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ABSTRACT

The global self-attention mechanism in diffusion transformers involves redundant
computation due to the sparse and redundant nature of visual information, and the
attention map of tokens within a spatial window shows significant similarity. To
address this redundancy, we propose the Proxy-Tokenized Diffusion Transformer
(PT-DiT), which employs sparse representative token attention (where the num-
ber of representative tokens is much smaller than the total number of tokens) to
efficiently model global visual information. Specifically, within each transformer
block, we compute an averaging token from each spatial-temporal window to
serve as a proxy token for that region. The global semantics are captured through
the self-attention of these proxy tokens and then injected into all latent tokens via
cross-attention. Simultaneously, we introduce window and shift window attention
to address the limitations in detail modeling caused by the sparse attention mech-
anism. Building on the well-designed PT-DiT, we further develop the PT-T2I/V
family, which includes a variety of models for T2I, T2V, and T2MV tasks. Experi-
mental results show that PT-DiT achieves competitive performance while reducing
computational complexity in image and video generation tasks (e.g., a reduction
59% compared to DiT and a reduction 34% compared to PixArt-α). The visual
exhibition of PT-T2I/V is available at https://qihoo-t2x.github.io/.

1 INTRODUCTION

Recent advancements in core diffusion models, including Sora (OpenAI, 2024), Kling (Kuaishou,
2024), Stable Diffusion 3 (Stability AI, 2024), PixArt-α/Σ/δ (Chen et al., 2023; 2024a;b), Vidu
(Shengshu AI, 2024), Lumina-T2X (Gao et al., 2024), Flux (BlackForestlabs AI, 2024), and
CogVideoX (Yang et al., 2024), have led to significant achievements in the creation of photo-realistic
image and video. Transformer-based models such as Sora and Vidu have demonstrated the ability
to generate high-quality samples at arbitrary resolutions. These models also adhere strongly to scal-
ing laws, achieving superior performance as parameter sizes increase. Additionally, Lumina-T2X
has shown uniformity in performing various generation tasks, further validating the potential of the
transformer-based architectures in diffusion models.

However, the quadratic complexity of global self-attention concerning sequence length increases
the computational cost of the Diffusion Transformer, leading to practical challenges such as longer
generation times and higher training costs. This issue also hinders the application of DiT to high-
quality video generation. For example, while 3D attention-based approaches(Xu et al., 2024; Yang
et al., 2024; Lab & etc., 2024; Gao et al., 2024) have demonstrated superiority over 2D spatial at-
tention combined with 1D temporal attention counterparts(Zheng et al., 2024; Ma et al., 2024b;
Bar-Tal et al., 2024; Blattmann et al., 2023; Lu et al., 2023), the extensive computational demands
limit their scalability for higher-resolution and longer video generation. Current studies (Han et al.,
2023; Koner et al., 2024; Yu et al., 2024) in visual understanding and recognition have highlighted
that global attention mechanisms often exhibit redundancy due to the sparse and repetitive nature
of visual information. Specifically, by visualizing the attention map, we observe that the atten-
tion of tokens within the same window is similar for spatially distant tokens, while differing for
spatially neighboring tokens, as illustrated in Fig. 3. This observation indicates that the dense
long-range attention, which triggers significant computational overhead, is redundant. Thus, reduc-
ing this redundancy is believed to enhance the efficiency of Diffusion Transformers in generating
higher-resolution images and longer videos.
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A celestial garden features a tree growing on a planet 

with roots extending outwards, surrounded by a star-

filled sky full of vitality and color.

A beautiful lady is looking up. 

There are stars in the sky and a flying bird.

A huge pink planet in the sky lies between large green 

pyramids.

A woman with red hair, wearing a white sweater. The 

background is blurry.

A colorful, pixelated world with a smiling face in the 

center. This face is surrounded by a blue background. 

The background is full of shapes and colors, creating a 

vibrant and lively atmosphere.

A scene of a river flowing through a grassy field during 

a beautiful sunset. a watercolor style.A small plant grows in the mud. The sun shines on it, providing warmth and light.

Two pages in the book show a cityscape, with a large spaceship flying over a city.

Figure 1: The samples from PT-T2I showcase high fidelity and aesthetic qualities, demonstrating a
strong consistency with given textual descriptions.

In this paper, we propose the Proxy-Tokenized Diffusion Transformer (PT-DiT) and further present
the PT-T2I/V series, which includes both Text-to-Image, Text-to-Video, and Text-to-MultiView
generation models. To address the redundancy of visual information, PT-DiT employs proxy-
tokenized attention instead of a global attention mechanism to reduce the computational complexity
of visual token interaction. Specifically, we first recover the spatial and temporal relationships of
the token sequence through a reshaping operation. Given the similarity of visual information within
localized spatial regions and temporal frames, we calculate an averaging token from each spatial-
temporal window as a representative token, forming a set of proxy tokens. The interaction and
broadcasting of visual global information are then achieved through self-attention among proxy to-
kens and cross-attention between proxy tokens and all latent tokens. Additionally, to enhance the
texture modeling capabilities, we introduce window attention and incorporate shift-window atten-
tion, similar to Swin Transformer (Liu et al., 2021), to avoid lattice artifacts as shown in Fig. 8.
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Figure 2: Comparison of complexity between
PixArt-α and PT-DiT/L at various resolutions.

With the well-designed proxy-tokenized at-
tention, PT-DiT can be adapted to both im-
age and video generation tasks without struc-
tural adjustments. For image generation, as
shown in Fig. 2, compared to PixArt-α (Chen
et al., 2023), our method achieves an approxi-
mate 33% reduction in computational complex-
ity GFLOPs under the same parameter scale.
For video generation, in contrast to 2D spa-
tial and 1D temporal attention, which has lim-
ited spatial-temporal modeling, and 3D full-
attention, which suffers from high computa-
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tional complexity, PT-DiT can efficiently and comprehensively extracts 3D information, benefiting
from proxy token interaction mechanisms.

Experimental results demonstrate that our method achieves competitive performance with significant
efficiency. As shown in Fig. 1, PT-T2I can generate high-quality and high-fidelity images while
closely adhering to the provided text instructions. Meanwhile, for the image generation task, PT-
DiT’s computational complexity is 51% of DiT and 66% of PixArt-α for the same parameter size.
For the video generation task, despite having 3 million more parameters than EasyAnimateV4, the
PT-DiT/H’s computational complexity is only 82% of EasyAnimateV4 (Xu et al., 2024) and 77%
of CogVideoX (Yang et al., 2024) for the same parameter size. Overall, using the standard 3D VAE
settings (8× spatial downsampling rate and 4× temporal downsampling rate), experimental tests
indicate that we can train the PT-DiT/XL (1.1B) model for images at a resolution of 2048× 2048 or
for video at a resolution of 512× 512× 288 on the 64GB Ascend 910B.

In summary, the unique contributions of this paper can be summarized as follows:

• We analyze redundant computations in self-attention within Diffusion Transformers,
caused by visual sparsity and redundancy. We find that redundancy primarily arises in at-
tention interactions within the same spatial window and between distant tokens, while mod-
eling relationships between spatially adjacent tokens is crucial and should be preserved.

• We introduce a proxy token mechanism that leverages spatial priors for local token fusion
to generate proxy tokens, and uses Proxy Token Attention and Visual Cross-Attention to
efficiently establish and propagate global associations, while retaining all latent tokens to
preserve detailed texture. Additionally, window and shifted window attention are employed
to enhance the modeling of spatial proximity.

• Through extensive experimentation, we demonstrate that our efficient proxy-token-based
diffusion transformer model achieves competitive performance with state-of-the-art T2I
and T2V models. Our approach lays the foundation for T2I and T2V models across diverse
scenarios, offering significant computational efficiency advantages. We will open-source
both our models and code to support the advancement of efficient diffusion transformers.

2 RELATED WORK

2.1 RELATED WORK

Image Generation with Diffusion Transformer. Recent studies (Peebles & Xie, 2023; Ma et al.,
2024a; Li et al., 2024b;a) have demonstrated the potential of using the Vision Transformer (ViT)
(Han et al., 2022) as an alternative backbone for image generation. U-ViT (Bao et al., 2023) encodes
the condition as tokens and incorporates skip connections inspired by U-Net, achieving excellent
performance. DiT (Peebles & Xie, 2023) introduces AdaLN to integrate conditions and analyzes
the scalability, complexity, and performance of ViT in comparison to U-Net. SiT (Ma et al., 2024a)
adds an interpolant framework to DiT, achieving even better scores on ImageNet (Deng et al., 2009).
PixArt-α (Chen et al., 2023) integrates cross-attention modules into DiT to inject text conditions and
optimize the class-conditional branch. Flag-DiT (Gao et al., 2024) and Next-DiT (Zhuo et al., 2024)
employ advanced techniques like RoPE (Su et al., 2024), RMSNorm (Zhang & Sennrich, 2019),
and flow matching (Lipman et al., 2022) to enhance stability, and they use zero-initialized attention
to incorporate complex text instructions. Although the effectiveness of transformers in diffusion
models has been validated, the substantial computational and spatial complexities of these models
still need to be addressed. DAM (Pu et al., 2024) has drawn attention to the redundancy within DiT
and uses the mediator tokens to directly proxy the query and key in the attention operation, breaking
down the process into two distinct attention calculations. We propose PT-DiT, a method that employs
a more gentle strategy for compressing hidden states. This approach not only reduces redundancy but
also guarantees a minimal loss of information during the compression process, thereby substantially
decreasing the computational complexity.

Video Generation with Diffusion Transformer. Building on the advancements in image gen-
eration with Diffusion Transformers, recent work (Xu et al., 2024; Yang et al., 2024; Lab & etc.,
2024; Zheng et al., 2024; Ma et al., 2024b; Lu et al., 2023) has been devoted to extending the DiT
structure to video generation. EasyAnimateV2 (Xu et al., 2024), Open-Sora (Zheng et al., 2024) is
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based on PixArt-α (Chen et al., 2023), incorporating temporal 1D attention and utilizing a 3D VAE
to generate additional frames. CogVideoX (Yang et al., 2024), Open-Sora-Plan (Lab & etc., 2024),
Lumina-T2X (Gao et al., 2024) and EasyAnimateV4 (Xu et al., 2024) points out the shortcomings
of temporal 1D attention and employs an expert transformer with 3D attention. While 3D attention
effectively manages significant motion between adjacent frames, it also incurs a substantial com-
putational cost. To overcome this challenge, we propose PT-DiT, which introduces an innovative
token compression strategy. This strategy compresses not only in spatial dimensions but also across
frames, enabling 3D attention with significantly reduced computational overhead.

Efficient Diffusion Transformer. As the application of transformers becomes more mature, there
are some solutions proposed in different fields targeting the attention computation problem (Han
et al., 2023; Dubey et al., 2024; Shi et al., 2023a; Bolya et al., 2022; Jiang et al., 2022). Llama3
(Dubey et al., 2024) adopts the KV-Cache (Pope et al., 2023) to reduce the number of redundant cal-
culations. AgentAttention (Han et al., 2023) employs the mediator token mechanisms to compress
the interaction scale between Query and Key, yielding promising results in fundamental visual tasks.
ToMe (Bolya et al., 2022), TRIPS (Jiang et al., 2022), and CrossGET (Shi et al., 2023a) propose
token merging strategies to reduce the number of tokens involved in global self-attention, thereby im-
proving the efficiency of image, language, and multimodal understanding models. Similarly, DAM
(Pu et al., 2024) and ToMeSD (Bolya & Hoffman, 2023) apply mediator token and token merging
to Diffusion Transformer to save on computational costs, thereby reducing training overhead and
inference time. However, token merging often leads to the loss of detailed information, which is
particularly problematic for generative tasks that require strict detail preservation. Additionally, the
compression of interaction scales between Query and Key in the mediator token mechanism can lead
to a loss of important spatial relationships between neighboring tokens, which is crucial as illustrated
in Sec. 3. To address these challenges, we propose a proxy token mechanism that establishes global
associations through attention on a limited number of proxy tokens, guided by visual-spatial priors.
At the same time, all tokens are retained to prevent the loss of detailed information, and the global
associations in the proxy tokens are propagated to all detailed tokens. Furthermore, the modeling of
spatially neighboring tokens is supported by window attention strategies.

3 METHOD

3.1 REDUNDANCY ANALYSIS

Attention map of all latent token. Attention maps of tokens in a window.
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Figure 3: The attention map of self-attention in PixArt-α at 512 resolution. We assemble the
attention map for 16 tokens within a 4 × 4 spatial window. The vertical axis represents different
tokens within the window, and the horizontal axis represents their correlation with all latent tokens.
It is evident that the attention of different tokens in the same window is almost identical for spatially
distant tokens, whereas there is noticeable variation for spatially neighboring tokens.

Due to the sparsity and redundancy of visual information, global attention mechanisms in existing
DiTs exhibit significant redundancy and computational complexity, particularly when processing
high-resolution images and longer videos. We analyze this computational redundancy by visualiz-
ing the self-attention maps. Specifically, we examine the attention map of self-attention in PixArt-α
at a resolution of 512×512, as shown on the left in Fig. 3. The attention map for latent codes within
a spatial window is then assembled, as depicted on the right side of Fig. 3 (where the vertical axis
represents different tokens in a window, and the horizontal axis represents the correlation with all
latent tokens). It is evident that the attention maps for different tokens within the same window are
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nearly uniform for spatially distant tokens (i.e., at the same horizontal position, the vertical values
are almost identical). Moreover, window tokens exhibit varying attention to spatially neighboring to-
kens. This suggests that computing attention for all latent tokens is redundant, while attention
for spatially neighboring tokens is critical. Consequently, we propose a sparse attention strategy
that samples limited proxy tokens from each window to perform self-attention, thereby reducing
redundancy and decreasing complexity. Additionally, the association between spatially neighboring
tokens is established through window attention. Further details are elaborated in Sec. 3.2.

3.2 ARCHITECTURE OF PT-DIT
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Figure 4: The overall architecture of PT-DiT. The image or video undergoes processing through
a 3D VAE, followed by noise addition, patch embedding, and positional encoding to generate latent
tokens. We replace global attention with proxy-tokenized attention to establish contextual associa-
tions and employ visual cross-attention to propagate this information to all tokens, thereby reducing
computational redundancy. Moreover, texture detail modeling is enhanced through window attention
and shifted window attention.
As shown in Fig. 4, our proposed Proxy-Tokenized Diffusion Transformer (PT-DiT) introduces
the proxy-tokenized mechanism to reduce the number of tokens involved in computing global
self-attention, thereby efficiently establishing global visual associations. Specifically, the latent
code z ∈ RC×F×H×W is passed through path embedding to obtain the latent code sequence
zs ∈ RN×D. Subsequently, we add 3D positional encoding to zs and feed it into the well-designed
Proxy-Tokenized Blocks (PT-Block). Compared to the vanilla diffusion transformer block, the PT-
Block introduces a Global Information Interaction Module (GIIM) and a Texture Complement Mod-
ule (TCM). The GIIM facilitates efficient interaction among all latent codes using sparse proxy-
tokenized mechanisms, while the TCM further refines local detail through window attention and
shift-window attention. Below, we describe the GIIM and TCM in detail.

3.2.1 GLOBAL INFORMATION INTERACTION MODULE

Given a series of latent tokens, we first sample a set of proxy tokens based on their spatial and tem-
poral priors. Each proxy token represents a localization within the image or video and interacts with
proxy tokens in other regions to establish global relationships. Then, the information contained in
proxy tokens is propagated to latent tokens, enabling efficient global visual information interaction.

Specifically, we reshape the latent code sequence zs ∈ RN×D to zs ∈ Rf×h×w×D, where f , h
and w denotes the frame, height, and width of video or image (f = 1) in the latent space after
patch embedding, thereby recovering its temporal and spatial connections. The set of proxy tokens
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Pa ∈ RD× f
pt

× h
ph

× w
pw is calculated from each window of size pt × ph × pw using the averaging

operation. The parameters pf , ph, and pw indicate the compression ratios for frame, height, and
width, respectively. Each proxy token represents pt × ph × pw tokens, modeling global information
with the other proxy token through self-attention. Subsequently, cross-attention is performed to
propagate the global visual information into all latent tokens zs, where the zs serves as the Query
and the proxy tokens Pa serve as the Key and Value. The above process is mathematically expressed
as follows:

zs = CS(zs,SA(Averaging(zs)), (1)
where Averaging(·) refers to the averaging operation applied to tokens within the same window to
extract proxy tokens, and CS(·, ·) and SA(·) represent the cross-attention and self-attention opera-
tions, respectively. Besides, we introduce a linear layer with zero initialization to enhance training
stability. This approach allows the PT-Block to achieve efficient global information modeling and
avoids the computational overhead caused by redundant computations in self-attention. We will
analyze the computational complexity advantages of GIIM further in Sec. 3.3.

3.2.2 TEXTURE COMPLEMENT MODULE

Due to the characteristics of the sparse proxy tokens interactions, the model’s capacity to capture
detailed textures is limited, making it challenging to meet the high-quality demands of generation
tasks. To solve this problem, we introduce localized window attention, as proposed in Liu et al.
(2021), which models texture information by computing attention only within a local spatial window
of the image. This mechanism is incorporated into the Texture Complement Module (TCM) due to
its effectiveness in detail modeling and computational efficiency. Specifically, the latent tokens zs

are reshaped to zs ∈ R
f×h×w

pt×ph×pw
×(pt×ph×pw)×D , where f×h×w

pt×ph×pw
denotes the number of window

in a image. Window self-attention is computed along the second dimension. To further enhance
the model, shift-window attention is integrated into TCM, which applies spatial translation to the
window divisions, enabling connections between neighboring tokens across different windows and
mitigating the “grid” phenomenon caused by localized window attention. The formula for this
process is as follows:

ẑs = WSA(zs) + zs,

zw = SWSA(ẑs) + ẑs,
(2)

where SWSA(·) and WSA(·) denote shift-window attention and window attention respectively.
Both window attention and shift-window attention introduce a visual prior to DiT, which aids in the
construction of texture details and advances the training of visual generators. Moreover, the increase
in computation is minimal due to the limited number of tokens in each window. We will analyze
this in detail in Sec. 3.3. Then, zw is reshaped to zw ∈ RN×D and fed into Textual Cross-Attention
and MLP, similar to DiT.

3.2.3 COMPRESSION RATIOS

For the image generation task, we first determine the compression ratio at a resolution of 256.
At this resolution, after applying the VAE (8× down-sampling) and patch embedding (2× down-
sampling), the image is reduced to only 16 × 16 tokens. With a compression ratio of (1, 4, 4), the
number of windows in the space becomes 4 × 4, and the number of proxy tokens is 16. With this
configuration, the limited number of windows and the large coverage area of each window make
it challenging for a single proxy token to effectively represent the complex information within the
window for global information modeling. This leads to anomalies in the image layout and perfor-
mance degradation, as shown in the Table. 2(d). Setting the compression ratio to (1, 2, 2) maintains
a reasonable number of windows while preserving the necessary semantic richness within each win-
dow. Meanwhile, maintaining the same number of windows across different resolutions benefits the
model’s training process from low-to-high resolutions, as it ensures a consistent semantic hierarchy
across resolutions. Therefore, the compression ratios (pf , ph, pw) is set to (1, 2, 2), (1, 4, 4), (1, 8,
8), and (1, 16, 16) at 256, 512, 1024, and 2048 resolution respectively. It is worth noting that when
the input is an image, f and pf will be set to 1.

For the video generation task, we set pf = 4 across different resolution to maintain the temporal
compression consistent. Owing to token compression in the frame, height and width dimensions,
PT-DiT can effectively train a generator for longer videos.
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3.3 COMPLEXITY ANALYSIS

With a small number of representative token attention, PT-DiT reduces the computational redun-
dancy of the original full token self-attention. The advantages of our method in terms of computa-
tional complexity are further analyzed theoretically in the following.

The computational complexity of self-attention is 2N2D, computed as follows:

z = Softmax(z(q)z(k)⊤/
√
D)z(v),

complexity = N2D︸ ︷︷ ︸
z(q)z(k)⊤:RN×D·RD×N

+ N2D︸ ︷︷ ︸
Softmax(·)z(v):RN×N ·RN×D

+O(N2), (3)

where N denotes the length of latent tokens and D represents feature dimension. Similarly, the
computational complexity of GIIM and TCM is computed as follow:

complexity = 2 N2

(pfphpw)2D︸ ︷︷ ︸
SA in GIIM

+2 N2

pfphpw
D︸ ︷︷ ︸

CS in GIIM

+ 4 N
pfphpw

(pfphpw)
2D︸ ︷︷ ︸

WSA and SWSA in TCM

= 2( 1
(pfphpw)2 + 1

pfphpw
+

2pfphpw

N )N2D.

(4)

Obviously, due to the proxy-tokenized strategy, our method provides significant advantages, espe-
cially with larger compression ratios (pf , ph, pw) and longer sequence lengths (N ). When (pf , ph,
pw) are (1, 2, 2), (1, 4, 4), (1, 8, 8), and (1, 16, 16) and the image resolution are 256 (N = 256),
512 (N = 1024), 1024 (N = 4096), and 2048 (N = 16348), our method accounts for only 34.3%,
9.7%, 4.7%, and 2.3% of the total self-attention. In addition, PT-DiT offers even greater benefits for
video generation tasks with longer sequence lengths. Experimental analysis is available in Sec. 4.4.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training Setting. Due to limitations in computational resources, we only trained PT-T2I and PT-
T2V based on PT-DiT/XL 1.1B. Following previous methods (Xu et al., 2024; Yang et al., 2024;
Chen et al., 2023), we utilize the T5 large language model as the text encoder and train PT-T2I using
a low- to high-resolution strategy divided into three stages. Detailed hyper-parameter settings and
the model configurations for various PT-DiT scales are provided in Appendix. A.1.

Ablation Study. We conduct ablation experiments using a class-conditional version of PT-DiT/S-
Class (32M) on the ImageNet (Deng et al., 2009) benchmark at 256 resolution. The AdamW opti-
mizer is utilized with a constant learning rate of 1e-4. We train the models for 400,000 iterations with
a batch size of 256, while maintaining an exponential moving average (EMA) of the model weights.
During inference, we set the denoising step as 50 and use classifier-free guidance (cfg=6.0).

4.2 QUALITATIVE ANALYSIS

Text-to-Image. We provide a qualitative comparison of PT-T2I with existing state-of-the-art Text-
to-Image models (e.g., PixArt-α and Flux) at a resolution of 1024, as shown in Fig. 5. PT-T2I ex-
hibits competitive performance, generating photo-realistic images that align well with the provided
text prompts. Additional samples generated by PT-T2I can be found in Anonymous Repository.

Text-to-Video. We also compare PT-T2V with the recently released open-source Text-to-Video
models (i.e., EasyAnimateV4 and CogVideoX) at a resolution of 512, achieving comparable results,
as depicted in Fig. 6. More video samples are available in the Anonymous Repository.

Text-to-MV. Please refer to Appendix. A.4

4.3 QUANTITATIVE ANALYSIS

MS-COCO. We conduct experiments to quantitatively evaluate PT-T2I using zero-shot FID-30K
on the MS-COCO (Lin et al., 2014) 256 × 256 validation dataset, as shown in Table 1(a). Due to
the distribution gap between our collected data and MS-COCO, there is a resulting decrease in FID
(Heusel et al., 2017) metrics. Nevertheless, PT-T2I achieves a competitive score of 15.70.
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rain, holding a gun. 

Futuristic city with a green-
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Figure 5: Qualitative comparison of Text-to-Image generation models.

MSR-VTT and UCF-101. We evaluate PT-T2V on two standard video generation benchmarks,
MSR-VTT (Xu et al., 2016) and UCF-101 (Soomro et al., 2012), at a resolution of 256. As shown
in Table 1(b), PT-T2V achieves state-of-the-art results among DiT-based approaches and demon-
strates competitive performance compared to U-Net-based approaches. Notably, since CogVideoX,
EasyAnimateV4, and PT-T2V all utilize T5 as the text encoder, this creates a gap in CLIPSIM com-
pared to methods that employ the CLIP as the text encoder, such as AnimateDiff, DynamiCrafter,
PixelDance, and FancyVideo.

Table 1: The quantitative evaluation of the Text-to-Image (a) and Text-to-Video (b) tasks.

(a) Quantitative evaluation on the MS-
COCO FID-30K scores (zero-shot).

Method FID-30k↓

DALL-E 2 (Ramesh et al., 2022) 10.39
SD (Rombach et al., 2022) 8.73
Imagen (Saharia et al., 2022) 7.27
RAPHAEL (Xue et al., 2024) 6.61
Kolors (Team, 2024) 23.15
PixArt-α (Chen et al., 2023) 10.65
Flux.1-dev(BlackForestlabs AI, 2024) 22.76

PT-T2I 15.70

(b) Quantitative evaluation on the UCF-101 (Soomro et al., 2012) and
MSR-VTT (Xu et al., 2016). The best and second performing metrics
are highlighted in bold and underline respectively.

Method Arc Data UCF-101 MSR-VTT

FVD(↓) IS(↑) FID(↓)FVD(↓)CLIPSIM(↑)

AnimateDiff (Guo et al., 2023) U-Net10M 584.85 37.01 61.24 628.57 0.2881
DynamiCrafter (Xing et al., 2023)U-Net10M 404.50 41.97 32.35 219.31 0.2659
PixelDance (Zeng et al., 2024) U-Net10M 242.82 42.10 49.36 381.00 0.3125
FancyVideo (Feng et al., 2024) U-Net10M 412.64 43.66 47.01 333.52 0.3076

CogVideoX-2B(Yang et al., 2024) DiT 35M 680.11 33.44 62.57 418.14 0.2318
EasyAnimateV4 (Xu et al., 2024) DiT 12M 694.80 44.09 92.33 568.99 0.2285
PT-T2V DiT 10M 384.03 35.19 51.95 375.23 0.2349

4.4 ALGORITHMIC EFFICIENCY COMPARISON

As discussed in Sec. 3.3, our method effectively reduces complexity. In this section, we further
analyze the computational advantages of PT-DiT in T2I and T2V tasks. For the T2I task, the results
are reported in Fig.10 with related discussions referenced in Appendix. A.3.

In the video generation task, we assess our model based from two aspects: computational complexity
and GPU memory consumption, as illustrated in Fig. 7. We conduct experiments using two scales of
PT-DiT (i.e., PT-DiT/H (1.8B) for a consistent scale comparison and our utilized PT-DiT/XL (1.1B)
for training PT-T2V) and select the latest open-source T2V model (i.e., CogVideoX-2B (actual test
at 1.7B) and EasyAnimateV4 (1.5B)) as the comparison methods. The left side of Fig. 7 displays
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Figure 6: Qualitative comparison of Text-to-Video generation models.
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Figure 7: Comparison of video generation models in terms of GFLOPs and GPU memory usage.

the GFLOPs calculated at different resolutions, with the latent code set to a time dimension of 48.
It is obvious that, despite having the largest number of parameters, PT-DiT/H exhibits the lowest
computational complexity. Meanwhile, the computational complexity of PT-DiT/XL employed by
PT-T2V is only 50% that of CogVideoX and EasyAnimateV4. On the right side of Fig. 7, we further
compare the GPU memory usage during training with EasyAnimateV4 at a resolution of 512, across
different frame counts. Since the T2V version of EasyAnimateV4 employs HunyuanDiT with full
3D attention, its memory consumption increases dramatically with the number of video frames. In
contrast, PT-DiT, which also utilizes 3D spatial-temporal modeling, experiences only a slight in-
crease in memory consumption due to its well-designed proxy-tokenized attention mechanism. The
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above experiments demonstrate the potential of PT-DiT for generating longer and higher-resolution
videos.

Table 2: Ablation study on PT-DiT/S-Class. Models are trained for 400k iterations.
(a) Major component.

Structure FID-50k↓
w/o GIIM 23.71
w/o SWA 23.59
w/o TCM 69.07

(b) Proxy token extraction.

Method FID-50k↓
Average 19.30
Top-Left 20.84
Random 21.00

(c) Global information injection.

Method FID-50k↓
Cross-Attention 19.30
Interpolate 21.82
Linear 20.24

(d) Compressed ratio.

Ratio FID-50k↓
1, 2, 2 19.30
1, 4, 4 21.24
1, 8, 8 20.43

4.5 ABLATION STUDY

Major Component. We conduct quantitative experiments to assess the effectiveness of the GIIM
and TCM proposed in this paper. The absence of either GIIM or TCM results in a substantial perfor-
mance loss (i.e., 19.30 → 23.71 or 19.30 → 69.07). Specifically, without TCM, the model struggles

Without Shift-window Attention With Shift-window Attention

Artifact

Figure 8: Ablation on shift-window attention.

to capture fine details, making it challenging to
meet generation tasks that demand high-quality
detail, leading to a significant decline in perfor-
mance. Additionally, we investigated the role of
shift-window attention through both qualitative
evaluation at a resolution of 512 and quantitative
analyses at a resolution of 256, as illustrated in
Fig. 8 and Table 2(a) respectively. As antici-
pated, there is a noticeable decrease (i.e., 19.30
→ 23.59) in FID without shift-window attention,
accompanied by pronounced “grid” phenomena.

Proxy Token Extraction. As illustrated in Table 2(b), we explore three methods for obtaining the
proxy token: the top-left token, a randomly selected token, and averaging the in-window tokens.
A performance gap exists between the Top-Left (20.84) or Random (21.00) selections and the av-
eraging manner (19.30). We believe this gap arises because the random and top-left tokens fail
to adequately represent the overall characteristics of the region, compromising the effectiveness of
proxy-tokenized attention and leading to performance loss. We use averaging as the default setting.

Global Information Injection. Due to the misalignment between the number of proxy tokens and
latent tokens, we investigate three schemes for injecting global information into latent tokens: Cross-
Attention, Interpolation, and Linear projection, as shown in Table 2(c). Among these, interpolation
involves applying spatially bilinear interpolation to the proxy tokens, while linear projection aligns
proxy tokens with latent tokens through a linear layer. Since each latent code can leverage global
information from the entire set of proxy tokens, Cross-attention achieves a performance advantage
with an FID of 19.30 compared to Linear projection at 20.24 and Interpolation at 21.82.

Compressed Ratio. As reported in Table 2(d), we examine the impact of compression ratio on
performance at a resolution of 256. It is evident that when the compression ratio is high, the repre-
sentative token fails to adequately capture the features of the region for effective global modeling,
leading to a noticeable decline in performance (i.e., from 19.30 to 21.24 at (1, 4, 4)).

5 CONCLUSION

Given the sparsity and redundancy of visual information, this paper proposes PT-DiT, which lever-
ages the proxy-tokenized attention mechanism to mitigate the computational redundancy of self-
attention in diffusion transformers. A series of representative tokens are calculated based on tem-
poral and spatial priors, with global interactions between them. Additionally, window attention and
shifted window attention are introduced to refine the modeling of local details. Our proposed rep-
resentative token mechanism is particularly effective for video tasks with redundant information,
enabling 3D spatio-temporal modeling while avoiding an explosion in computational complexity.
Experiments demonstrates that PT-DiT achieves competitive performance while delivering signifi-
cant efficiency. We further develope the PT-T2X series based on PT-DiT, including models like T2I,
T2V, and T2MV. We hope PT-DiT and PT-T2I/V can provide new insights and references for the
field of diffusion transformers.
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A APPENDIX

A.1 TRAINING DETAIL AND MODEL CONFIGURATION

We collect a total of 50M data points for the training set, including 32M images with an aesthetic
score of 5.5 or higher from Laion (Schuhmann et al., 2022) and 18M high-resolution, high-quality
datasets that we constructed. During the high-resolution training phase, we exclusively use 18M
high-quality data. We train PT-T2V by progressing through three stages starting from stage 1 of
PT-T2I, with detailed hyper-parameters shown in Table 3. The WebVid 10M (Bain et al., 2021)
dataset is employed as the 256-resolution video training data. Additionally, we collect 3M high-
resolution, high-quality video samples from the Internet to train the high-resolution video generator.
The training objective for PT-T2I/V is v-prediction, with an extracted text token length of 120.
During the inference phase, the denoising steps are set to 50, and the scale of classifier-free guidance
is set to 6.0. The specific parameter configurations for various scales of PT-DiT are presented in
Table 4.

Table 3: The training setups of PT-T2I and PT-T2V

Text-to-Image Text-to-Video

Resolution Data Learning Rate Batch Size Iteration Resolution # Frame Data Learning Rate Batch Size Iteration

256 50M 2e-5 10240 100k - - - - -
512 18M HQ 2e-5 768 50k 256 # 96 10M 2e-5 512 100k

1024 18M HQ 2e-5 512 50k 512 # 96 3M HQ 2e-5 256 50k

Table 4: The model configurations for various scales of PT-DiT.
Model Layers Hidden Dim Head Number Param. (M)

PT-DiT/S-Class 10 288 6 32
PT-DiT/B-Class 12 576 8 154
PT-DiT/B 12 640 10 144
PT-DiT/L 28 864 12 605
PT-DiT/XL 28 1152 16 1142
PT-DiT/H 30 1440 20 1795

A.2 PERFORMANCE AND EFFICIENCY COMPARISON
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Figure 9: Performance and efficiency compari-
son on ImageNet at a resolution of 256.

To fairly compare the performance of PT-DiT
with DAM and DiT, we conduct the widely used
class-to-image experiments on ImageNet 256.
Since DAM is trained on the SiT codebase, we
utilize PT-DiT/S-Class to align with DiT-S, SiT-
S, and DAM-S, using two different codebases
(DiT-based and SiT-based) with the same param-
eters, training data, training steps (400k), and ex-
perimental configurations. The detailed model
settings are provided in Table. 4, and the re-
sults are shown in the Fig. 9, with the data re-
ported without the use of Classifier-free guidance
(CFG).

Compared to DiT and SiT, PT-DiT achieves com-
petitive performance and a significant efficiency
advantage, thanks to the well-designed proxy to-
ken mechanism and texture refinement module. For instance, PT-DiT/S-Class achieves the FID
of 65.86 (↓ 2.54 FID) and 55.05 (↓ 3.56 FID), outperforming DiT-S (68.40 FID) and SiT (68.61
FID). Meanwhile, the computational complexity is reduced by 37% (3.86 vs. 6.06 GFLOPs). These
results demonstrate that our method can maintain competitive performance while benefiting from
reduced computational complexity. This advantage is primarily due to the window-attention, which
aligns with visual priors and models the spatial neighboring token, as well as the efficiency gains
from the proxy token mechanism. Furthermore, when compared to DAM, PT-DiT achieves similar
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performance while offering a significant reduction in computational complexity (i.e., 3.8 GFLOPs
for PT-DiT vs. 5.8 GFLOPs for DAM).

A.3 ALGORITHMIC EFFICIENCY COMPARISON

In the image generation task, similar to Fig. 2, we conduct comparisons at different parameter
scales. With equivalent parameter counts, we compared Lumina-Next (1.7B) to our PT-DiT/H
(1.8B), DiT/B (0.13B) and DAM/B (0.13B) to our PT-DiT/B-Class (0.14B), as illustrated in Fig.
10. As shown on the left side of Fig. 10, the GFLOPs of PT-DiT/H are significantly lower than
Lumina-Next across multiple scales. Specifically, at resolutions of 512 and 2048, PT-DiT/H achieves
complexity reduction of respectively 82.0% and 82.5%. Similarly, the right side of Fig. 10 indicates
that PT-DiT/B-Class requires 59.5% less computation than DiT/B at a resolution of 1024. Com-
pared to DAM/B, which has an attention computation complexity of O(n), our method exhibits a
comparable level of computation complexity across all resolutions.
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Figure 10: Comparison of image generation models in terms of GFLOPs.

A.4 PT-T2MV

Text-to-MV. We further explore the effectiveness of PT-DiT on Text-to-MultiView (T2MV) tasks.
The trained PT-T2MV is capable of generating 512 × 512 × 24 images from various viewpoints
based on the provided text instruction, showcasing strong spatial consistency, as illustrated in Fig.
11. The detailed experimental and training setups are as follow.

Basic setting. MultiView images of 3D objects can be interpreted as videos of static objects. We uti-
lize a subset of approximately 40k samples from G-Objaverse (Qiu et al., 2024), following VideoMV
(Zuo et al., 2024), which is rendered as video data to train our PT-T2MV model. Each object is ren-
dered with a uniformly distributed azimuth from 0° to 360° and an elevation ranging from 5° to
30° , resulting in a 512× 512× 24 video.

Training setting. Following previous works (Zuo et al., 2024; Shi et al., 2023b), we only accept
text instruction as input to generate the Multi-View images of 3D object without additional reference
images and camera parameters. The PT-T2MV is trained from stage 2 of the PT-T2I, with a bacthsize
of 128 and 20k iterations. The other hyperparameters and experimental settings are the same as in
PT-T2I.

Pixel art model of a black and red robot-doll with red shoes and a square ceiling light fixture. Five Nights at Freddy's Foxy: a yellow toy fox character.

Low poly duck model with orange beak and green cap. Pixelated Minecraft sword with a yellow handle.

Figure 11: Samples by PT-T2MV. It is important to note that PT-T2MV does not accept any image
inputs or camera parameters and relies solely on text prompts.
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