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ABSTRACT

Nocturnal hypoglycemia is frequent in children with type 1 diabetes (T1D), day-
time physical activity being the most important risk factor. The risk for late postex-
ercise hypoglycemia depends on various factors and is difficult to anticipate. The
availability of continuous glucose monitoring (CGM) enabled the development of
various machine learning approaches for nocturnal hypoglycemia prediction for
different prediction horizons. Studies focusing on nocturnal hypoglycemia pre-
diction in children are scarce, and none, to the authors’ best knowledge, investi-
gate the effect of previous physical activity. In this work, continuous glucose and
physiological data from a sports day camp for children with T1D were input for
logistic regression, random forest, and deep neural network models. Results were
evaluated using the F2 score, adding more weight to misclassifications as false
negatives. Data of 13 children (4 female, mean age 11.3 years) were analyzed.
Nocturnal hypoglycemia occurred in 18 of a total included 66 nights. Random
forest achieved best results for nocturnal hypoglycemia prediction. Predicting the
risk of nocturnal hypoglycemia for the upcoming night at bedtime is clinically
highly relevant, as it allows appropriate actions to be taken - to lighten the burden
for children with T1D and their families.

1 INTRODUCTION

Type 1 Diabetes (T1D) affects more than 8 million people worldwide, 1.5 million of them being
younger than 20 years of age (Gregory et al., 2022; Patterson et al., 2019). Low blood sugar (hy-
poglycemia) is the most feared and common acute complication of T1D (Nordfeldt & Ludvigsson,
2005; Glocker et al., 2022), and the constant risk of hypoglycemia represents a great burden, in par-
ticular for children and their caregivers (Patton et al., 2020). Asymptomatic nocturnal hypoglycemia
is frequent, and episodes often are prolonged for several hours with the most important risk factor
being physical activity during the day (Bachmann et al., 2016; Jaggers et al., 2019).

With the current state of knowledge, it is challenging to provide the correct personalized recom-
mendations to prevent exercise-associated hypoglycemia, in particular, late-onset post-exercise hy-
poglycemia. Developing preventive measures to avoid such nocturnal hypoglycemia would be de-
sirable and could increase the children’s safety overnight and quality of life of the children and
caregivers.

Studies focusing on nocturnal hypoglycemia prediction in children are scarce (Dave et al., 2021;
Duckworth et al., 2022; Sampath et al., 2016; Klimontov & Myakina, 2017). In two studies, noctur-

∗Correspondence to: heike.leutheuser@fau.de; ∗∗ These authors share last authorship.

1



Accepted as a Workshop Paper at TS4H@ICLR2024

nal hypoglycemia could be predicted with good sensitivity, thus only over max. 60 min and not in
the context of physical activity (Dave et al., 2021; Duckworth et al., 2022).

In this study, we focus on predicting nocturnal hypoglycemia in children with T1D using continuous
glucose monitoring (CGM) and physiological data acquired during day and night. We incorporate
the children’s particularities like longer sleep duration, focusing on the entire night (prediction hori-
zon of 9 hours), or investigating the effect of previous physical activity. Second, as the children
performed various structured physical activities during the day in the dataset that we are consider-
ing, we want to analyze if including data from a wearable device improves the outcomes. Third, as
more advanced machine learning techniques such as deep learning are currently underrepresented
in literature, we want to investigate the performances of Deep Neural Network (DNN) models like
Recurrent Neural Networks (RNNs) and Multilayer Perceptron (MLP) compared to the most used
approaches in literature like logistic regression and random forest.

2 METHODS

2.1 DATA

Data of children with T1D participating in a one-week sports day camp were considered (Marx et al.,
2023). Additionally, to CGM devices, the children were equipped with a physiological wearable
sensor (Everion, Biofourmis, Boston, US).

Hardware The hardware consisted of a glucose sensor (intermittently scanned continuous glu-
cose monitoring (isCGM), Freestyle libre 2 (Abbott Diabetes Care Inc., Alameda, US) or a CGM,
Dexcom (Dexcom, San Diego, US) or Guardian 3 (Minimed Medtronic, Northridge, US)) and a
physiological wearable sensor (Everion, Biofourmis, Boston, US). The glucose data were saved
every 5min (CGM) or every 15min (isCGM). The glucose measurements were completed with
self-monitoring blood glucose (SMBG) that were manually noted in a logbook. Additionally to
sensor glucose measurements, SMBG were performed hourly during exercise sessions, in each case
of symptoms of hypoglycemia, and in case of sensor glucose values below 3.9mmol/l or above
15mmol/l. The Everion sensor is a CE-certified research device and captured 22 vital signs in
real-time. Additionally, an associated quality measure was available for seven vital signs. In this
work, we selected ten vital signs—and their associated quality measures, if available—for further
processing. The ten vital signs were Activity classification, Blood pulse wave, Core temperature,
Galvanic Skin Response electrode, Heart rate, Heart rate variability, Motion activity, Number of
steps, Perfusion index, and Respiration rate. The sampling rate of the vital signs was 1Hz. The
Everion sensor was attached to the upper arm (right or left) with an appropriately sized armband.

Participants 17 children with T1D were recruited for the study. Inclusion criteria were T1D for
at least 6 months, age 7 to 16 years, insulin treatment consisting of multiple daily injections or
continuous subcutaneous insulin infusion, and written informed consent by the children and/or par-
ents. Exclusion criteria were medication known to affect the cardiac function or repolarization, pre-
existing cardiac disease, medically treated arterial hypertonia and hyopthyroidism, if not adequately
substituted. The responsible Ethics Committee (Ethikkommission Nordwest- und Zentralschweiz
(EKNZ), Gesuchsnummer: 2020 - 00543) approved the study.

Experimental Protocol The recruited children participated in a prospective observational study in
the setting of a one-week day camp. During the day in the camp, the children were supervised by the
pediatric endocrinologists. In the evenings and during the nights, the measurements and the logbook
were continued at home. The first study day consisted of a trip to a climbing hall. On study days two
to six, the children participated in various structured sports activities daily, divided into a 2 h session
in the morning and one in the afternoon. Insulin doses (type, time, units), carbohydrate intake, type
and duration of physical activity, and symptoms of hypoglycemia together with the SMBG were
noted in a logbook by the study team.

Preprocessing Data of four children were excluded. Reasons were dropping out of the study,
usage of a hybrid closed-loop insulin pump, and too sparse data available. Preprocessing was nec-
essary for combining the glucose sensor data with the SMBG from the logbook and for the signals
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of the Everion sensor. In case of two different glucose values at the same timestamp, sensor data
was overwritten with SMBG and the lower glucose sensor data were kept. For data from the Ev-
erion sensor, we replaced values of duplicated timestamps with their mean. For signals with an
associated quality measure, we ignored values when the quality measure was less than 50%. The
activity classes of the parameter activity classification were transferred to Metabolic Equivalent of
Task (MET) values (Table 2) (Ainsworth et al., 2011).

Class Definition Each night was assigned to either the class ’Nocturnal Hypoglycemia’ or ‘No
Nocturnal Hypoglycemia’. A hypoglycemic event was defined as either 1) a single or multiple
SMBG less than 3.9mmol/l or 2) an interval greater than 15min, in which all continuous glucose
measurements were less than 3.9mmol/l (Dave et al., 2021; Berikov et al., 2022; Danne et al.,
2017). The night as prediction horizon was defined between 10 pm to 7 am. The corresponding day
was defined with the hours before the night started, between 10 am to 10 pm addressing the fact that
the first study day started at 10 am.

2.2 ALGORITHM

The general idea of this work was to develop a classification system to answer the research question
whether nocturnal hypoglycemia can be predicted with physiological and glucose data collected
during the day.

Data Sources We used glucose measurements, the logbook, the Everion sensor, and participant
information. To obtain uniform temporal data, we set the sampling interval to 5min by aggregating
the Everion data with the respective means. All data gaps in the glucose and the physiological
data were filled with the respective mean of the corresponding data of the day. From the available
participant information, the age, weight, height, BMI, and gender (male or female) were extracted
to form the static data. With the available temporal and static data, four data set combinations were
chosen as input data for the algorithms:
1) glucose data only, 2) glucose and static data, 3) glucose and physiological data and 4) glucose,
physiological, and static data.

Baseline Models Features were engineered from the four input datasets and selected before being
the input to either logistic regression or random forest. For the glucose data, we calculated eight
features from literature (Berikov et al., 2022) to reflect glucose dynamics. These were coefficient of
variation, lability index, low blood glucose index, 1 h continuous overlapping net glycemic action,
minimal value, the difference between the last two values, acceleration over the last values, and
linear trend coefficient (Berikov et al., 2022). In addition, we calculated time series characteristics
using the Python library tsfresh. To reduce the number of features to the best 15 features, we con-
ducted a performance-based, sequential feature selection using the Python library scikit-learn. This
resulted in five different feature-data-combinations that were used for the following two baseline
classifiers: 1) Logistic regression with LASSO regularization, and 2) Random forest with 10 trees.
We decided to concentrate on these two classifiers as these are the most used algorithms in litera-
ture for hypoglycemia prediction (Zhang et al., 2023), and are also applied in the field of nocturnal
hypoglycemia prediction (Berikov et al., 2022; Dave et al., 2021).

DNN Models The four datasets were used in the following two scenarios: 1) A RNN for the tem-
poral data. The RNN included a masking layer followed by a bidirectional GRU (Cho et al., 2014)
layer, a dropout layer, a LSTM (Hochreiter & Schmidhuber, 1997) layer, and another dropout layer.
2) A RNN for the temporal data, and a MLP for the static data. Both were combined afterward. The
output of both the MLP and the RNN were concatenated and processed by an additional MLP. The
RNN included a single LSTM layer. To find the best architectures, the neural networks were subject
to hyperparameter optimization using the Hyperband algorithm (Li et al., 2017). We introduced
class weights to the loss function during training to account for the class imbalance. We used the
ReLU activation function throughout the dense layers to avoid computational complexity and van-
ishing gradients (He et al., 2015; Nair & Hinton, 2010). The tanh activation function was used for
the recurrent layers (Chung et al., 2014; Hochreiter & Schmidhuber, 1997). We used Adam as the
optimizer with a learning rate of 0.001 (Kingma & Ba, 2014; Ruder, 2016). The batch size was set
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to 1 due to the small number of samples in the dataset and the intention to counteract for overfitting
and poor generalization (Masters & Luschi, 2018).

Performance Measures and Evaluation The F2 score, giving more weight to sensitivity than to
precision (Chinchor, 1992), was used as metric on the validation set of DNN models for stopping
the training. Each machine learning model was subjected to six-fold cross-validation. In each case,
20% of the training set was subtracted to form the validation set. The shuffle and split were done in
a stratified fashion so that classes were distributed almost identically among the different sets. The
six-fold cross-validation approach was executed five times. Results are given as averages over the
five runs, averaging the mean values and the standard deviations separately.

3 RESULTS

Data of 13 children with T1D (4 female and 9 male, age 11 ± 2 years, BMI 19.8 ± kg/m2, Dia-
betes duration 4 ± 3 years, mean ± standard deviation) were used for analyzing. Of them eight
children used an isCGM device and five a CGM device. 48 nights were found without nocturnal
hypoglycemia and 18 with nocturnal hypoglycemia. Figure 3 shows the F2 scores for logistic re-
gression, random forest and the deep neural network models. Figure 3 gives specificity, sensitivity,
and precision averaged over the five runs.

4 DISCUSSION

The focus of this work was the prediction of nocturnal hypoglycemia in children with T1D. Different
feature-data-combinations were the input for the classification task using logistic regression, random
forest or DNN. Best results were obtained with time series characteristics using random forest (Fig-
ure 3). Single high values (above 80%) were reached for specificity, sensitivity, and precision for
all three models. Considering that physical activity is an important risk factor for (nocturnal) hy-
poglycemia, we would have expected a clearer inclusion of physiological parameters to be relevant
for the prediction of nocturnal hypoglycemia. It is possible that the influence of physical activity
was not optimally modeled by the Everion parameters used. Improvements for future work could be
targeted handcrafted features, with specific feature selection, for the Everion sensor.

Three studies from the literature (Parcerisas et al., 2022; Vehı́ et al., 2020; Bertachi et al., 2020)
concentrated on nocturnal hypoglycemia prediction (prediction horizon of 6 h) and included wear-
able data. Bertachi et al. (2020) received best results (78.75% median sensitivity, 82.15% median
specificity) with Support Vector Machine (SVM). Parcerisas et al. (2022) used the same dataset and
achieved with SVM a median sensitivity of 74% and a median specificity of 77% for their popu-
lation models. Vehı́ et al. (2020) used artificial neural networks and obtained a mean sensitivity of
44.0% and mean specificity of 85.9%. If we consider the differences in the studies, such as chil-

Figure 1: Mean values of the F2 scores for the overnight prediction (prediction horizon: 10 pm
to 7 am) given for logistic regression, random forest and deep neural network models. The bars
are calculated as mean values of the five runs. The error bars belong to the mean of the standard
deviation of the five runs.
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Figure 2: Mean values of Specificity, Sensitivity, and Precision for the overnight prediction (pre-
diction horizon: 10 pm to 7 am) given for logistic regression, random forest and the deep neural
network models. The bars are calculated as average values of the five runs. The error bars belong to
the mean of the standard deviation of the five runs.

dren compared to adults or longer prediction horizon, we conclude that the results in this work are
comparable to or even exceed the results in the literature.

We used data collected during a sports day camp. During the day, the children were supervised
by pediatric endocrinologists. This study setting is less controlled than an inpatient hospitalized
setting (Berikov et al., 2022; Sampath et al., 2016; Tkachenko et al., 2016). Other studies use an
even less controlled outpatient setting, where participants continue their daily routines and come to
the study center only at agreed times (Dave et al., 2021; Duckworth et al., 2022; Parcerisas et al.,
2022; Bertachi et al., 2020). The chosen study setting allows the imitation of everyday daily life
but offers opportunities for intervention and information about meals and insulin doses. Data from
a less supervised setting, including a higher number of participants, will be considered in the future.

Conclusion In this work, we utilized a dataset recorded in a structured setting to assess the risk
of nocturnal hypoglycemia associated with physical activity in children with T1D. In contrast to
previous studies we aimed for longer-term predictions up to 9 hours (the entire night). From our
point of view, the results obtained in this study are acceptable with a sensitivity of the best F2 score
close to 80%. Understanding the hypoglycemia risk for the entire upcoming “critical” night is clin-
ically relevant as it permits children and their parents to either sleep soundly or to take appropriate
action such as reducing basal insulin doses, administering additional carbohydrates, or scheduling a
nocturnal glucose measurement.
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