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ABSTRACT

Continual learning (CL) has attracted increasing interests in recent years due to
the need for a learning model to continuously learn new tasks without forgetting
the previously learned knowledge. However, existing CL methods require either
an extensive amount of resources for computing gradient projections or storing
a large number of old tasks’ data. These limitations necessitate low-complexity
CL algorithmic design. In this paper, we propose a local model space projection
(LMSP) based efficient continual learning framework, which not only significantly
reduces the complexity of computation, but also enables forward and backward
knowledge transfer. We also theoretically establish the convergence performance
of the proposed LMSP approach. Extensive experiments on several public datasets
demonstrate the efficiency of our approach.

1 INTRODUCTION

Humans have the unique ability to continuously learn new tasks throughout their lives without
forgetting their previously learned knowledge. This impressive capability has recently inspired the
efforts in the machine learning community to develop similar capabilities for deep neural network
(DNN)-based machine learning models, which is termed continual learning (CL). However, one of
the most significant challenges in CL is that DNN models are known to suffer from the problem
of “catastrophic forgetting”, i.e., the performances of the learnt old tasks decay after learning
new tasks. In the literature, numerous strategies have been proposed to address the catastrophic
forgetting challenge in CL. Existing forgetting mitigation approaches can be classified into three
major categories: i) experience replay, ii) regularization, and iii) orthogonal projection (see Section 2
for more in-depth discussions). Generally speaking, both experience-replay- and regularization-based
methods require access to old tasks’ data during the learning of a new task, which is infeasible in
cases where old tasks’ data leave the system once their learning is finished. In contrast, orthogonal-
projection-based methods update the model in the direction orthogonal to the subspace of old tasks,
which does not require the access to old tasks’ data – a highly desirable feature for CL in practice.

We note, however, that due to a number of technical challenges, developing practical orthogonal-
projection-based CL approaches remains highly non-trivial. The first major challenge of orthogonal-
projection-based CL approaches stems from the projection operation, which typically relies on
singular-value decomposition (SVD)(Lin et al., 2022a;b). These methods perform SVD layer-wise
SVD after the training of each task. It is well-known that the SVD operation costs O(n3) complexity
for a n-dimensional model, which grows rapidly as n increases. With the ever-increasing widths and
depths of large and deep learning models, computing such layer-wise SVDs upon the completion of
each new task’s training also becomes more and more difficult.

Another key challenge of the standard orthogonal-projection-based CL approaches lies in the inherent
difficulty in facilitating forward and backward knowledge transfer (i.e., the learning of new tasks
benefiting from the acquired knowledge from old tasks, and the knowledge learnt from new tasks
further improves the performance of old tasks), when new task has strong similarity with some old
tasks. To date, it remains unclear how to design computation-efficient orthogonal-projection-based CL
methods without forgetting while enjoying forward-backward knowledge transfers. This motivates us
to pursue a new efficient orthogonal-projection-based CL design to fill this gap in the CL literature.

The main contribution of this paper is that we propose an efficient orthogonal-projection-based CL
method based on local model space projection (LMSP), which not only signficantly reduces the
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complexity of SVD basis computation, but also facilitates forward and backward knowledge transfers
without sacrificing too much performance. The main results and technical contributions of this paper
are as follows:

• Our proposed LMSP-based orthogonal projection approach is based on the basic idea of “divide
and orthogonalize” principle, where we approximate the per-layer parameter matrix by a set of local
low-rank matrices defined by a set of anchor points, which significantly reduces the computational
complexity from O(n3) to O(n2) in performing projections with a minor projection error.

• We theoretically show that our proposed LMSP-based orthogonal projection approach achieves
an O(1/K) convergence rate performance under both convex and non-convex settings, where K
is the number of iterations. Moreover, we further prove the forward and backward knowledge
transfers of the proposed LMSP-based orthogonal projection approach.

• Based on extensive experiments, we show that our proposed LMSP-based orthogonal projection
approach achieves comparable results to those of all state-of-the-art baselines on four public
datasets in terms of both training accuracy and forward/backward knowledge transfer, while not
sacrificing too much performance. We further conduct ablation studies to verify the efficiency and
effectiveness of each key component in our LMSP-based algorithmic design.

2 RELATED WORK

In this section, we provide a quick overview on continual learning and local low-rank model approxi-
mation to further motivate this research and put our work in comparative perspectives.

1) Continual Learning: Continual learning (CL), also known as lifelong learning and incremental
learning, is an emerging area in machine learning research that has attracted a significant amount of
interests recently. CL addresses the challenge of enabling a machine learning model to accumulate
knowledge and adapt to new tasks that arrive sequentially over time Chen & Liu (2017). A key goal
of CL is to avoid “catastrophic forgetting” (McCloskey & Cohen, 1989; Abraham & Robins, 2005),
i.e., a model’s performance on previously learned tasks decays upon learning new tasks. To mitigate
catastrophic forgetting in CL, various methodologies and strategies have been proposed:

• Regularization-Based Approaches: Regularization approaches use regularization prevent a learning
model from overfitting to new data. For example, elastic weight consolidation (EWC) Kirkpatrick
et al. (2017a) regularizes the updates on weights based on their significance for previous tasks
using the Fisher information matrix. Aljundi et al. (2018) uses an unsupervised and online way to
evaluate the model outputs sensitivity to the inputs and penalizes changes to important parameters.

• Replay-Based Approaches: Replay-based approaches store and replay old tasks’ data to help
models retain knowledge. For example, generative replay Shin et al. (2017) generates data samples
from past tasks. In experience replay Chaudhry et al. (2019b), a model replays previous experiences
in a controlled manner. Techniques such as experience replay with replay buffer (ER-RB) Lillicrap
et al. (2019) and generative adversarial networks (GANs) Goodfellow et al. (2020) have also been
developed to enhance the efficiency of these mechanisms.

• Orthogonal-Projection-Based Approaches: In regularization- and replay-based approaches, a
major limitation is that the learner needs to have access to data of the old tasks. However, this
requirement could be cumbersome or even infeasible due to data privacy and other restrictions in
practice. To address this challenge, researchers have proposed to learn the the new tasks and update
the model in the orthogonal subspace of the old tasks Chaudhry et al. (2020), which alleviates
the needs for accessing old tasks’ data. State-of-the-art orthogonal-projection-based approaches,
include, e.g., Lin et al. (2022a), where the correlations between old and new tasks.

Due to the salient features of the orthogonal-projection-based approaches, we focus on the orthogonal-
projection-based approach in this paper. However, a key challenge of the orthogonal-projection-based
CL approach is that the computation of orthogonal subspace is highly expensive as the model size
gets large. This motivates us to propose a local model space projection (LSMP) in this paper.

2) Local Model Approximation: Low-rank approximation (LRA) techniques have been widely
applied in the areas of matrix factorization (Billsus & Pazzani, 1998; Mnih & Salakhutdinov, 2007;
Salakhutdinov & Mnih, 2008; Candes & Plan, 2009). The basic idea of these existing works is to
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represent a given matrix by a product of lower-rank matrices that capture the essential structure
of the original matrix. Local low-rank approximation (LLRA) extends LRA to preserve low-rank
structures in localized regions of matrices. LLRA has been applied in various applications, such
as recommendation Beutel et al. (2017); Sarwar et al. (2002); Christakopoulou & Karypis (2018),
collaborative filtering George & Merugu (2005); Lee et al. (2014); Koren (2008). For example, Lee
et al. (2013) proposed a local low-rank matrix approximation (LLORMA) method, which finds anchor
points of the matrix and estimates local low-rank matrices in the neighborhood surrounding each
anchor point. Then, a weighted sum of the local matrices is used to approximate the original matrix,
where the weight is the similarity between the pair of anchor points. Lee et al. (2014) later used this
method in collaborative filtering to estimate the user-item rating matrix with a weighted combination
of local matrices. To our knowledge, our work is the first to propose local low-rank models for CL.

3 PROBLEM FORMULATION

In this section, we first formally state the problem formulation of continual learning, and then
introduce the basic orthogonal-projection-based approach for continual learning and its fundamental
computational complexity challenge.

1) Continual Learning: Continual learning (CL) considers a set of tasks T = {t}Tt=0 that arrive
sequentially. Each task t is associated with a dataset Dt = {(xt,i,yt,i)}N

t

i=1 that contains N t samples,
where xt,i and yt,i are the i-th datapoint and its label in task t. In this paper, we consider a fixed
capacity neural network with L layers, with weights being denoted as {Wl}Ll=1, where Wl is the
layer-wise weight for the l-th layer. We let xl

t,i denote the input of layer l, with x1
t,i = xt,i. The

output of layer l, which is also the input of layer l + 1, is computed as xl+1
t,i = f(Wl,xl

t,i), where
f(·) denotes the processing at layer l. In this paper, we focus on the CL setting, where we only
have the access to the dataset of the new task Dt and no data samples of old tasks j ∈ [0, t− 1] are
available. We denote the loss function as L(W,Dt) = Lt(W), where W denotes the weights for the
neural network model. To learn task t in CL, we have the weights Wt−1 after learning for task t− 1.
The purpose of CL is to learn the new task t based on the weights in Wt−1 and the new data Dt.

2) Orthogonal-Projection-Based Approach for CL: To address the forgetting challenge in CL,
there has been a recent line of works that propose model updating for the new task in the direction
orthogonal to the subspace spanned by the old tasks’ input. As an illustration of this basic idea, let the
subspace spanned by the inputs of tasks 1’s layer l be denoted as Dl

1. The learnt model for task 1 is
denoted as {Wl

1}Ll . To learn task 2, the current model Wl
1 will be updated in a direction orthogonal

to Dl
1. Let ∆Wl

1 denote the model update after learning task 2. It follows from the orthogonal
direction that ∆Wl

1x
l
1,i = 0. Also, after learning task 2, the model is Wl

2 = Wl
1 +∆Wl

1. Thus,
we have Wl

2x
l
1,i = (Wl

1 +∆Wl
1)x

l
1,i = Wl

1x
l
1,i +∆Wl

1x
l
1,i = Wl

1x
l
1,i, which implies that there

is no interference to task 1 after the learning of task 2, hence avoiding “forgetting.”

3) Orthogonal-Projection-Based CL Approach with Backward Knowledge Transfer: Although
orthogonal-projection-based approaches can effectively address the forgetting problem, forward and
backward knowledge transfers are impossible due to the restriction of model updates only in the
subspace orthogonal to the input space of old tasks. To address this limitation, a trust region approach
is proposed in (Lin et al., 2022b), which is built upon the following definitions(Lin et al., 2022b):

Definition 1 (Sufficient Projection (Lin et al., 2022b)). For any new task t ∈ [1, T ], we say it has
sufficient gradient projection on the input subspace of of old task j ∈ [0, t−1] if for some λ1 ∈ (0, 1):
∥ProjSj

(∇Lt(Wt−1))∥2 ≥ λ′
1∥∇Lt(Wt−1)∥2.

Here, ProjSj
(A) = Sj(Sj)

⊤A denotes the projection onto the input subspace Dj of task j, where
Sj is the basis of Dj . The definition of sufficient projection implies that tasks t and j have sufficient
common bases between their input subspaces and hence strong correlation. While sufficient condition
suggests strong correlation between tasks t and j, a stronger condition suggesting positive correlation
between tasks is also introduced in (Lin et al., 2022a) as follows:

Definition 2 (Positive Correlation (Lin et al., 2022b)). A new task t ∈ [1, T ] has a positive correlation
with an old task j ∈ [0, t − 1] if for some λ2 ∈ (0, 1), it holds that ⟨∇Lj(Wj),∇Lt(Wt−1)⟩ ≥
λ2∥∇Lj(Wj)∥2∥∇Lt(Wt−1)∥2.
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Based on Definitions 1 and 2, the model space can be partitioned into three regimes (Lin et al., 2022a),
where three different layer-wise update rules are applied:

• Regime 1 (Forget Mitigation) ∥ProjDl
j
(∇Lt(W

l
t−1))∥2 ≤ λ1

∥∥∇Lt(W
l
t−1)

∥∥
2
: Due to the weak

correlation between tasks in this regime, the model is updated based on orthogonal projection:

∇Lt(W
l)← ∇Lt(W

l)− ProjDl
j
(∇L(Wl)). (1)

• Regime 2 (Forward Knowledge Transfer): A task j’s layer l falls into Regime 2 if sufficient
projection holds while positive correlation is not satisfied. Due to the potential “negative correlation”
in this regime, forgetting still needs to be avoided by using orthogonal projection. However, thanks
to the correlation between tasks, one can facilitate forward knowledge transfer. Putting both ideas
together, the update rule in Regime 2 can be written as:

∇Lt(W
l)← ∇Lt(W

l)− ProjDl
j
(∇L(Wl)), (2)

Ql
j,t ← Ql

j,t − β∇QLt(W
l − ProjDl

j
(Wl) +WlSl

jQ
l
j,t(S

l
j)

⊤),

where Sl
j is the basis matrix for subspace Dl

j and Ql
j,t is a diagonal scaling matrix to facilitate

forward knowledge transfer (see Lin et al. (2022a;b) for details).

• Regime 3 (Backward Knowledge Transfer): A task j’s layer l falls into Regime 3 if both sufficient
projection and positive correlation conditions are satisfied. Due to the positive correlation between
tasks, one can use a simple gradient-descent-type rule (with λ-regularization) to perform model
update, which also helps improve the performances of old tasks (i.e., backward knowledge transfer):

Wl ←Wl − α∇[Lt(W
l) + θ∥ProjDl

j
(Wl −Wl

t−1)∥].

4) Limitations and Challenges of Orthogonal-Projection-Based Approaches: Although the
aforementioned orthogonal-projection-based approaches (with forward-backward knowledge transfer)
could effectively avoid forgetting without needing data from any old tasks, a major challenge in
such approaches stems from checking the sufficient projection condition, which typically requires
performing singular value decomposition (SVD) operations. It is well-known that SVD has an
O(n3) computational complexity, which increases rapidly as d increases. Thus, as the model size
increases (e.g., in large-scale transformer models), computing SVD is expensive or even intractable.
This limitation motivates us to develop efficient methods with low computation complexity for
orthogonal-projection-based approaches in the subsequent section.

4 THE LOCAL MODEL SPACE PROJECTION APPROACH

In this section, we first introduce the basic idea of local representation and task subspace construction
in Section 4.1, based on which we define task similarity with local projection in Section 4.2. These
key notions allow us to further propose update rules based on local representations and task subspaces
in Section 4.3. Lastly, we conduct theoretical performance analysis for our proposed LMSP-based
orthogonal projection approach in Section 4.4.

4.1 LOCAL REPRESENTATION AND TASK SPACE CONSTRUCTION

As mentioned in Section 1, the basic idea of our LSMP approach to lower the SVD computational costs
in orthogonal-projection-based CL approaches is based on a “divide and orthogonalize” principle.
Our LMSP approach is built upon the following key notion of local representation. Specifically, given
N j samples in an old task j ∈ [0, t− 1], we construct a representation matrix Rl

j = [rlj,1, ...r
l
j,Nj ] ∈

RM×Nj

for layer l, where M is the representation dimension and each rlj,i ∈ RM , i = 1, 2, ..., N j

is the representation of layer l by forwarding the sample datapoint xj,i through the model. Instead
of directly applying SVD to the representation matrix Rl

j , we approximate the matrix by a set of
low-rank matrices defined by a set of anchor points. Inspired by (Lee et al., 2013), we define a
smoothing kernel Kh(s1, s2) with bandwidth h, where (s1, s2) ∈ [M ] × [N j ] is an entry in the
representation matrix Rl

j . We denote by K
(a,b)
h the matrix whose (i, j)-th entry is Kh((a, b), (i, j)).
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To obtain a set of local representation matrices, we first sample m “anchor points” from the global
representation matrix Rl

j , which are denoted as {sq ≜ (iq, jq)}mq=1, where (iq, jq) ∈ [M ] × [N j ]
is the entry location of the q-th anchor point. It follows from (Wand & Jones, 1994; Lee et al.,
2013) that the global representation matrix Rl

j has a locally low-rank structure and thus could be
approximated by these local representation matrices {R̂l

j(sq)}mq=1 corresponding to these anchor
points (i.e., Nadaraye-Waston regression):

Rl
j ≈

ˆ̂
Rl

j ≜
m∑
q=1

Kh(sq, s)∑m
p=1 Kh(sp, s)

R̂l
j . (3)

To obtain the local representation matrices {R̂l
j(sq)}mq=1 in Eq. (3), we adopt a product form for

the general kernel function Kh(s1, s2) = Kh((a, b), (c, d)) = Kh1(a, c)K
′
h2
(b, d), where s1, s2 ∈

[M ]× [N j ] and K,K ′ are kernels on the spaces [M ] and [N j ], respectively. We summarize several
popular smoothing kernels in Appendix C. In this paper, we use the Gaussian kernel for both K,K ′

(we will conduct ablation studies in Section 5). There are two ways to choose the anchor points
{sq ≜ (iq, jq)}mq=1: 1) sample uniformly at random from the representation matrix in [M ]× [N j ];
2) use K-means or other clustering methods to pre-cluster the representation matrix and then use
their centers as the anchor points. In our numerical studies, we do not observe a significant difference
between these two methods. For simplicity, we use the random sample strategy in our experiments.

Next, with local representations, next, we will show how the local model spaces are constructed
for task j at layer l. For an old task j ∈ [0, t − 1], to obtain the basis Sl

j at layer l, traditional
methods (Saha et al., 2021; Lin et al., 2022b) adopted the standard singular value decomposi-
tion (SVD) for the representation matrix of each layer, which incurs a high computation cost of
O(MN j min(M,N j)) = O(n3). In contrast, since each local model has a low-rank structure, the
computation can be significantly reduced. Specifically, we first obtain the local decomposed matrices
A,B for each anchor point sq by minimizing the following global least square loss in Eq. (4):

{(A(q),B(q))}mq=1 :=

argmin
A(q),B(q)

∑
x,y∈Ω

[

m∑
q=1

(
K

(q)
h ⊙ [A(q)B(q)⊤ ]∑m

p=1 K
(p)
h

−Rl
j)

2]x,y +

m∑
q=1

[λ
(q)
A ∥A

(q)∥2F + λ
(q)
B ∥B

(q)∥2F ], (4)

where K
(q)
h = K

sq
h = K

(iq,jq)
h is the kernel matrix whose (a, b)-th entry is Kh((iq, jq), (a, b)) =

Kh1
(iq, a)K

′
h2
(jq, b) and ⊙ is the Hadamard product. We also add ℓ2 regularization as is standard in

conventional SVD. Similar to (Lee et al., 2013), we can execute the algorithm in a parallel fashion:

(A(q),B(q)) := argmin
A,B

∑
x,y∈Ω

[K
(q)
h ⊙ ([AB⊤]−Rl

j)
2]x,y + λA∥A∥2F + λB∥B∥2F .

As a variant of low-rank matrix completion, this problem can be solved efficiently via various
methods, including AltMin (Jain et al., 2013; Hastie et al., 2015), singular value projection (Netrapalli
et al., 2014; Jain et al., 2010), Riemannian GD (Wei et al., 2016), ScaledGD (Tong et al., 2021; Xu
et al., 2023), etc; see (Chen & Chi, 2018; Chi et al., 2019) for recent overviews. In this paper, we
use the AltMin method to find the optimizer and obtain the basis for each local model. Denote the
rank for each local model as r ≪ min(M,N j), and A ∈ RM×r,B ∈ RNj×r. Later we adopt QR
decomposition for A = ÛΩA,B = V̂ΩB , where ΩA,ΩB ∈ Rr×r, and then perform SVD on
the r × r matrix to achieve: ΩAΩ

⊤
B = UΩΣV⊤

Ω . The final basis for local model space q can be
constructed as {Sl,(q)

j ≜ Û
l,(q)
j U

l,(q)
Ω,j }mq=1 ∈ RM×r.

Then, for a new task t, we treat all m local model spaces as m old tasks. As a result, we have
a total of tm old tasks as candidates for new task t to find the top-k correlated ones. Since the
AltMin algorithm has the complexity of O(MN jr) = O(n2), the total complexity can be reduced to
O(n2m) = O(n2), as the total number of anchor points m≪ min(M,N j). Thus the computation
cost is significantly reduced.

4.2 TASK SIMILARITY WITH LOCAL PROJECTION

With the local representations in Section 4.1, we are now in a position to introduce the following
definitions on task gradients to formally characterize the task similarity. Toward this end, we need the
following definitions that generalize Definitions 1 and 2 to local settings:
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Definition 3 (Local Sufficient Projection). For any new task t ∈ [1, T ], we say it has local sufficient
gradient projection on the local subspace q ∈ [1,m] of old task j ∈ [0, t− 1] if for some λ1 ∈ (0, 1):
∥Proj

K
(q)
h Dj

(∇Lt(Wt−1))∥2 ≥ λ1∥∇Lt(Wt−1)∥2.

Definition 4 (Local Positive Correlation). For any new task t ∈ [1, T ], we say that it has local positive
correlation with the local subspace q ∈ [1,m] of old task j ∈ [0, t − 1] if for some λ2 ∈ (0, 1):
⟨∇L(q)

j (W
(q)
j ),∇Lt(Wt−1)⟩ ≥ λ2∥∇L(q)

j (W
(q)
j )∥2∥∇Lt(Wt−1)∥2.

Here, for any matrix A, Proj
K

(q)
h Dj

(A) ≜ S
(q)
j S

(q)
j

⊤
A defines the projection on the input local

model space for anchor point q of old task j, and S(q)
j is the basis for this local model space.

Compared to Definition 1, the projection space in Definition 3 is changed to the q-th local model
basis rather than the global basis for task j. Definition 3 implies that task t and the q-th local model
of task j have sufficient common bases and are strongly correlated since the gradient lies in the span
of the input Zhang et al. (2021). Also, similar to Definition 2, Definition 4 goes one step further
to characterize the task similarity. In addition to local sufficient projection and positive correlation
conditions, we propose a new notion called “local relative orthogonality” as follows:
Definition 5 (Local Relative Orthogonality). For any new task t ∈ [1, T ], we say it is more lo-
cally relative orthogonal to local subspace q ∈ [1,m] of old task j ∈ [0, t − 1] than the global
subspace old task j ∈ [0, t − 1] for some λ3 ∈ (0, 1) if: ∥Proj

K
(q)
h Dj

(∇Lt(Wt−1))∥2 =

λ3∥ProjDj
(∇Lt(Wt−1))∥2 ≤ ∥ProjDj

(∇Lt(Wt−1))∥2.

The local relative orthogonality means that the input of the q-th local model space for old task j is
more orthogonal to the new task t than the global one, which indicates that updating the model along
the∇Lt(W) direction would not introduce less inference to old task j, thus mitigating the forgetting
problem. Note that Definitions 4–5 characterize the similarity based on the old model weights Wt−1,
hence they allow the task similarity detection before learning the new task t.

4.3 LOW-COMPLEXITY CONTINUAL LEARNING WITH LOCAL MODEL SPACE PROJECTION

With the local representations and the associated task similarity, we propose the following LMSP-
based orthogonal projection approach in the spirit of CUBER in Section 3 aiming to avoid forgetting
while enabling backward knowledge transfer. Specifically, based on Definitions 3 and 4, we have
these following regimes:

Regime 1 (Forget Mitigation): For a new task t’s layer l, if ∥Proj
K

(q)
h Dl

j
(∇Lt(W

l
t−1))∥2 <

λ1∥∇Lt(W
l
t−1)∥2, we say the q-th local model of old task j falls in Regime 1. Note that in

this case, since task t and task j(q) are relatively orthogonal, we update the model in the direction of
orthogonal projection to avoid forgetting:

∇Lt(W
l)← ∇Lt(W

l)− Proj
K

(q)
h Dl

j
(∇Lt(W

l)). (5)

Regime 2 (Forward Knowledge Transfer): For a new task t’s layer l, if it holds that
∥Proj

K
(q)
h Dl

j
(∇Lt(W

l
t−1))∥2 ≥ λ1∥∇Lt(W

l
t−1)∥2 and ⟨∇L(q)

j (W
l,(q)
j ),∇Lt(W

l
t−1)⟩ <

λ2∥∇L(q)
j (W

l,(q)
j )∥2∥∇Lt(W

l
t−1)∥2, we say the q-th local model of old task j falls into Regime 2.

In this case, since task t and task j(q) are strongly correlated on gradient norm projection but nega-
tively correlated on gradient direction, we still update the model on the orthogonal projection and use
a scalar matrix Q to facilitate forward knowledge similar to the idea in (Lin et al., 2022b):

∇Lt(W
l)← ∇Lt(W

l)− Proj
K

(q)
h Dl

j
(∇Lt(W

l)), (6)

Q
l,(q)
j,t ← Q

l,(q)
j,t − β∇QLt(W

l − Proj
K

(q)
h Dl

j
(Wl)−WlS

l,(q)
j Q

l,(q)
j,t S

l,(q)
j

⊤
).

Regime 3 (Backward Knowledge Transfer): For a new task t’s layer l, if it holds that
∥Proj

K
(q)
h Dl

j
(∇Lt(W

l
t−1))∥2 ≥ λ1∥∇Lt(W

l
t−1)∥2 and ⟨∇L(q)

j (W
l,(q)
j ),∇Lt(W

l
t−1)⟩ ≥

λ2∥∇L(q)
j (W

l,(q)
j )∥2∥∇Lt(W

l
t−1)∥2, we say the q-th local model of old task j falls into Regime 3.
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Algorithm 1 Efficient Continual Learning with Local Model Space Projection (LMSP)

1: Input: task sequence T = {t}Tt=0;
2: Learn first j ∈ [0, t− 1] task using vanilla stochastic gradient descent;
3: for each old task j do
4: Sample m anchor point
5: Extract basis Sl,(q)

j for each local model space q using the learnt model Wj

6: end for
7: for each new task t do
8: Calculate gradient∇Lt(Wt−1);
9: Evaluate the local sufficient projection and local positive correlation conditions for layer-wise

correlation computation to determine its membership in Reglt,1, Reglt,2 or Reglt,3;
10: for k = 1, 2,... do
11: Update the model and scaling matrices by solving Eq. (7);
12: end for
13: end for
14: Output: The learnt model Wt, scaling matrices {Ql,(q)

j,t }l,j(q)∈Regl
t,3

⋃
Regl

t,3
;

In this case, since task t and task j(q) are positively correlated in both norm and direction, updat-
ing the model directly along with ∇Lt(W

l) could not only lead to a better model for continual
learning, but also improve the performance of old task j. Since the weight projection is frozen, i.e.,
Proj

K
(q)
h Dl

j
(Wl

t−1) = Proj
K

(q)
h Dl

j
(Wl

j), we update the model as follows:

Wl ←Wl − α∇[Lt(W
l) + θ∥Proj

K
(q)
h Dl

j
(Wl −Wl

t−1)∥].

In summary, the optimization problem for learning a new task t can be written as follows:

min
W,{Ql,(q)

j,t }
l,j(q)∈Reglt,3

⋃
Reglt,3

Lt({W̃
l
}l) + θ

∑
l

∑
j(q)∈Regl

t,3

∥Proj
K

(q)
h Dl

j
(Wl −Wl

t−1)∥, (7)

s.t. W̃
l
=Wl +

∑
j(q)∈Regl

t,2

⋃
j(q)∈Regl

t,3

[WlS
l,(q)
j Q

l,(q)
j,t S

l,(q)
j

⊤
− Proj

K
(q)
h Dl

j
(Wl)],

∇Lt(W
l) =∇Lt(W

l)−
∑

j(q)∈Regl
t,1

⋃
j(q)∈Regl

t,2

Proj
K

(q)
h Dl

j
(∇Lt(W

l)).

Since task similarity is calculated before learning the new task t, we first determine the regimes for
different local model space from old task j, and then directly update the model for tasks in Regime 3
while using orthogonal projection to preserve the knowledge for the rest. The scaled weight projection
is used for old tasks in both Regime 2 and Regime 3 to facilitate forward knowledge transfer. The
overview of our LMSP-based efficient continual learning framework is described in Algorithm 1.

4.4 THEORETICAL PERFORMANCE ANALYSIS

In this subsection, we will establish the convergence rate and backward knowledge transfer of our pro-
posed LMSP-based orthogonal projection approach. Without loss of generality, consider the scenario
of learning two consecutive tasks 1 and 2. Note that since (Lin et al., 2022a) has already conducted the-
oretical analysis for the vanilla GD-type update (cf. Rule #2 in Lin et al. (2022a)), which is also appli-
cable in our work, we will only focus on the major difference in our work, which lies in the analysis for
the local and global orthogonal-projection-based updates. For simplicity, considering the scenario with
a sequence of two tasks 1 and 2. Let F(W) = L(W,D1) + L(W,D2), g1(W) = ∇WL(W,D1)
and g2(W) = ∇WL(W,D2). Given ḡ(W(k)) = g(W(k)) − Proj

K
(q)
h Dj

(g(W(k))) as the
gradients for the local orthogonal-projection-based updates in Eq. (5) as well as Eq. (6), and
g̈(W(k)) = g(W(k)) − ProjDj

(g(W(k))) as the gradients for the global orthogonal-projection-
based updates in Eq. (1) as well as Eq. (2), we denote step k ∈ [0,K − 1] and the model learned
parameters for task 1 W1 = W(0) as the initialization of the new task model weights. We first state
our major convergence rate result for orthogonal-projection-based update as follows:
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Theorem 1. Suppose loss L is B-Lipschitz and H
2 -smooth. Let α ≤ min{ 1

H , γ∥ḡ1(W
(0)∥

HBK } and

λ1 ≥
√
1− 2 2∥ḡ2(W

(0))∥−∥ḡ1(W
(0))∥

γ2∥ḡ1(W
(0)∥ for some γ ∈ (0, 1). We have the following results:

(1) if L is convex, the orthogonal-projection-based update in Regimes 1 and 2 for task 2 converges to
the optimal model W⋆ = argminF(W);

(2) if L is non-convex, the orthogonal-projection-based update in Regimes 1 and 2 for task 2 converges
to the first order stationary point, i.e., mink ∥∇F(W(k)∥2 ≤ 2

αK

∑K−1
k=0 [F(W(k)) − F(W⋆)] +

[2+γ2(5−λ2
1)]

2 ∥ḡ1(W
(0))∥2 + 4∥g1(W

(0))∥2 + 4∥g2(W
(0))∥2.

Theorem 1 characterizes the convergence of the joint objective function F(W) when updating the
model with orthogonal-projection-based updates in the convex setting, as well as the convergence to
a first-order stationary point in the non-convex setting when the q-th local model of task 1 and task 2
satisfy the local sufficient projection definition with certain λ1. Hence, it finally benefits the joint
learning of task 1 and 2. The proof of Theorem 1 is relegated to Appendix A due to space limitation.
The next result establishes the backward knowledge transfer of our proposed CL approach:

Theorem 2. Suppose loss L is B-Lipschitz and H
2 -smooth. We have the following results:

(1) Let Ws and Wc be the model parameters after one update to an initial model W by
using local and global orthogonal-projection-based updates, respectively. Suppose the new
task satisfy local relative orthogonality for a λ3 ∈ (0, 1), i.e., ∥Proj

K
(q)
h D1

(g2(W
(i)))∥2 =

λ3∥ProjD1
(g2(W

(i)))∥2 for i ∈ [0, k − 1], α ≤ min{ 1
H , γ∥ḡ1(W

(0))∥
HBK } and λ1 ≥

max{
√
1− 2 2∥ḡ2(W

(0))∥−∥ḡ1(W
(0))∥

γ2∥ḡ1(W
(0))∥ ,

√
1− (1−λ2

3)(2+αH)λ′2
1

1+2αH }, then we have F(Ws) ≤ F(Wc);

(2) Let W(k) be the k-th iterate for task 2 with the θ-regularized update in Regime 3. Suppose that
α ≤ 4∥ḡ1(W

(0))∥
HBk1.5 . It follows that L1(W

(k)) ≤ L1(W1) = L1(W
(0)).

The first claim in Theorem 2 indicates that updating the model using the local orthogonal-projection-
based updates achieves lower loss value than the global orthogonal-projection-based updates when
the q-th local model of task 1 and task 2 satisfy the sufficient projection with some λ1 and the local
relative orthogonality in Definition 5 with some λ3. The second claim in Theorem 2 suggests that the
local orthogonal-projection-based update results in a better model for task 1 with respect to L1. The
proofs of Theorem 2 is also relegated to Appendix B due to space limitation.

5 NUMERICAL RESULTS

1) Datasets: We evaluate the performance of our LMSP on four public datasets for CL: (1) Permuted
MNIST (LeCun et al., 2010); (2) CIFAR-100 Split (Krizhevsky et al., 2009); (3) 5-Datasets (Lin
et al., 2022a;b); and (4) MiniImageNet (Vinyals et al., 2016). Due to space limitation, the detailed
information of these datasets is relegate to Appendix D.

2) Baseline Methods: We compare our LMSP method with the following baseline methods:
(1) EWC (Kirkpatrick et al., 2017b): EWP adopts the Fisher information matrix for weights im-
portance evaluation. (2) HAT (Serra et al., 2018): HAT preserves the knowledge of an old task by
learning a hard attention mask; (3) Orthogonal Weight Modulation (OWM) (Zeng et al., 2019): OWM
projects the gradient of an new task to the orthogonal direction of the input subspace of an old task
by learning a projector matrix; (4) Gradient Projection Memory (GPM) Saha et al. (2021): GPM first
stores the basis of the input subspace of old tasks, and then use the gradient projection orthogonal
to the subspace spanned by these stored bases to update the model; (5) TRGP (Lin et al., 2022b):
TRGP uses a scaled weight projection to facilitate the forward knowledge transfer from related old
tasks to the new task; (6) CUBER Lin et al. (2022a): CUBER categorizes the task correlation as
strong projection and positive correlation. (7) Averaged GEM (A-GEM) (Chaudhry et al., 2018):
A-GEM stores and incorporate old tasks’ data in computing gradients for the new task’s learning;
(8) Experience Replay with Reservoir sample (ER-Res) Chaudhry et al. (2019a): ER-Res uses a small
episodic memory to store old task samples to address the forgetting problem; and (9) Multitask (Saha
et al., 2021): Multitask jointly learns all tasks once with a single network using all datasets.
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Table 1: The ACC and BWT performance comparisons between LMSP (ours) and baselines.

Method PMNIST CIFAR-100 Split 5-Dataset MiniImageNet
ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%)

Multitask 96.70 - 79.58 - 91.54 - 69.46 -

OWM 90.71 -1 50.94 -30 - - - -
EWC 89.97 -4 68.80 -2 88.64 -4 52.01 -12
HAT - - 72.06 0 91.32 -1 59.78 -3
A-GEM 83.56 -14 63.98 -15 84.04 -12 57.24 -12
ER-Res 87.24 -11 71.73 -6 88.31 -4 58.94 -7
GPM 93.91 -3 72.48 -0.9 91.22 -1 60.41 -0.7
TRPG 96.26 -1.01 74.98 -0.15 92.41 -0.08 64.46 -0.89
CUBER 97.04 -0.11 75.29 0.14 92.85 -0.13 63.67 0.11
LMSP 97.48 0.16 74.21 0.94 93.78 0.07 64.2 1.55
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Figure 1: Ablation studies on rank and number of anchor points.

3) Evaluation Metrics: We use the following two metrics to evaluate the learning performance of
the baseline models and our model: (1) Accuracy (ACC), which is the final averaged accuracy over
all tasks; (2) Backward transfer (BWT), which is the averaged accuracy change of each task after
learning the new task. ACC = 1

T

∑T
i=1 AT,i and BWT = 1

T−1

∑T−1
i=1 (AT,i −Ai,i), where Ai,j is

the testing accuracy of task j after learning task i.

4) Experimental Results: We can see from Table 1 that our LMSP method outperforms other
baseline methods in both ACC and BWT. It is worth noting that the BWT performance in our method
is generally better than CUBER. To understand the efficacy of the proposed techniques, we further
conduct ablation studies. We show the effects with different rank values and number of anchor
points for our approach in Fig. 1. Due to space limitation, we relegate the ablation study results with
different kernel types to the appendix E.

4-1) Effect of Low Rank: Fig. 1(a)(c) shows the results of our method using different low rank value r.
We can see that, as expected, the model’s performance becomes better when the rank becomes higher.
In general, a higher rank value implies less information loss during the bases construction. Further,
as the rank value becomes sufficiently high, the performance improvement becomes insignificant
since most of the information has already been included.

4-2) Effect of Anchor Point Number: Fig. 1(b)(d) illustrates the performance of our LMSP method with
a different number of anchor points. We can see that more anchor points leads to better performance
since more candidate old tasks are generated, thus it would be easier to find more correlated old tasks
with the new task. However, as the number of anchor points increases, the computation cost also
increases correspondingly, which implies a trade-off between performance and cost.

6 CONCLUSION

In this paper, we proposed a new efficient orthogonal-projection-based continual learning strategy
based on local model space projection (LMSP), which not only reduces the complexity of basis
computation, but also facilitates forward and backward knowledge transfers. We conducted theoretical
analysis to show that the new task’s performance could benefit from the local old tasks more than just
using the global old task under certain circumstances. Our extensive experiments on public datasets
demonstrated the efficacy of our approach. Future work includes deploying our efficient CL method
to some popular deep learning structures such as transformers and LLMs, and extending our approach
to more general CL settings.
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A PROOF OF THEOREM 1

Proof. For a H
2 -smooth loss function L, it can be easily shown that F is H-smooth. (1) For any

k ∈ [0,K], we can have:

F(W(k+1)) ≤ F(W(k)) +∇F(W(k))⊤(W(k+1) −W(k)) +
H

2
∥W(k+1) −W(k)∥2

= F(W(k)) + (g1(W
(k)) + g2(W

(k)))⊤(−αḡ2(W
(k))) +

α2H

2
∥ḡ2(W

(k))∥2

= F(W(k))− [α− α2H

2
]∥ḡ2(W

(k))∥2 − α⟨ḡ1(W
(k)), ḡ2(W

(k))⟩, (8)

since:

⟨g1(W
(k)), ḡ2(W

(k))⟩ = ⟨Proj
K

(q)
h D1

(g1(W
(k))), ḡ2(W

(k))⟩+ ⟨ḡ1(W
(k)), ḡ2(W

(k))⟩, (9)

⟨g2(W
(k)), ḡ2(W

(k))⟩ = ⟨Proj
K

(q)
h D1

(g2(W
(k))), ḡ2(W

(k))⟩+ ⟨ḡ2(W
(k)), ḡ2(W

(k))⟩, (10)

and:

⟨Proj
K

(q)
h D1

(g1(W
(k))), ḡ2(W

(k))⟩ = 0, (11)

⟨Proj
K

(q)
h D1

(g2(W
(k))), ḡ2(W

(k))⟩ = 0. (12)

For the term ⟨ḡ2(W
(k)), ḡ2(W

(k))⟩, it follows that:

⟨ḡ1(W
(k)), ḡ2(W

(k))⟩
=⟨ḡ1(W

(k))− ḡ1(W
(0)) + ḡ1(W

(0)), ḡ2(W
(k))⟩

=⟨ḡ1(W
(k))− ḡ1(W

(0)), ḡ2(W
(k))⟩+ ⟨ḡ1(W

(0)), ḡ2(W
(k))⟩

=⟨ḡ1(W
(k))− ḡ1(W

(0)), ḡ2(W
(k))⟩+ ⟨ḡ1(W

(0)), ḡ2(W
(k))− ḡ2(W

(0))⟩+ ⟨ḡ1(W
(0)), ḡ2(W

(0))⟩.
(13)

Considering

2⟨ḡ1(W
(k))− ḡ1(W

(0)), ḡ2(W
(k))⟩+ ∥ḡ1(W

(k))− ḡ1(W
(0))∥2 + ∥ḡ2(W

(k))∥2

=∥ḡ1(W
(k))− ḡ1(W

(0)) + ḡ2(W
(k))∥2 ≥ 0, (14)

we have:

⟨ḡ1(W
(k))− ḡ1(W

(0)), ḡ2(W
(k))⟩ ≥ −1

2
∥ḡ1(W

(k))− ḡ1(W
(0))∥2 − 1

2
∥ḡ2(W

(k))∥2, (15)

and similarly:

⟨ḡ1(W
(0)), ḡ2(W

(k))− ḡ2(W
(0))⟩ ≥ −1

2
∥ḡ2(W

(k))− ḡ2(W
(0))∥2 − 1

2
∥ḡ1(W

(0))∥2. (16)

Combining Eq.(13), Eq.(15) and Eq.(16) gives a lower bound on ⟨ḡ1(W
(k)), ḡ2(W

(k))⟩, i.e.,

⟨ḡ1(W
(k)), ḡ2(W

(k))⟩

≥ − 1

2
∥ḡ1(W

(k))− ḡ1(W
(0))∥2 − 1

2
∥ḡ2(W

(k))∥2

− 1

2
∥ḡ2(W

(k))− ḡ2(W
(0))∥2 − 1

2
∥ḡ1(W

(0))∥2 + ⟨ḡ1(W
(0)), ḡ2(W

(0))⟩

≥ − H2(1− λ2
1)

8
∥W(k) −W(0)∥2 − 1

2
∥ḡ2(W

(k))∥2

− H2(1− λ2
1)

8
∥W(k) −W(0)∥2 − 1

2
∥ḡ1(W

(0))∥2 + ⟨ḡ1(W
(0)), ḡ2(W

(0))⟩

13
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≥− H2(1− λ2
1)

4
∥W(k) −W(0)∥2 − 1

2
∥ḡ2(W

(k))∥2 − 1

2
∥ḡ1(W

(0))∥2 + ⟨ḡ1(W
(0)), ḡ2(W

(0))⟩,
(17)

where the second inequality is true due to the smoothness of the loss function and:

∥ḡ1(W
(k))− ḡ1(W

(0))∥2 = ∥g1(W
(k))− g1(W

(0))∥2 − ∥Proj
K

(q)
h D1

(g1(W
(k))− g1(W

(0)))∥2

≤ (1− λ2
1)∥g1(W

(k))− g1(W
(0))∥2, (18)

as well as

∥ḡ2(W
(k))− ḡ2(W

(0))∥2 ≤ (1− λ2
1)∥g2(W

(k))− g2(W
(0))∥2. (19)

Based on the local orthogonal-projection-based update, it can be seen that:

W(k) = W(0) − α

k−1∑
i=0

ḡ2(W
(i)). (20)

Therefore, continuing with Eq.(8), we have:

F(W(k+1))

≤F(W(k))− [α− α2H

2
]∥ḡ2(W

(k))∥2 − α⟨ḡ1(W
(k)), ḡ2(W

(k))⟩

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W

(k))∥2 + α3H2(1− λ2
1)

4
∥
k−1∑
i=0

ḡ2(W
(i))∥2 + α

2
∥ḡ1(W

(0))∥2

− α∥ḡ1(W
(0))∥∥ḡ2(W

(0))∥, (21)

where the last term is based on the definition of projection. Since

α ≤ γ∥ḡ1(W
(0))∥

HBK
≤ γ∥ḡ1(W

(0))∥
H∥

∑k−1
i=0 ḡ2(W

(i))∥
, (22)

thus

1

2
∥ḡ1(W

(0))∥2 + α2H2(1− λ2
1)

4
∥
k−1∑
i=0

ḡ2(W
(i))∥2

≤1

2
∥ḡ1(W

(0))∥2 + γ2(1− λ2
1)∥ḡ1(W

(0))∥2

4H2∥
∑k−1

i=0 ḡ2(W
(i))∥2

H2∥
k−1∑
i=0

ḡ2(W
(i))∥2

=
2 + γ2(1− λ2

1)

4
∥ḡ1(W

(0))∥2. (23)

Therefore, we can obtain that:

F(W(k+1))

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W

(k))∥2 + α[2 + γ2(1− λ2
1)]

4
∥ḡ1(W

(0))∥2 − α∥ḡ1(W
(0))∥∥ḡ2(W

(0))∥

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W

(k))∥2

≤F(W(k)), (24)

where the second inequality is true because:

λ1 ≥

√
1− 2

2∥ḡ2(W
(0))∥ − ∥ḡ1(W

(0))∥
γ2∥ḡ1(W

(0))∥

=⇒ α[2 + γ2(1− λ2
1)]

4
∥ḡ1(W

(0))∥2 − α∥ḡ1(W
(0))∥∥ḡ2(W

(0))∥ ≤ 0. (25)

14
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This sufficient decrease of the objective function value indicates that the optimal F(W⋆) can be
obtained for convex loss functions.

(2) For a non-convex loss function L, as ∇F(W(k)) = g1(W
(k)) + g2(W

(k)) we have Eq.(24):

F(W(k+1))

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W

(k))∥2 + α[2 + γ2(1− λ2
1)]

4
∥ḡ1(W

(0))∥2 − α∥ḡ1(W
(0))∥∥ḡ2(W

(0))∥

− α

2
[∥∇F(W(k))∥2 − ∥g1(W

(k))∥2 − ∥g2(W
(k))∥2 − 2⟨g1(W

(k)), g2(W
(k))⟩]

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W

(k))∥2 + α[2 + γ2(1− λ2
1)]

4
∥ḡ1(W

(0))∥2 − α∥ḡ1(W
(0))∥∥ḡ2(W

(0))∥

− α

2
[∥∇F(W(k))∥2 − 2∥g1(W

(k))∥2 − 2∥g2(W
(k))∥2]. (26)

From Eq.(20) we have

∥g1(W
(k))∥2 = ∥g1(W

(k))− g1(W
(0)) + g1(W

(0))∥2 ≤ 2∥g1(W
(k))− g1(W

(0))∥2 + 2∥g1(W
(0))∥2

≤ α2H2

2
∥
k−1∑
i=0

g2(W
(i))∥2 + 2∥g1(W

(0))∥2

≤ γ2

2
∥ḡ1(W

(0))∥2 + 2∥g1(W
(0))∥2, (27)

and

∥g2(W
(k))∥2 = ∥g2(W

(k))− g2(W
(0)) + g2(W

(0))∥2 ≤ 2∥g2(W
(k))− g2(W

(0))∥2 + 2∥g2(W
(0))∥2

≤ α2H2

2
∥
k−1∑
i=0

g2(W
(i))∥2 + 2∥g2(W

(0))∥2

≤ γ2

2
∥ḡ1(W

(0))∥2 + 2∥g2(W
(0))∥2, (28)

where the last inequality holds as

α ≤ γ∥ḡ1(W
(0))∥

HBK
≤ γ∥ḡ1(W

(0))∥
H∥

∑k−1
i=0 g2(W

(i))∥
(29)

Therefore

F(W(k+1))

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W

(k))∥2 + α[2 + γ2(1− λ2
1)]

4
∥ḡ1(W

(0))∥2 − α∥ḡ1(W
(0))∥∥ḡ2(W

(0))∥

− α

2
∥∇F(W(k))∥2 + 2α∥g1(W

(0))∥2 + 2α∥g2(W
(0))∥2 + αγ2∥ḡ1(W

(0)∥2

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W

(k))∥2 + α[2 + γ2(5− λ2
1)]

4
∥ḡ1(W

(0))∥2 − α∥ḡ1(W
(0))∥∥ḡ2(W

(0))∥

− α

2
∥∇F(W(k))∥2 + 2α∥g1(W

(0))∥2 + 2α∥g2(W
(0))∥2. (30)

Thus,

min
k
∥∇F(W(k))∥2

≤ 1

K

K−1∑
k=0

∥∇F(W(k))∥2

≤ 2

αK

K−1∑
k=0

[F(W(k))−F(W(k+1))] +
[2 + γ2(5− λ2

1)]

2(K − 1)

K−1∑
k=1

∥ḡ1(W
(0))∥2 − 2∥ḡ1(W

(0))∥∥ḡ2(W
(0))∥
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− 1− αH

K

K−1∑
k=0

∥ḡ2(W
(k))∥2 + 4∥g1(W

(0))∥2 + 4∥g2(W
(0))∥2

≤ 2

αK
[F(W(0))−F(W⋆)] +

[2 + γ2(5− λ2
1)]

2
∥ḡ1(W

(0))∥2 + 4∥g1(W
(0))∥2 + 4∥g2(W

(0))∥2,
(31)

where the last inequality holds due to F(W⋆) ≤ F(W(K)).

B PROOF OF THEOREM 2

Proof. (1) For local orthogonal-projection-based update, we have

Ws = W − α[g2(W)− Proj
K

(q)
h D1

(g2(W))] = W − αḡ2(W). (32)

For global orthogonal-projection-based update, we have

Wc = W − α[g2(W)− ProjD1
(g2(W))] = W − αg̈2(W). (33)

Based on Eq.(8) and the smoothness of the objective function, we have an upper bound on F(Ws):

F(Ws) ≤ F(W)− [α− α2H

2
]∥ḡ2(W)∥2 − α⟨ḡ1(W), ḡ2(W)⟩, (34)

and a lower bound on F(Wc):

F(Wc) ≥ F(W) +∇F(W)⊤(Wc −W)− H

2
∥Wc −W∥2. (35)

Combining Eq.(34) and Eq.(35), we have

F(Ws)

≤F(Wc)−∇F(W)⊤(Wc −W) +
H

2
∥Wc −W∥2 − [α− α2H

2
]∥ḡ2(W)∥2 − α⟨ḡ1(W), ḡ2(W)⟩

=F(Wc)− ⟨g1(W) + g2(W),−αg̈2(W)⟩+ α2H

2
∥g̈2(W)∥2 − [α− α2H

2
]∥ḡ2(W)∥2

− α⟨ḡ1(W), ḡ2(W)⟩

=F(Wc) + α⟨g1(W), αg̈2(W)⟩+ α⟨g2(W), g̈2(W)⟩+ α2H

2
∥g̈2(W)∥2 − [α− α2H

2
]∥ḡ2(W)∥2

− α⟨ḡ1(W), ḡ2(W)⟩

=F(Wc) + [α+
α2H

2
]∥g̈2(W)∥2 − [α− α2H

2
]∥ḡ2(W)∥2 − α⟨ḡ1(W), ḡ2(W)⟩, (36)

where the last equality is true because

⟨g2(W), g̈2(W)⟩ = ⟨ProjD1
(g2(W)), g̈2(W)⟩+ ⟨g̈2(W), g̈2(W)⟩, (37)

and both g1(W) and ProjD1
(g2(W)) are orthogonal to g̈2(W). Based on Eq.(17), the last term

has:

⟨ḡ1(W), ḡ2(W)⟩

≥ − H2(1− λ2
1)

4
∥W −W(0)∥2 − 1

2
∥ḡ2(W)∥2 − 1

2
∥ḡ1(W

(0))∥2 + ⟨ḡ1(W
(0)), ḡ2(W

(0))⟩.
(38)

Suppose that W is the model update at n-th iteration where n ≤ K. For the local orthogonal-
projection-based update,

∥W(k) −W(0)∥2 = α2∥
n∑

i=0

ḡ2(W
(i))∥2
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≤ γ2∥ḡ1(W
(0))∥

H2B2K2
n

n∑
i=0

∥ḡ2(W
(i))∥2

≤ γ2n2∥ḡ1(W
(0))∥2

H2K2

≤ γ2∥ḡ1(W
(0))∥2

H2
, (39)

and similarly for global orthogonal-projection-based update, we also have

∥W(k) −W(0)∥2 ≤ γ2∥ḡ1(W
(0))∥2

H2
. (40)

Therefore, continuing with Eq.(38), we obtain:

⟨ḡ1(W
(k)), ḡ2(W

(k))⟩

≥ − 2 + γ2(1− λ2
1)

4
∥ḡ1(W

(0))∥2 + ∥ḡ1(W
(0))∥∥ḡ2(W

(0))∥ − 1

2
∥ḡ2(W)∥2

≥− 1

2
∥ḡ2(W)∥2, (41)

where the last inequality holds due to Eq.(25). Continuing with Eq.(36), we get:

F(Ws) ≤ F(Wc) + [α+
α2H

2
]∥g̈2(W)∥2 − [

α

2
− α2H

2
]∥ḡ2(W)∥2. (42)

Based on assumption, we have

∥Proj
K

(q)
h D1

(g2(W))∥2 = λ3∥ProjD1
(g2(W))∥2 ≤ ∥ProjD1

(g2(W))∥2, (43)

thus

∥ḡ2(W)∥2 = ∥g̈2(W)∥2 + ∥ProjD1
(g2(W))∥2 − ∥Proj

K
(q)
h D1

(g2(W))∥2

= ∥g̈2(W)∥2 + (1− λ2
3)∥ProjD1

(g2(W))∥2. (44)

Combining Eq.(42) and Eq.(44) on ∥g̈2(W)∥2, we have

F(Ws) ≤ F(Wc) + [(α+
α2H

2
)− (

α

2
− α2H

2
)]∥ḡ2(W)∥2 − (1− λ2

3)[α+
α2H

2
]∥ProjD1

(g2(W))∥2

≤ F(Wc) + [(
α

2
+ α2H)(1− λ2)]∥g2(W)∥2 − (1− λ2

3)[α+
α2H

2
]λ′

1
2∥g2(W)∥2,

(45)

where the last inequality holds with definition 1 that ∥ProjD1
(g2(W))∥ ≥ λ′

1∥g2(W)∥ and

∥g2(W)∥2 = ∥Proj
K

(q)
h D1

(g2(W)) + ḡ2(W)∥2

= ∥Proj
K

(q)
h D1

(g2(W))∥2 + ∥ḡ2(W)∥2

≥ λ2
1∥g2(W)∥2 + ∥ḡ2(W)∥2. (46)

Considering

λ1 ≥

√
1− (1− λ2

3)(2 + αH)λ′2
1

1 + 2αH

=⇒ α(1− λ2
1)(1 + 2αH) ≤ α(1− λ2

3)(2 + αH)λ′
1
2
, (47)

we get F(Ws) ≤ F(Wc).

(2) Base on the smoothness of the loss function, we have

L1(W
(k)) ≤ L1(W

(0)) + ⟨g1(W
(0)),W(k) −W(0)⟩+ H

4
∥W(k) −W(0)∥2
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= L1(W
(0)) + ⟨g1(W

(0)),−α
k−1∑
i=0

ḡ2(W
(i))⟩+ α2H

4
∥
k−1∑
i=0

ḡ2(W
(i)∥2

= L1(W
(0))− α

k−1∑
i=0

⟨ḡ1(W
(0)), ḡ2(W

(i))⟩+ α2H

4
∥
k−1∑
i=0

ḡ2(W
(i)∥2

≤ L1(W
(0))− α∥ḡ1(W

(0))∥[
k−1∑
i=0

∥ḡ2(W
(i))∥] + α2Hk

4

k−1∑
i=0

∥ḡ2(W
(i)∥2. (48)

Since α ≤ 4∥ḡ1(W
(0))∥

HBk1.5 , we have

αHk

4

k−1∑
i=0

∥ḡ2(W
(i)∥2 ≤ ∥ḡ1(W

(0))∥
B
√
k

k−1∑
i=0

∥ḡ2(W
(i)∥2

≤
∥ḡ1(W

(0))∥(
∑k−1

i=0 ∥ḡ2(W
(i)∥2)√∑k−1

i=0 ∥ḡ2(W
(i)∥2

≤ ∥ḡ1(W
(0))∥

√√√√k−1∑
i=0

∥ḡ2(W
(i)∥2

≤ ḡ1(W
(0))∥[

k−1∑
i=0

∥ḡ2(W
(i)∥]. (49)

Therefore, L1(W
(k)) ≤ L1(W

(0))

C POPULAR KERNEL FUNCTIONS

We list the popular kernel functions in Table 2. The distance d can be computed by some standard
distance measures such as ℓ2 or cosine similarity. For example, for a global representation matrix
Rl

j = [rlj,1, ...r
l
j,Nj ] ∈ RM×Nj

for layer l task j, the distance between a and b on space [N j ] is

d(a, b) = arccos(
⟨rlj,a,r

l
j,b⟩

∥rlj,a∥·∥rlj,b∥
), where rlj,a, r

l
j,b are the a-th and b-th rows of the matrix Rl

j .

Table 2: Popular kernel functions and their efficiencies relative to Epanechnikov kernel.
Kernel Type Kernel Function Efficiency(%)

Uniform Kh(s1, s2) ∝ 1[d(s1, s2) < h] 92.9
Logistic Kh(s1, s2) ∝ 1

exp(d(s1,s2)/h)+2+exp(−d(s1,s2)/h) 88.7
Gaussian Kh(s1, s2) ∝ 1√

2π
exp(− 1

2h
−2d(s1, s2)

2) 95.1
Triangular Kh(s1, s2) ∝ (1− d(s1,s2)/h)1[d(s1, s2) < h] 98.6
Cosine Kh(s1, s2) ∝ π

4 cos πd(s1,s2)
2h 1[d(s1, s2) < h] 99.9

Epanechnikov Kh(s1, s2) ∝ 3
4 [1− (d(s1,s2)/h)2]1[d(s1, s2) < h] 100

Silverman Kh(s1, s2) ∝ 1
2 exp(−

|d(s1,s2)/h|√
2

) · sin( |d(s1,s2)/h|√
2

+ π
4 ) N/A

D DATASETS INFORMATION

We evaluate the performance of our LMSP on four public datasets for CL: (1) Permuted MNIST (Le-
Cun et al., 2010): (PMNIST) is a variant of the MNIST dataset LeCun et al. (2010), where the
input pixels are randomly permuted. Following (Lopez-Paz & Ranzato, 2017; Saha et al., 2021),
the dataset is divided into 10 tasks by different permutations and each task contains 10 classes;
(2) CIFAR-100 Split (Krizhevsky et al., 2009): the CIFAR-100 dataset (Krizhevsky et al., 2009)
is divided into 10 different tasks, and each task is a 10-way multi-class classification problem; (3)

18
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5-Datasets (Lin et al., 2022a;b): we follow the setting of (Lin et al., 2022a;b) to use a sequence of 5
datasets, which are CIFAR-10, MNIST, SVHN (Netzer et al., 2011), not-MNIST (Bulatov, 2011),
Fashion MNIST (Xiao et al., 2017), and the classification problem on each dataset is an individual
task; and (4) MiniImageNet (Vinyals et al., 2016): the MiniImageNet dataset (Vinyals et al., 2016) is
divided into 20 tasks, and each task includes 5 classes.

E ABLATION STUDIES ON KERNEL TYPE

Figure 2 shows the influence of different kernels. We adopted five different kernels in our model and
the result shows that the Gaussian kernel reach the best performance. Beside, the kernel effect is
not that obvious and the overall performance are similar thus we could choose the simplest one in
practise to reduce the computation.
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Figure 2: Ablation studies on kernel type.

F RESULTS OF FORWARD KNOWLEDGE TRANSFER .

We show the results of forward knowledge transfer(FWT) in the Table 3. We compared the FWT
performance of our LMSP approach to those of the GPM, TRGP, and CUBER methods, which are
the most related work to our paper. The value for GPM is zero because we treat GPM as the baseline
and consider the relative FWT improvement over GPM. We compare them using four public datasets.
We can see from the table that the FWT performance of our LMSP approach beats those of the
TRGP and CUBER (two most related and state-of-the-art methods) on the PMNIST, Cifar-100 Split,
and 5-Dataset datasets, and is comparable to those of the TRGP and CUBER on the MiniImageNet
dataset. Clearly, this shows that the good BWT performance of our LMSP method is not achieved at
the cost of sacrificing the FWT performance.

Table 3: Comparison of FWT among GPM, TRGP, CUBER and LMSP. The value for GPM is zero
because we treat GPM as the baseline and consider the relative FWT improvement over GPM.

FWT (%) PMNIST Cifar-100 Split 5-Dataset MiniImageNet

GPM 0 0 0 0
TRPG 0.18 2.01 1.98 2.36
CUBER 0.80 2.79 1.96 3.13
LMSP(ours) 0.92 2.89 2.43 2.79

G RESULTS OF TRAINING TIME.

We show the results of forward knowledge transfer(FWT) in Table 4. As shown in the table, we
summarize the normalized wall-clock training times of our LMSP algorithm and several baselines
with respect to the wall-clock training time of GPM (additional wall-clock training time results can
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also be found in (Saha et al., 2021)). Here, we set the rank r to 5 for each local model. We can see
that the wall-clock time of our LMSP method with only one anchor point can already reduce the total
wall-clock training time of CUBER by 86% on average. Moreover, thanks to the fact that our LMSP
approach endows distributed implementation that can run different local models in a parallel fashion,
the total walk-clock training time with m anchor points is similar to the single-anchor-point case
above.

Table 4: Training time comparison on CIFAR-100 Split, 5-Datasets and MiniImageNet. Here the
training time is normalized with respect to the value of GPM. Please refer (Saha et al., 2021) for
more specific time.

Training time OWM EWC HAT A-GEM ER-Res GPM TRPG CUBER LMSP
Cifar-100 Split 2.41 1.76 1.62 3.48 1.49 1 1.65 1.86 0.24
5-Dataset - 1.52 1.47 2.41 1.40 1 1.21 1.55 0.42
MiniImageNet - 1.22 0.91 1.79 0.82 1 1.34 1.61 0.18
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