffusion-v2.1 as the reconstruction model.

3) Implementation Details : Our attack model is trained on the CelebA dataset to eliminate finger-
prints in face images and on the ImageNet test set to remove fingerprints from DMs. We employ the
Adam optimizer with an initial learning rate of 1e-4 and use a cosine annealing strategy to adjust the
learning rate. The weights in Ltotal β1, β2, β3 are set as {0.5, 0.1, 0.4}.

4) Adversarial Training Details: We implemented adversarial training to enhance the robustness of
the DNA-Det detector against our proposed adversarial attack. Specifically, we preserved the origi-
nal architecture and training configuration of DNA-Det while replacing 50% of the training samples
with adversarial images generated by our method, maintaining the ground-truth labels throughout
the training process. After completing the adversarial training phase, we evaluated the attack success
rate of our method against enhanced AMs.

5) Approximate Inversion Details: To investigate the potential of approximate inversion as a de-
fense mechanism against our adversarial attacks, we implemented two inversion models based on
established denoising architectures: DnCNN and an Autoencoder. Both models were trained to re-
construct clean images from adversarial examples, with the adversarial inputs serving as the source
domain and the corresponding clean images as ground-truth targets. The training objective employed
the Mean Squared Error loss function. After model convergence, we evaluated the effectiveness of
this defense strategy by processing the reconstructed images through the DNA-Det.

The architectural details of the two networks are as follows: 1) DnCNN: The DnCNN architecture
employed in our experiments consists of a 20-layer deep convolutional layers. The network begins
with an initial convolutional layer that transforms the 3-channel input into 64 feature maps using a
3×3 kernel with stride 1 and padding 1, followed by a ReLU activation function. This is succeeded
by 18 intermediate layers, each comprising a 3×3 convolutional operation maintaining 64 feature
channels, batch normalization, and ReLU activation. The final layer projects the feature represen-
tation back to the original 3-channel output space through another 3×3 convolution, with a sigmoid
activation ensuring the output values remain within the valid [0,1] range. 2) Autoencoder: The
Autoencoder architecture implements a symmetric encoder-decoder structure. The encoder path-
way begins with a convolutional layer that processes the 3-channel input into 64 feature maps using
a 4×4 kernel with stride 2 and padding 1, followed by batch normalization and ReLU activation.
Three additional convolutional layers progressively increase the channel depth to 128 and 256 while
reducing spatial dimensions, culminating in a bottleneck layer that compresses the representation to
256 channels at 8×8 spatial resolution, forming the latent space representation. The decoder reverses
this compression process through four transposed convolutional layers that progressively upsample
the feature maps while reducing channel depth , each followed by batch normalization and ReLU ac-
tivation (with the exception of the final layer which employs a sigmoid activation to constrain output
values to the [0,1] range). All convolutional weights are initialized using Kaiming normal initial-
ization to ensure stable training dynamics, while batch normalization parameters follow standard
initialization protocols. We summarize the architecture of both models in the table 5 and 6.
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Table 5: DnCNN Architecture
Component Layer Type Kernel Size Stride Padding Output Shape Activation/Normalization
Input Layer Conv2d 3× 3 1 Reflect 64×H ×W ReLU
Intermediate Conv2d ×18 3× 3 1 Reflect 64×H ×W ReLU + BatchNorm
Output Layer Conv2d 3× 3 1 Reflect 3×H ×W Sigmoid

Table 6: Autoencoder Architecture
Component Layer Type Kernel Size Stride Padding Output Shape Activation/Normalization

Encoder Conv2d (Downsample 1) 4× 4 2 Reflect 64× H
2 × W

2 ReLU + BatchNorm
Conv2d (Downsample 2) 4× 4 2 Reflect 128× H

4 × W
4 ReLU + BatchNorm

Conv2d (Downsample 3) 4× 4 2 Reflect 256× H
8 × W

8 ReLU + BatchNorm
Bottleneck 4× 4 2 Reflect 256× H

16 × W
16 ReLU + BatchNorm

Decoder ConvTranspose2d (Upsample 1) 4× 4 2 Reflect 256× H
8 × W

8 ReLU + BatchNorm
ConvTranspose2d (Upsample 2) 4× 4 2 Reflect 128× H

4 × W
4 ReLU + BatchNorm

ConvTranspose2d (Upsample 3) 4× 4 2 Reflect 64× H
2 × W

2 ReLU + BatchNorm
Output Layer 4× 4 2 Reflect 3×H ×W Sigmoid

A.4.2 EXPERIMENTAL EVALUATION DETAILS

This section presents more empirical analysis and visual evidence to further substantiate our method-
ology’s effectiveness.

1) Effectiveness Against Attributions: Figure 11 presents a comprehensive confusion matrix anal-
ysis of AMs under our adversarial attack methodology. The visualization reveals that our attack
successfully compromises the DeepFakes attribution capability of all evaluated AMs, significantly
degrading their ability to determine the generative origin of DeepFakes. Among them, DCT mis-
classifies 100% of adversarial images as CramerGAN-generated content, therefore, we exclude
CramerGAN-generated DeepFakes attribution from our attack success rate calculations.

Notably, our attack induces AMs to misclassify a substantial proportion of adversarial images as
real images, demonstrating the perceptual indistinguishability of our adversarial images from gen-
uine imagery. Most strikingly, when targeting AttNet, our method achieves a perfect 100% misat-
tribution rate to real images, demonstrating that the adversarial images generated by our approach
are perceptually indistinguishable from real images. This complete source obfuscation represents
a significant advancement over prior art, as it effectively eliminates the distinguishing features that
attribution models typically exploit for detection.

2) Effectiveness Against Defensive Mechanisms: Figure 12 presents a confusion matrix anal-
ysis of DNA-Det’s robustness against our adversarial methodology under two prominent defense
paradigms: adversarial training and approximate inversion. The visualization reveals that adver-
sarially trained DNA-Det fails to correctly attribute adversarial images, exhibiting degraded per-
formance compared to the baseline model. Specifically, the adversarially trained DNA-Det mis-
classifies 100% of adversarial images as authentic content, representing a complete collapse of
source attribution capability. Similarly, approximate inversion defenses prove ineffective against
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Figure 11: Attribution Performance Analysis: Confusion matrices of the DeepFakes model under
the proposed adversarial attack.
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Figure 12: Attribution Performance Analysis: Confusion matrices of DNA-Det (enhanced) under
the proposed adversarial attack.

Figure 13: Visualization of the original DeepFakes (top) and adversarial images (bottom) generated
by the out attack.

our methodology. As evidenced by the confusion patterns across both inversion approaches, both
DnCNN-based and AutoEncoder-based reconstruction models fail to recover traceable fingerprints
for accurate attribution. These findings collectively demonstrate the resilience of our attack against
state-of-the-art defense mechanisms.

The above experimental results show that: 1) On the one hand, even though the adversarial training
defense measures have seen the adversarial images attacked by our method during the training pro-
cess, they cannot align the correct attribution, which indicates that the multiplicative attack proposed
by us effectively eliminates the fingerprints inside DeepFakes, so that AMs cannot effectively per-
form attribution even if it is enhanced by defense measures. Because there is no information related
to the source model in the image after the attack. 2) On the other hand, the defense method based
on approximate inversion is also unable to effectively defend, which is consistent with the conclu-
sion of our defense difficulty analysis above. Even if the defender can collect image pairs to train
the inversion model, it cannot defend against our attack, because restoring images with the defense
of neural networks will introduce new network fingerprints into new images, further reducing the
possibility of attribution.

3) Effectiveness Preserving Image Fidelity: Figure 13 presents a visual comparison between original
DeepFakes and their adversarial counterparts generated by our methodology. The side-by-side ex-
amples demonstrate exceptional visual fidelity preservation, with structural similarity (SSIM) scores
averaging 0.963 and Learned Perceptual Image Patch Similarity (LPIPS) of 0.093 across the eval-
uation images. While minor color variations are observable in some regions, the semantic content
remains fully preserved, including facial identity, expression, and structural features. This high
degree of perceptual consistency confirms that our attack operates within imperceptibility thresh-
olds while effectively compromising attribution model performance, representing a critical balance
between attack efficacy and visual Fidelity.
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Figure 14: Attribution Performance Analysis:
Confusion matrices of the DNA-Det-DMs classi-
fier on clean (left) and attacked (right) DeepFakes
generated by FLUX, PixArt, and SD3.
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Figure 15: Spectral analysis of high-
frequency components in DeepFakes gener-
ated by FLUX, PixArt, and SD3 before (top
row) and after (bottom row) our attack.

4) Effectiveness Eliminating DMs’ Fingerprints: We evaluate the effectiveness of our attack method
in eliminating DMs’ fingerprints across five state-of-the-art diffusion models: Stable Diffusion v1.5,
Stable Diffusion v2.1, FLUX, PixArt, and Stable Diffusion 3.

We assess the attack performance on a custom-trained attribution model (DNA-Det-DMs) that was
trained to identify DeepFakes generated by the three most recent diffusion models: FLUX, PixArt,
and SD3. This model achieves an attribution accuracy of 96.65% on clean DeepFakes, demonstrat-
ing its strong discriminative capability under benign conditions. In contrast, our adversarial attack
achieves an ASR of nearly 100%, indicating near-total evasion of model attribution.

To visualize the impact of our attack, we present confusion matrices in Figure 14, comparing the
DNA-Det-DMs’s performance before and after the attack. The left subfigure shows that, on clean
DeepFakes, the model accurately distinguishes among images generated by different DMs. How-
ever, the right subfigure reveals a dramatic degradation in attribution performance under attack:
our adversarial DeepFakes successfully mislead the DNA-Det-DMs to predominantly misattribute
all DMs-generated images as either “real” or as originating from SD3, effectively collapsing the
model’s discriminative power and undermining its forensic utility.

Frequency-domain analysis further validates that our method effectively eliminates the intrinsic fin-
gerprints of DMs, even for the most recent architectures. As illustrated in Figure 7, DeepFakes
generated by SDv1.5 and SDv2base after being attacked by our method exhibit significant spectral
deviations from their clean counterparts. In Figure 15, we extend this analysis to the three latest
DMs (FLUX, PixArt, and SD3), comparing the frequency-domain characteristics of their gener-
ated images before and after attack. Consistent with the observations in Figure 7, the adversarial
DeepFakes demonstrate substantial spectral difference compared to their original, clean versions.

Collectively, these results demonstrate that our attack successfully suppresses and, in many cases,
effectively eliminates the model-specific fingerprints in DM-generated DeepFakes. This holds true
even for the latest generation of DMs, demonstrating the broad applicability of our method, even
against the latest DMs.

We do not include a dedicated evaluation of typical post-processing pipelines (e.g., JPEG re-
compression, resizing, cropping) for the following reasons: 1) Our multiplicative attack is designed
to eliminate generator-specific fingerprints within DeepFakes. Once the original fingerprint has been
eliminated, subsequent image-level transforms are information-reducing and cannot reconstruct the
removed statistics; in practice, they further destroy any residual cues used by attribution models, thus
making correct attribution even less likely. 2) TraceEvader (Wu et al., 2024) has already evaluated
and reported that operations like JPEG re-compression, resizing, and cropping do not degrade the
attack performance; they introduce even greater perturbations to images, which can further increase
the attack success rate.
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Table 7: Computational efficiency comparison of attack methods. Reported values are end-to-end
inference times (in seconds) for generating 20,000 adversarial images on a fixed hardware platform.
Lower is better. The best results are marked in bold.

Mehtod PGD BIM MIFGSM FakePolisher Regeneration TraceEvader Ours

Time Cost 102.62 79.54 127.62 2611.1 2180.49 732.70 60.64

A.5 USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models (Qwen) as writing aids to improve the clarity and fluency of cer-
tain sections. These tools were used exclusively for language refinement and structural suggestions;
they did not contribute to the design of our attack framework, theoretical analysis, or experimental
evaluation. All technical content, including algorithms, proofs, and results, is the original work of
the authors. We assume full responsibility for the integrity of this manuscript.
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