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ABSTRACT

Recent advancements in dataset distillation have demonstrated the significant
benefits of employing soft labels generated by pre-trained teacher models. In this
paper, we introduce a novel perspective by emphasizing the full utilization of
labels. We first conduct a comprehensive comparison of various loss functions for
soft label utilization in dataset distillation, revealing that the model trained on the
synthetic dataset exhibits high sensitivity to the choice of loss function for soft label
utilization. This finding highlights the necessity of a universal loss function for
training models on synthetic datasets. Building on these insights, we introduce an
extremely simple yet surprisingly effective plug-and-play approach, GIFT, which
encompasses soft label refinement and a cosine similarity-based loss function to
efficiently leverage full label information. Extensive experiments indicate that GIFT
consistently enhances state-of-the-art dataset distillation methods across various
dataset scales, without incurring additional computational costs. Importantly,
GIFT significantly enhances cross-optimizer generalization, an area previously
overlooked. For instance, on ImageNet-1K with IPC = 10, GIFT enhances the
state-of-the-art method RDED by 30.8% in cross-optimizer generalization 1.

1 INTRODUCTION

Dataset distillation (DD) (Wang et al., 2018) has demonstrated its potential to significantly reduce
data size while maintaining comparable model performance (Cazenavette et al., 2022; 2023; Zhao
et al., 2020; Zhao & Bilen, 2023; Zhao et al., 2023). Most existing DD methods focus on optimizing
images (Wang et al., 2018; Zhao & Bilen, 2022; Cazenavette et al., 2022; Kim et al., 2022; Liu
et al., 2022), but recent studies (Yin et al., 2023; Sun et al., 2024; Shao et al., 2024; Guo et al.,
2024) have highlighted the substantial benefits of soft labels. These studies utilize labels assigned
by pre-trained models (also called teacher models), yielding siginificant enhancement in stability
during the synthesizing process and considerable performance. Moreover, a notable study by Qin
et al. (2024) examines the role of soft labels in depth, emphasizing their importance.

To fully explore the utilization of soft labels in the state-of-the-art dataset distillation methods,
we conduct a comprehensive comparison of loss functions for soft label in synthesic datasets of
IPC = 10 2 via the SOTA dataset distillation methods on Tiny-ImageNet and large-scale ImageNet-
1K 3. As shown in Figure 1 , different dataset distillation methods employ distinct loss functions, and
performance varies significantly across loss functions. In particular, simply replacing KL divergence
loss (Hinton et al., 2015) with Soft cross-entropy loss (Bridle, 1989) for SRe2L results in a significant
performance drop of 13.3% on Tiny-ImageNet. This substantial gap indicates that models trained on
synthetic datasets are highly sensitive to the choice of loss function.

Furthermore, we observe a notable performance degradation in these loss functions when applied
across different optimizers. For example, when utilizing distilled data produced by RDED and
training with the KL divergence loss, altering the optimizer from AdamW 4 to Adam results in a
performance decrease from 47.5% to 17.8% (as shown in Table 8 ). Hence, it is crucial to propose a
universal and effective loss function that is robust across various scenarios.

1We have provided Pytorch implementation code in Appendix F .
2Detailed experiments are elaborated in Section 3 .
3The synthetic dataset of DATM for ImageNet-1k is not provided, so comparing with DATM is not possible

on this dataset.
4RDED employs AdamW (Loshchilov, 2017) for evaluation.
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(a) Tiny-ImageNet (b) ImageNet-1K

Figure 1: Top-1 accuracy on various synthetic datasets via the SOTA dataset distillation methods across
loss functions on Tiny-ImageNet and ImageNet-1K when IPC =10. value means the results of the loss
function used by the distillation method itself (e.g., SRe2L (Yin et al., 2023) uses KL divergence (Hinton et al.,
2015)). value means the results of our GIFT, and (↑) denotes improvements over the dataset distillation methods.
It is obvious that our method GIFT significantly enhances the dataset distillation methods.

Moreover, one challenge of soft labels is that they are inherently suboptimal, as the performance
of the teacher model itself may be limited. For instance, a teacher model trained on ImageNet-1k
on ConvNet has only 43.6% test accuracy. Despite its worse performance, such model is frequently
used in Sun et al. (2024); Yin et al. (2023) to assign labels. Furthermore, in practical scenarios, it is
common for the teacher model to have a smaller architecture than the student model due to cross-
architecture challenge (Sun et al., 2024), which further limits the performance of the student model
when only relying on an inferior teacher model. By contrast, hard labels are accurate and provide
reliable supervision information. Nonetheless, directly utilizing hard labels through cross-entropy
loss is not effective, as demonstrated in previous studies (Cui et al., 2023) and our experiments in
Section 5.7 . Therefore, it is crucial to effectively integrate hard label information to mitigate the
limitations associated with soft labels.

Based on the above two findings, we propose an extremely simple yet effective plug-and-play
approach called Gaining Improvement from Full Labels at Near-zero CosT (GIFT) to effectively
utilize both hard and soft labels. It first refines soft labels by incorporating an additional smoothing
label obtained through hard label smoothing (Szegedy et al., 2016). This simple module offers two
significant advantages: firstly, it can correct erroneous signals from the teacher model, particularly in
cases where the teacher assigns an incorrect label of the highest value; secondly, soft labels mainly
contain intra-class information, which can hinder class separation to some extent (Zhang et al., 2015).
Therefore, a relatively sharp label can enhance the dispersion between classes, thereby improving
generalization ability, as demonstrated in Section 5.7 . After obtaining the refined labels, we find
that they are uniformly distributed and are approximately orthogonal to each other, as elaborated in
Section 4 . Therefore, we verify theoretically that simply using cosine similarity as the loss function
achieves optimal performance. As shown in Figure 1 (red bars), our method GIFT consistently and
significantly enhances the state-of-the-art dataset distillation methods across various scale datasets.

In summary, our contributions are fourfold:
(a) To the best of our knowledge, this paper is the first to provide a comprehensive comparison of

loss functions for label utilization in dataset distillation. Our study reveals the intriguing fact that
models trained on synthetic datasets are highly sensitive to the choice of loss function.

(b) We propose GIFT, a simple and universal label utilization algorithm including label refinement
and a cosine similarity-based loss function. GIFT is built on top of the off-the-shelf dataset
distillation methods and requires no extra information, thus raising no additional cost. Moreover,
we provide a theoretical analysis to support the proposed use of cosine similarity.

(c) We identify a critical issue that has been overlooked in prior research: cross-optimizer generaliza-
tion, as defined in Section 3.1 . We reveal that traditional loss functions suffer from significant
robustness deficiencies when applied across different optimizers as detailed in Section 5.5 . In
contrast, GIFT significantly enhances dataset distillation methods in cross-optimizer generaliza-
tion. We conduct both empirical and theoretical analyses of this challenge in Appendix E .

(d) Experiments demonstrate that GIFT significantly improves performance over the state-of-the-
art dataset distillation methods across varying scales and resolutions datasets, particularly for

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

large-scale dataset distillation tasks. Furthermore, GIFT significantly enhances dataset distilla-
tion methods in cross-architecture, cross-optimizer generalization and proves advantageous in
applications such as continual learning.

2 RELATED WORK

In the field of dataset distillation, the majority of existing methods fix the labels as a one-hot format
(Wang et al., 2018; Zhao & Bilen, 2022; Cazenavette et al., 2022; Liu et al., 2022; Zhao & Bilen,
2023), with a primary focus on optimizing synthetic images. Recent research highlights the significant
benefits of utilizing soft labels to enhance model performance (Sun et al., 2024; Guo et al., 2024; Yin
et al., 2023). Methods for obtaining soft labels can be broadly classified into two categories.

Optimization-based Soft Labels. The first type involves learning labels, with several studies
(Bohdal et al., 2020; Nguyen et al., 2020; Sucholutsky & Schonlau, 2021; Zhou et al., 2022; Guo
et al., 2024) finding that learning labels can significantly improve performance. Recent work (Guo
et al., 2024) highlights that optimizing labels can enhance training stability and improve performance.

Teacher model-based soft labels. The subsequent works directly obtain soft labels. Inspired
by knowledge distillation (Hinton et al., 2015), TESLA (Cui et al., 2023)introduces a soft label
assignment strategy, directly generating soft labels by leveraging pre-trained teacher models trained
on real datasets. These soft labels provide rich intra-class information, thereby improving distillation
performance. Following this trend, the state-of-art methods (Yin et al., 2023; Sun et al., 2024; Shao
et al., 2024) also utilize soft labels predicted by teacher models, achieving significant improvements.

3 MOTIVATION

3.1 PRELIMINARY

Dataset Distillation. Given a large dataset D = {(xi, yi)}Ni=1, where xi ∈ Rd represents the input
sample and yi ∈ {1, . . . , C} denotes hard label, the objective of dataset distillation is to generate a
synthetic dataset S = {(x̃j , ỹj)}Mj=1, such that a model trained on S performs comparably to one
trained on D. We explore how to fully utilize both soft labels and hard labels in given datasets.
Therefore, we re-define the synthetic dataset S as S = {(x̃j , yj , ỹj)}Mj=1, where x̃j denotes the
synthetic images, and yj and ỹj denote the corresponding hard labels and soft labels, respectively.

Cross-Optimizer Generalization. In deep learning, models use various network architectures
and optimization algorithms. Optimizers like SGD and Adam have unique properties that affect
model performance and generalization. Therefore, evaluating a distilled dataset’s performance aross
optimizers is essential to ensure its robustness across different training strategies.

Definition 1 (Cross-optimizer Generalization) . It refers to the capability of distilled datasets to
maintain robust and consistent performance across different optimization algorithms.

3.2 ARE LOSS FUNCTIONS PULLING THE STRINGS IN SYNTHETIC DATASET PERFORMANCE?

Why do we need to answer this question? Labels in dataset distillation are commonly and typically
utilized through a variety of established loss functions, such as cross-entropy (CE) (Bridle, 1989),
Kullback-Leibler (KL) divergence (Hinton et al., 2015), soft cross-entropy (Bridle, 1989) or mean
squared error (MSE) (Nielsen, 2015). Specifically, the current state-of-the-art dataset distillation
methods SRe2L (Yin et al., 2023) and RDED (Sun et al., 2024) employ KL divergence, DATM
(Guo et al., 2024) uses soft cross-entropy, and G-VBSM (Shao et al., 2024) simultaneously utilizes
MSE and CE. However, different distillation methods employ varying loss functions to train models
on synthetic datasets, yet there is a notable lack of comprehensive comparison among these loss
functions. Hence, we investigate the performance of four state-of-the-art dataset distillation methods
under three commonly used loss functions.

Experiment settings. Our experiments span both small-scale Tiny-ImageNet and large-scale
ImageNet-1K. Note that the synthetic dataset for DATM on ImageNet-1K is unavailable, prevent-
ing comparative analysis on this dataset. We conduct evaluations on these synthetic datasets with
IPC ∈ {1, 10, 50}. Additional visualizations for Tiny-ImageNet and ImageNet-1K at IPC = 1 and
IPC = 50 are provided in Appendix D . Notably, our empirical study is conducted from the end-user
perspective: we treat the distillation of the synthetic dataset as a black box and apply different loss
functions during the evaluation of the synthetic datasets.

3
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Results and Analysis. The results, visualized in Figure 1 , reveal that even for the same synthetic
dataset, the evaluation model performance varies significantly under different loss functions. For
example, the performance of SRe2L decreases by 13.2% on Tiny-ImageNet when switching from KL
loss to soft CE loss but improves by 0.7% when using MSE+CE loss. These findings illustrate that
the performance of models trained on synthetic datasets is highly sensitive to the choice of the loss
function, highlighting the necessity for a unified and effective loss function in dataset distillation.

4 METHOD

Motivated by these findings, we propose an extremely simple but surprisingly effective plug-and-play
approach called Gaining Improvement from Full Labels at Near-zero CosT (GIFT) to effectively
utilize both hard and soft labels. GIFT includes two key modules: label refinement and a cosine
similarity-based loss function. The former aims to refine soft labels by incorporating an additional
smoothing label derived from hard label smoothing (Szegedy et al., 2016), while the latter is theoreti-
cally validated to achieve optimal performance simply using cosine similarity as the loss function. A
PyTorch implementation of our method is provided in Appendix F .

Label Refinement. As discussed in Section 1 , soft labels generated by teacher models are inher-
ently suboptimal due to two primary reasons. Firstly, the performance of the teacher model is limited,
particularly on complex datasets such as ImageNet-1K. Secondly, soft labels predominantly provide
intra-class information, thereby limiting class dispersion.

An intuitive method to address these shortcomings is to integrate with hard labels. On the one hand,
hard labels offer accurate and reliable supervision, which can rectify erroneous information provided
by soft labels. On the other hand, they can assist in inter-class dispersion. Therefore, we refine soft
labels by weighing them with smoothed hard labels, thereby solving the two limitations of soft labels.

The refined soft label is defined as ỹj ← γ · yj

∥yj∥ + (1 − γ) · ỹj

∥ỹj∥ , where j is the j-th synthetic
images, yj is the smoothed label obtained via label smoothing technique for hard label, and ỹj is the
soft label. In our experiments, γ = 0.1 is validated to be optimal through experiments depicted in
Figure 3 in Section 5.7 , and Figure 8 and Figure 9 in Appendix D .

Mutual information bounded loss function. Prior study (Sun et al., 2024) points that representa-
tion learning from any samples X to targets Y is based on maximizing their mutual information. They
propose to distill the dataset by maximizing IV(X,Y ), where IV denotes the V-information (Xu et al.,
2020), which has demonstrated superior performance. However, we observe that most prior studies,
including (Sun et al., 2024), have not investigated training models using IV(X,Y ). To address this
gap, we explore the application of IV(X,Y ) by deriving an upper bound for the V-information, as
presented in Theorem 1 (Detailed proof is provided in Appendix A ).

Theorem 1 . The V-information IV(X,Y ) is upper bounded by a function involving the cosine
similarity between the positive pair (xi, yi), the expected cosine similarity between the anchor xi
and negative samples yj , and the number of negative samples K. Specifically,

LInfoNCE = −E

[
log

exp(f(ϕθ(x), y))∑
y′∈Y exp(f(ϕθ(x), y

′))

]

≤ − 1

τ

(
E
[(

ϕθ(xi) · yi
∥ϕθ(xi)∥∥yi∥

)]
− E[ϕθ(xi) · yj ]

∥ϕθ(x)i∥E[∥yj∥]

)
+ log(K) ,

(1)

where τ denotes the temperature parameter, LInfoNCE (Oord et al., 2018) serves as a proxy for
IV(X,Y ) (Sun et al., 2024), and f represents the similarity function.

Moreover, the targets Y in the synthetic dataset are pre-generated using pre-trained models (Sun
et al., 2024; Yin et al., 2023). These targets can be considered high-dimensional vectors that are
approximately orthogonal to each other (Ma et al., 2022; Yu et al., 2023; Awasthi et al., 2024).
Consequently, the term E[ϕθ(xi) · yj ] approaches zero, allowing (1) to be simplified as:

LInfoNCE ≤ −
1

τ

(
E
[

ϕθ(xi) · yi
∥ϕθ(xi)∥∥yi∥

]
− ϵ

)
+ log(N) , (2)

where ϵ is a small positive term approaching zero.

4
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To minimize this upper bound (2), our proposed loss function for training on distilled data S can
defined as:

L = E(x̃i,ỹi)∼S

[
1− ϕθ(x̃i) · ỹi
∥ϕθ(x̃i)∥∥ỹi∥

]
, (3)

where ỹj is the refined soft label discussed above and we replace the original training loss with (3).

5 EXPERIMENTS

In this section, we evaluate the superiority of our proposed GIFT across various datasets and
architectures. First, we demonstrate the superior improvements of GIFT over the state-of-the-art
dataset distillation in Section 5.2 and knowledge distillation methods in Section 5.3 . Next, we verify
that our proposed GIFT significantly enhances cross-architecture and cross-optimizer generalization
in Section 5.5 , and improves continual learning in Section 5.6 . Furthermore, we conduct extensive
ablation experiments to investigate the effect of each component of our method in Section 5.7 . More
details about experiments details and results can be found in Appendix C and Appendix D .

5.1 EXPERIMENT SETUP

Datasets and Networks. We conduct experiments on both large-scale and small-scale datasets,
including the full 224× 224 ImageNet-1k (Deng et al., 2009), Tiny-ImageNet (Le & Yang, 2015)
and CIFAR-100 (Krizhevsky et al., 2009). Following previous dataset distillation studies (Yin et al.,
2023; Cazenavette et al., 2022; Zhao et al., 2023; Cui et al., 2023; Guo et al., 2024), we employ
ConvNet (Guo et al., 2024) and ResNet-18 (He et al., 2016) as our backbone architectures across
all datasets. Specifically, Conv-3 is employed for CIFAR-10/100, while Conv-4 is used for Tiny-
ImageNet and ImageNet-1K. For cross-architecture experiments, we additionally utilize large-scale
networks, including ResNet-101 (He et al., 2016) and Swin-V2-Tiny (Liu et al., 2021) and small-scale
networks, such as EfficientNet-B0 (Tan & Le, 2019), and MobileNet-V2 (Sandler et al., 2018) to
verify the generalizability of our approach.

Baselines. We benchmark our method GIFT against state-of-the-art dataset distillation methods.
We categorize current state-of-the-art methods based on two key factors: scalability to ImageNet-1K
and the utilization of soft labels. These categorizations are summarized in Table 13 in Appendix C .
Given that our primary focus is on enhancing the use of soft labels in dataset distillation, we restrict
our comparisons to methods that leverage soft labels, including SRe2L (Yin et al., 2023), RDED
(Sun et al., 2024), DATM (Guo et al., 2024), G-VBSM (Shao et al., 2024), and CDA (Yin & Shen,
2023) Additionally, DATM only provides synthetic datasets on ConvNet and does not provide the
ImageNet-1k synthetic dataset. CDA provides higher IPC synthetic datasets of Tiny-ImageNet and
ImageNet-1k, distilled using ResNet architectures, so we mainly compare with CDA in Section 5.2 .

Knowledge distillation (Hinton et al., 2015) is a straightforward approach that utilizes both hard and
soft label information. Thus, we also compare our method GIFT with state-of-the-art knowledge
distillation methods, including KD (Hinton et al., 2015), WSLD (Zhou et al., 2021), DKD (Zhao et al.,
2022), and NKD (Yang et al., 2023). Further details on these methods are provided in Appendix C .

Implementation details of GIFT. Our method does not involve any distilling datasets process.
We obtain all synthetic datasets directly from the source data provided by the authors 5. Notably,
distilled data is generalized using both ConvNet and ResNet-18. We replace the loss function during
evaluation. Thus, our method is a plug-and-play approach that can be easily integrated into existing
dataset distillation pipelines without additional dataset synthesis or modification.

For the data augmentation of synthetic datasets, only synthetic datasets generated via DATM (Guo
et al., 2024) are processed using ZCA whitening, as these datasets were initially distilled through
ZCA whitening. Other distilled datasets are processed using DSA (Zhao & Bilen, 2021), as detailed
in Table 14 . All experiments are conducted using an NVIDIA RTX 4090 GPU.

5⋆ SRe2L: https://github.com/VILA-Lab/SRe2L
⋆ RDED: https://github.com/LINs-lab/RDED
⋆ DATM: https://gzyaftermath.github.io/DATM/
⋆ G-VBSM: https://github.com/shaoshitong/G_VBSM_Dataset_Condensation
⋆ CDA: https://github.com/VILA-Lab/SRe2L/tree/main/CDA
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Table 1: Comparison with the state-of-the-art methods of dataset distillation on CIFAR-100 and Tiny-
ImageNet. In this table, “-” are absent due to scalability.

CIFAR100 Tiny-ImageNet

Network Method 1 10 50 1 10 50

SRe2L 13.6 ± 0.4 33.7 ± 0.5 52.3 ± 0.2 12.1 ± 0.4 34.5 ± 0.4 46.3 ± 0.1
SRe2L + Ours 15.1 ± 0.3 (↑ 1.5) 38.0 ± 0.5 (↑ 4.3) 55.4 ± 0.1 (↑ 3.1) 13.1 ± 0.2 (↑ 1.0) 37.5 ± 0.3 (↑ 3.0) 47.1 ± 0.1 (↑ 0.8)
RDED 22.1 ± 0.3 47.5 ± 0.3 55.7 ± 0.4 17.9 ± 0.3 41.4 ± 0.3 47.2 ± 0.1
RDED + Ours 24.7 ± 0.3 (↑ 2.5) 50.6 ± 0.3 (↑ 2.5) 57.9 ± 0.2 (↑ 2.2) 19.1 ± 0.3 (↑ 1.2) 44.0 ± 0.2 (↑ 2.6) 48.3 ± 0.1 (↑ 1.1)
DATM - 36.1 ± 0.2 43.0 ± 0.2 - 26.5 ± 0.2 34.2 ± 0.5
DATM + Ours - 37.8 ± 0.3 (↑ 1.7) 43.6 ± 0.3 (↑ 0.6) - 27.5 ± 0.2 (↑ 1.0) 34.8 ± 0.6 (↑ 0.6)
G-VBSM 14.7 ± 0.5 40.9 ± 0.4 54.7 ± 0.3 8.4 ± 0.4 34.5 ± 0.5 47.0 ± 0.3

ConvNet

G-VBSM + Ours 16.0 ± 0.2 (↑ 1.3) 44.6 ± 0.2 (↑ 3.7) 57.2 ± 0.1 (↑ 2.5) 8.9 ± 0.3 (↑ 0.5) 36.9 ± 0.7 (↑ 2.4) 47.8 ± 0.2 (↑ 0.8)

SRe2L 11.5 ± 0.5 42.7 ± 0.2 57.8 ± 0.6 12.7 ± 0.3 43.5 ± 0.1 53.9 ± 0.0
SRe2L + Ours 12.7 ± 0.4 (↑ 1.2) 44.3 ± 0.3 (↑ 1.6) 58.6 ± 0.3 (↑ 0.8) 14.2 ± 0.3 (↑ 1.5) 44.2 ± 0.3 (↑ 0.7) 54.5± 0.2 (↑ 0.6)
RDED 4.7 ± 0.1 52.8 ± 0.2 64.4 ± 0.1 15.1 ± 0.3 48.2 ± 0.4 57.6 ± 0.3
RDED + Ours 5.0 ± 0.2 (↑ 0.3) 54.0 ± 0.3 (↑ 1.2) 65.3 ± 0.2 (↑ 0.7) 15.9 ± 0.3 (↑ 0.8) 49.2 ± 0.1 (↑ 1.0) 58.1 ± 0.1 (↑ 0.5)
DATM - 25.8 ± 1.0 47.5 ± 0.4 - 26.7 ± 0.2 41.9 ± 0.3
DATM + Ours - 26.3 ± 0.4 (↑ 0.5) 47.9 ± 0.3 (↑ 0.4) - 29.0 ± 0.5 (↑ 2.3) 42.4 ± 0.2 (↑ 0.4)
G-VBSM 13.4 ± 0.3 48.5 ± 0.5 62.0 ± 0.2 8.8 ± 0.3 39.9 ± 0.4 52.8 ± 0.2

ResNet-18

G-VBSM + Ours 13.7 ± 0.3 (↑ 0.3) 49.2 ± 0.2 (↑ 0.7) 62.5 ± 0.3 (↑ 0.5) 9.3 ± 0.3 (↑ 0.5) 40.5 ± 0.2 (↑ 0.6) 53.1 ± 0.1 (↑ 0.3)

Table 2: Comparison with the state-of-the-art methods of dataset distillation on ImageNet-1K. In the table,
(↑) means the improvements over these methods.

ImageNet-1K

ConvNet ResNet-18

Method 10 50 100 10 50 100

SRe2L 12.5 ± 0.3 35.4 ± 1.0 40.1 ± 0.4 31.5 ± 0.3 49.5 ± 0.1 54.3 ± 0.2
SRe2L + Ours 14.2 ± 0.6 (↑ 1.7) 38.1 ± 0.4 (↑ 2.7) 41.5 ± 0.2 (↑ 1.4) 31.9 ± 0.2 (↑ 0.4) 50.1 ± 0.2 (↑ 0.6) 54.8 ± 0.1 (↑ 0.5)
RDED 20.1 ± 0.4 38.5 ± 0.2 41.8 ± 0.2 41.4 ± 0.4 55.5 ± 0.2 58.8 ± 0.1
RDED + Ours 24.0 ± 0.8 (↑ 3.9) 39.5 ± 0.1 (↑ 1.0) 42.5± 0.1 (↑ 0.7) 43.2 ± 0.1 (↑ 1.8) 56.5 ± 0.1 (↑ 1.0) 59.3± 0.1 (↑ 0.5)
G-VBSM 22.6 ± 0.5 37.3 ± 0.3 40.1 ± 0.4 36.7 ± 0.2 52.3 ± 0.1 57.3 ± 0.1
G-VBSM + Ours 24.3 ± 0.2 (↑ 1.7) 39.1 ± 0.3 (↑ 1.8) 42.1 ± 0.3 (↑ 2.0) 37.9 ± 0.5 (↑ 1.2) 53.1 ± 0.2 (↑ 0.8) 57.6 ± 0.1 (↑ 0.3)

Table 3: Comparison with CDA under higher IPC on small-scale Tiny-ImageNet and large-scale ImageNet-
1K on ResNet-18. In the table, (↑) means the improvements over CDA.

Tiny-ImageNet ImageNet-1K

Method 50 100 50 100 200

CDA 49.5 ± 0.4 53.5 ± 0.3 53.7 ± 0.3 58.3 ± 0.3 63.4 ± 0.2
CDA + Ours 54.5 ± 0.3 (↑ 5.0) 56.6 ± 0.2 (↑ 3.1) 54.8 ± 0.2 (↑ 1.1) 59.0 ± 0.2 (↑ 0.8) 63.9 ± 0.1 (↑ 0.5)

Hyperparameter Settings. We provide detailed hyperparameter configurations for our synthetic
dataset evaluation in Appendix C . Following recent works (Yin et al., 2023; Shao et al., 2024), the
evaluation on all datasets uses the parameters outlined in Table 15 . We set the coefficient of label
smoothing α = 0.1 and the weight hyper-parameter γ = 0.1 for all methods across various synthetic
datasets, as γ = 0.1 is validated to be optimal through experiments depicted in Section 5.7 and
Section 8 in Appendix D .

5.2 CAN GIFT IMPROVE PERFORMANCE OF DATASET DISTILLATION?

Small-Scale Dataset Comparison. In Table 1 , we present the test accuracy on CIFAR-100 and
Tiny-ImageNet datasets before and after applying our GIFT algorithm. Notably, DATM does not
provide synthetic datasets when IPC =1, nor does it provide synthetic datasets for ResNet-18.
Consequently, we used ConvNet synthetic data to train ResNet-18. It is evident that applying GIFT
increases performance for all baseline methods. Specifically, the SRe2L method exhibits the most
significant improvement, with an accuracy gain of up to 4.3% on CIFAR-100 when IPC =10. This
is particularly noteworthy as GIFT requires no additional information or cost. The considerable
accuracy gains can be achieved simply by replacing the loss function with our proposed approach.

Large-Scale Dataset Comparison. In the large-scale ImageNet-1k dataset, as reported in Table 2 ,
our proposed method GIFT consistently improves all baseline methods across all IPC values in
10, 50, 100, using both ConvNet and ResNet-18 as evaluation models. Specifically, compared with
the current state-of-the-art methods RDED and G-VBSM, GIFT achieves significant performance
gains of 1.8%and 1.2% on ResNet-18 when IPC =10, respectively. The substantial performance
improvements obtained by GIFT demonstrate its capability to effectively scale to large-scale datasets.

Comparison under Higher IPC. Given that only CDA (Yin & Shen, 2023) provides a higher
IPC synthetic dataset distilled, our comparison primarily centers on CDA. The results in Table 3
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Table 4: Comparison with RDED Large-scale Netwrok. In the table, (↑) means the improvements over RDED.

Tiny-ImageNet ImageNet-1K

Method 10 50 10 50

RDED 47.1± 0.3 55.1 ± 0.3 42.3 ± 0.2 58.6 ± 0.1
RDED + Ours 48.6 ± 0.2 (↑ 1.5) 56.2 ± 0.2 (↑ 1.1) 43.5 ± 0.2 (↑ 1.2) 59.4 ± 0.2 (↑ 0.8)

Table 5: Comparison with the knowledge distillation methods on the synthetic dataset via RDED (Sun
et al., 2024) using ConvNet. In this table, bold means the best result, underlined means the second best, and (↑)
denotes improvements over the second best baseline.

CIFAR100 Tiny-ImageNet ImageNet-1K

10 50 10 50 10 50 100

Teacher 61.27 61.27 49.73 49.73 43.6 43.6 43.6

KD 43.2 ± 0.1 51.9 ± 0.4 33.3 ± 0.4 40.7 ± 0.2 16.7 ± 0.1 24.3 ± 0.2 27.5 ± 0.4
WSLD 38.6 ± 0.3 49.5 ± 0.5 27.1 ± 0.3 37.5 ± 0.2 13.4 ± 0.1 22.8 ± 0.1 26.2 ± 0.0
DKD 49.0 ± 0.2 56.7 ± 0.2 40.9 ± 0.2 47.2 ± 0.1 20.5 ± 0.1 33.1 ± 0.1 36.5 ± 0.1
NKD 46.3 ± 0.3 54.3 ± 0.1 37.6 ± 0.4 44.1 ± 0.2 19.84 ± 0.1 27.9 ± 0.2 30.6 ± 0.2

GIFT (ours) 50.6 ± 0.3 (↑ 1.6) 57.9 ± 0.2 (↑ 1.2) 44.0 ± 0.2(↑ 3.1) 48.3 ± 0.1 (↑ 1.1) 24.0 ± 0.8(↑ 3.4) 39.5 ± 0.1 (↑ 6.4) 42.5± 0.1 (↑ 6.0)

demonstrate that our GIFT method substantially improves the performance of CDA. Furthermore, it
also achieves significant enhancements at higher IPC.

Comparison on Large-scale Network. In addition to conventional networks like ResNet-18, we
employ the state-of-the-art dataset distillation method, RDED, to generate distilled data for Tiny-
ImageNet and ImageNet-1K using Swin Transformer (Liu et al., 2021). The results, as shown in
Table 4 , indicate notable enhancements, verifying the effectiveness and promise of our method.

5.3 CAN KNOWLEDGE DISTILLATION WORK?

A straightforward approach to combining soft labels and hard labels is knowledge distillation (Hinton
et al., 2015), which transfers knowledge from a teacher model to a student model using hard labels
(cross-entropy loss) and soft labels provided by a strong teacher model (KL divergence loss). In
Table 5 , we compare our proposed method, GIFT, with the state-of-the-art knowledge distillation
techniques across synthetic datasets distilled via RDED (Sun et al., 2024) 6.

It can be observed that GIFT outperforms all knowledge distillation methods. We attribute the
failure of knowledge distillation methods to the extremely small size of synthetic datasets, which
significantly hampers the performance of knowledge distillation methods, as corroborated by (Stanton
et al., 2021). Therefore, knowledge distillation is not well-suited for our problem, further highlighting
the effectiveness of GIFT.

5.4 CAN GIFT ACHIEVE NEAR-ZERO COST?

We perform experiments to evaluate memory and training time costs using ResNet-18 across datasets
with varying scales and resolutions, as presented in Table 6 . Our method demonstrates no additional
peak memory usage and incurs negligible computational overhead. This efficiency is due to its
emphasis on label refinement and the implementation of a general and simple loss function during
the evaluation phases. Importantly, despite the negligible additional cost, GIFT yields significant
performance improvements across datasets of varying scales and resolutions.

5.5 CAN GIFT IMPROVE GENERALIZATION?

Cross-Architecture Generalization. To validate the enhancement of generalization capability by
our GIFT, it is necessary to assess its effectiveness across various neural architectures not encountered
during the dataset synthesis phase. We evaluate performance on both small and large-scale model
architectures. Table 7 presents the performance before and after applying our GIFT to dataset
distillation methods. The results indicate that GIFT enhances the cross-architecture generalization of
all dataset distillation methods across diverse architectures. Notably, our method shows significant
improvements when generalizing from small networks to larger networks. For instance, GIFT yields
performance gains of 2.6% and 7.8% for RDED and G-VBSM, respectively, when synthesizing data
using ConvNet while training model on ResNet-101.

6RDED is the current state-of-the-art method as shown in Table 1 , so we conduct the experiment on its
synthetic datasets.
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Table 6: Training Time (s) and memory (GB) costs on three synthetic datasets using ResNet-18 when
IPC=10. (+) denotes additional cost over these methods.

CIFAR-100 Tiny-ImageNet ImageNet-1K

Method Training Time Memory Training Time Memory Training Time Memory

SRe2L 180.22 0.69 1249.66 2.01 2011.24 2.32
SRe2L + Ours 181.36 (+ 1.14) 0.69 1275.75 (+ 26.09) 2.01 2078.59 (+ 67.35) 2.32

RDED 171.97 0.69 1272.28 2.01 2066.35 2.32
RDED + Ours 175.17 (+ 3.20) 0.69 1298.73 (+ 26.45) 2.01 2124.61 (+ 58.26) 2.32

DATM 132.51 1.36 1018.31 12.55 - -
DATM + Ours 139.06 (+ 6.55) 1.36 1039.65 (+ 21.34) 12.55 - -

G-VBSM 183.90 0.69 1256.35 2.01 2074.72 2.32
G-VBSM + Ours 187.83 (+ 3.93) 0.69 1282.63 (+ 26.28) 2.01 2129.98 (+ 55.26) 2.32

Table 7: Top-1 accuracy on cross-architecture generalization on Tiny-ImageNet. We use the synthetic
datasets distilled (D) on ConvNet and ResNet-18 on Tiny-ImageNet when IPC=10. Then, evaluations (E) are
performed across both small-scale and large-scale architectures. (↑) denotes improvements over these methods.

Small-Scale Architecture Large-Scale Architecture

D/E ConvNet ResNet-18 EfficientNet-B0 MobileNet-V2 ResNet-101 Swin-V2-Tiny

ConvNet

SRe2L 34.5 ± 0.4 43.04 ± 0.1 11.2 ± 1.1 14.0 ± 0.6 9.9 ± 0.5 10.3 ± 0.4
SRe2L + Ours 37.5±0.3 (↑ 3.0) 44.2 ± 0.3 (↑ 1.16) 15.3 ± 1.0 (↑ 4.1) 14.4 ± 0.3 (↑ 0.4) 10.6 ± 0.3 (↑ 0.7) 11.2 ± 0.2 (↑ 0.9)
RDED 41.4 ± 0.3 46.5 ± 0.2 30.3 ± 1.4 30.2 ± 0.2 28.2 ± 1.9 26.8 ± 0.6
RDED + Ours 44.0±0.2 (↑ 2.6) 47.2 ± 0.1 (↑ 0.7) 31.4 ± 0.9 (↑ 1.1) 31.3 ± 0.2 (↑ 1.1) 30.8 ± 1.8 (↑ 2.6) 28.7 ± 0.4 (↑ 1.9)
DATM 36.1 ± 0.2 27.3 ± 0.2 18.0 ± 0.3 14.7 ± 0.2 15.3 ± 0.8 4.1 ± 3.1
DATM + Ours 37.8 ± 0.3 (↑ 1.7) 29.0 ± 0.2 (↑ 1.7) 18.4± 0.5 (↑ 0.4) 17.5 ± 0.1 (↑ 2.8) 16.8± 0.5 (↑ 1.5) 16.3 ± 0.3 (↑ 12.2)
G-VBSM 34.5 ± 0.5 42.2 ± 0.3 13.7 ± 1.4 15.0 ± 0.4 7.7 ± 0.6 10.4 ± 0.4
G-VBSM + Ours 36.9±0.7 (↑ 2.4) 42.8 ± 0.2 (↑ 0.6) 16.3 ± 1.0 (↑ 2.6) 15.8± 0.4 (↑ 0.8) 15.5 ± 0.3 (↑ 7.8) 13.2± 0.1 (↑ 2.8)

ResNet-18

SRe2L 19.2 ± 0.1 43.5 ± 0.1 11.6 ± 0.4 11.9 ± 0.3 8.7 ± 1.0 8.0 ± 0.2
SRe2L + Ours 19.4 ± 0.2 (↑ 0.2) 44.2±0.3(↑ 0.7) 12.2 ± 0.2 (↑ 0.6) 12.3 ± 0.1 (↑ 0.4) 9.0 ± 0.5 (↑ 0.3) 8.8± 0.3 (↑ 0.8)
RDED 29.2 ± 0.3 48.2 ± 0.4 24.1 ± 0.7 23.5 ± 0.3 21.8 ± 0.3 19.6 ± 0.4
RDED + Ours 29.9 ± 0.1 (↑ 0.7) 49.2±0.1 (↑ 1.0) 25.2 ± 0.2 (↑ 1.1) 24.1 ± 0.3 (↑ 0.6) 23.5± 0.3 (↑ 1.7) 20.4± 0.3 (↑ 0.8)
G-VBSM 16.0 ± 0.3 39.9 ± 0.4 8.8 ± 0.1 11.5 ± 0.4 6.3 ± 1.1 6.5 ± 0.3
G-VBSM + Ours 16.5 ± 0.4 ( ↑ 0.5) 40.5±0.2 (↑ 0.6) 10.1± 0.2 (↑ 1.3) 11.8 ± 0.3 (↑ 0.3) 9.2 ± 0.6 (↑ 2.9) 8.2± 0.3 (↑ 1.7)

Table 8: Top-1 accuracy (%) on cross-optimization generalization on Tiny-ImageNet and CIFAR100 when
IPC =10.We evaluate the performance of synthetic datasets across various optimizers.

Dataset CIFAR100 Tiny-ImageNet

Optimizer SGD Adam AdamW SGD Adam AdamW

SRe2L 1.5 ± 0.1 8.7 ± 0.1 34.5 ± 0.4 0.6 ± 0.0 3.1 ± 0.1 33.7 ± 0.5
SRe2L + Ours 43.0 ± 0.8 (↑ 42.6) 44.7 ± 0.6 (↑ 37.5) 38.0 ± 0.5 (↑ 3.5) 43.8 ± 0.5 (↑ 43.2) 45.2 ± 0.2 (↑ 42.1) 37.5± 0.3 (↑ 3.0)
RDED 1.9 ± 0.0 17.8 ± 0.1 47.5 ± 0.3 0.6 ± 0.0 4.5 ± 0.2 41.4 ± 0.3
RDED + Ours 53.4 ± 0.2 (↑ 51.5) 53.7 ± 0.4 (↑ 35.9) 50.6 ± 0.3 (↑ 2.6) 46.6 ± 0.3 (↑ 46.0) 46.5 ± 0.2 (↑ 42.0) 44.0 ± 0.2 (↑ 2.6)
DATM 37.3 ± 0.3 36.7 ± 0.1 36.1 ± 0.2 28.2 ± 0.1 27.8 ± 0.1 26.5 ± 0.2
DATM + Ours 38.5± 0.2 (↑ 1.2) 40.0± 0.2 (↑ 3.3) 37.8 ± 0.3 (↑ 1.7) 30.1 ± 0.3 (↑ 1.9) 29.1 ± 0.1 (↑ 1.3) 27.5 ± 0.2 (↑ 1.0)
G-VBSM 44.2 ± 1.8 41.2 ± 0.4 40.9 ± 0.4 41.4 ± 0.4 36.5 ± 0.4 34.5 ± 0.5
G-VBSM + Ours 49.8 ± 0.4 (↑ 5.6) 51.3 ± 0.6 (↑ 10.1) 44.6 ± 0.2 (↑ 3.7) 44.5 ± 0.1 (↑ 3.1) 45.3 ± 0.1 (↑ 8.8) 36.9 ± 0.7 (↑ 2.4)

The success of our method is attributed to its stability. In cross-architecture scenarios, soft labels may
not be sufficient due to architectural differences (Vyas et al., 2020). However, our cosine similarity
approach inherently includes a normalization operation, mitigating the negative impact of label
fluctuation. These results are promising, indicating that our method, which does not incur additional
computational costs, is well-suited for applications involving large-scale models.

Cross-optimizer Generalization. Similar to cross-architecture generation, it is crucial to estimate
the cross-optimizer generalization of dataset distillation methods. Different optimizers, such as
SGD and Adam, exhibit distinct characteristics that influence model performance and generalization.
Therefore, in practical applications, it is necessary to choose the most appropriate optimizer according
to the training conditions. In this experiment, we report the accuracy before and after applying our
GIFT to baseline methods across multiple optimizers not seen during dataset distillation, as shown in
Table 8 . The results clearly indicate that GIFT enhances the generalization ability of all baseline
methods. More results on ImageNet-1K can be found in Table 16 in Appendix D .

It is notable that SRe2L and RDED perform poorly in this cross-optimizer challenge. However, with
our method, performance increased by 42.6% and 51.5% using SGD on CIFAR-100. We present an
emperical and theoretical analysis of cross-optimizer generalization in Appendix E .
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Table 9: Comparsion with loss functions employed in dataset distillation. The experiment is conducted on
synthetic datasets distilled via RDED (Sun et al., 2024). In this table, bold means the best result, underlined
means the second best, and (↑) denotes improvements over the second best baseline.

CIFAR100 Tiny-ImageNet ImageNet-1K

10 50 10 50 10 50 100

Hard Label CE 26.6 ± 0.4 40.8 ± 0.1 14.2 ± 0.3 26.9 ± 0.6 9.1 ± 0.1 17.5 ± 0.1 21.5 ± 0.1

Soft Label
KL 47.5 ± 0.3 55.7 ± 0.4 41.4 ± 0.3 47.2 ± 0.1 20.1 ± 0.4 38.5 ± 0.2 41.8 ± 0.2
JS 47.9 ± 0.1 55.9 ± 0.3 41.8 ± 0.2 47.3 ± 0.2 20.5 ± 0.3 38.6 ± 0.3 41.9 ± 0.3

MSE 47.6 ± 0.4 55.9 ± 0.1 41.6 ± 0.2 47.3 ± 0.0 20.7 ± 0.4 38.8 ± 0.4 41.9 ± 0.1
Soft CE 40.8 ± 0.3 52.1 ± 0.3 33.4 ± 0.2 44.1 ± 0.4 17.0 ± 0.3 30.5 ± 0.8 37.2 ± 0.6

Hard&
Soft Label

KL + CE 48.2 ± 0.4 56.3 ± 0.5 41.6± 0.3 46.8± 0.5 20.3± 0.2 35.2± 0.2 39.0 ± 0.2
MSE + CE 47.4 ± 0.2 56.2 ± 0.0 41.7 ± 0.5 47.1 ± 0.1 20.5 ± 0.4 38.3 ± 0.3 40.5 ± 0.2

Soft CE + CE 39.7 ± 0.3 51.1 ± 0.4 32.6 ± 0.5 43.2 ± 0.2 15.2 ± 0.4 29.1 ± 0.8 34.7 ± 0.6

GIFT (ours) 50.6 ± 0.3 (↑ 2.4) 57.9 ± 0.2 (↑ 1.6) 44.0 ± 0.2(↑ 2.3) 48.3 ± 0.1 (↑ 1.0) 24.0 ± 0.8(↑ 3.3) 39.5 ± 0.1 (↑ 0.7) 42.5± 0.1 (↑ 0.6)

5.6 APPLICATION: CONTINUAL LEARNING

Following prior studies (Zhao & Bilen, 2023; Kim et al., 2022; Yin et al., 2023) that leverage
synthetic datasets in continual learning to assess the quality of synthetic data, we employ the GDumb
framework (Prabhu et al., 2020) for our continual learning setup. This framework sequentially stores
prior training data in memory and utilizes both new and stored data for model training.

We conduct class-incremental learning on Tiny-ImageNet with an IPC =10 using ResNet-18.
Figure 2 illustrates both 5-step and 10-step class-incremental learning strategies, partitioning the 200
classes into either 5 or 10 learning steps, corresponding to 40 and 20 classes per step, respectively. It
is evident that our results substantially improve upon the baseline method RDED 7.
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Figure 2: 5-step and 10-step class-incremental learning on Tiny-ImageNet on ResNet-18.

5.7 ABLATION STUDY

Is Our Loss Function the Best? To validate the superiority of GIFT, we compare with existing loss
functions, utilizing both hard and soft labels. The results, presented in Table 9 , clearly demonstrate
that GIFT consistently outperforms other loss functions and their combinations.

For hard label utilization, the cross-entropy (CE) loss exhibits subpar performance, mainly due
to the limited information content in typically small synthetic datasets. For soft label utilization,
Jensen-Shannon (JS) divergence loss marginally outperforms the KL divergence, consistent with
observations in (Kim et al., 2021). In summary, existing loss functions in synthetic datasets fail to
fully exploit the potential of all labels. In contrast, our method leverages both hard and soft labels
simultaneously, thereby maximizing label utilization potential and improving performance.

Are Both Modules of GIFT Necessary? We conduct an ablation study to assess the necessity of
the label refinement and cosine similarity loss function on the small-scale dataset in Table 10 and
the large-scale dataset ImageNet-1K in Table 17 in Appendix D . We compare the complete method
with variants lacking either the teacher label refinement or the cosine similarity loss function. In the
absence of both modules, the method is trained using its native loss function.

It is obvious that when only one module is employed, the cosine similarity loss function significantly
enhances performance due to its direct label utilization. Label refinement consistently enhances per-

7RDED is the current state-of-the-art method as shown in Table 1 , so we conduct the experiment on its
synthetic datasets.
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Table 10: Ablation study of label refinement (Refine) and cosine similarity loss function (Loss) on CIFAR
100 and Tiny-ImageNet when IPC =10. This evaluation is conducted on both optimization-based (SRe2L (Yin
et al., 2023)) synthetic datasets and non-optimization-based (RDED (Sun et al., 2024)) synthetic datasets.

GIFT CIFAR100 Tiny-ImageNet

DD Method Refine Loss 1 10 50 1 10 50

SRe2L

✗ ✗ 13.6 ± 0.4 33.7 ± 0.5 52.3 ± 0.2 12.1 ± 0.4 34.5 ± 0.4 46.3 ± 0.1
✓ ✗ 14.2 ± 0.4 (↑ 0.6) 34.5 ± 0.5 (↑ 0.8) 52.8 ± 0.5 (↑ 0.5) 12.5 ± 0.4 (↑ 0.4) 35.1 ± 0.4 (↑ 0.6) 46.6 ± 0.3 (↑ 0.3)
✗ ✓ 14.7 ± 0.4 (↑ 1.1) 37.3 ± 0.4 (↑ 3.6) 54.6 ± 0.1 (↑ 2.3) 12.7 ± 0.4 (↑ 0.6) 36.9 ± 0.3 (↑ 2.4) 46.9 ± 0.1 (↑ 0.6)
✓ ✓ 15.1 ± 0.3 (↑ 1.5) 38.0 ± 0.5 (↑ 4.3) 55.4 ± 0.1 (↑ 3.1) 13.1 ± 0.2 (↑ 1.0) 37.5 ± 0.3 (↑ 3.0) 47.1 ± 0.1 (↑ 0.8)

RDED
✗ ✗ 22.1 ± 0.3 47.5 ± 0.3 55.7 ± 0.4 17.9 ± 0.3 41.4 ± 0.3 47.2 ± 0.1
✓ ✗ 22.9 ± 0.3 (↑ 0.8) 48.0 ± 0.3 (↑ 0.5) 56.3 ± 0.1 (↑ 0.6) 18.2 ± 0.3 (↑ 0.3) 41.9 ±0.4 (↑ 0.5) 48.1 ± 0.2 (↑ 0.9)
✗ ✓ 23.8 ± 0.2 (↑ 1.7) 49.5 ± 0.2 (↑ 2.0) 57.0 ± 0.1 (↑ 1.3) 18.5 ± 0.3 (↑ 0.6) 42.9 ± 0.2 (↑ 1.5) 47.5 ± 0.1 (↑ 0.3)
✓ ✓ 24.7 ± 0.3 (↑ 2.6) 50.6 ± 0.3 (↑ 3.1) 57.9 ± 0.2 (↑ 2.2) 19.1 ± 0.3 (↑ 1.2) 44.0 ± 0.2 (↑ 2.6) 48.3 ± 0.1 (↑ 1.1)

formance, regardless of the presence of cosine similarity loss function, demonstrating its effectiveness.
Thus, both modules are essential for enhancement, consistent with our analysis in Section 4 .

Moreover, to verfiy the efficacy of label refinement, we compare the label accuracy before and after
refinement. The results, shown in Figure 10 in Appendix D , demonstrate that it leads to significant
performance improvements, highlighting the critical role of the proposed label refinement.

Influence of Hyper-parameter γ. We examine the impact of the weight hyperparameter γ, defined
in Section 4 . As shown in Figure 3 , GIFT achieves optimal performance when γ = 0.1 across
various datasets. This consistency is attributed to the fact that the soft labels are generated by
pre-trained models. Specifically, both RDED and SRe2L utilize the same pre-trained model.

Notably, for values of γ greater than 0.1, a significant performance decline is observed across all
methods as γ increases. A plausible explanation is that larger values of γ diminish the intra-class
information content in soft labels. This observation aligns with our findings in Table 9 , where
training with exclusively hard labels via CE results in poor performance. To verify that γ = 0.1 is
also optimal for different settings, we conduct experiments on different network architectures and
augmentation, as shown in Figure 8 and Figure 9 in Appendix D .

Can GIFT Enhance utilization of Hard and Smoothed Labels? To evaluate the efficacy of
GIFT across various data types, we conduct experiments on both distilled and randomly selected
datasets, employing hard and smoothed labels. The results are presented in Table 18 and Table 19
in Appendix D . Obviously, GIFT consistently enhances label utilization across various label types.
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Figure 3: Top-1 accuracy (%) for the state-of-the-art dataset distillation methods on various synthetic datasets
when IPC =10 on ResNet-18 with different γ.

6 CONCLUSION AND LIMITATION

This work introduces a novel perspective on dataset distillation by emphasizing the full utilization of
synthetic labels. We first conduct a comprehensive comparison of existing loss functions used for
soft labels in dataset distillation. Our findings reveal that models trained on synthetic datasets exhibit
significant sensitivity to the choice of loss function. Based on these insights, we propose a simple
yet effective plug-and-play method, GIFT, designed to fully exploit synthetic labels. Experimental
results across various scales and resolutions of image datasets demonstrate that GIFT consistently
outperforms state-of-the-art dataset distillation algorithms. In this work, we mainly focus on the
image classification task. However, we believe the extensions of this work to other tasks such as text
data (Devlin et al., 2018) and architectures like LSTM (Graves & Graves, 2012).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pranjal Awasthi, Nishanth Dikkala, Pritish Kamath, and Raghu Meka. Learning neural networks with
sparse activations. In The Thirty Seventh Annual Conference on Learning Theory, pp. 406–425.
PMLR, 2024.

Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels
instead of images. arXiv preprint arXiv:2006.08572, 2020.

John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. In Advances in neural information processing
systems, volume 2, 1989.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4750–4759, 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. General-
izing dataset distillation via deep generative prior. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3739–3748, 2023.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k
with constant memory. In International Conference on Machine Learning, pp. 6565–6590. PMLR,
2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable
memories for neural networks. Advances in Neural Information Processing Systems, 35:34391–
34404, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pp. 37–45, 2012.

Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless
dataset distillation via difficulty-aligned trajectory matching. In International Conference on
Learning Representations, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In International Conference on Machine Learning, pp. 11102–11118. PMLR, 2022.

Taehyeon Kim, Jaehoon Oh, NakYil Kim, Sangwook Cho, and Se-Young Yun. Comparing
kullback-leibler divergence and mean squared error loss in knowledge distillation. arXiv preprint
arXiv:2105.08919, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. In Advances in neural information processing systems, volume 35, pp. 1100–1113,
2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Yi Ma, Doris Tsao, and Heung-Yeung Shum. On the principles of parsimony and self-consistency for
the emergence of intelligence. Frontiers of Information Technology & Electronic Engineering, 23
(9):1298–1323, 2022.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. arXiv preprint arXiv:2011.00050, 2020.

Michael A Nielsen. Neural networks and deep learning, volume 25. Determination press San
Francisco, CA, USA, 2015.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp. 524–540, 2020.

Tian Qin, Zhiwei Deng, and David Alvarez-Melis. A label is worth a thousand images in dataset
distillation. arXiv preprint arXiv:2406.10485, 2024.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Shitong Shao, Zeyuan Yin, Muxin Zhou, Xindong Zhang, and Zhiqiang Shen. Generalized large-scale
data condensation via various backbone and statistical matching. In CVPR, 2024.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and Andrew G Wilson.
Does knowledge distillation really work? Advances in Neural Information Processing Systems, 34:
6906–6919, 2021.

Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text dataset distillation. In
2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2021.

Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An
efficient dataset distillation paradigm. In CVPR, 2024.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Nidhi Vyas, S. Saxena, and T. Voice. Learning soft labels via meta learning. ArXiv, abs/2009.09496,
2020.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable
information under computational constraints. arXiv preprint arXiv:2002.10689, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhendong Yang, Ailing Zeng, Zhe Li, Tianke Zhang, Chun Yuan, and Yu Li. From knowledge
distillation to self-knowledge distillation: A unified approach with normalized loss and customized
soft labels. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
17185–17194, 2023.

Zeyuan Yin and Zhiqiang Shen. Dataset distillation in large data era. 2023.

Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at
imagenet scale from a new perspective. arXiv preprint arXiv:2306.13092, 2023.

Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin
Haeffele, and Yi Ma. White-box transformers via sparse rate reduction. Advances in Neural
Information Processing Systems, 36:9422–9457, 2023.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
label smoothing regularization. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 3903–3911, 2020.

Zhao Zhang, Mingbo Zhao, and T. Chow. Graph based constrained semi-supervised learning
framework via label propagation over adaptive neighborhood. IEEE Transactions on Knowledge
and Data Engineering, 27:2362–2376, 2015.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pp. 12674–12685. PMLR, 2021.

Bo Zhao and Hakan Bilen. Synthesizing informative training samples with gan. arXiv preprint
arXiv:2204.07513, 2022.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6514–6523, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp.
11953–11962, 2022.

Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset
condensation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7856–7865, 2023.

Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian Zhang.
Rethinking soft labels for knowledge distillation: A bias-variance tradeoff perspective. arXiv
preprint arXiv:2102.00650, 2021.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
sion. Advances in Neural Information Processing Systems, 35:9813–9827, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

Proof. The InfoNCE loss is defined as:

LInfoNCE = −E

[
log

exp(sim(zi, yi)/τ)∑N
j=1 exp(sim(zi, yj)/τ)

]
(4)

where sim(zi, yi) represents the cosine similarity between xi and yi:

sim(zi, yi) =
zi · yi
∥zi∥∥yi∥

(5)

Substituting the expression for cosine similarity into the InfoNCE loss:

LInfoNCE = −E

log exp
(

zi·yi

∥zi∥∥yi∥τ

)
∑N

j=1 exp
(

zi·yj

∥zi∥∥yj∥τ

)


= −E

log exp( zi · yi
∥zi∥∥yi∥τ

)
− log

N∑
j=1

exp

(
zi · yj
∥zi∥∥yj∥τ

)
= −E

( zi · yi
∥zi∥∥yi∥τ

)
− log

N∑
j=1

exp

(
zi · yj
∥zi∥∥yj∥τ

)
= −E

[(
zi · yi
∥zi∥∥yi∥τ

)]
+ E

log N∑
j=1

exp

(
zi · yj
∥zi∥∥yj∥τ

)

(6)

Applying Jensen’s inequality to the logarithm:

LInfoNCE ≤ −E
[(

zi · yi
∥zi∥∥yi∥τ

)]
+ log

E

 N∑
j=1

exp

(
zi · yj
∥zi∥∥yj∥τ

) (7)

Assuming the negative samples yj are drawn from a similar distribution, we approximate the denomi-
nator:

N∑
j=1

exp

(
zi · yj
∥zi∥∥yj∥τ

)
≈ N exp

(
E[zi · yj ]
∥zi∥E[∥yj∥]τ

)
(8)

Substituting this approximation into the upper bound:

LInfoNCE ≤ −
1

τ

(
E
[(

zi · yi
∥zi∥∥yi∥

)]
− E[zi · yj ]
∥zi∥E[∥yj∥]

)
+ log(N) (9)

B RELATED WORK

B.1 DATASET DISTILLATION

In the field of dataset distillation, the majority of existing methods fix the labels as a one-hot format
(Wang et al., 2018; Zhao et al., 2020; Zhao & Bilen, 2022; Cazenavette et al., 2022; Kim et al., 2022;
Liu et al., 2022; Zhao & Bilen, 2023), with a primary focus on optimizing synthetic images. Recent
research highlights the significant benefits of utilizing soft labels to enhance model performance (Sun
et al., 2024; Guo et al., 2024; Yin et al., 2023). These benefits are particularly pronounced when
training models on extremely small synthetic datasets, due to the enriched intra-class information
soft labels provide. Methods for obtaining soft labels can be broadly classified into two categories.
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Optimization-based Soft Labels. The first type involves learning labels, with several studies
(Bohdal et al., 2020; Nguyen et al., 2020; Sucholutsky & Schonlau, 2021; Zhou et al., 2022; Deng &
Russakovsky, 2022; Guo et al., 2024) finding that making labels learnable can significantly improve
performance and efficiency. LD (Bohdal et al., 2020) first introduces label distillation and reveals
that even only learning labels without learning images can achieve satisfactory performance with
high efficiency. Recent work (Guo et al., 2024) further highlights that optimizing labels can enhance
training stability and improve performance.

Teacher model-based soft labels. The subsequent works directly obtain soft labels. Inspired
by knowledge distillation (Hinton et al., 2015), TESLA (Cui et al., 2023)introduces a soft label
assignment strategy, directly generating soft labels by leveraging pre-trained teacher models trained
on real datasets. These soft labels provide rich intra-class information, thereby improving distillation
performance. Following this trend, the state-of-art methods (Yin et al., 2023; Sun et al., 2024; Shao
et al., 2024) also utilize soft labels predicted by teacher models, achieving significant improvements.

B.2 KNOWLEDGE DISTILLATION

A straightforward method to simultaneously utilize soft and hard labels is knowledge distillation
(Hinton et al., 2015), which transfers knowledge from a large teacher model to a small student model.
In this training process, the student model is supervised by hard labels and soft labels from the
teacher’s output. Many following works aim to enhance the use of soft labels for more effective
knowledge transfer. (Yuan et al., 2020) investigated the regularization property of soft labels and
introduced a teacher-free distillation approach. WSLD (Zhou et al., 2021) analyzes soft labels and
distributes different weights for them from a perspective of bias-variance trade-off. DKD (Zhao et al.,
2022) decouples the logit and assigns different weights for the target and non-target classes.

Despite the promising potential of knowledge distillation in transferring knowledge from teacher
to student models using soft labels, its application to our problem yields limited improvement. A
detailed analysis and comparison of these limitations are provided in Section 5.3 .

C EXPERIMENT DETAILS

Datasets. As described in Section 5.1 , we evaluate the state-of-the-art dataset distillation methods
and our proposed GIFT on both small-scale and large-scale datasets. More Information about datasets
utilized are listed in Table 11 .

Table 11: Details about the datasets

Dataset Num of Classes IPC of Trainset IPC of Testset

CIFAR-10 10 5000 1000
CIFAR-100 100 500 100

Tiny-ImageNet 200 500 50
ImageNet-1k 1000 732 - 1300 50

Models. The experiment utilized a plethora of pre-trained models, and we provided the accuracy of
these pre-trained models in the Table 12 . The results are provided for reference only.

Baselines. To elucidate the rationale behind our method selection for comparison, we categorize
current state-of-the-art methods based on two key factors: scalability to ImageNet-1K and the
utilization of soft labels. These categorizations are summarized in Table 13 .

Given that our primary focus is on enhancing the use of soft labels in dataset distillation, we restrict
our comparisons to methods that involve soft labels:

• TESLA (Cui et al., 2023) marks the first distillation approach that extends to the full
ImageNet-1K, circumventing the extensive memory demands associated with MTT-derived
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Table 12: Accuracy of pretrained models.

Dataset Model Size Accuracy

CIFAR-10 resnet18_modified 32 × 32 93.86
ConvNet-3 32 × 32 82.24

CIFAR-100 resnet18_modified 32 × 32 72.27
ConvNet-3 32 × 32 61.27

Tiny-ImageNet resnet18_modified 64 × 64 61.98
ConvNet-4 64 × 64 49.73

ImageNet-1k resnet18 224 × 224 69.31
ConvNet-4 64 × 64 43.6

Table 13: Categorize methods based on their utilization of soft labels and their scalability to ImageNet-1K.

RDED CDA G-VBSM SRe2L DATM SeqMatch DREAM IDC FTD DataDAM MTT DM DSA

Use Soft Label ✓ ✓ ✓ ✓ ✓ × × × × × × × ×
Scale to ImageNet-1K ✓ ✓ ✓ ✓ × × ✓ × × × × × ×

methods through a constant memory footprint. However, TESLA does not provide public
synthesic datasets, so we are not able to conduct on it.

• SRe2L (Yin et al., 2023) and RDED (Sun et al., 2024): both of them use soft labels assigned
by a teacher model and use them via KL divergence.

• DATM (Guo et al., 2024): initial soft labels assigned by multiple teacher models and then
optimized based on trajectory matching. Finally, this method employs soft cross-entropy
loss for soft labels.

• G-VBSM (Shao et al., 2024): soft labels are assigned by multiple teacher models and then
used via MSE-CE loss function.

• CDA (Yin & Shen, 2023): soft labels are assigned by a teacher model and are used via soft
cross-entropy loss.

Knowledge distillation (Hinton et al., 2015) is a straightforward method to utilize labels, especially
for soft labels. Therefore, we also compare our method GIFT with the state-of-the-art knowledge
distillation methods that focus on soft labels utilization:

• KD (Hinton et al., 2015): it is the first method to transfer knowledge using both hard and
soft labels from the teacher’s output.

• WSLD (Zhou et al., 2021): it analyzes soft labels and then distributes different weights for
them from a perspective of bias-variance trade-off.

• DKD (Zhao et al., 2022): it decouples the logits and assigns different weights for the target
and non-target classes.

• NKD (Yang et al., 2023): it finds the sum of the two non-target logits is different, preventing
logits’ distributions from being identical. Therefore, it normalizes the non-target logits to
equalize their sum.

Evaluating main results. For both dataset distillation and performance evaluation, we employ
identical neural network architectures. Consistent with previous studies (Cazenavette et al., 2022;
Cui et al., 2023; Zhao et al., 2023), we use Conv-3 for CIFAR-10 and CIFAR-100 distillation tasks,
Conv-4 for Tiny-ImageNet (with the exception of DREAM, which utilizes Conv-3) and ImageNet-1K,
Conv-5 for ImageNet-10, and Conv-6 for ImageNet-100 distillation. In line with (Cazenavette et al.,
2022; Cui et al., 2023), MTT and TESLA apply a reduced resolution for distilling 224× 224 images.
According to (Yin et al., 2023), for retrieving and evaluating distilled datasets, SRe2L and GIFT
adopt ResNet-18.
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Evaluating the distilled dataset. Consistent with recent works (Yin et al., 2023; Shao et al., 2024),
the evaluation on the distilled dataset follows the parameters outlined in Table 15 . Furthermore, we
implement Differentiable Siamese Augmentation (DSA) as described by (Zhao & Bilen, 2021) to
enhance images during both the distillation and evaluation phases of our experiments.

Differentiable Siamese Augmentation (DSA). We use DSA (Differentiable Siamese Augmen-
tation) as a tool for image augmentation. For the sake of clarity, we delineate the DSA operations
utilized in Table 14 , alongside their respective transforms and probabilities.

Table 14: Differentiable Siamese Augmentation(DSA) and ratios

DSA Transform Ratio

Color Color Jitter
Brightness=1.0
Saturation=2.0
Contrast=0.5

Crop Random Crop Crop Pad=0.125
Cutout Random Cutout Cutout=0.5
Flip Random Horizontal Flip Flip=0.5
Scale Random Scale Scale=1.2
Rotate Random Rotation Rotate=15.0

Table 15: Evaluation Hyperparameter setting

Config Value Explanation

Epochs 300/1000 300 for ImageNet-1k,
1000 for default

Optimizer AdamW NA
Learning Rate 0.001 NA

Batch Size 10/50/100/200

10 for 0 < Num of Images ≤ 10,
50 for 10 < Num of Images ≤ 500,
100 for 500 < Num of Images ≤ 20000,
200 for 20000 < Num of Images

Scheduler MultiStepLR milestones=[2 × epochs // 3, 5 × epochs // 6]
gamma=0.2

Augmentation DSA strategy color, crop, cutout, flip, scale, rotate

D EXPERIMENT RESULTS

Comprehensive Comparison Between Different Loss Functions Our experiments span two
datasets, including Tiny-ImageNet, and ImageNet-1K on IPC ∈ {1, 10, 50} using ConvNet (?). Note
that the synthetic dataset for DATM on ImageNet-1K is unavailable, precluding comparisons on this
dataset. We evaluate at IPC ∈ {1, 10, 50}. The results, visualized in Figure 4 , Figure 6 , Figure 5
and Figure 7 , reveal that the performance of models trained on synthetic datasets is highly sensitive
to the choice of the loss function, highlighting the necessity for a unified and effective loss function
in dataset distillation.

Influence of Hyper-parameter γ on ConvNet. We also examined the impact of the hyper-
parameter γ using ConvNet, and the results are shown in Figure 8 . Similar to the findings with
ResNet, GIFT achieves optimal performance when γ = 0.1.
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Figure 4: Top-1 accuracy on various synthetic datasets via the SOTA dataset distillation methods across loss
functions on Tiny-ImageNet when IPC=1.

Figure 5: Top-1 accuracy on various synthetic datasets via the SOTA dataset distillation methods across loss
functions on ImageNet-1K when IPC=1.

Table 16: Top-1 accuracy on cross-optimization generalization on ImageNet-1K when IPC=10.We evaluate
the performance of synthetic datasets across various optimizers.

ImageNet-1K

Dataset ConvNet ResNet

Method SGD Adam AdamW SGD Adam AdamW

SRe2L 0.1 ± 0.0 0.1 ± 0.0 12.5 ± 0.1 0.1 ± 0. 0.1 ± 0.0 31.5 ± 0.3
SRe2L + Ours 18.2 ± 0.2 (↑ 18.1) 26.6 ± 0.2 (↑ 26.5) 14.2 ± 0.6 (↑ 1.7) 36.1 ± 0.1 (↑ 36.0) 24.5 ± 0.2 (↑ 24.4) 31.9 ± 0.2 (↑ 0.4)
RDED 0.1 ± 0.0 0.1 ± 0.0 20.1 ± 0.4 0.1 ± 0.0 0.1 ± 0.0 41.4 ± 0.4
RDED + Ours 26.7 ± 0.6 (↑ 26.5) 30.9 ± 0.7 (↑ 26.5) 24.0 ± 0.8 (↑ 3.2) 45.8 ± 0.4 (↑ 30.8) 29.1 ± 0.3 (↑ 29.0) 43.2 ± 0.1 (↑ 1.8)
G-VBSM 20.4 ± 0.8 25.0 ± 0.4 22.6 ± 0.5 38.7 ± 0.2 27.0 ± 0.2 36.7 ± 0.2
G-VBSM + Ours 27.4 ± 0.8 (↑ 7.0) 29.8 ± 0.5 (↑ 4.8) 24.3 ± 0.2 (↑ 1.7) 41.8 ± 0.1 (↑ 3.1) 27.8 ± 0.8 (↑ 0.8) 37.9 ± 0.5 (↑ 1.2)

Ablation study on ImageNet-1K. We also conducted an ablation study to assess the necessity of
the teacher label refinement and cosine similarity loss function on the large-scale dataset in Table 17 .
This evaluation was performed on both optimization-based (SRe2L) and non-optimization-based
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Figure 6: Top-1 accuracy on various synthetic datasets via the SOTA dataset distillation methods across loss
functions on Tiny-ImageNet when IPC=50.

Figure 7: Top-1 accuracy on various synthetic datasets via the SOTA dataset distillation methods across loss
functions on ImageNet-1K when IPC=50.
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Figure 8: Top-1 accuracy for the SOTA dataset distillation methods on various synthetic datasets when IPC =10
on ConvNet with different γ.

(RDED) synthetic datasets. It is obvious both modules are essential for performance enhancement,
consistent with our analysis in Section 4 .
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Figure 9: Top-1 accuracy for the SOTA dataset distillation methods on various synthetic datasets with different
data augmentation techniques when IPC =10 on ResNet-18 with different γ.
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(b) Tiny-ImageNet
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Figure 10: Top-1 accuracy for the SOTA dataset distillation methods on various synthetic datasets when IPC
=10 on ResNet-18.

Efficacy of Label Refinement. The necessity of incorporating hard labels into the soft labels
generated by teacher models arises from the inherent limitations in the performance of these teacher
models. Specifically, the test accuracies of teacher models are only 61.27%, 49.73%, and 43.6%
for CIFAR-100, Tiny-ImageNet, and ImageNet-1K, respectively, when trained on commonly used
ConvNet architectures in dataset distillation. Consequently, the accuracy of soft labels is constrained
by the suboptimal nature of the teacher models. To mitigate potential inaccuracies in these soft labels,
we integrate hard labels to enhance reliability.

To verify the efficacy of the label refinement, we record the label accuracy before and after refinement
across each training epoch for three datasets. The parameter γ, controlling the integration ratio, is set
to 0.1. As depicted in Figure 10 , refining soft labels results in significant performance improvements
of 37.1%, 40.95%, and 71.39% for CIFAR-100, Tiny-ImageNet, and ImageNet-1K, respectively,
highlighting the critical role of the proposed label refinement.

Cross-Optimizaer on ImageNet-1K In this experiment, we report the accuracy before and after
applying our GIFT to baseline methods across multiple optimizers not seen during dataset distillation
onImageNet-1K , as shown in Table 16 . The results clearly indicate that GIFT enhances the
generalization ability of all baseline methods. This leads to more stable gradients, especially in
scenarios with small dataset sizes.

GIFT Enhance Utilization of Hard and Smoothed Labels To evaluate the efficacy of GIFT
across various data types, we conduct experiments on both distilled and randomly selected datasets,
employing hard and smoothed labels, with IPC =10. (1) For the distilled dataset, we use the state-of-
the-art dataset distillation method, RDED, which uses soft labels generated by teacher models. In
the experiments, we maintain the distilled images and replace soft labels with hard and smoothed
labels for model training. (2) For random dataset, we randomly select 10 images for each class from
the original dataset. The results for two types of data are presented in Table 18 and Table 19 . It is
evident that applying our method to label utilization consistently improves performance for both the
distilled and the randomly selected data.
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Table 17: Ablation study of label refinement (Refine) and cosine similarity loss function (Loss) on ImageNet-
1K. In the table, (↑) means the improvements over these methods.

ImageNet-1K

ConvNet ResNet-18

Method 10 50 100 10 50 100

SRe2L 12.5 ± 0.3 35.4 ± 1.0 40.1 ± 0.4 31.5 ± 0.3 49.5 ± 0.1 54.3 ± 0.2
SRe2L + Refine 13.3 ± 0.4 (↑ 0.8) 36.3 ± 0.4 (↑ 0.9) 40.5 ± 0.4 (↑ 0.4) 31.8 ± 0.3 (↑ 0.3) 49.7 ± 0.3 (↑ 0.2) 54.5 ± 0.1 (↑ 0.2)
SRe2L + Loss 13.1 ± 0.6 (↑ 0.6) 36.8 ± 0.3 (↑ 1.2) 40.7 ± 0.3 (↑ 0.6) 31.7 ± 0.2 (↑ 0.2) 49.8 ± 0.2 (↑ 0.3) 54.5 ± 0.2 (↑ 0.2)
SRe2L + Refine + Loss 14.2 ± 0.6 (↑ 1.7) 38.1 ± 0.4 (↑ 2.7) 41.5 ± 0.2 (↑ 1.4) 31.9 ± 0.1 (↑ 0.4) 50.1 ± 0.2 (↑ 0.6) 54.8 ± 0.1 (↑ 0.5)

RDED 20.1 ± 0.4 38.5 ± 0.2 41.8 ± 0.2 41.4 ± 0.4 55.5 ± 0.2 58.8 ± 0.1
RDED + Refine 21.2 ± 0.5 (↑ 1.2) 38.7 ± 0.2 (↑ 0.2) 42.3 ± 0.4 (↑ 0.5) 42.3 ± 0.2 (↑ 0.9) 55.8 ± 0.3 (↑ 0.3) 59.2 ± 0.3 (↑ 0.4)
RDED + Loss 21.7 ± 0.6 (↑ 1.6) 39.3 ± 0.1 (↑ 0.8) 42.1 ± 0.1 (↑ 0.3) 42.0 ± 0.2 (↑ 0.6) 55.9 ± 0.1 (↑ 0.4) 59.1 ± 0.1 (↑ 0.3)
RDED + Refine + Loss 24.0 ± 0.8 (↑ 3.9) 39.5 ± 0.1 (↑ 1.0) 42.5± 0.1 (↑ 0.7) 43.2 ± 0.1 (↑ 1.8) 56.5 ± 0.2 (↑ 1.0) 59.3± 0.1 (↑ 0.5)

G-VBSM 22.6 ± 0.5 37.3 ± 0.3 40.1 ± 0.4 36.7 ± 0.2 52.3 ± 0.1 57.3 ± 0.1
G-VBSM + Refine 23.3 ± 0.4 (↑ 0.7) 37.8 ± 0.3 (↑ 0.5) 40.9 ± 0.3 (↑ 0.7) 37.2 ± 0.3 (↑ 0.5) 52.7 ± 0.2 (↑ 0.4) 57.5 ± 0.2 (↑ 0.2)
G-VBSM + Loss 23.8 ± 0.2 (↑ 1.2) 38.3 ± 0.4 (↑ 1.0) 41.8 ± 0.3 (↑ 1.7) 37.5 ± 0.5 (↑ 0.8) 52.8 ± 0.2 (↑ 0.5) 57.4 ± 0.1 (↑ 0.1)
G-VBSM + Refine + Loss 24.3 ± 0.2 (↑ 1.7) 39.1 ± 0.3 (↑ 1.8) 42.1 ± 0.3 (↑ 2.0) 37.9 ± 0.5 (↑ 1.2) 53.1 ± 0.2 (↑ 0.8) 57.6 ± 0.1 (↑ 0.3)

Table 18: Evaluation of Loss Functions Across Hard and Smoothed Labels on the Distilled Data Generated via
RDED with IPC =10.

Label Type Loss Function CIFAR100 Tiny-ImageNet ImageNet-1K

Hard CE 21.6 ± 0.2 13.5 ± 0.3 8.3 ± 0.4
Ours 22.8 ± 0.2 (↑ 1.2) 14.8 ± 0.3 (↑ 1.3) 9.8 ± 0.2 (↑ 1.5)

Smoothed SoftCE 21.9 ± 0.2 13.8 ± 0.2 8.5 ± 0.2
KL 21.7 ± 0.3 13.3 ± 0.3 8.0 ± 0.3
MSE 22.1 ± 0.1 14.1 ± 0.1 8.8 ± 0.3
Ours 23.1 ± 0.2 (↑ 1.0) 15.2 ± 0.3 (↑ 1.1) 10.2 ± 0.2 (↑ 1.4)
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Figure 11: Comparison of Training Loss Between KL and Our GIFT Across Training Epochs
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Figure 12: Gradient Norms Across Various Optimizers and Hyperparameters.

E EMPERICAL AND THEORETICAL ANALYSIS OF CROSS-OPTIMIZER
GENERALIZATION

We begin by analyzing the three optimizers, namely:
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Table 19: Evaluation of Loss Functions Across Hard and Smoothed Labels on the Randomly Selected Data with
IPC=10.

Label Type Loss Function CIFAR100 Tiny-ImageNet ImageNet-1K

Hard CE 18.9 ± 0.3 9.4 ± 0.1 4.0 ± 0.3
Ours 20.3 ± 0.1 (↑ 1.4) 11.6 ± 0.1 (↑ 2.2) 5.1 ± 0.2 (↑ 1.1)

Smoothed SoftCE 19.0 ± 0.3 9.8 ± 0.3 4.5 ± 0.2
KL 17.9 ± 0.2 8.5 ± 0.3 3.9 ± 0.1
MSE 19.2 ± 0.1 9.7 ± 0.2 4.6 ± 0.3
Ours 20.4 ± 0.2 (↑ 1.2) 11.8 ± 0.2 (↑ 2.0) 5.6 ± 0.2 (↑ 1.0)

• SGD (Robbins & Monro, 1951) directly computes gradients from loss values, significantly
impacting the update of model parameters.

• Adam (Kingma & Ba, 2014) includes weight decay in the gradient computation, meaning
that *when the primary gradient signal (from the loss) is small, weight decay can overshadow
it, leading to ineffective updates toward minimizing the loss.

• AdamW (Loshchilov, 2017) separates the concerns of optimization and regularization. By
applying weight decay independently, it ensures that the optimization process remains
focused on minimizing the loss function, while regularization acts as a controlled adjustment
to the parameter magnitudes.

Optimizers inherently exhibit diverse characteristics, resulting in distinct training dynamics when
applied to distilled datasets generated by various methods. Specifically, these distilled datasets,
trained with varying loss functions, exhibit distinct loss values. We reveal that the performance of the
optimizers is highly influenced by these loss values, as demonstrated by the subsequent empirical
evidence and theoretical analysis.

E.1 EMPERICAL ANALYSIS

When employing the KL divergence loss function, the RDED generally exhibits low loss values, as
depicted in Figure 11 . Notably, our GIFT framework does not achieve small loss values.

To examine the impact of loss values on optimizer performance, we conduct experiments utilizing
RDED-generated distilled data. We train models using three distinct optimizers, each with distinct
hyperparameter configurations, and compute the gradient norm for each. Specifically, we varied the
learning rate for the SGD optimizer and modified the weight_decay parameter for both the Adam and
AdamW optimizers.

The gradient norms of these models, presented in Figure 12 , demonstrate that when loss values are
small, the training dynamics exhibit heightened sensitivity to the optimizer choice. Therefore, the
performances of different optimizers are highly influenced by the loss values. Notably, our GIFT
framework can not obtain small loss values, achieving robust performance across various optimizers.

E.2 THEORETICAL ANALYSIS

E.2.1 STOCHASTIC GRADIENT DESCENT (SGD)

Stochastic Gradient Descent (SGD) is a foundational optimization algorithm widely used for training
machine learning models, particularly neural networks. SGD iteratively updates model parameters to
minimize the loss function by moving in the direction of the negative gradient of the loss with respect
to the parameters.

SGD Update Rules. Define the following:

• θt: Parameters at time step t.

• gt = ∇θL(θt−1): Gradient of the loss function L with respect to parameters θ at time step
t− 1.
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• η: Learning rate.

The basic SGD update rule is:
θt = θt−1 − ηgt

Sensitivity to Loss Values in SGD. The gradient gt = ∇θL(θt−1) indicates the direction and
magnitude of change needed to minimize the loss function. Larger loss function values typically
result in larger gradients. Therefore, in SGD, both the loss values and the learning rate η directly
affect the model updates.

E.2.2 ADAM OPTIMIZER

Adam (Adaptive Moment Estimation) is an optimization algorithm that combines the advantages of
two extensions of stochastic gradient descent: Adaptive Gradient Algorithm (AdaGrad) and Root
Mean Square Propagation (RMSProp). Adam maintains per-parameter learning rates adapted based
on the first and second moments of the gradients.

Adam Update Rules. Define the following:

• θt: Parameters at time step t.
• gt = ∇θL(θt−1): Gradient of the loss function L with respect to parameters θ at time step
t− 1.

• mt: First moment estimate (exponentially decaying average of past gradients).
• vt: Second moment estimate (exponentially decaying average of past squared gradients).
• β1, β2: Decay rates for the first and second moments, respectively.
• ϵ: Small constant to prevent division by zero.
• η: Learning rate.

The update rules are as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

(Bias-corrected first moment)

v̂t =
vt

1− βt
2

(Bias-corrected second moment)

θt = θt−1 − η
m̂t√
v̂t + ϵ

Weight Decay in Adam. In the original Adam implementation, weight decay is typically incorpo-
rated by adding an L2 regularization term directly to the loss function:

L′(θ) = L(θ) +
λ

2
∥θ∥22

The gradient of the modified loss function with respect to θ is:

∇θL
′(θ) = ∇θL(θ) + λθ

Consequently, the gradient used in the Adam update rule is augmented with the weight decay term:

gt = ∇θL(θt−1) + λθt−1

Substituting this into the Adam update equations, the parameter update rule becomes:

θt = θt−1 − η
m̂t√
v̂t + ϵ

Here, m̂t and v̂t incorporate the additional gradient component λθt−1.
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E.2.3 ADAMW OPTIMIZER

AdamW is a modification of the Adam optimizer that decouples weight decay from the gradient-based
update. AdamW addresses the intertwined nature of weight decay and gradient updates in the original
Adam, leading to improved generalization performance and more stable training dynamics.

AdamW Update Rules. The primary distinction in AdamW lies in how weight decay is applied.
Instead of incorporating weight decay into the gradient computation, AdamW applies it directly to
the parameters after the standard Adam update. The update rule is expressed as:

θt = θt−1 − η
m̂t√
v̂t + ϵ

− ηλθt−1

Alternatively, this can be broken down into two sequential steps:

θ′t = θt−1 − η
m̂t√
v̂t + ϵ

θt = θ′t − ηλθt−1

In this formulation:

• The first step performs the standard Adam gradient-based update. - The second step applies

• weight decay independently of the gradient computation.

Sensitivity to Loss Values in AdamW. By decoupling weight decay from the gradient-based
update, AdamW mitigates the issue of weight decay dominating parameter updates when the loss
L(θ) is small. In AdamW, the gradient-based update remains primarily responsible for minimizing
the loss, while weight decay independently enforces regularization. This separation ensures that even
when ∇θL(θ) is minimal, the optimizer can continue to adjust parameters based on the loss gradient
without being overly constrained by the weight decay term.

When L(θt−1) is small,∇θL(θt−1) ≈ 0. In AdamW, the update rule is:

θt = θt−1 − η
m̂t√
v̂t + ϵ

− ηλθt−1

The gradient-based update −η m̂t√
v̂t+ϵ

remains tied to the loss gradient, allowing continued optimiza-
tion of L(θ). Simultaneously, the weight decay term −ηλθt−1 independently controls the magnitude
of θ without influencing the direction dictated by the loss gradient. This ensures that weight decay
does not overshadow the gradient-based updates, enabling effective model training even when the
loss is minimal.

E.2.4 WHY EXCESSIVE WEIGHT DECAY IN ADAM IMPEDES UPDATES WHEN LOSS IS
SMALL?

Adam’s Update Mechanism Under Small Loss. Consider the Adam update rule with weight
decay integrated into the gradient:

θt+1 = θt − η
m̂t√
v̂t + ϵ

,

where gt = ∇θL(θt) + λθt Assume that the loss L(θt) is sufficiently small, implying ∇θL(θt) ≈ 0.
Thus gt ≈ λθt. Therefore, the update rule is expressed as:

θt+1 ≈ θt − η
λθt√
vt + ϵ

≈ θt

(
1− ηλ
√
vt + ϵ

)
,

Here, the parameter θt is scaled by a factor less than 1 (assuming ηλ/(
√
vt + ϵ) > 0), leading to a

reduction in θt. If λ is large, the scaling factor can be significantly less than 1, causing θt to diminish
rapidly. This aggressive shrinking overshadows the limited gradient from the loss function, effectively
halting meaningful updates aimed at minimizing L(θ).
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AdamW’s Update Mechanism Under Small Loss. In AdamW, the update rule is:

θt+1 = θt − η
m̂t√
v̂t + ϵ

− ηλθt

Even when L(θt) is small, the gradient-based update term −η m̂t√
v̂t+ϵ

remains focused on minimizing
the loss, while the weight decay term −ηλθt independently enforces regularization.

This separation ensures that:

• The optimization process remains primarily influenced by the loss gradient.
• Weight decay controls the magnitude of the parameters without dictating the direction of

updates.

Thus, AdamW allows the model to continue optimizing L(θt) effectively, even when the loss is already
minimal, while maintaining controlled regularization through weight decay.
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F PYTORCH IMPLEMENTATION CODE

Figure 13: Pytorch Implementation Code
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