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Abstract

In limited data settings, transfer learning has proven useful in initializing model param-
eters. In this work, we compare random initialization, pre-training on ImageNet, and
pre-training on histopathology datasets for 2 model architectures across 4 segmentation
histopathology datasets. We show that pre-training on histopathology datasets does not
always significantly improve performance relative to ImageNet pre-trained weights for both
model architectures. We conclude that unless larger labeled datasets or semi-supervised
techniques are leveraged, ImageNet pre-trained weights should be used in initializing seg-
mentation models for histopathology.
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1. Introduction and Related Works

Transfer learning is a technique where a model developed for a specific task can be reused as
the initial model for a second task with limited labeled data. A common transfer learning
approach for medical images is to start with the standard network architectures, e.g., VGG
(Simonyan and Zisserman, 2014) and ResNet (He et al., 2016) pre-trained on the large-
scale natural images such as ImageNet (Deng et al., 2009) and PASCAL VOC (Everingham
et al., 2010), and then fine-tune them on medical images. The effectiveness of pre-trained
deep convolutional neural networks (CNNs) with sufficient fine-tuning was investigated on
four different medical imaging applications in Tajbakhsh et al. (2016). This study demon-
strated that, in most cases, fine-tuning a pre-trained model achieved better performance
and robustness in comparison to those trained from scratch. Similarly, Devan et al. (2019)
demonstrated that transfer learning with ImageNet can significantly enhance model per-
formance in detecting herpesvirus capsids in microscopy images, particularly when labeled
data is limited. Conze et al. (2020) utilized a VGG-11 encoder pre-trained on ImageNet for
the shoulder muscle MRI segmentation task. These results indicate that a CNN pre-trained
on ImageNet learns features that are applicable to both natural and medical images. How-
ever, the gap in features between medical and natural images has motivated pre-training
on medical datasets. Ray et al. (Ray et al., 2022) demonstrated an increase in performance
and faster convergence for CNNs pre-trained on histopathology datasets relative to a model
pre-trained on ImageNet. To the best of the authors’ knowledge, the efficacy of utilizing a
model pre-trained on natural images compared to a medical image pre-trained models for
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nuclei segmentation tasks has not been investigated. Our contribution is to systematically
compare segmentation performance using different pre-trained weights across 4 datasets
derived from whole-slide-images: eosinophilic esophagitis (EoE) with 2,056 images, Crohn’s
disease (Crohns) with 800 images, Colorectal Nuclear Segmentation and the Pheno-types
(CoNSeP) (Graham et al., 2019) with 660 images, and PanCancer Histology Dataset for Nu-
clei Instance Segmentation and Classification (PanNuke) (Gamper et al., 2019) with 7,901
images. We seek to answer the following: Does pre-training on histopathology datasets
improve segmentation performance relative to encoders pre-trained on ImageNet?

2. Methods

For our analysis, we use HoVer-Net (Graham et al., 2019) and U-Net++ (Zhou et al., 2018)
models. HoVer-Net has three separate task-specific decoders, which are used for nuclei
detection, separation, and classification, respectively. U-Net++ has a single decoder to
provide pixel classification. The Preact-ResNet50 is utilized as an encoder for both models.
For HoVer-Net, we follow the exact hyper-parameters and training strategies presented
in (Graham et al., 2019). For U-Net++, we train each model for 200 epochs and select
the model that minimizes the validation binary cross-entropy (EoE and Crohns) or cross-
entropy (CoNSeP and PanNuke) loss. We train and test each of the models for each of
the 4 datasets given encoders with various pre-trained weights. We use the MoNuSAC
ResNet50 encoder weights from (Graham et al., 2019), and the other weights are obtained
by initializing a model with ImageNet and training it on a given histopathology dataset.

3. Experiments and Results

Table 1 shows the average performance of the U-Net++ and HoverNet models over 3 runs
across the various pre-trained weights for EoE, Crohns, PanNuke, and CoNSeP. We put the
maximum performance for each test set and model across the pre-trained weights in bold and
put a star if optimal performance is statistically significant. Notably, the models pre-trained
on histopathology and the models pre-trained on ImageNet do not have differences that
are statistically significant, except for HoVer-Net pre-trained on MoNuSAC for PanNuke,
where p = 0.052499 from a Welch’s t-test comparing it with the ImageNet pre-trained
model performance. This indicates that pre-training on these histopathology datasets does
not increase the segmentation performance relative to ImageNet weights. The randomly
initialized weights are lower for all datasets except U-Net++ for EoE, suggesting that
some kind of pre-training is useful. Furthermore, the number of epochs trained when
using a model initialized with ImageNet weights is comparable to models pre-trained on
histopathology, being significantly larger only for U-Net++ on PanNuke. Thus, there is no
set of consistently optimal pre-trained weights, and the ImageNet weights provide the same
or better performance than weights from a model pre-trained on multiple histopathology
datasets. Also, the time for training for models with ImageNet pre-trained encoder is
comparable to models pre-trained with histopathology.

2



Pre-training Segmentation Models for Histopathology

Table 1: Model Performance
Test Dataset

Pre-Trained Crohns EoE
Model Weights Dice Epochs Dice Epochs

U-Net++ Random 0.55 ± 0.033 84 0.62 ± 0.009 83
U-Net++ ImageNet 0.572 ± 0.006 31 0.615 ± 0.02 60
U-Net++ MoNuSAC 0.554 ± 0.009 109 0.612 ± 0.015 103
U-Net++ CoNSeP 0.565 ± 0.019 30 0.618 ± 0.018 63
U-Net++ PanNuke 0.554 ± 0.031 11 0.599 ± 0.001 65
U-Net++ EoE 0.557 ± 0.026 21 - -
U-Net++ Crohns - - 0.606 ± 0.016 89

HoVer-Net Random 0.389 ± 0.192 74 0.572 ± 0.007 80
HoVer-Net ImageNet 0.609 ± 0.012 90 0.621 ± 0.004 93
HoVer-Net MoNuSAC 0.6 ± 0.011 83 0.624 ± 0.002 97

PanNuke CoNSeP

U-Net++ Random 0.552 ± 0.014 73 0.65 ± 0.011 129
U-Net++ ImageNet 0.571 ± 0.013 127 0.669 ± 0.008 82
U-Net++ MoNuSAC 0.54 ± 0.012 69 0.667 ± 0.009 109
U-Net++ CoNSeP 0.57 ± 0.02 50 - -
U-Net++ PanNuke - - 0.678 ± 0.012 62
U-Net++ EoE 0.593 ± 0.033 114 0.656 ± 0.039 83
U-Net++ Crohns 0.577 ± 0.017 92 0.664 ± 0.022 81

HoVer-Net Random 0.555 ± 0.007 78 0.403 ± 0.048 67
HoVer-Net ImageNet 0.585 ± 0.003 94 0.67 ± 0.007 97
HoVer-Net MoNuSAC 0.602* ± 0.008 98 0.679 ± 0.016 83
HoVer-Net CoNSeP 0.589 ± 0.003 95 - -
HoVer-Net PanNuke - - 0.644 ± 0.05 78

4. Conclusion

We showed that training a model with ImageNet pre-trained weights did not have signif-
icantly different performance than pre-training on multiple histopathology datasets for 2
state-of-the-art medical segmentation models, the U-Net++ and HoVer-Net. This is likely
due in part to the relatively small size of the datasets used in pre-training. Small datasets
do not allow the model to learn a diversity of features, even when they come from the
target domain. Furthermore, the number of training epochs to minimize the validation
loss did not increase for the models pre-trained with ImageNet relative to those trained on
histopathology. We conclude that, unless an abundant amount of histopathology data is
available, pre-training on relatively small histopathology datasets is not likely to increase
performance or decrease training time relative to an ImageNet baseline.
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