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ABSTRACT

This paper studies federated multi-armed bandit (MAB) problems where multiple
agents working together to solve a common MAB problem through a communica-
tion network. We focus on the heterogeneous setting in which no single agent can
identify the global best arm using only local biased observations. In this setting,
different agents may select the same arm at the same time step but receive vary-
ing rewards. We propose a novel algorithm called FEDFTRL for this problem,
which is the first work to achieve near-optimal regret guarantees in both stochastic
and adversarial environments. Notably, in the adversarial regime, our algorithm
achieves O(\/T) regret which is a significant improvement over the state-of-the-

art regret of O(T 3 ) (Yi & Vojnovicl2023). We also provide numerical evaluations
comparing our algorithm with baseline methods, demonstrating the effectiveness
of our approach on both synthetic and real-world datasets.

1 INTRODUCTION

The multi-armed bandit (MAB) problem is one of the most fundamental settings in online learning.
Motivated by the emerging paradigm of federated learning where multiple heterogeneous agents
collaboratively train a model without sharing their raw data (Kairouz et al., 2021), many recent
studies have explored MAB problems in federated environments. In the federated bandit problem,
the goal of all agents is to identify a globally optimal arm, while each agent can only observe locally
biased rewards without disclosing any of the raw data from other agents.

Federated bandits arise in many real-world scenarios where each agent’s sequence of arm pulls
and outcomes remains local. For example, in a personalized online education system, optimizing a
student’s performance (i.e., rewards) often requires tailoring instructional methods (i.e., arms) to the
student’s individual characteristics (Cai et al., 2021)). Given that educational software often operates
locally on students’ devices, it is essential for the central educational platform to personalize learning
experiences effectively while maintaining strict privacy constraints. Specifically, the platform should
adapt teaching strategies based on each student’s unique context without directly accessing sensitive
personal attributes or performance data.

In the federated bandit problem, there are V' agents, each selecting one of K arms in each round.
Each agent observes a heterogeneous (i.e., locally biased) reward for the chosen arm and communi-
cates solely with its neighbors. The goal of each agent is to identify the global best arm and maxi-
mize the cumulative group reward while refraining from exchanging reward observations with other
agents. Prior works on federated bandits mainly focus on two settings (i) stochastic settings (Dubey
& Pentland, |2020; Zhu et al.l 2021} Huang et al., 2021} |Shi et al.| 2021} [Réda et al., 2022), where
rewards are drawn from some underlying distributions, and (ii) adversarial settings (Y1 & Vojnovic,
2023)), where rewards are arbitrarily chosen by an adversary. However, in practice, environments
are seldom purely stochastic or fully adversarial, and the precise nature of these environments is
often unknown. Despite this, the existing literature on federated bandits continues to adhere to the
traditional distinction between stochastic and adversarial settings.

In this paper, we study the so-called best-of-both-worlds (BOBW) algorithms for federated bandits,
which means that our methods can achieve near-optimal regrets in both stochastic and adversarial
regimes. We propose a variant of the Follow-The-Regularized-Leader (FTRL) framework for fed-
erated bandits, which incorporates a novel communication scheme. Since each agent can only com-
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Settings Algorithms Individual regret
Gossip_UCB (Zhu et al.| 2021) O T )
Stochastic DRRB-bandit (Zhang et al.i2025) O( Zk#k* lc‘;géi;) )
FEDFTRL (Ours) O( T )
Lower bound (Zhu et al., [2021) Q( Zk#k* k\’/gf;) )
FEDEXP3 (Yi & Vojnovic, 2023) O(y/CElog(K)K3T3)
Adversarial FEDFTRL (Ours) O(\/ 5 + /CF log(R)T)
Lower bound (Yi & Vojnovic, 2023) Q( max {\/?, mm})

Table 1: Overview of state-of-the-art regret bounds for federated bandits. P denotes a doubly
stochastic matrix representing the communication pattern over the network G and o2(P) is its
min{log(VT),vV}

1—02(P)
network topology, where D is the diameter of G. M denotes the Laplacian matrix of G, Ay _1 (M)
is its second-smallest eigenvalue, and d,,.« is the maximum degree among all nodes in G.

second-largest singular value. CE = + 2 4 D captures the dependence on the

municate with its neighbors in each round, information from agents beyond the immediate neigh-
borhood will only be received after multiple rounds. We regard the resulting latency as a form of
feedback delay. Based on this idea, we develop our algorithm by adopting a hybrid regularizer (Zim-
mert & Seldin, [2020; Masoudian et al., 2022) for bandits with delay feedback, while introducing a
novel learning rate. Additionally, to address the heterogeneous feedback, we introduce a novel trun-
cated loss estimator that ensures the action probabilities of each agent remain nearly aligned, while
keeping the aggregate loss estimate at each time step closer to the average loss.

Another technical contribution of this work is a novel analysis of individual regret. Unlike other
studies on multi-agent bandits that directly analyze the individual regret of each agent, we first
establish an upper bound for the group regret. Given that the action probabilities of each agent are
nearly aligned, we can approximately divide the group regret by the number of agents V' to derive
the individual regret for each agent. This approach enables us to achieve near-optimal regret bounds
in both stochastic and adversarial settings.

To keep the presentation simple, we assume that there exists a unique best arm k£*. Our method
can be generalized to the environments with multiple best arms by leveraging the techniques in |Ito
(2021b)). The regret bounds of our method along with comparisons to recent works are presented in
Table[I] Our contributions are summarized as follows.

* We provide an anytime near-optimal federated bandit algorithm, called FEDFTRL, which
. P
achieves an O(Zk;ék.* (l(‘)/gf;) + = l(f)g( K))) individual regret bound in the stochastic

regime and simultaneously achieves an O(\/KT/V + /CET log(K)) individual regret

bound in the adversarial regime. Here CL. defined in eq. captures the topology of the
communication graph. Our FEDFTRL algorithm is the first method to achieve BOBW re-
gret guarantee, and the individual regret bound of our method matches the lower bound up
to small polynomial gaps.

* In the adversarial regime, existing works (Y1 & Vojnovicl [2023) only achieve a regret
bound of O(T?/3). In contrast, our method achieves a significantly tighter regret bound of
o(T'/?).

* We conduct experiments on both synthetic and real-world datasets to validate the effective-
ness of our method. The empirical results show that our algorithm significantly outperforms
prior approaches.
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2 RELATED WORK

Federated bandits. In the stochastic setting, Dubey & Pentland| (2020)) and [Huang et al.| (2021)
first considered linear contextual federated bandits and extended the classical LinUCB algorithm (Li
et al., 2010) to the federated environment. Shi et al.| (2021) formally defined the federated bandit
problems and proposed an optimal algorithm for a centralized communication network. [Zhu et al.
(2021) were the first to study federated bandits under a decentralized system, applying efficient
gossip-based communication to achieve a near-optimal regret bound. Recently, [Zhang et al.| (2025)
proposed a fully distributed online consensus estimation approach and integrated it into a distributed
successive elimination bandit algorithm to achieve an optimal regret. In the adversarial setting, |Y1
& Vojnovic (2023) were the first formalize federated bandits without stochastic assumptions on the
losses, called doubly adversarial bandit problems. They also proposed a federated bandit algorithm
FEDEXP3 for such setting, which achieves a sub-linear regret of order O(7%/%).

Best-of-Both-Worlds. For a long time, stochastic and adversarial environments have been studied
independently. However, in practice, the nature of the environment is often unknown or may vary
over time. This has motivated increasing interest in algorithms that perform well simultaneously
in both stochastic and adversarial settings, a paradigm commonly referred to as BOBW (Bubeck:
& Slivkins, 2012; |Auer & Chiangl [2016} Seldin & Lugosi, 2017; [We1 & Luo, 2018). |Zimmert
& Seldin| (2021)) applied a Tsallis-INF regularizer within the FTRL framework to achieve BoBW
guarantees not only for purely stochastic and adversarial regimes but also for a continuum of inter-
mediate regimes. Leveraging FTRL’s flexibility and strong theoretical properties, subsequent work
has extended BOBW results to more complex settings, including combinatorial bandits (Zimmert
et al., 2019; [Ito, 2021a; [Tsuchiya et al.l 2023b), linear bandits (Lee et al.,[2021; |Dann et al., |2023)),
graph bandits (Rouyer et al.| [2022; [Ito et al., 2022)), partial monitoring (Tsuchiya et al., 2023a),
and delayed feedback (Masoudian et al.,[2022). Among these, FTRL variants addressing delayed
feedback are particularly relevant to our work, as federated bandits inherently involve implicit de-
lays due to decentralized communication. Our algorithm builds on this line of research, adapting
the FTRL paradigm to accommodate both heterogeneous rewards and decentralized communication
while preserving a best-of-both-worlds guarantee.

3 PRELIMINARIES

Let [V] ={1,2,...,V} be the set of V agents and [K]| = {1,2,..., K} be the set of K arms. The
network of V' agents is represented by a simple undirected connected graph G = ([V], E'), where
E is the set of edges. The diameter D is the maximum shortest-path distance between any pair of
nodes in G.

We consider a heterogeneous multi-agent system in which all agents collaboratively solve a common
K -armed bandit problem over a horizon of T round. At each time step ¢ € [T'], each agent v selects
an arm k, , according to its own strategy, then observes a local biased feedback £, ;(k, ) € [0, 1].
The average loss is defined as the average of the losses of arm & across all agents:

_ 1 Y
(k) =+ > by a(k).
v=1

At the end of each time step ¢, each agent v can exchange information with its neighbors A (v) =
{u € [V] : (v,u) € E}. The received information can be used in the next round if desired. The
communication process is characterized by a communication matrix P € [0, 1]V >V where P, , = 0
only holds for (u,v)¢E. We assume P is doubly stochastic, i.e., it satisfies:

ZPU,’U:ZP’U.,U:17 Pu,vzo-

u€elV] velV]

We consider both adversarial and stochastic regimes with heterogeneous feedback across agents. In
the adversarial regime, for each round ¢ and agent v, the losses {/,, ; (k) } [k are arbitrarily chosen
by an adversary before the game starts and may differ across agents even for the same arm. In the
stochastic regime, for each agent-arm pair (v, k), the sequence {/, ;(k)}7_; is drawn i.i.d. over
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time from an unknown fixed distribution with different means (i, .. The performance of each agent
v is evaluated by its individual pseudo-regret:

T T
Rr(v) =E lz gt(kv,t)] - klél[IE]E lz Et(k)] :
t=1 t=1
We define the globally optimal arm in hindsight as k* € arg minycx E [ Zthl A (k)} ,

Notations. We denote the n-simplex by A"~! = {z € R? | ||z||; = 1}. For a convex function

F, let F'* denote its convex conjugate (Fenchel conjugate) and Fits conjugate constrained to the
simplex. That is,

F(y) = max{{z, y) = F(2)}, F(y)= max {{z,y)-F(z)}.
We denote by d,, = |V (v)] the degree of node v, and by diax = max,c[y) d, the maximum node
degree in the graph. For a matrix B, we use o;(B) to denote its i-th largest singular value. For a real
symmetric matrix B, we use \;(B) to denote its i-th largest eigenvalue. The dynamics of consensus
averaging among agents is typically characterized by the Laplacian matrix M of the communication
graph G, defined as:

d, ifu=w,
My, =< -1 ifu##vand(u,v) €E, (1)
0 otherwise.

4 ALGORITHM

In this section, we propose our FEDFTRL method for the federated bandit problem. The details
of the algorithm are presented in Algorithm[I] One challenge in federated bandits is that messages
from other agents arrive with a delay that varies based on the network’s connectivity. This scenario
can be regard as a bandit problem with delayed feedback. Motivated by this idea, our FEDFTRL
algorithm adapts the FTRL framework using a hybrid regularizer similar to those in prior works on
bandits with delay (Zimmert & Seldinl [2020; [Masoudian et al., [2022)). We present the regularizer
used in FEDFTRL as follows:

K K
Fi(z) = —2n; " (Z \/ﬁ) +y; ! <Z zy(logwy — 1)) :
k=1

k=1

We introduce a time-varying parameter C" to quantify the delay caused by decentralized commu-
nication:

min{log(Vt),VV}
1— O'Q(P)

crP = +2+ D, (2)

Then we set the learning rates n and v as

it = 4VVEF169VID and 7 = 8V\/CPt/log(K) + 36D2(K — 1)3+4(CF)2.
At each time step t, each agent v computes a probability distribution for selecting arms as follows:
Toy = VEF (=L%) = argmin{(z, L% + F,(z)}, 3)
’ zeAK-1 ’
where P is the communication matrix, and ﬁgf’f € R¥ is agent v’s cumulative loss estimator up to
time ¢. The agent then samples an arm &, ; ~ x,; and observes a local biased loss £, + (ky +). We
construct unbiased and truncated loss estimators for this feedback as follows:
. Ly s (B)(k = Ky ~ Lyt (ko) I(k = Ky
o (k) = (B ) and Oy (k) = (oI ;i) : 4)
Ty ¢ (k) max{x, ((k), 12VC{ v}
Before communicating with neighbors at time ¢, agent v prepares a message consisting of (i) its cur-

rent cumulative loss estimator ij’_’f and (ii) a deviation record set A,. A new record (v, ¢, Ky ¢, Wy 1)

is appended to A, if and only if EAM #* lZU,t, in which case we set the estimator’s deviation

Wy, = V(lfv’t(kv’t) - lz,,t(kv,t)). Next, agent v averages its cumulative loss estimates with those
of its neighbors and merges incoming deviation records.
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Algorithm 1 FEDFTRL (local routine for each agent v)

1: Input: a doubly stochastic matrix P € [0, 1]Y"*"; the diameter D of graph G.

2 Initialize: a deviation record set A, < (; the loss estimate L‘)bé =0g.
:fort=1,2,3,...do

4: Compute z,, ; = argmin,c ,x—1{(z, L°b5> + Fy(x)}.
5 Sample k, ; ~ x,; and observe £, ¢(ky 1).
6:  Construct £, ; and ¢, ; by Eq. @)
7. if b, # 4, ; then
8: Set wyy =V (Ly¢(kvt) — Lyt (kvs)) and append the record (v, ¢, ky ¢, Wy 1) to Ay,
9:  endif .
10:  Send the message {L3", A, } to neighbors of agent v.
11:  Update cumulative loss estimate:
T obs obs
LY = 2 e Po L + Vi 5)
12: Update the deviation record set via Ay < U, »)ep Au-
13:  for each record (u, s, k, wy s) € A, do
14: ift — s > D then
15: Set Lgbfﬂ(k) Lgbfﬂ(k) + Wy, s, and remove the record (u, s, k, w,y, ) from A,,.
16: end if
17:  end for
18: end for

4.1 INTUITION BEHIND THE TRUNCATED LOSS ESTIMATOR

One challenge in federated bandits is that the loss observed locally at agent v is biased relative
obs

to the average loss /; of that arm. In FEDFTRL, we address this by updating I:W; "1 using the

truncated estimator lz,,t instead of the unbiased l?w. This choice keeps all agents’ action probability
distributions roughly aligned.

Specifically, when constructing ¢, ; we cap the denominator by max{z, +(k), 12VCF~,}, which
prevents the loss estimate from exploding when z,, (k) is extremely small. As a result, no single rare
arm pull can trigger an excessively large update that would cause the agents’ probability distributions
to diverge. This stabilization ensures well-behaved and nearly aligned action distributions across

agents. Indeed, we have E | > e &,,t} =V, and ", vl £,¢ closely tracks this same quantity
except on rounds where truncation occurs, enabling more accurate estimation of the global loss.

4.2 INTUITION BEHIND THE COMMUNICATION

Since broadcast raw observations is not allowed in the federated learning, our method communicates
the deviation record vector A, in each round. Such communication is necessitated for reduce the
deviation caused by the use of the truncated estimator. Spemﬁcally, while truncation keeps the
probability distributions of agents nearly aligned, whenever 0y t F év,t’ the local loss estimates
deviate from the average loss. Consequently, whenever truncation occurs (i.e., éﬂ’t # 0, +), agent v
appends the record (v, t, ky ¢, Wy ¢) to A,. Once a record (u, s, k, w, ) has been in the system for
more than D rounds (i.e., t — s > D), every agent will have received it. At that point, adding the
correction w,, s to ig?; ',1(k) will no longer introduce any distribution mismatch among agents.

Finally, recall that we multiply cumulative loss by V' in Equation 5] Communication averaging
yields consensus on average losses, and this factor of V' counteracts the averaging effect, ensuring
that feedback information is not overly diluted.

Thus we can finally obtain the following regret guarantee for FEDFTRL, with the proof is provided
in Appendix [T}
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Theorem 1. If FEDFTRL is run with a given doubly stochastic communication matrix P, then in
the adversarial regime, the individual regret of each agent v is upper bounded as

Ry (v) <13/ KTV +131/CET log(K) + 156V D + 72D (K — 1)5 log(K)+24CF log(K).

Furthermore, in the stochastic regime the individual regret of each agent v is bounded as

log(T 1 L
Re(v) < 901og(T) n 80CT

- P VAL e Ay log(K)

+33VD + 15D(K — 1)3 log(K)+11CF log(K).

For each agent v, the expected communication cost in each round is O(K).

Remark 1. If the doubly stochastic matrix P is constructed via the max-degree trick (Duchi et al.|
2011), i.e.,

—A
pop WA
1 Jr dmax
where W = diag(dy, da, . .., dy) is the degree matrix and A is the adjacency matrix of the commu-

nication graph G, then Corollary 1 of\[Duchi et al.|(2011) implies the following result:

ok — Q(, / AlV“L :lm“" \/min{log(VT), VV })

This result shows that only small polynomial gaps remains between our upper bound and lower

bound Q( max {1 / %, Y Alj,dil(?\}) «/1og(K)T}) in the adversarial setting.

5 A SKETCH OF THE PROOF OF THEOREM [1]

In this section we provide a sketch of the proof of Theorem [T} We provide a proof sketch for the
regret bound of adversarial and stochastic settings in Section[5.1]and Section[5.2} respectively. The
detail proofs are provided in Appendix [T}

5.1 ADVERSARIAL BOUND

We start by providing a key lemma (Lemmal[I) that controls the ratio of the playing distribution be-
tween any two agents at the same time step, with the proof is provided in Section[I0]in the appendix.
This lemma also relates each agent’s individual regret to the group regret, which represents that the
sum of regrets over all agents.

Lemma 1. For any two agents u and v, and for any action k at time t, it holds that

Tyt (k) < gz1,7t(k) and z,4(k) < ;ru +(k).

Furthermore, for any agent v, its individual regret is bounded in terms of the group regret as
3 Vv
< — R
V) < 5 ; 7 (u)

To bound the group regret, we transform the federated bandit into a single-agent interaction with the
environment over VT rounds. This reduction significantly simplifies the theoretical analysis. We
introduce some additional definitions: define the instantaneous loss m; and the drifted cumulative
loss L, ¢+ as follows:

% t—1
1 . .
=7 E byt and Ly, = E Vms + (v —1)my
v=1 s=1

Since E[m;] = 0y, intuitively L, ; staggers the cumulative loss by an offset proportional to (v — 1).
This ensures that when we sum over all agents, the losses m; line up as if they were incurred
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sequentially by a single agent over VV'T" rounds. As a result, we can decompose the group regret into
three terms:

\%4 T

XV:RT('U) = ZE[Z (Cr,201) _Zt(k*)}
v=1

v=1 t=

—

T Vv
<83 S (B2 - - B2+ )

t=1 v=1

(B)
v
+ (Zzpt*(_i/v,t>_Ft*( Lyt t)> Liria(k )]

(@)

Term (A) is a typical Bregman divergence term arising from the FTRL/OMD analysis, and it depends
on the local norm of the regularizer. We can bound it as

9 L& K9
E[(A — — < = KT
U SIS ¥y
Term (B) is handled by the analysis in Zimmert & Seldin|(2020), which yields
vV T

) -5 [CFRstE) 9
E[(B)] < — 2T
EEE»S < v\ JorTion(x

Term (C) can be bounded using standard telescoping-sum techniques. Specifically, one obtains

E[(C)] < 8VVEKT + 8V y/CET log(KW104V v/ D+48V D(K — 1)5 log(K 124V CF log(K).

Combining the bounds for (A)—(C) above and simplifying, we complete the proof of the adversarial
bound.

5.2 STOCHASTIC BOUND

Inspired the analysis of stochastic bound for bandit with delay feedback in Masoudian et al.|(2022),
let 7, 4 = VF;(—L,), then we define the drifted pseudo-regret as

Ry () = E[i<¢v,t,zt> — 0.

t=1

We can use the drifted pseudo-regret to control the actual pseudo-regret as follows:

T
> Rr(v) ZRd”ﬁ +VD
t=1
\4 ~k T V K P ~k ~k
3 Tyt D 2015 ’ytflxvtlog(l/xv t)
SOIDIEIE R DI ’ |
3 v=1 k#k* vi 3 t=2 v=1k=1 log(K)
(A) (B)
+13VVD + 6VD(K — 1)5 log(K)+7VCE log(K) .

(©)



Under review as a conference paper at ICLR 2026

Self Bounding Analysis: We apply a self-bounding technique to combine terms (A) and (B) with
the drifted regret. Specifically:

T 5 \%4
drzft drift
Z Rr(v gZﬂ:&R —2R¥I () + VD
5 \%4
d'r‘zft drift
3GA §fz H%Bféy% @0+«m

Using the analysis inMasoudian et al.| (2022, we have the following bound:

\4
; 361og(T) it 72VCE
_ Rd”ft’l) < QU5 ) Rmf _tavp
o< 52 0. - 3wt < g

Combining these bounds with (C) and simplifying yields the stated stochastic regret bound.

6 EXPERIMENTS

We conducted experiments on both synthetic and real-world datasets under various network topolo-
gies to evaluate the performance of our FEDFTRL algorithm against several baseline methods. We
consider the following baseline methods: FEDEXP3 (Y1 & Vojnovic,|2023), Gossip-UCB (Zhu et al.,
2021), DRBB-bandit (Zhang et al.| [2025)) and IND-FTRL, where IND-FTRL represents that each
agent runs the Tsallis FTRL (Zimmert & Seldinl 2021)) without any communication. Following the
experimental design in|Yi & Vojnovic|(2023)), we adopt the max-degree trick to construct the doubly
stochastic matrix P, which is presented in Remark |[I} We set the learning rate of our FEDFTRL
algorithm as 7, * = 0.5v/Vt and 7; ' = 8V /CFt/log(K) + 4. All experiments are repeated for
50 trials, with the average results plotted as lines.

Choice of the network graphs. We conduct experiments on several different network graphs in-
cluding fully connected graph, v/V x +/V grid graph and random geometric graph (RGG). A random
geometric graph RGG-g is constructed by uniformly placing each node in [0, 1]? and connecting any
two nodes whose distance is within g (Penrose}, |2003). In our experiments, we choose g = 0.5.

6.1 SYNTHETIC DATASETS

For each agent v and each arm k, we independently sample a mean loss 1, ; from the uniform
distribution over [0, 1]. When agent v pulls arm k at round ¢, its feedback ¢, ,(k) is then drawn from
a Gaussian distribution with mean /i, ; and variance 0.01. We set horizon T = 3000, number of
agents V' = 16, and number of arms K = 20.

The results in Figure |1| show that our FEDFTRL algorithm outperforms all baselines for average
regret. It is worth noting that IND-FTRL cannot achieve sublinear regret by only observing the local
biased feedback, demonstrating the benefits brought by our communication mechanism.

6.2 MOVIELENS DATASET: RECOMMENDING POPULAR MOVIE GENRES

We further evaluate our FEDFTRL algorithm on a real-world dataset: the latest MovieLens
dataset (Cantador et al., 2011). This dataset contains 87,585 movies classified into 20 genres, with
32,000,204 ratings (scores in 0.5, 1, . . ., 5) from over 280,000 users. Among these users, 3,963 have
rated at least one movie in every genre; we select these users as our agents and treat each genre as
an arm. Then we set 7" = 3000, V = 3963 and K = 20.

To simulate changes in user preferences over time, we sort each user’s ratings in chronological order
and construct the loss sequence as follows. Let 77 (k) be the j-th rating of user v for genre k in this
sorted order. The the loss for user v on arm k at time ¢ defined as

5.5 — 3 (k)

i o e luon o]

Ev_’t(k) -
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Figure 1: Average cumulative regret for FedFTRL, FEDEXP3, IND-FTRL, Gossip_-UCB and
DRBB-bandit in the synthetic dataest, under three different communication networks: (left) com-
plete graph, (middle) grid graph, and (right) RGG-0.5.
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Figure 2: Average cumulative regret for FedFTRL, FEDEXP3, IND-FTRL, Gossip_-UCB and
DRBB-bandit in the MovieLens dataest, under three different communication networks: (left) com-
plete graph, (middle) grid graph, and (right) RGG-0.5.

where n¥ is the total number of ratings user v has for genre k. In words, we partition each user’s
interaction timeline into n¥ segments of equal length (rounded down), and assign the j-th rating
rJ (k) as the loss (scaled to [0, 1]) for all time steps in the j-th segment for that user-genre pair.

As shown in Figure 2] FEDFTRL still significantly outperforms all baselines, which demonstrates
the superiority of our FEDFTRL algorithm.

7 CONCLUSION

In this paper, we propose a novel federated bandit algorithm, called FEDFTRL, which, to the best
of our knowledge, is the first to achieve a BOBW regret guarantee in both stochastic and adversarial
settings. Our theoretical analysis shows that the regret upper bound matches the lower bound up
to small polynomial factors. Furthermore, empirical results corroborate the theoretical analysis and
demonstrate the superior performance of our algorithm. In addition, exploring how to close the gap
between the upper and lower regret bounds in the adversarial setting is also worth investigating.

REPRODUCIBILITY STATEMENT

We provide the complete proofs for all theoretical claims in the appendices. We include the source
code in the supplementary material for the reproducibility. We use the MovieLenﬂ dataset in our
experiments, which is publicly available online.
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8 NOTATIONS

Defining the instantaneous loss m; = % 21‘;/:1 lfv}t, the average cumulative loss

_ 1 Y
Ly = V;Lgljts—lv

and the drifted cumulative loss L, ; = S'Z) Vi, + (v — 1)my.
For ease of writing, we sometimes use the index {V + 1, ¢} to represent the index {1,¢ + 1}.

9 AUXILIARY LEMMAS

First, we analyze some properties of the regularizer
K K
Fy(z) = =20, "> af +4 "> ax(log(ay) — 1)
k=1 k=1

Given the function f;(z) = —2n; '/z +~; 'z (log(x) — 1).
Fact 1. f/(z) is a concave function, f]'(x) is a monotonically decreasing function, f]'(x)~' is a
convex function, and ft*l is a convex monotonically increasing function.

Proof. By definition f{(x) = —n; *a=2 + ~; log(x), whose second derivative is —3p e —
v;'z=2 < 0, which conclude the first and the second statement. f/(z)~! = (in;'a=3% +

v; 1)~ so the second derivative is
Y (2%90% + 3%333)
. 3
2 (et 1)

which conclude the third claim. Since f; are Legendre functions, we have ft*”(y) =

7(f# (y))~' > 0. Therefore the function is monotonically increasing. Since both f//(x)~!, as

well as ft*l (y) are increasing, the composition is as well and f;* " >0. O

>0,

Fact 2. For any convex F, for L € R and c € R:

F*(L+clg) = F*(L) +c.
Proof. By definition F*(L + cly) = max,cax-1(z, L + clg) — F(z) = max,eax—1{z, L) —
F(z)+c=F*(L)+ec O
Fact 3. For ant x, ; there exists ¢ € R, such that:

Ty = VEF(=L%) = VF} (LY} + c1y) = VF; (VF,(24))-

Proof. By the KKT conditions, there exists ¢ € R, such that z,, ; = argmax,cax-1(z, —ig{’;> +
Fy(z) satisfies VFy(x,,.) = —ﬁgbf + c1y. The rest follows by the standard property VF =
(VE*)~1 of Legendre F. O

Fact 4. For any Legendre function F and L € R¥ it holds that
F*(L) < F*(L),
with equality if and only if there exists v € AKX~ such that L = VF(z).
Proof. The first statement follows from the definition, since for any A C B:max,ca f(z)

max,cp f(x). The second part follows because equality means that arg max,, ((z, L) — F(z))
VEF*(L) € AK=1 which is equivalent to the statement.

O I IA

12
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Fact 5. Foranyx € AX=1 L > 0andk € [K], we have

(VE (VF(x) - L)), > (VF(VFi(x) - L)),
Proof. By Fact there exists some ¢ € R such that VF} (VF,(z) — L) = VF (VF,(z) — L +

cl K). The statement is equivalent to ¢ being non-negative, since Ft*/ are monotonically increasing.
If ¢ < 0O, then

K K
1= Z(VF; (VEF(z) - L))k _ Z(VFt* (VF(z) — L+ clK)>k
k=1 k=1
K K
=3 F(Fl(wk) — L +c¢) < > F (Fl(ax)) =1,
k=1 k=1
which is a contradiction. Hence ¢ must be non-negative, and the proof is complete. O

Fact 6. Let Dp(z,y) = F(x) — F(y) — (x — y, VF(y)) be the Bregman divergence of a function
F'. For any Legendre function f with monotonically decreasing second derivative,x € dom(f), and
€ >0, such that f'(z) — ¢ € dom(f*), we have

(2
Df* (f/(x) — 57 f’(x)) < Qf”(l‘) .
Proof. By Taylor’s theorem, there exists some & € [f* (f'(z) — £), x| such that
€2

Note that Z is smaller than z, since f* is monotonically increasing. Finally, using the fact that the
second derivative is decreasing allows us to bound

f//(j)*l < f”(:c)il.
Hence the stated inequality follows. O

Fact 7. For any convex function F, and Lo > Li (coordinate wise), we have

F*(=Ly) > F*(~Ly).

Proof.
F*(=Lg) = (VF*(=Lg), —La) + F(VF*(~Ly))
<(VF*(=Ly),—L1) + F(VF*(—Ly))
<z, () + F@)
= F*(~L1).

Lemma 2. For any fixed k,t, given 1 = VE} (—Ly) and x3 = VF} (—Ly), if we have

Tt e @) Lk = LK) o1 pog g 02

K _
Dok (xlf) ! Tt M

where a1, as € [0, %) Then we can obtain

1
].—Ckl — Qg

13
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Proof. By the KKT conditions 3 pq, po s.t. V k:
@) = —=Li(k) + m,  fl(25) = —La(k) + po.

From the concavity of f’(z1), derived from Fact|[T} we have
(2} —23) f'(e}) < f(@]) = fi(x3) < (2 — 5) f)'(25). ©)
Using left side of equation[6|and the fact £/ (%) > 0 gives us

ob — ok < @) (1 — g2+ La(k) — Li(k)) =

K K
le—xg— SZ 961 = p2 + La(k) — Ly (k) =
k=1

o iy < Zk L @)L (k)*Ll(k))_

Zk:l fi (x 1)71

Using the upper bound for f; (%) — f; (%) in equation |§| along with the upper bound for s — 1
and the fact that f, (z§) — f,(¢5) = p1 — po + La(k) — Ly (k) result in
(e — )7 (@8) < o — g + Ta(B) — La(h)
Zk Lfe @) N (La(k) — L (k)
Yo ff (aF)
Zk 1 ft (zf) ! (La(k
S J1 (@)
5 @ St J1 (@) T (La(k) = La (R))

To <x1+'y:c X

— (L2(k) — L1 (k) =

) — Li(k))

— J; (@5) "N (La(k) = La(k))

vy < af + fy (25)7

— yea3 (La(k) — L1(k))

Zk:l fi ()
x’j < x’f + Ozlx’; + 042:5’2“ = xlg < ﬁx’f,
where (a) holds because f, (z5)~" = (30, (z5) =32 + v (= k)_l)fl. O
Lemma 3. For any time step t and agent v € [V, we have
Lo L%l < 1y and E0% ~ Luloe < 15—
12 127,

Proof. As mentioned before, using the deviation record to update will not affect ||L; — Lgbf Iloos
because all agents will perform this operation. So we only consider the impact of equation

From equationfd] for any v, t, we have the following inequalities:

— gv,t(kv,t) < 1
o max{z, ¢ (ky 1), 12VCT v} — 12VCEy,

12,

Since {v;} is non-increasing, let L = in Lemma 6 in Hosseini et al.[(2013), we can get

1
120F ¢

obs 1 VvV 1 VV )
IZ =L ”°°—V<12vc{’%(102(13)+2>> - 1205’%(102(13)“ - D

Follow the definition L;, we have

t—1 V \%4
Hit—igf’s =V > (1x/V-PLH ( ZZ — 0, )
t_lsT/lu:1~ u=1 o)
ZZVH£7 t_gvt‘
s=1u=1

14
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t—1
1 1
< IR =1/ VI + o (8)
< g 2ors, 1P Vit ems;
From (23) in Duchi et al. (2011), | PL#*! — 15 /V[|1 < VVoo(P)' 1. Hence, if
log e™? . . t—s+1 VV
t—s> W —1 we immediately have ||[Pu7v — lK/VH1 <+VVe.
Thus, by setting e ! = Vit, fort —s+1> %, we have
[P0 =1k / V]|, <1/t ©)

For large s, we simply have ||[P} 5" — 15 /V|| , < 1. The above The above suggests that we split

the sum at ¢ = blog(i),l. We break apart the sum in equationand use equation|§|to see that since
g o2(P)

t —1 — (t — ) = £ and there are at most ¢ steps in the summation,

t—1 t—1-1%
_ R 1 s —s
12— B loe < g | 20 P = Lie/VIn+ 30 IPLT = 1a/V 41
t s=t—t s=1
1 log(V't)
< 2 — 10
~ 12CFy, (logag(P)—1 T2 = 127’ (10)

Where the last inequality follows from the concavity of log(-), since log oa(P)™! > 1 — o5 (P).
Combine equation [7]and equation [TI0] completes the left statement. Similarly, we can use the above
analysis to completes the right statement. O

10 PROOF OF LEMMA [T

Proof. By Lemma3] for any two agent u, v, and any fixed k, ¢, we can get

7 obs 7 obs 7 obs T T T obs 1
HLvljt - Lul,)t ||OO < ||L1;l,)t - LtHOO + ||Lt - Lu,ljt HOO < 677
Ve
and .
IL3% = L% Nloo < NIL2% = Lilloo + 1Lt = LY [|oo < o
Ve
Since
K 1" _ K 1" _
Zk:l fi (‘Tﬁt) 1(Lv,t(k) — Ly (k) < Zk:l fe (xﬁt) 1||Lv,t — Ly tllo
K ” _ — K " _
Zk=1 Tt (Iﬁ,t) ! Zk:l fi (‘rv]jt) !
1
= ||L1),t - Lu,t”oo < 675
Vi
and
1
Lut(k) — Lut(k) < [ Lut — Lo tlloo < o
Vt
Using Lemma 2] gives us that
1 3
zh, < = *xﬁ,t

CES T 16— 1/6

Similarly, we can get
ko 1 k

3 k
z Ty s = = .
u,t — 1— 1/6 . 1/6 v,t 2 v,t

15
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11 PROOF OF THEOREMI]

11.1 LEMMAS

Lemma 4. For any two agents w, v, assume that for t and s there exists o such that 1:];

forallk € [K] and let f(z) = —25;7 K 07 + 97 05 2y (log(a) — 1), then

K "ok —lgk
Zk:l f (xv,t) u,s S 20[(K _ 1)%

S (k)

k
t S axu,s

Proof. Now we aim to bound for any s € A.

Z?:l f”(xﬁ,t)_lgﬁ,s _ f” (-T'u,t(ku,s))_lxu,s<ku,s)_1€u,s(ku,s)

S f (b ) Sher £ (k)
< f” (xv,t(ku,S))_lxwt(ku,S)_l(xmt(ku,S)/xu,S(ku,S))
B Zl[c(:l I (wlqj,t)_l
< f” (xv,t(ku,S))ilal‘v,t(k’u,S)il
I RN G

f (@ (kus)) @0 () !
(K — 1) (el ) 4 ()
a(nz=3? 4 2y 212!

(K = D(ne(575) 732 + 20 (55) 1) 71 + (e 73/2 4 29,271 7
-1

~1/2
Nz + 2
—af(- + 1
a(( Z)Tit e TEBEET z) (11)

where the first inequality follows by £, s(k, s) < 1, the second one holds because of induction
assumption that tellsus fors <t :t —s < D = xf}’t < awﬁ)s, and the third inequality is due to

convexity of f " (z)~! from Fact Now for z we have two cases, z < % and z > %

< Define z := x4, ¢ (ky,s)

a) z < +: This case implies

1-2 1
s 1>K-1=(1-2) VK —1< 712
z z

—1/2
~1< Nz + 2%
n/K (1~ 2) /7 £ 2
Plugging equation [I2]into equation [IT] gives us

K 1" _ ~
D=1 f (xllf,t) ey

K 17 —

Dok f (xf;t) !

12)

2 <all-z+2) 7 =a

b) z > %: Similar to previous case z > % implies ntz*1/2 <mvK-1(1 - z)*1/2 SO

—1/2
ini UIEs +27¢ — ituti —0i
the minimum of T VE—T(—7)-1/2525, occurs when 2v; = 0. So substituting 27, = 0 in

equation[TT]leads us to have
K 17 17
Zk:l f ($5t) lgﬁ,s
K " —
Y £ (@)

In this case again we have two following cases

<a((1=2)32" V2K —1)"V2 4 2)7? (13)

bl) z > : With this we have

1
(K—1)173+1

a((1=2)* 227 V2(K-1)"Y242) < az7t <aV ((K )34 1) < 20(K—1)/3

16
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: This tells us that (1 — z) > (1)

b2) 2 < % = K-D1AH

ﬁ
equation |13|as the following

> 1 where we can use it in

-1 2_1/2(K _ 1)—1/2
o 1—z3/22_1/2K—1_1/2+z) <« +2)7!
(-2 (K 1) < a(—— )
—1/2(f — 1)-1/2 —1/2(f — 1)-1/2
St | i U, St
2v/8 2V/8
a,(K-1)~t
< BT s on i — 1)1/
where the second inequality uses AM-GM inequality.
So at the end combining results of all cases to complete the proof. O

Lemma 5. For any fixed s, t, given vy = VF! (—L) and xo = VF} (—L), if we have s < t and
t—s <D, then

Vke[K]: af<Zab

NSy

Proof. Since 1 = VF*(—L) and 25 = VF;*(—L), by the KKT conditions Jy1, i s.t. Vk:

’

folat) = =L(k) + 1, [y (@) = —L(k) + pa.

We also know that 3 k : ¥ > x5 which leads to have

—L(k) + p2 = f,(z5) < fu(2h) < fu(ah) = —L(k) + pa,

where the first inequality holds because the learning rates are decreasing and the second inequality
is due to the fact that f; (x) is increasing. This implies that s < p1 which gives us the following
inequality for all k:

k

_ 1 - '
+7; Hog(ah) < — =+, Hlog(af) = fi(a1)-

1
YUY, xé NsV T
Define 8 = x5 /2. So using above inequality we have

1 1

fi(zh) =~

=

—1 k -1 k -1
=7, log(zy) £ ———= — log(ay) —, " log(B)
Ns :E]f nt\/ﬁ‘rllc
1 Ui t Mt U
= — > — +24/xF log(y/ 2} <>Jrlog6\/:£"c
B~ ns rlog(y/a1) Ve Vs (Ht !
Ui . N M Ur
> — + min < 2zlog(z <—>+lo z}
Ns O<Z<1{ g( ) Tt Vs g(ﬂ)')/t
—1
@mn _ 2 (77 m) <1>
ns e\ s/ \VB
Qme 2 (nt n) 1
o s € Tt Vs \/B

O

where (a) holds because the subject function of the minimization problem is convex and equating
1

2

— — -1 .
the first derivative to zero gives z = (7 "= and (b) follows by # > 1. So rearranging
t s

2
ﬁs(m+2(m—”ﬂ). (14)
un e\t Vs

17
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Therefore, we have

e 4y/Vt+169V?Dlog(K) \/1 N Vit—s) _ \/
ns  4/Vs+169VZD 169V2D =

where V > 1, D > 1and t — s < D. First, we give an inequality

.
169°

Veta—Vy+a<Jr—y, z>y>0, a>0.

We square the left side:

Vz+a—Vy+ a)2 =z+a—-2vVx+ayy+atyta <zx+a—2y+avy+atyta=x—y.

By this inequality, we have

o |

2 (m . m) 2 [ 8V\/t/log(K) + 36D (K — 1) +4(CF)?

T Ve 4Vt + 169V2D
8V\/s/ log(K) + 86D*(K — 1)3+4(CF)?
- 4Vt + 160V2D
< 2V(\Vt—s) )
VVi+169V2D

)

Plugging the above inequalities gives us the following bound:

2
1 4 5
<[+J14— 4+ 2 2
5-(\/ +169+13e> <1

Lemma 6. For any time stept > s > D, t — s < D and any fixed arm k, then we have

<

4
<

< —
- — 13e

D= N

k k
:Ev,t S 2$u,s’

Proof. First, we decompose ﬁfj{’f into the following two parts:

7obs __ 7 obs 7 obs
Lv,t =1L + L

v,1—s v,s+1—1)

where the former represents the cumulative loss estimate observed by agent v from time step 1 to s,
and the latter is the cumulative loss estimate from time step s + 1 to ¢.

Using the same analytical method in Lemma 3] we can obtain:

L35 = L9 lloo < 1275 — L% lloo

1 min{v/V,log(Vt)} Lo < 1

15)

Where the first inequality because that ﬁg{’; +1.¢(k) > 0. As mentioned before, for any fixed k£ we
have

t—D
L% (k) = L% (k) <V mi(k) + L% 55 — L3 () oo
t=s—D
t—D .
1 min{v/V,log(Vt)}
<V (k 2]. 16
=V Dmt( )+1QCtP’Yt< 1= oo (P) + (16)

18
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Where the first inequality because only the records generated in time period [s — D,t — D] will be

used in ﬁgf’f _, (k). By Lemmaand mathematical induction, we have

L i S ) k) i Yo (k)7 (k)
t=s—D Zgzl f”(mﬁ,s>_1 u=1 Zf:l f” (‘T'Lli,s)_l

According to our update rules for deviation records, no records generated in time period [t— D+1, ¢]
will be used, so we have

|4

<8V(K —1)5. (17)

t—1 V o ~
||Lg?ss+1—>t||00 =V Z Z Pi;)tilgu,t + 61;,t

f:s+1 u=1 0o
-1V
7 t—i—1 7
< {ZH;V”%,tHooPu,y + Voo < 1207, (18)
=S -

Combine equation[T3] equation[I6] equation[I7]and equation[I8] we can complete the right statement
K " —-1(7 T obs
S S (@l )T (L (k) — LY ()
AN
1 min{/V,log(Vt)}
= 12077, 1— 09(P)

1
< —.
Ay

+2+D> +8V(K —1)3

Where the last inequality uses the fact

70t = 8V\[CFt/og(K) + 36D2(K — 1)2/3+4(CF)? > 48V (K — 1)},
Using Lemma[2]and Lemma 5] we can complete the proof:

k< 1 5k

—Xi
ot =1 112-1/4 " 1"

S

< Qxﬁys.

Lemma 7. For any time step t > D and fixed arm k, for any two agents u, v, then

K "ok —1/7 T obs
~ . 1 _ Loy p— Lu — k _L'u k
outop = £l < o ana 2= Cuaep) orp®) 7 BTE)
12 Zkzl f (xu,t—D)71

1
< —.
6+

Proof. First, we decompose ig{’; into the following two parts:

7obs __ T obs 7 obs
Ly = Lyisi—p + Ly pyises

where the former represents the cumulative loss estimate observed by agent v from time step 1 to
t — D, and the latter is the cumulative loss estimate from time stept — D + 1 to ¢.

Using the same analytical method in Lemma [3] we can obtain:

[ Lut—p — L% i plloe < | L1i—ps1 — L% bl

1 min{v/V,log(Vt)} 1
= 12CF, ( 1—0y(P) TS (19)

Since for any k we have ﬁgbf_ Dpi1-s¢(k) > 0, the left statement is complete. As mentioned before,
for any fixed k£ we have

L% - p(k) = Lug—p(k) < (V —wme—p(k) + L% _p = Lie—p1lloo
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1 min{v/V,log(Vt)}
12CF, < 1—o9(P) 2 (20)

By Lemmafd] we have

Zk 1f ( Loy t— D)~ "Wy, p(k) ZZk 1f ( Lo t— p)~ 1ét7D(k)
Zk 1f”( Loy t— p)! u=1 Zk 1f”( Lo t— p)t

According to our update rules for deviation records, no records generated in time period [t — D+1, ¢]
will be used, so we have

—_
~—
wl—

<4V(K — @21)

t—1 14 ~ N
Z ZP4311871€u,t +£v,t

s=t—D+1u=1
t—1

~ e D
< Z ZVHeu’t”ooPiv 1+V||£’Ut||00712cp . (22)

s=t—D+1u=1

b
L2 pirsilles =V

o0

Combine equation[T9} equation[20} equation[2T]and equation[22] we can complete the right statement

et S @ p) T (Lue-p(k) — L% ()

Zk f l;t D)~
1 min{v/V,log(Vt)} 1
2+ D 4V(K —1)3
~ 12CFy, ( 1—o09(P) Tt + 4V )
1
< —.
6yt

Where the last inequality uses the fact

1= 8V\/CFt/log(K) + 36D>(K — 1)2/344(CF)? > 48V (K — 1)3.
O
Lemma 8. For any two agents u,v, and any time step t > D, defining Z,+ = VFt*(—IA/u,t). By
Lemmal2| Lemma 3| and Lemmal7} for any fixed k we can get
i 1 L5 5 .

< T .
Tot ST 12— 1/6 * 47wt=D = 3%ut=D

Lemma 9. For any two time steps t, any fixed arm k, and any two agents u,v, defining &*
VE(—Lyy), then

<2x

v,te

Proof. Using the same analytical method in Lemma[3] we can obtain:
L% = Lulloo < IL2%1 = Le-tlloo + 1ot

1 <min{¢x7, log(V)} 2)

1207 1 — o5(P) 12CF
1 i 1 1

< . min{v/V,log(Vt)} Lo4D . 23)

IQCt Yt 1-— O'Q(P) 12’}/15
As mentioned before, for any fixed k£ we have
t—1 B
Luo(k) = L (k) <V ) mg(k) + 1LY — Lilloo

{=t—D
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<V i (k
= Z mi(k) + e 1~ 0(P)
t=t—D
we assume that from 1 to ¢ the lemma holds. Then using the same

Using mathematical analysis
analytical method in Lemma@ for any time step t — D < { < t — 1, we can obtain:

1 (min{\/v, log(V't)} i 2) . 24)

< 2£E i < Az* .
u,t

vt

By Lemma[d] we have

t—1 K sk
Py ( ) th Zk 1f Ly,
f:;D Zk 1f”( ttZDuzl Zk 1fN(

According to our update rules for deviation records, no records generated in time period [t— D+1, ¢]

1.
1 )Etl(k) <8VD(K —1)3. (25)
v,t

)

t
z

will be used, so we have
t—1

V ~ ~
> D P g A by
s=t—D+1u=1 Jore)

t—1 1%
< S S VIl P V D 26)
u,tflood v v,tlloo = 12013 .

s=t—D+1u=1
Combine equation[T9] equation[20] equation[2T]and equation[22} we can complete the right statement

)7 YLy D(k)_iz},,;(k))

L% pi1sille =V

i S (ah
Zkzl frag )™
1 min{/V,log(Vt)} 1
< 2+ D VDK —1)3
~ 12CFy, ( 1—09(P) et +8VD( )
1
<.
Ay

Where the last inequality uses the fact
= 8V\/CP 1) log(K) + 86D (K — 1)2/34+4(CF)? > 48V(K — 1)3.

By By Lemmal[2] we can get
1
~k
- - < 9k
Tot S T 112 - 1/4 Ty <20

11.2 ADVERSARIAL BOUNDS

As a consequence, the group regret bound as follows:

v
ZRT Z]E Etaxv,t> _Kt(k*)‘|

IS
=

Z [me], 20,0) — Elm (k" )])1

1

v=1 t

—~
=
=

M=
[M]=

<mt7 xv,t> - £1,T+1(k*)]

e
Il
-
~
Il
-

(Fr(=L5h = ma) = By (<L) + (wosmn))

[M]=
M=

Il
&=

o~
Il
_
@
Il
_

(4)
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t=1v=1
(B)
V — ~ ~
+ (ZZF:(—Lv,n—F:( Lv+1t)> Ly (k )]

(@)
Where (a) holds because the following facts for all arms k:
_ 1 v k)
(k) = V;m( ZLM oty = Elm(b),

(b) holds because the following definition:

v T
Ll T+1 vat k’* = szt(k

v=1t=1

11.2.1 BOUNDING (A)

We set an indicator variable Y, ;, = 25:1 I(k,. = k), which represents how many agents have
selected arm k at round ¢. Through this definition, for each agent v we have:

]. gv t 1 1 3kat
= — . < — < : . 27
TV ) SV 2 5 ®) S W) 7

where the first inequality from all £, ; < 1, and the second inequality follows that Lemma

1%
D OET(=LY = mi) = B (=L3%) + (@i, me)
v=1

P (=V (o) —mi) — Ff(=VEF(201)) + (To,1, me)

S
~M<}
|

S
Il
—_

—~
o
=

IA
M=
3

(—VFt(l’v,t) —my) — Ft*(_vpt(xv,t)) + <xv,tv my)

S
Il
-

Il
M=
M=
S

(f (xut) mk,tvf/(x'u,t))

v=1k=1
(o) - Vv / !
- Z Yk tht* (f (xv,t(kv,t)) - mk1,7t,t)7 f (xv,t(kv,t)))

v=1 vty
@ L v 3Yi, .t
< . ! _ v,ts !
Sy (7@ ) = g Fanalh)
(€) & 9V},
< v, t7
- vz:‘: 8V (@, t(ku,t))2 f1 (20t (Ko t))

14

9 1
< Z

8 ; (ot (ko)) 2 i (@0t (Ko,t))

xv,t(kv,t)S/Q

IA
w‘w
B

2 1 (xv,t(kv,t))2 V Vt + 169V2D

S
I
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9 |4
7372 xvt(kvt)) \/W

Where (a) applies Facts 2 and 3, the (b) follows from both parts of Fact 4, (d) holds because (27)),
(e) uses Fact 6, and (c) uses the following equality for any arm k:

ZDf, (@o,t) = M, f/(T0,t)) Y 7 Dy (' @or) = mirs f'(@00)) -
k.t

ko, t=k

In expectation we get

TV , B \ i g LV K, NOL 9
E Ff(=Lyf —ma) = Ff (=L37Y) + (2.t - T < 2 VVKT.
fz_;vz_:l(t( ot my) 7 ( ,t) (@t t)‘| 32;;; VVE 16
(28)

11.2.2 BOUNDING (B)
We define ﬁvmfss =Lyt — izbf Then we have for any v € [V] and t € [T] :
—Ff(— L) + F (= Losre) = =F (= Log) + Fy (= Loy —me)
= _ /1<mt,VFt*(—IA/U’t —xmy))dx
01
= —/O (my, VF} (- Lzbf E;’?gss — xmy))de.

Where the second equality holds by the fundamental theorem of calculus. Therefore, we have for
any ve[V]andt € [T]:

Z F* Lobs Ft*(_i/z{)té — mt) — Ft*(—.z/v,t) + Ft*(_-ierl,t)

1
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S
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S—

1
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A
I/\s

9’7 V - mzss
w

Where (a) uses the Fundamental theorem of calculus together with the inequality above, (b) substi-
tutes Z(z) = VF,(—L3% — xm,) and applies Fact 3, (c) follows from the fact that VF}*(—L)y,

decreases if the loss in coordinates other than k is reduced, (d) applies Fact 5, (e) ft*l

1S con-

vex, so — f7 (fs (Gr(x ) - Dm‘w(k)) < @) + f7(f Grla)) L7 (k), () follows because
Z < 32,,(k) and F/ (x)~" is monotonically increasing, and (g) holds because the following in-

equality:

v=1u=1
1 7% - t( t)
= — Vi (b ) L5 (o ) 22N
v & Ve b B )
3 7% .
< W Z Z Lgbzéé(ku,t)
v=1u=1

For any fixed &, v, t, we have
ly (k)

B (1o )lc] = E [0 = )|

max{z, +(k), 12CF~:}

- Hmaxf';ii"&ﬁ?’fé?;%} e
and
B a0 ] = |10 = 1) | 2408 H | - |exiizestn

Using the same analytical method in Lemma(6] we can obtain

E[L2 (k)| <E]|

2 7 obs 7
Lyisi-p — Lv,l—»t—DHoo + ‘ L

<v (min{\/V, log(Vt)}

I—UQ(P)

Finally, we have in expectation

+2> +VD=Vvc?E.

T Vv
e Z Z (Ft*( L) — Ff(—L3% —my) — Ff (—Lya) + F( Lv+1,t)>]
t=1v=1
d 9. LA T 9y
; L t 3P
= Z W]E Z ZL’U,LZSS(ku,t) < W -V Ct =
t=1 v=1u=1 —1
2 T P
- QT i < EV
t=1 8V\/Cpt/log( ) + 36D2( 1)

11.2.3 BOUNDING (C)

Let #; = arg max(x, —ﬁ1,t> — Fy(z), then
reAK-1

Fy(=Lyy) = (#14,—L1s) — Fi(F14).

24

.|

| <
oo

_ [A/obs
v,t—D+1—t vt=D+1-t ||

\/CET log(K).

(29)
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Furthermore, since F*(—L,, ;) = max (=, —Ly4) — F(x), we have
re -

— Ff o (—Lay) < —(@10,—Lay) + Fro1 (1)

— F;(_EI,T-H) < —(eg-, _[All,T+1> + Fr(eg) < f/l,T+1(k*)-
Plugging these inequalities into the LHS leads to

T [V
> (Z (Fi(-Lo) - Ft*<iv+1,t>)> = Luria (k)
t=1 v=1
T — ~ — A~ A~
=> (Ft*(—Ll,t) - Ft*(—Ll,tH)) = Ly (k)
t=1
T
< —Fi(Z11) + Z (Fi—1(Z1,4) — Fi(Z14))
t=2
T
< max —Fi(x)+ max (Fi_1(z) — Fi(x))
zeAK-1 —o zeAK-1

=—Fr(1g/K)

=8VVKT + 169V2D + 8Vlog(K)\/ CET/log(K) + 36D2(K — 1)5+4(CF)?

< 8VVKT +8V/CETlog(K) + 104VVD + 48V D(K — 1)5 log(K)+16V CF log(K).
(30)
Combine equation [28] equation 29] and equation[30] we can get

14
> Rp(v) <

v=1

1 1 ;
%VVKT + 1%7‘/* JCETlog(K) + 104V VD + 48V D(K — 1)3 log(K)+16V CE log(K).

For any k, v, t, by Lemmal[I] we can get the individual regret for each agent v:
3 v
R < — R
(V) < 57 UZ:1 7(v)

< 13y/KT]V +13y/CET log(K) + 156V D + 72D (K — 1)5 log(K)+24CF log(K).

11.3 STOCHASTIC BOUNDS

Inspired the analysis of stochastic bound for bandit with delay feedback in Masoudian et al.| (2022),
let 7, 4 = VF;}(—L,), then we define the drifted pseudo-regret as

T

R;{”ft(v) =E lz (<£'U,t;zt> - gt(k*))‘| .
t=1

We rewrite the drifted regret as

RIFt () = E lz (Fos 1) — Et(k*))‘| — ZZE (&5 4 bre — Le(KY))]

t=1 t=1 k=1
T K
=D ElaJA,
t=1 k=1
Using the Lemma 8] for any agent v we have
5 5 LK T-D K
dri ~
gRT ft(”) =3 E[xﬁﬁAk 2 Z]E[xv,t-s-D]Ak
t=1 k=1 t=1 k=1
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Where the second inequality uses Zil Zszl E[z% ,JAr < D. As a result, we have Rp(v) <

gR%Mf *(v) + D and it suffices to upper bound R%”f “(v). As a consequence, the drifted pseudo-
regret bound as follows:

v T
v=1

v=1 t=1
v.T B
=E D (b, Fos) — L(kY)
v=1t=1
(@ a
=E l > (Elme], #0,0) — E[mt(k*)})]
v=1t=1
o [LE .
<E ZZ(mufﬁu,t) — Lira (k)
v=1t=1
T v, o X B R
=E |33 (Fr(~Losr) = i (~Lu) + @onem))
t=1v=1
(4)
TV B
t <Z D F(=Luy) - Ft*(_L'U-&-l,t)) - L1,T+1(k*)] :
t=1v=1
(B)
Where (a) holds because the following facts for all arms k:
1% 1%
- 1 1 4y (k)
bi(k) = — lyi(k) = = vt(k)— = E[m, +(k)],
+(k) sz::l (k) szz:lf ( )@”v,t(k) [, (k)]
(b) holds because the following definition:
T vV T
L17T+1(k’*) = vat(k’*) = szt(k*)
t=1 v=1 t=1
11.3.1 BOUNDING (A)
v
> Fi(=Lut1a) = Ff(=Lug) + (o1, me)
v=1
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v=1
vV K
=33 Dp (@) — (malk) — &5 ma(R)), f'(E01))
v=1 k=1
vV K 1% ke
1 ‘gu t(l — Ly t)
=" Dp | FlEwn) -5 > F (o)
v=1k=1 ( 4 u=1 x“ﬁt
vV K 1 \% 1 _'ikt
S ZZD)F* (f/(-iv,t) - V Z k = 7f/(-i'v,t)>
v=1k=1 u=1 Tut
2
©) QN f (T () ( 1y,
Ly S e (S
v=1 k=1 2V2 u=1 xuvt
2
(@) g i'vt(k)% _:Eﬁt
< b b
- vzzlkzzl V2V Vi i"ﬁ,t
B EV: i (1-aF,)
v=1k=1 Q(jﬁt)% Vt

Where (a) applies Facts 2 and 3, the (b) follows from both parts of Fact 4, (c) uses Fact 6, and (d)
uses the Lemmal[9] In expectation we get

|5 (B (Lunn) ~ B L) 4 (ma)| < 3730 A e )
L t v+1,t t v,t vty t = i \/W
%4 1 1% - 1
Mk (1 — &y (k%)) (T, (k)2
< LA :
Uz_‘:m* 2V/Vt ; 2/ Vit
\%4 ~k \i
(x'ut)Q
< £ (31)

11.3.2 BOUNDING (B)

We have the following bound by |Abernethy et al.[(2015)

T Vv R . A
<Z Ff (=Lyy) — Ft*(—Lv+1,t)> — Lir41(k")

T V
ZZ (Fi-1(Zo)) — (Frm1(Zotr,e))) + Fr(z”) — Fi(z).

By replacing the closed form of the regularizer in this bound and using the facts that 7, * — 77;11 <
2n:_1 and ;b — Y, < 4CFP~,_1/log(K) we obtain

i QCtP’Yt—ljﬁ,t IOg(l/fﬁ,O
log(K)

+13VVD + 6VD(K — 1)5 log(K)+2VCE log(K). (32)
Combine equation [3T]and equation[32] we can get

\% T Vv ~k i T V K P sk sk
Iri (xv, )2 2C Yt— IU, log(l/zv, )
P AUED D ID IRy DI DL vl I

t=2 v=1 k#£k*

27



Under review as a conference paper at ICLR 2026

+13VVD + 6VD(K — 1)5 log(K)+2VCE log(K). (33)

11.3.3 SELF BOUNDING ANALYSIS

We use the self-bounding technique to write Y., R¥'(v) = 3V R&Ui(y) —
2 szl R%”f *(v), and then based on equation E we have

\% ;
Z:leTm‘ft ) < 62;k; FZ Z dmft
v= v *

T V K

n Z Z Z 6Ct Ye— ﬁ;t log( 1/% t) ZRdrzft

t=2v=1k=1

+13VVD + 6VD(K — 1)5 log(K).

Here we give bound for the first term:

1 T V ~k 4
x, 2 dmft 6(.231},75)2 ~k >
6 = — 2 gk A
L 36 361log(T)
Yy sy D)
t=1 v=1 k#£k* k#k*

where the first inequality uses Vz,y > 0: z +y > 2,/2y = 2,/ry —y < x so called AM-GM.
According the proof of Lemma 8 in|Masoudian et al.| (2022), we can get bound for the second term:

T V K

Cf oy, log(1/7ay ) drif 72VCE
ZZ log(K) _ZR U Z Aklog

t=2 v=1 k= k>

In summary, we have

14
ZRT ZRdmft +VD
v=1
P
<Y M L20VCT oD+ 10VD(K — 1)3 log(K)+7VCE log(K).
RorLY: i A log(K)

For any k, v, t, by Lemmal[l] we can get the individual regret for each agent v:

3 174
Rr(v) < v ;RT(U)

Z 90log(T) 180CF

N Vol I\ —1)3 P
Aklog(K)+33‘/5+15D(K 1)% log(K)+11CF log(K).

e k ke

11.4 PROOF FOR COMMUNICATION COST

For each agent v, let trunc_round(v) denote the number of rounds in which a new deviation record
is generated (i.e., loss truncation is triggered), and let comm _cost(v,t) denote the communication
size at round ¢. Recalling the Algorithm |I|, at round ¢, the probability that an agent v generates a
new deviation record is x4 (ky ;) < 12VCf ~¢. SO we can get

T T
12ver
E[trunc_round(v E 12ver < E ‘201‘ L < 3y/CETlog(K
P} 3 8V Ot/ log(K

So we can guarantee that Truncated_rounds(v) = O(+v/T) holds for any agent v. At any round
t, the message sent by an agent v consists of two parts, Lgbf and A,. The size of LObS is O(K),
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and the size of A,, is at most the number of deviation records generated by all agents during the
interval t — D < s < t. Thus, combining this with the probability of generating deviation records,
we obtain:

t 4
E[Comm_size(v,t)] = < Z Zl (12vCy) )

s=t—D+1 i=1

=O(K)+0 <Z (121/05’%)’?)

i=1

=0(K)+0 (i (12VC§’%)”>

i=1
12VCE~,
(1 —12VCFP~)2"

Where the last equality comes form the inequality:

oo
Ziai: . 2"
i=1 (1-a)

— O(K +

Since we have

12ver
12VCF~, = ¢ <0.75

8V\/CFt/ log(K) + 144D2(K — 1)} + 4(CF)?

Then
E[comm_cost(v,t)] = O(K + 12) = O(K).
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Figure 3: Average cumulative regret for FedFTRL, FedFTRL—0.1, FedFTRL—0.5, FedFTRL—5.0
and FedFTRL—10.0 in the synthetic dataest, under three different communication networks: (left)
complete graph, (middle) grid graph, and (right) RGG-0.5.
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Figure 4: Average cumulative regret for FedFTRL, FedFTRL—0.1, FedFTRL—0.5, FedFTRL—5.0
and FedFTRL—10.0 in the MovieLens dataest, under three different communication networks: (left)
complete graph, (middle) grid graph, and (right) RGG-0.5.

12 SUPPLEMENTARY EXPERIMENTS

12.1 SENSITIVITY OF CF

In this section, we conduct experiments to investigate the sensitivity of the topology parameter
CF. We keep the experimental setup identical to that in Section |§| and only rescale C7 by factors
0.1,0.5,1.0 (default), 5, and 10. We denote the corresponding variants by FEDFTRL-¢, where ¢ is
the scaling factor. When e = 1.0, CF is unchanged and we simply write FEDFTRL. All experiments
are repeated for 50 trials, and we report the averaged performance as plotted curves.

The results in Figure 8] and Figure [ show that our FedFTRL algorithm is robust to the choice of

the topology parameter C’. Even with a misspecified C¥, our algorithms still achieve sublinear
regret.
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