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Abstract

Supervised learning-based image dehazing algorithms
are sensitive to degradation and training distribution, mak-
ing them ill-suited for out-of-domain non-uniform restora-
tion. We propose an adversarial auto-augmentation ap-
proach to address this limitation without explicitly collect-
ing paired training data. Specifically, we generate images
with a broad distribution representative of multiple domains
by varying the degradation and color profiles achieved by
leveraging new augmentation techniques, including mean-
variance transfer, physically accurate atmospheric scatter-
ing model, and localized degradation generation. These
techniques effectively account for non-homogeneous degra-
dations, enhancing the robustness of the underlying degra-
dation model. Apart from utilizing these synthetic nega-
tive images to train the underlying network, these also pro-
vide diverse image representations for enabling more effec-
tive contrastive regularization. In addition to the training
modifications, we propose a frequency-based feature fusion
mechanism that prioritizes semantic and structural infor-
mation from the decoder and encoder. Finally, we incorpo-
rate depth and color attenuation priors to ensure percep-
tually pleasing and physically accurate restoration qual-
ity. To evaluate the efficacy of the proposed mechanism,
we perform comprehensive experiments and obtain state-
of-the-art (SoTA) results while achieving high fidelity and
improving the performance of perception-based algorithms
without fine tuning.

1. Introduction
Image dehazing has emerged as a widely researched

field, driven by enhancing scene visibility and recover-
ing regions affected by the haze. Such algorithms play
a vital role in improving the perceptual fidelity of images
[61, 60, 68, 25, 42, 56], benefiting human vision and fa-
cilitating high-level perception tasks such as semantic seg-
mentation [53, 54, 57, 33], depth estimation [7] and object
detection [28, 12, 34]. SoTA techniques in image dehaz-
ing have made significant strides by utilizing paired datasets
to train restoration networks in an end-to-end mechanism.
Despite their advancements, the performance of supervised

Input Dehazed GT

Input Dehazed Reference
Figure 1. Demonstration of dehazing on images (top) from train-
ing distribution and (bottom) outside training distribution using
AECRNet [68] as the baseline on Images from NH-Haze2 [5] and
ACDC [55] datasets, respectively.

learning algorithms relies heavily on specific training dis-
tributions, making them susceptible to poor performance
when applied to images outside training distribution, as
shown in Fig. 1. This limitation necessitates exploring more
robust and adaptable approaches to overcome the sensitiv-
ity to training distributions and achieve better generalization
capabilities.

Since such algorithms rely on large paired training
datasets, which can be time-consuming and resource-
intensive to gather, alternatively synthetic datasets have
been employed to mitigate this limitation by leveraging
the atmospheric scattering model [48] (ASM) to gener-
ate synthetic hazy images using clean images. This gen-
erates paired training data for the underlying neural net-
work to learn the restoration process. The ASM establishes
a relationship between the hazy image (I) and the haze-
free image (J) using parameters such as atmospheric light
(A ∈ [0, 1]), scene depth (d(x)), and atmospheric scatter-
ing coefficient (β ∈ [0, 1]), as outlined in Eq. 1. However,
algorithms trained on synthetic datasets tend to exhibit poor
generalization on real hazy images due to domain gaps aris-
ing from diverse levels of haze density and distribution [60].

I(x) = J(x) ∗ t(x)+A(1− t(x)) where t(x) = e−β∗d(x)

(1)
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Figure 2. t-SNE plot of images captured in clear, hazy from NH-
Dehaze [4] along with haze generated by atmospheric scattering
model and proposed extension to qualitatively demonstrate non-
overlapping and minimal overlap of feature distributions.

Specifically we attribute the performance gap to arise
due to diverse chromatic differences in real-world datasets
and the sub-optimal representation of the ASM in synthetic
datasets. Addressing the former, real-world haze datasets
can exhibit distinct tone curves from different cameras lead-
ing to a significant color distribution shift. As illustrated in
the t-sne plot [63] shown in Fig. 2, these diverse distri-
butions result in either non-or minimally overlapping fea-
ture spaces. This is counter-intuitive as one would expect a
higher overlap in distribution, given the objective to model
similar degradation characteristics. Hence, while com-
bining multiple datasets improves domain-invariant perfor-
mance compared to single-domain training, it may still
yield sub-optimal results. For the latter part, i.e., synthetic
dataset generation, we observe that prior approaches often
adopt a simplified gray-scale uniform particle representa-
tion of atmospheric light (A) and scattering coefficient (β),
overlooking the effects of different particle sizes on dif-
ferent wavelengths of light. We base this conclusion on
observing a single-channel representation of atmospheric
light with a fixed global value for the scattering coeffi-
cient. This is unrealistic in natural conditions, wherein
particles of varying sizes can be non-homogeneously dis-
persed throughout natural scenes, introducing additional
non-linearities in the haze generation process.

Apart from distribution gaps, the performance gap is also
caused when using fixed synthetic datasets that only cap-
ture specific configurations of haze. This creates bias since
complex training samples are not sufficiently represented
and sampled. Consequently, the neural network’s perfor-
mance becomes bound by the limited diversity of haze sam-
ples during training. To address these issues, we propose an
adversarial auto-augmentation pipeline that generates syn-
thetic haze samples, varying their difficulty based on the

restoration capability of the underlying network. This ap-
proach enriches the training data, enabling the network to
handle a broader range of challenging scenarios and en-
hancing its generalization capacity. To ensure robustness to
multiple tone curves from real-world datasets, we utilize a
large data bank encompassing mean and variance informa-
tion, facilitating the transfer of color profiles from multiple
cameras without significant computational overhead. Ex-
tending the atmospheric scattering model (extended-ASM),
we account for non-homogeneous particle distribution ef-
fects across wavelengths in the visible spectrum, integrat-
ing it into the auto-augmentation pipeline. This mecha-
nism generates training images and provides an alterna-
tive view for computing contrastive loss, thereby improv-
ing perceptual fidelity. Finally, we propose depth and color
attenuation-based loss optimizations to guarantee physi-
cal accuracy and color consistency in the restored images.
By comprehensively addressing these challenges, our pro-
posed approach advances image dehazing by bridging per-
formance gaps, capturing diverse haze conditions, and im-
proving perceptual quality and physical accuracy. We sum-
marize our contributions as,

• We identify performance gaps caused by fixed syn-
thetic datasets and real-world hazy datasets leading to
sub-optimal optimization.

• We propose the integration of a data-bank for tone-
transfer of real-world hazy images to ensure robustness
towards camera sensors.

• We propose an adversarial auto-augmentation pipeline
that generates synthetic haze samples of varying diffi-
culty based on the restoration capability of the network
by expanding the ASM.

• We utilize depth and color attenuation-based loss op-
timizations to guarantee physical accuracy and color
consistency in the restored images.

2. Related Works
2.1. Single Image Dehazing

Early works focusing on image dehazing leveraged em-
pirical statistics to construct prior-based dehazing mech-
anisms such as dark channel prior [26], non-local prior
[6], color attenuation prior [78] and contrast maximiza-
tion [62]. However, such simplistic approaches were found
to be inadequate in representing complex haze models
and subsequently restoring them. To alleviate the perfor-
mance limitation, the atmospheric scattering model [48]
was proposed, and different works [21, 70, 65, 44, 64]
focused on estimating its components to restore a haze-
affected image. However, such methods faced challenges
due to error accumulation when estimating different prop-
erties. Recently learning-based approaches were developed
[61, 15, 25, 42, 49, 56] that model image dehazing as an
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Figure 3. Overview of the proposed Adversarial Auto-Augmentation Approach for training robust single image dehazing algorithms.

end-to-end objective wherein an underlying neural network
learned the representation space between a given pair of
hazy and clean images. While these works focused on de-
signing robust learning architectures, another line of work
[30, 68] focused on improving the perceptual quality with-
out making any architectural changes. Specifically, [68]
demonstrated that it is possible to create compact dehaz-
ing algorithms while constraining the latent space to gener-
ate perceptually pleasant images using contrastive loss [11].
However, the reliance on a large amount of paired training
data resulted in the network performing consistently when
the distribution of the test set and training set matched. To
overcome this limitation, an alternative mechanism lever-
aging unpaired-image translation [22], combining real and
synthetic datasets [60], semi-supervised image translation
[77] with additional focus on ensuring consistent perfor-
mance on the synthetic dataset as well [71, 56].

Despite these efforts, we observe a significant perfor-
mance gap when the distribution of the test set differs from
the training set. Specifically, haze distribution and tone
curves differ for synthetic and real datasets. Combining
these datasets naively can result in multiple partially over-
lapping distributions, as observed in Fig. 2. Thus for an
underlying restoration network to be domain invariant, the
network should be able to generalize for all distributions,
which is not guaranteed when using a fixed configuration
synthetic dataset.

2.2. Data Efficient Training

In order to increase the diversity of training samples, data
augmentation techniques are proposed that synthetically in-
crease dataset size, given a fixed dataset. This approach
has demonstrated effectiveness for both low [59, 8] and
high-level vision tasks [74, 23]. These techniques can be
categorized either as transformation-based (Flipping, Crop-
ping), Region-based (Cut-Mix [72], Cut-Out [20], Copy-
Blend [59]) and Color-based (Brightness, Contrast, Jit-

ter). However, such simplistic approaches do not consider
the model performance and are randomly applied. Thus
these approaches cannot restrict training dataset bias to flow
into the trained network resulting in sub-optimal perfor-
mance. To overcome this limitation, composite augmenta-
tions [37, 69, 76, 18, 38] that can improve the performance
and generalization of the network automatically were pro-
posed. The key idea is to generate synthetic samples with
varying difficulty levels via augmentation policies, taking
into account the performance of the underlying network.
These augmentation policies are generated by a separate
policy network jointly trained with the target network in
an adversarial framework [24]. The objective for the tar-
get network is to minimize the loss, while for the pol-
icy network is to design augmentation policies that maxi-
mize network loss. These approaches have shown promis-
ing results in high-level vision tasks such as classification
[18, 46, 19], detection [13, 19] and segmentation [43] but
are relatively unexplored for image restoration. We attribute
this to the change in problem scope, wherein for high-level
vision tasks, the objective is to ensure robust performance
in changes in object appearance, lighting conditions, and
scene complexity. However, for low-level tasks, the objec-
tive is to recover image details and improve perceptual qual-
ity. Hence for each restoration task, tailored augmentation
policies are required. Nevertheless, given a physically ac-
curate degradation model, the haze density and distribution
can be adjusted using such an approach to ensure a robust
and data-efficient image dehazing.

3. Methodology

3.1. Frequency based Feature Fusion

We highlight data-driven image dehazing algorithms
to be constructed in a UNet [52] based manner with an
encoder-decoder architecture and skip connections to facil-
itate edge information transfer. The encoder extracts fea-

3
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Figure 4. Overview of the proposed Frequency based Feature Fu-
sion mechanism.

tures rich in semantic information, emphasizing high-level
semantic details as the encoder progresses with increasing
receptive field size. On the other hand, the decoder per-
forms the upsampling operation to reconstruct the output
image from the encoded features. The decoder also has
access to fine-grained details and local information from
the prior encoder block, which is available via skip con-
nections. To fuse these complementary features, we intro-
duce a gating mechanism that selectively adjusts the infor-
mation concatenation between the skip connection and de-
coder block to reduce computational complexity. Distinct
from previous works [61, 73, 36] that focused on enhancing
feature representation within the fusion layer, we investi-
gate the fusion operation from a frequency domain perspec-
tive. Our motivation stems from the observation that the
frequency spectrum effectively demarcates low and high-
frequency components, enabling selective sub-band infor-
mation recovery. To realize this, we construct a low-pass
filter using batch normalization, convolutional filters, and
average pooling operations, as inspired by [?]. Dynamically
adapting the cut-off frequency, we divide the input feature
map into groups of four, facilitating the derivation of the
corresponding high-pass filter by subtracting the low-pass
filter from the identity kernel. To illustrate the efficacy of
our proposed frequency-based feature fusion, we provide a
visual illustration in Fig. 4.

3.2. extended Atmospheric Scattering Model

In the context of atmospheric scattering modeling, cur-
rent approaches commonly assume a uniform scattering co-
efficient and a gray-world scenario, treating particles’ im-
pact on all visible spectrum wavelengths equally across the
red, green, and blue channels within an image. However,
this assumption overlooks the non-uniform nature of parti-
cle distribution and the varying impacts on different wave-
lengths in real-world settings. This discrepancy between
the assumed and actual conditions creates limitations in
synthetic datasets, contributing to the performance gap ob-

served between real and synthetic datasets in image dehaz-
ing. To address this issue, we propose breaking these con-
straints by introducing a non-uniform scattering coefficient
distribution. We sample the scattering coefficient from a
Gaussian distribution, resulting in a scattering coefficient
tensor of dimensions (β ∈ RH×W×1) for an image with
height (H) and width (W ). Furthermore, we expand the at-
mospheric light from a single coefficient to a multi-channel
representation to simulate the implications of different par-
ticle sizes. Each channel is independently sampled from a
Gaussian distribution, yielding an atmospheric light tensor
of dimensions (A ∈ RH×W×3). To ensure a wide variety
of degradation landscapes, we employ a randomized mean
and variance process for both the scattering coefficient and
atmospheric light sampling. This approach allows us to
capture diverse degradation scenarios and generate quali-
tative samples showcasing the extended atmospheric scat-
tering model. By introducing non-uniformity in the scatter-
ing coefficient and accounting for multiple particle sizes in
the atmospheric light, our approach expands the scope of
degradations covered by synthetic datasets with qualitative
samples provided in Fig. 5.

3.3. Tone-Transfer

Images captured by different cameras under the same il-
lumination conditions exhibit variations due to differences
in imaging sensor properties and image signal processing
pipelines. These disparities manifest as imperceptible vari-
ations in noise models and result in noticeable color dis-
crepancies that create a distribution shift. Consequently,
dehazing algorithms experience performance inconsisten-
cies when applied to images captured by different imaging
sensors. To address this challenge and enhance the robust-
ness of the underlying restoration network to different tone
curves associated with distinct cameras, we propose a tone
transfer mechanism utilizing mean(µ)-variance(σ2) trans-
fer. Specifically, we utilize multiple datasets to compute the
average mean and variance of well-illuminated images and
their respective deviations (δ), which are stored in a data
bank. We leverage this data bank to sample different com-
binations of mean and variance values, enabling the conver-
sion of the distribution of a clean image to another camera’s
distribution following [51]. This tone transfer mechanism
allows us to align the color characteristics of the input im-
age with the target camera’s profile, enhancing the fidelity
of the dehazed output. We include qualitative samples in
Fig. 6.

3.4. Adversarial-Auto Augmentation

Current data augmentation approaches for image restora-
tion typically rely on randomized intensity selection, which
may lead to sub-optimal training of restoration algorithms
due to the absence of a feedback mechanism to control
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Clean Image ASM eASM
Figure 5. Samples generated using proposed extended atmospheric scattering model using clean images from RESIDE [35] dataset.

Tone Transferred Image

Dehazing Results
Figure 6. Samples generated using tone-transfer mechanism for a
given clean image from NH-Haze [4] dataset in Fig. 7 and corre-
sponding dehazing results from pretrained AECRNet [68].

degradation strength. To address this limitation, we pro-
pose a novel approach that enables dynamic degradation in-
tensity adjustment based on the restoration network’s per-
formance. While such techniques have been extensively
studied for high-level perception tasks, their applicability
to low-level vision tasks still needs to be explored. In line
with our proposed approach, we build upon [76] and replace
the augmentation functions with proposed extended-ASM,
tone-transfer mechanisms and introduce localized degrada-
tion using the copy-blend [59] mechanism. This reduced
search space of image operations includes rotation, flip-
ping, copy-blend, tone-transfer, and synthetic haze gener-
ation. We use a 10-part uniformly distributed magnitude of
operation for each augmentation. Hence the search space of
policy for each epoch is (6× 10)10 ≈ 6.04× 1017 possibil-
ities.

The critical advantage of auto-adversarial augmentation
lies in its ability to generate diverse and realistic training
samples, thereby enhancing the robustness and generaliza-
tion of the underlying model. By exposing the model to a
wide range of challenging samples, it can effectively learn
to handle various variations and improve its performance
on unseen data. In constructing the policy search network,
we follow the adversarial auto-augmentation approach [76],
leveraging its effectiveness in generating augmented sam-

ples and optimizing the training process for image restora-
tion.

3.5. Physical and Perceptual Accuracy

Our approach incorporates depth and color consistency
losses to ensure physically accurate and visually pleasing
restored images. We leverage the zero-shot depth estima-
tion network MiDAS [50] (ϕ) to generate depth maps for
clear images (IC) in both synthetic and real datasets. Fur-
thermore, the restored images (IR) are passed through the
depth estimation network to obtain corresponding depth.
Subsequently, depth loss is computed using mean squared
error (Eq. 2) between restored and clear images. This en-
sures that the restored images are physically accurate com-
pared to their clean counterpart.

LD = ||ϕ(IR)− ϕ(IC)|| (2)

We employ contrastive loss and color consistency loss to
enhance perceptual accuracy. In the case of contrastive loss,
positive and negative samples directly influence wherein
image fidelity improves in the presence of mini-batch hard
positives and negatives. Herein, images generated by
the adversarial auto-augmentation can serve as hard nega-
tive synthetic samples apart from being used for training
the restoration network without complex sampling mech-
anisms. Furthermore, we employ a color attenuation loss
(LC) (Eq. 3) that considers saturation (S) and luminance
(L) differences between the restored and clean images. This
loss ensures that the colors in the restored images are con-
sistent and visually appealing. We extract luminance and
saturation values by converting the clean and restored image
into LAB color space and extract L and A channels respec-
tively. By leveraging saturation and luminance as measures
of color differences, we encourage the network to generate
images that maintain coherent color distributions while pre-
serving the overall brightness and vividness.

LC = ||S(IR)− S(IC)||+ ||L(IR)− L(IC)|| (3)
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4. Experimental Evaluation
4.1. Datasets and Evaluation Metrics

For our experiments, we create a training set constructed
from real-world paired dehazing datasets such as IHaze [2],
OHaze [3], NH-Haze [4], NH-Haze2[5] and Dense-haze [1]
datasets resulting in a total of 120 image pairs. We further
create the tone-transfer data bank from well-illuminated im-
ages selected manually from outdoor datasets such as SID
[9], ELD [67], GOPRO [47], Cityscapes [17], ACDC [55],
IS2R [58] resulting in a total of 30 camera tone-maps. Fur-
thermore, we also utilize clear daylight images from ACDC,
GOPRO, and Cityscapes datasets for synthetic datasets, as
these contain diverse object densities. For quantitative eval-
uation, we utilize pixel and feature-based metrics such as
PSNR, [66], LPIPS [75], and NIQE [45]. Furthermore,
since we generate relative depth using MiDAS, we utilize
root mean squared error (RSME) to compute the accuracy
of depth estimation on the restored image, following [50].
For our baseline network, we choose AECR [68] and DIDH
[60] due to their high performance to compute ratio.

4.2. Implementation Details

We use a single layer LSTM [27] based RNN controller
to construct the policy network. The hidden size of the
LSTM layer is set to 100, with the projection size set to
32. The restoration network is used as the target network,
and the loss function is composed of L1, contrastive, and
proposed Depth and Color Attenuation Loss following,

L = L1 + 0.1 ∗ LContra + 1.0 ∗ LD + 1.0 ∗ LC (4)

We train the proposed pipeline with one RTX 4090 GPU
using 256 x 256 crop size, ADAM [32] optimizer with β1

and β2 set to 0.9 and 0.99. Furthermore we set the controller
learning rate to 3.5e−4 and target learning rate to 2e−4. Fi-
nally, an entropy penalty of 1e−5 is applied to the controller
weights to avoid unexpected rapid convergence.

4.3. Comparison with SoTA

We summarize the quantitative performance of the SoTA
algorithms such as DuRN-US [41], GridDehazenet [40],
FFA-Net [49], TridentNet [39], DA-Dehaze [56], DIDH
[60], AECR-Net [68], DeHamer [16], D4 [71], FogRemoval
[29], DEANet [14], DehazeFormer-B [61] on NH-Haze and
Dense-Haze in Tab. 2 with qualitative results in Fig. 7. Fur-
thermore, we include qualitative results on foggy images
from the ACDC dataset in Fig. 9. We observe that the
proposed mechanism of including depth as auxiliary opti-
mization loss results in more physically accurate restora-
tion, compared to prior works D4 and DeHamer that con-
sider depth information during data augmentation or posi-
tion embedding, respectively. The qualitative and quanti-
tative results show that the proposed training mechanism

improves performance. Specifically, we observe a perfor-
mance improvement across all datasets for both AECRNet
[68] and DIDH [60]. We also observe current SoTA algo-
rithms to result in reduced depth estimation performance,
highlighting these algorithms to be inaccurate in their abil-
ity to generate physically accurate restoration. In compar-
ison, when included in training, AECRNet [68] and DIDH
[60], the proposed modifications result in higher depth ac-
curacy in restored images.

Method PSNR / SSIM NIQE / LPIPS RMSE
DuRN-US [41] 13.63 / 0.57 3.51 / 0.64 3.54
GridDehazenet [40] 12.96 / 0.50 4.16 / 0.84 4.15
FFA-Net [49] 14.01 / 0.56 3.71 / 0.87 3.47
TridentNet [39] 16.48 / 0.54 5.36 / 1.57 3.05
DA-Dehaze [56] 13.98 / 0.37 4.01 / 0.77 3.91
DIDH [60] 19.47 / 0.75 2.58 / 0.65 3.84
AECR-Net [68] 15.80 / 0.46 2.94 / 1.09 3.78
DeHamer [16] 16.62 / 0.56 3.55 / 0.94 3.99
D4 [71] 13.12 / 0.53 2.87 / 1.07 3.56
FogRemoval [29] 16.67 / 0.50 3.57 / 1.02 3.64
DEANet [14] 12.01 / 0.32 4.69 / 1.38 4.11
DehazeFormer-B [61] 11.68 / 0.32 3.58 / 1.14 4.96
Ours (DIDH) 19.93 / 0.71 2.55 / 0.63 2.45
Ours (AECRNet) 17.10 / 0.57 2.34 / 0.58 2.32

Table 1. Quantitative Evaluation of SoTA Image Dehazing algo-
rithms on Dense-haze datasets

Method PSNR / SSIM NIQE / LPIPS RMSE
DuRN-US [41] 15.27 / 0.50 4.21 / 1.42 5.89
GridDehazenet [40] 15.32 / 0.60 3.06 / 0.65 4.88
FFA-Net [49] 18.11 / 0.66 2.94 / 0.67 4.16
TridentNet [39] 21.41 / 0.71 3.66 / 1.20 2.69
DA-Dehaze [56] 11.42 / 0.31 3.91 / 1.13 4.55
DIDH [60] 21.17 / 0.78 2.98 / 0.56 3.64
AECR-Net [68] 20.68 / 0.82 3.48 / 0.84 3.72
DeHamer [16] 19.18 / 0.79 3.20 / 0.92 3.47
D4 [71] 12.65 / 0.37 4.92 / 0.90 5.17
FogRemoval [29] 20.99 / 0.61 3.45 / 0.65 4.58
DEANet [14] 10.98 / 0.25 2.99 / 1.40 4.42
DehazeFormer-B [61] 12.84 / 0.35 3.22 / 0.46 4.19
Ours (DIDH) 21.44 / 0.79 2.57 / 0.49 2.07
Ours (AECRNet) 21.70 / 0.68 3.08 / 0.34 1.98

Table 2. Quantitative Evaluation of SoTA Image Dehazing algo-
rithms on Dense-haze and NH-Hazedatasets. We measure PSNR,
SSIM, LPIPS using [31] and NIQE using [10].

4.4. Ablation Studies

For our ablation, we consider AECRNet [68] as the ref-
erence network evaluated on the Dense-haze dataset when
trained using RESIDE [35] dataset. This setting allows us
to evaluate the generalization between synthetic hazy sam-
ples vis-a-vis the proposed extended atmospheric scattering
model. Finally, we summarize performance results for dif-
ferent scenarios in Tab. 3.

Based on empirical results, the proposed Frequency-
based Feature Fusion (FFF) demonstrates a significant im-
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Input DuRN-US [41] GridDehazenet [40] DA-Dehaze [56]

DeHamer [16] D4 [71] FogRemoval [29] DEANet [14]

TridentNet [39] FFA-Net [49] DIDH [60] AECR-Net [68]

DehazeFormer-B [61] GT Ours (DIDH) Ours (AECR-Net)
Figure 7. Impact of weather variation (fog) on the performance of SoTA segmentation network. In comparison, we demonstrate perfor-
mance improvement powered by latent representation alignment and data augmentation, as this work proposes.

Figure 8. Overview of utilizing different tone-curves when trained
with configuration (i) presented in Tab. 3.

provement of +0.51 dB in both pixel and perceptual perfor-
mance of the restoration network (cf. (b)). To further inves-
tigate the implications of using the enhanced Atmospheric
Scattering Model (ASM) compared to the traditional ASM,
we evaluate the performance using clear images from the

RESIDE dataset and generate synthetic samples on the fly
without further modifications (cf. Figures (c, d)). The re-
sults show a substantial increase in performance, further
boosted when the proposed Frequency-based Feature Fu-
sion is utilized. This confirms the efficacy of the eASM in
modeling haze, surpassing prior approaches (cf. (d)).

To enable a feedback mechanism that adjusts the diffi-
culty of training samples based on restoration performance,
we train the complete framework using Automatic Adver-
sarial Augmentation (AAA). This leads to a performance
improvement of +0.35 dB (cf. (e)). We expand the scope
of utilization of adversarial images to contrastive loss dur-
ing training results in an additional boost of +0.38 dB (cf.
(f)). While the restoration quality improves, depth estima-
tion accuracy remains limited. This highlights the trade-off
between perceptually pleasant images and physical accu-
racy. To address this, we sequentially integrate depth and
color attenuation losses to improve the physical accuracy of
the restored images while ensuring color consistency.

Expanding our evaluation, we explore the influence of
tone transfer and identify the optimal number of tone curves
for achieving peak performance (Fig. 8). By linearly in-
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Input Reference AECR-Net DIDH FFANet

D4 DeHamer DEANet AECRNet (Ours) DIDH (Ours)
Figure 9. Impact of weather variation (fog) on the performance of SoTA segmentation network. In comparison, we demonstrate perfor-
mance improvement powered by latent representation alignment and data augmentation, as this work proposes.

creasing the number of tone curves for tone transfer, we
observe consistent performance improvements up to 12
tone curves, with minor improvements as the number in-
creases. However, we caution that the optimal number of
tone-transfer mechanisms should not be considered a hard
threshold, as the learning capacity of the underlying restora-
tion algorithm may also influence it. Identifying the optimal
number of tone curves for a given restoration mechanism
remains an open area for future research.

Ref. FFF ASM AAA Loss PSNR / SSIM NIQE / LPIPS RMSE
(a) ASM 8.59 / 0.11 5.83 / 1.84 12.58
(b) ✓ 9.10 / 0.17 5.83 / 1.80 12.51
(c) eASM 10.29 / 0.26 4.29 / 1.19 8.42
(d) ✓ eASM 10.55 / 0.27 4.25 / 0.98 6.84
(e) ✓ eASM ✓ 10.90 / 0.32 3.98 / 0.87 6.01
(f) ✓ eASM ✓ LContra 11.28 / 0.40 3.59 / 0.82 5.99
(g) ✓ eASM ✓ LD 11.03 / 0.38 3.99 / 0.85 2.91
(h) ✓ eASM ✓ LC 11.89 / 0.42 3.29 / 0.81 5.49
(i) ✓ eASM ✓ LContra, LD, LC 14.89 / 0.52 3.04 / 0.84 2.45

Table 3. Quantitative Evaluation of SoTA Image Dehazing algo-
rithms on Dense-haze datasets.

5. Conclusion
In this work, we propose insights to improve image de-

hazing techniques. Our contributions include a frequency-
based feature fusion mechanism that combines low and

high-frequency details, preserving semantic and edge in-
formation. Additionally, we introduce an extended atmo-
spheric scattering model that accurately represents diverse
haze degradations by considering non-homogeneous par-
ticle distribution and its impact on different wavelengths.
To enhance generalization, we incorporate a tone-transfer
mechanism capturing various camera properties. Integra-
tion into an automatic adversarial augmentation pipeline en-
ables dynamic adjustment of degradation intensity based
on network performance. We ensure physically accurate
and visually pleasing results through depth and color atten-
uation losses. Synthetic adversarial images are leveraged
within the contrastive loss framework to improve restora-
tion quality. Extensive experiments validate our proposed
mechanisms, yielding significant improvements in image
dehazing. Our approach bridges the gap between physical
accuracy and perceptual fidelity, contributing to advance-
ments in the field.
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