A Procedural World Generation Framework for
Systematic Evaluation of Continual Learning

Timm Hess, Martin Mundt, Iuliia Pliushch, Visvanathan Ramesh
Goethe University, Frankfurt am Main, Germany
hess@ccc.cs.uni-frankfurt.de
{mmundt, pliushch, vramesh}@em.uni-frankfurt.de

Abstract

Several families of continual learning techniques have been proposed to alleviate
catastrophic interference in deep neural network training on non-stationary data.
However, a comprehensive comparison and analysis of limitations remains largely
open due to the inaccessibility to suitable datasets. Empirical examination not
only varies immensely between individual works, it further currently relies on
contrived composition of benchmarks through subdivision and concatenation of
various prevalent static vision datasets. In this work, our goal is to bridge this
gap by introducing a computer graphics simulation framework that repeatedly
renders only upcoming urban scene fragments in an endless real-time procedural
world generation process. At its core lies a modular parametric generative model
with adaptable generative factors. The latter can be used to flexibly compose data
streams, which significantly facilitates a detailed analysis and allows for effortless
investigation of various continual learning schemes.

1 Introduction

In an era where deep neural networks have diffused into every conceivable application, a natural
interest in the long-standing challenge of catastrophic interference |1, 2] in continuous training has
resurfaced. Various families of approaches have emerged to alleviate this challenge of formerly
encoded representations being rapidly superseded with the arrival of novel distinct data from a non iid
data distribution continuum [2} 13} 14} 15116} 7, 18,19, [10, 1114 [12} 13} [14} [15]]. However, despite the asserted
progress, recent reviews repeatedly stress the importance of more exhaustive and realistic evaluation
(L6, 117,118 [19,120, 21,122,121} [23]]. Notably in computer vision, the majority of presently emphasized
benchmarks are contrived variants of the prevalent existing datasets [24} 25, 26} 27, 28, [29], where
individual concepts of the datasets are split into disjoint subsets and presented to the learner in
sequence, or deliberately designed to follow this trend of object and class increments [30, 31]. In
hindsight, the latter benchmark construction neglects two imperative elements. First, it disregards a
myriad of real-world continual learning scenarios, where the environment and its various conditions
can be subject of constant change. Second, the uncontrolled data acquisition process hinders insights
on a method ‘s feasibility beyond the specific empirical outcome.

We posit that generation of synthetic data through the use of parametrized generative models can
provide a remedy for the present lack of a more detailed continual learning analysis. Here, the crucial
realization is that catastrophic forgetting is a consequence of dense entangled representations in neural
networks being greedily overwritten by newly encountered information. As such, the catastrophic
interference phenomenon is a result of chosen optimization strategies and likewise applies to any
investigation of synthetic data. More so, we conjecture that: if catastrophic forgetting cannot be
circumvented in scenarios with a known synthetic data foundation, there is limited hope to understand
limitations and overcome the challenge in real-world settings.
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Figure 1: Example video stream snapshots. Row A illustrates common environmental changes, such
as variations in illumination and weather conditions. Row B depicts two potential examples for class
incremental learning, where entire object classes, here trees, progressively appear or disappear (left
image pair), or the learning task is based on successive availability and granularity of annotations
(right image pair). Row C shows exemplary de-activation of specific physics-based material properties
such as color, surface normals, or (sub-)surface reflections, resulting in a fully gray or colored flat
shaded world, without any reflection or small cavity details (left image pair). Built-in availability of
additional depth and surface normal annotations is further highlighted (right image pair).

In principle, the idea to leverage virtual data has already found countless prior applications, primarily
due to simulators’ ability to yield automatic precise ground truth information [331 34|, 351, 36, 37,
[38], 39} 40 41, [42]]. Computer-graphics frameworks thus typically facilitate sampling of a maximum
of conceivable variations to enable deep learning in domains where scares data is available and
real-world data acquisition is insurmountable. However, in continual learning, scenarios of interest
should inherently encompass knowledge about the detailed temporal shifts in the observed distribution.
These range from occurrence of particular objects, their geometry and texture, the frequency and order
of objects’ (dis-)appearance in the scene, or continuous changes in the environmental weather and
lighting. Corresponding investigations of continual learning thus require straightforward accessibility
to meticulous control of the real-time online changes in the independent generative factors. With a
focus set on large-scale annotated data generation to overcome an existing lack of data, the latter
nuanced control is generally not exposed to the user in existing simulators’ surface controls.

Inspired by previous works in the context of urban scene segmentation 144 [45] [38]], our primary
contribution is the introduction of a modular Unreal Engine 4 [46] based 3-D computer graphics
simulator that now also enables clear-cut generation and assessment of diverse continual learning
scenarios. A selection of video snapshots is illustrated in figure[I] and additionally a showcase video
can be viewed athttps://youtu.be/8zDhol8CIf0 Specifically, we:

o Introduce a simulator that facilitates grounded investigation of continual learning mechanisms
through access to highly customizable data. At all times, our simulator only renders an upcoming
segment of the world through efficient real-time scene assembly. Its offered data generation is
based on manipulation of temporal priors and parameters of the generative model. Our modular
control spans aspects from physics-based (de-)activation of color, surface normals and scattering,
to switches in weather conditions or environment lighting, and ultimately to commonly evaluated
abrupt changes in the data population though (dis-)appearance of entire object categories.

o Corroborate our simulator’s utility in an initial showcase of multiple continual learning techniques,
investigated across incremental class, environmental lighting, and weather scenarios.

e Provide open access to:
1. As a benchmark creation tool, a stand-alone simulator executable with configuration files for the
specification of rendered sequences: https://doi.org/10.5281/zenodo.4899294
2. To allow extensions, the underlying source-code of the simulator:
https://github.com/ccc-frankfurt/EndlessCL-Simulator—-Source
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3. A set of respective videos and their precise dataset versions to reproduce the particular
experiments of this paper: https://doi.org/10.5281/zenodo.4899267,

We have made use of the Zenodo platform to ensure persistence of our datasets and software, while
also making sure that our content has a DOI with versioning capabilities for future updates.

2 Endless Procedural Driving Simulator

Our procedural world generation framework allows for creation of temporally consistent video
streams, where respective sub-sequences are subject to an interpretable parametric generative model
through which the scenario is continuously adaptable. This can be gradual and seamless changes in
the environment, or mirror abrupt shifts in the world’s configuration. Our specific implementation is
inspired by urban driving. Our considered main actor is a vehicle with statically attached camera that
drives along a procedurally generated track of successive street segments. Every such street segment
is randomly selected to balance curvature and crossings with straight roads. For each sampled street
element, various objects, such as buildings, trees or street lamps are stochastically placed according to
real-world motivated priors. Additional dynamic actors, i.e. other vehicles and humans are sampled
for each segment, their motion dynamics and animations drawn at random. At all times, the number
of existing street segments remains constant. As the main camera actor proceeds through the world,
novel segments are procedurally generated, while already observed ones are disposed of. Through
control of spawning probabilities or parameters administering weather and lighting, the user is
granted the ability to adapt the upcoming world of the real-time generated video.

2.1 Generative Model

We define an entire video sub-sequence as a random variable X; = (S,B,Tr,Lp,H,V,C,W,L.E,R),
with street segment S, static buildings B, trees Tr, and street lamps Lp, dynamic human and vehicle
actors H and V, a car with attached camera C, weather condition W and lighting L. A meta-variable
E governs the existence of entire object and actor categories and R controls the physics-based
material rendering model. A continuously growing video is therefore comprised of t = {1, ..., T}
sub-sequences, defined by the parametrized probabilistic generative process given by:
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Here, notation is simplified for R = {Rys, Rc, Ry, Rr}, manipulating a material’s metallicity,
color, surface normals and roughness, and P, is short for an index ¢ at every entry of an expression.
All variables and their stochastic dependencies are illustrated in the graphical model of figure 2} We
proceed by elaborating on the random variables and their distributions parametrized by respective ©.

2.2 Random Variables and Distributions

The random variables of our generative process are subject to three families of distributions: discrete
categorical or Bernoulli, and continuous distributions on bounded intervals. The former two generally
reflect a random selection of e.g. object or actor styles, and their general existence and co-occurrence.
The latter expresses our belief in e.g. plausible object or actor locations through parametrization of
the finite support and their overall amount. With few exceptions and as will be detailed in an instant,
these variables are presently assumed to originate from uniform distributions, but can generally
be sampled with more complex distributions and interdependencies, if for instance a specific city
composition is desired to be emulated.

Street segments, main actor and vehicles: The overarching categorical random variable S indicates
the stochastic selection of street-segment layouts, i.e. elements containing various straight and curved
road designs, or crossings, with respective sampling probability values given by fg. The segments
themselves are not placed stochastically. Instead, the beginnings of consecutive sequence elements
are deterministically attached to their predecessor’s end, in order to seamlessly continue the endless
procedural generation of the world. The main actor of a vehicle with statically coupled camera,
random variable C, follows this world as if it were on a pre-determined track, i.e. the direction of
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Figure 2: Parameterized probabilistic graphical model. Plate notation [47] is used for repeated
random variables, sets of parameters © are denoted by rectangles. As the generative process creates
entire video sub-sequences, only the camera C and vehicle actors V; have an explicit dependency
between two consecutive sampling steps. All other random variables are constrained to reside in their
respective sub-sequence and consecutively sampled independently. The subscript ¢ has thus been
omitted for ease of readability. The physics-based rendering random variables Ry r N ¢ are each
connected to all objects and actors. Their arrows have been merged visually to avoid excessive clutter.

the camera vehicle is thus contained in the stochastic sampling of street segments. C' itself is of
categorical nature and represents a choice in vehicle model, with additional 8- describing camera
properties such as resolution, exposure or the captured video’s frames per second. In principle, it
is not directly subject to a random velocity. However, the velocity does vary in dependency on
other stochastic variables. These include further dynamic vehicles, expressed through the categorical
variable V' and its parameters 6y,. Again, these vehicles are randomly chosen from the repertoire of
vehicle models. Their location is sampled from a uniform distribution on a bounded interval that is
constrained to the extent of the sampled street segment, their velocity selected at uniform in the range
of assumed minimally and maximally realistic velocities in an urban scenario. If these vehicles drive
slowly in front of the camera main actor vehicle, they inevitably lead to deceleration in order to avoid
collision. As occasional auxiliary dynamic vehicles can thus continue their path and persist across
multiple video sub-sequences, they represent the only random variable apart from the main camera
that relies on its former sub-sequence’s state.

Static objects and human actors: All other dynamic and static random variables are contained
within their respective street segments. These include a population of possible static 3D-objects,
presently captured by the set Obj = {B,T'r, Lp}, corresponding to buildings, trees and street lamps,
and additional dynamic human actors H. Again, the respective categorical random variable indicates
a choice in available models. Human actors are further dependent on categorical random variable A,
enabling the random choice from a discrete set of animation. Once more, their sampling probability
is given through respective parameters, and their stochastic initial and final pose, representing the
walk target, is presently drawn from uniform distributions with finite support, determined by the
scope of the street segment on which they are randomly placed.

Category existence: With the exception of the always present world’s street segments and tracked
camera vehicle, all previously introduced categorical random variables are modulated through
Bernoulli variables on a top-level. The corresponding F; Vi € {B,T'r, Lp, H,V }, parametrized by
0g, govern the overall "existence". In a sense this is a convenience random variable, that allows
trivial control over the presence of entire categories, in foresight of class incremental scenarios where
e.g. all trees appear or disappear when driving through or leaving an avenue. In general, this could
have been adjusted through the number of spawned objects and actors, i.e. the repeated sampling of
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Figure 3: Birds eye view of the stochastic procedural scene generation. Switching the scene’s config-
uration from ’Sub-Sequence 1° to ’Sub-Sequence 2° it can be observed how the object population
changes to exclude cars and feature trees in the newly added tiles. The area highlighted in green
marks the extent of a single tile and the blue line indicates the seam between the two sub-sequences.

random variables for one sub-sequence expressed through plate notation [47] in figure[2} For ease of
readability, we define the respective random variable N; Vi € {B,Tr, Lp, H,V'} independently and
for now assume that distinct amounts, limited by an empirical N; ,,,q., are a priori equally likely.

Weather and lighting: A complementary part of the graphical model controls weather and lighting.
Categorical W, parametrized by 6y, represents an initially mutually exclusive choice between five
distinct weather conditions: clear, fog, rain, snow and overcast (cloudy). Depending on the concrete
outcome, an additional set of Bernoulli variables covers potential co-occurrence of fog and clouds
when rain or snow are active. Each of these conditions is subject to further random variables on
density, ground density (for snow cover and puddles), and camera lens effects. For now, these latter
variables are sampled from uniform distributions ranging from zero to unity in terms of effect strength.
In complete analogy, lighting for a video sub-sequence is given by continuous random variables on
intensity and daytime, defining the illumination angle and color due to atmospheric scattering.

Physically-based rendering: Finally, the world is assumed to follow a physics-based rendering
process. Parametrized by g, a set of Bernoulli random variables R, Vi € {M, R, N, C'} dictates
the activation of rendering aspects with respect to all materials, i.e. metallicity, surface roughness,
normals, and base color. These define how material appearance manifests in the observed video-
subsequence, with potential to exclude color or particular surface or subsurface light interactions.

2.3 Practical Details

The practical simulation is based on Unreal Engine 4 [46], supporting our requirements for specifica-
tion of distributions through code and dynamic world generation, while aiming for real-time high
photo-realism. The essential street segments are represented through a discrete set of tiles, where for
each tile type spawn volumes govern the finite support bounds of the underlying location sampling
for each object and actor. In addition, each such tile includes anchor points for attachment with
further tiles. Figure[3]shows a birds eye perspective of a constructed world segment and illustrates
the procedural scene generation process. For details on assets, distribution parameter choices, and
the spawning bounds we refer to the appendix. The use of tiles elegantly encapsulates the genera-
tive model’s probabilistic sampling properties in practice, while yielding considerable memory and
computation benefit by strictly limiting the amount of resources to be managed at each time step.

We simultaneously capture color video, semantic pixel annotations, depth, and normals. Continuous
world generation with capture of a video with half-HD (960 x 540) resolution, from a single camera,
achieves ~ 15 frames per second (fps) on a consumer GTX-1080 GPU. With only the original video
and one additional mode, this number increases to 28 fps. In either way, we allow the user to set a
desired capturing rate and make use of time dilation, i.e. virtually slowing down the scene, if the same
world segment is needed to be captured with higher frame rate or extensive rendering features such
as above full-HD resolutions. As pointed out in our contributions, we provide a stand-alone simulator
executable. Here, used content is encrypted and can be used without explicitly sharing licensed
assets. Arbitrary chains of distribution modifications for video sequences to be generated can be
specified through a JSON-config file. For inclusion of novel assets we point the reader to our shared
source-code. We provide more detailed descriptions and usage instructions in the supplementary.



3 Related Work

The idea to leverage synthetic data creation for the training of deep neural networks has seen an
impressive amount of successful practical implementations [32} 33} 134,35} 136, 1377, 138} 139,140, 141} 142]].
The common expectation is that learned appearance models can be adapted in their domain to
an ultimately desired real world target task. Various works have therefore focused on automated
calibration based on similarity computations between virtual and real images [33], 34], manifold
alignment to match scale between generated and synthetic texture data [32], or adversarial tuning to
assimilate data population statistics [48],[49]]. On the alternative end of the respectively constructed
scenes, the general aim is thus to augment real world datasets [35]], customize aspects that are
otherwise difficult to capture, such as pedestrian motions [36] or human actions [40], in an effort to
overcome laborious human annotation in creation of large-scale datasets with massive amounts of
variation. Depending on specific works, the spotlight can be on e.g. fixed urban scenes and variations
of environmental factors [44} 39]], direct extraction of such scenes from video games [38], or the
complete randomization of all factors to maximize the amount of conceivable configurations [37,
411 148]]. Whether or not all factors are randomized in stochastic processes or scene elements remain
static, the generally measured utility and impact is derived from measurements on corresponding real
world benchmark datasets [45} 27, 145 29, 43]].

Although valuable for their proposed purpose, we posit that existing simulators are not natural for
exploratory study of continual learning limits. In simulators that use pre-determined layouts the user
is limited to specific geometrical configuration and scene types. If assumed static buildings and other
actors need to be replaced, removed or complete object categories are desired to be added, the world
needs to essentially be recomposed [36, 38| 44} 39]. Analogously, works that employ stochastic
point processes or similar hierarchical procedures to randomize entire scene configurations, including
stochastic camera placement to vary frames or locally consistent video segments [44} 48,150, 411 140]],
require significant amounts of compute in recurring composition of the entire world if the user
wishes to change priors on underlying generative factors. As an additional challenge this is only
possible if, and only if, the associated simulator core and source code has been publicly released
beyond an executable, because the desired settings are typically not applicable through the provided
user interface. Our proposed simulator differentiates in this regard, as we can dynamically change
parameters in real-time generation to e.g. spawn trees in the distance, de-spawn specific buildings,
change locations, vary lighting and modulate weather effects. Such nuanced adaptability of all scene
elements enables easy creation of a dynamically adaptable endless procedural world.

From the perspective of continual learning, our described simulator thus allows for composition of data
sequences in an effort to extent presently limited analysis. In particular, we can enable analysis beyond
present continual vision practice, that rests primarily on not well understood sequentialization of
popular classification benchmarks [24} 25 [26| 27, 28| 29]. The latter typically undergo class specific
splits, permutation, concatenation or other alterations through augmentation to provide pre-designed
iterative sequences of object or class information [30,131]]. Based on these contrived and uncontrolled
benchmarks multiple families of continual learning approaches have formed. These range from simple
rehearsal of original data subsets [2, 3|4, 5] to generative data replay [6l 7, [8]], or from functional
regularization [9, |10} 11]], based on knowledge distillation [51]], to explicitly constraining parameters
[14,[13]. Unfortunately, in empirical comparison, it quickly becomes apparent that assumptions of
individual methods are narrow and seem to often be practically tailored towards the limited use case
of a particular benchmark [[16} 17, (18,19} 20} 22} 21} 23]. We would argue that this is not necessarily
a direct result of originally misguided design, but rather a consequence of the underlying original
datasets being seldomly designed with continual learning in mind. Our works imminent goal is
thus to deepen our understanding of when and why deep learning fails in continuous training, how
potential curricula impact learning, and how mechanisms can be improved to consistently mitigate
shortcomings across a wider range of scenarios.

4 Deep Continual Learning Experiments

We empirically corroborate our simulator’s utility in a set of initial experiments. Here, we showcase
that catastrophic interference can still be a significant challenge across many literature methods,
even when only considering simulated data. Inspired by the typically limited evaluation of deep
continual learning in class incremental scenarios [[16} 117, [18} 19} 120} 211 22, [23]], we now generate



and investigate video sequences in three distinct set-ups: incremental class appearance, varying
weather conditions and decreasing illumination intensity. They have been selected to display the
benefits and shortcomings of currently prevalent techniques to alleviate catastrophic interference, and
consequently why it is necessary to make use of our simulator for a more diverse evaluation.

For this purpose we consider popular approaches from various families of continual learning mech-
anisms: synaptic intelligence (SI) [14] and elastic weight consolidation (EWC) [13]] for parameter
regularization, functional regularization through knowledge distillation as presented in learning
without forgeting (LwF) [9], as well as data replay methods. For the latter, we consider replay using
gradient episodic memory (GEM) [22], a straightforward exemplar rehearsal mechanism, where a
subset of data is stored and interleaved in continuous training in the spirit of [52, 3], and generative
pseudo-replay with open set classifying denoising variational auto-encoder (OCDVAE) [8]].

4.1 An Initial Set of Considered Scenarios

For our investigation, we have selected the simplest conceivable task of classification, where all
objects’ bounding boxes are assumed to be detected perfectly. Even in this significantly facilitated
setting we will see that many investigated techniques are more brittle than desired. We emphasize that
our simulator is naturally capable of rendering data for more complex object detection, surface normal
or semantic segmentation investigations. The detailed generated video sequences are categorized
according to three scenarios:

Incremental Classes: Representing the most commonly investigated continual scenario, our video-
stream consists of four video sub-sequences, each adding one distinct object class to the task.
In the training set, each sub-sequence contains only one object category, where buildings B in
conjunction with the street-section itself are attributed to an always present ’background’ class. In
contrast, a separately generated test set progressively accumulates all present classes. Recall, that
we can express this change throughout the video sequences with 7g ;. The temporal sequence of
chosen Bernoulli likelihoods for the vector of buildings, trees, street-lamps, humans and vehicles
is TEt=1 — (17 17 07 07 0)’ TEt=2 — (]-7 07 ]-7 07 O)s TE,t=3 = (17 07 07 ]-7 0)’ TEt=4 — (]-7 01 07 07 1)
We note that after initially choosing weather and lighting conditions for ¢ = 0, we further adapt their
parameters to have consistent weather and lighting for the remainder of sub-sequences.

Incremental Lighting: The incremental lighting video sequence is based on progressive decrease in
illumination intensity as a single generative factor, without adjustments to the illumination color. The
generated training video stream consists of five sub-sequences, where the typically sampled uniform
distribution for light intensity is collapsed to a sequence of delta distributions with concentrated mass
at my, =1 = 76.8, 7 4=2 = 19.2, mp 1=3 = 9.6, 7 1—4 = 2.4, 71 ;=5 = 1.2, expressed in units of
Lux. The test simply consists of a growing amount of separately generated sub-sequences through
time. The categorical weather distribution is parametrized to have a probability of one for clear day
and all object categories exist at all times, with all locations and total amounts sampled stochastically.

Incremental Weather: Incremental weather video streams can be defined in terms of probabilities
on the categorical weather variable. At each point in time, we set the probability for a specific
outcome to 1 and all other choices to 0. The corresponding temporal sequence for occurrence of
clear, rain, snow, fog, overcast conditions is then my;—; = (1,0,0,0,0), mw =2 = (0,1,0,0,0),
mwi=3 = (0,0,1,0,0), mwy=1 = (0,0,0,1,0), 7w =5 = (0,0,0,0,1). Probabilities for the
Bernoulli variables defining the existence of object types are all set to unity, such that all objects get
sampled at all times. The test video stream is defined in analogy to the incremental lighting scenario.

4.2 Experimental Setup and Evaluation

Each scenario is captured in a video sequence of 960 x 540 resolution, consisting of multiple
approximately 15 minutes long sub-sequences with 150 sampled street segments, and a respective
test set video. We base encoders, and the VAE decoder, on the popular four convolutional layer
architecture of Radford et al. [53]], without temporal dependency and thus a frame-wise prediction.
In all our models we make use of a single classification head for all tasks in the presented sequence.

We presently focus on monitoring of simple classification accuracy and train the neural networks to
full convergence on a sub-sequence before proceeding. That is, the train sets only ever consist of
data from the current sub-sequence/time-step. In contrast, the test set accumulates data successively.



To give an example based on the class incremental scenario, the train set of task 1 thus consists of
the omnipresent background class and trees, whereas task 2 consists of data featuring background
and cars. In contrast, the test set accumulates observed classes and the test accuracy is measured
over all classes seen up to the present time step, i.e. task 2 would classify background, trees and cars.
This procedure mimics the typically conducted evaluation in class incremental learning scenarios,
in which the test performance provides a rather direct indication whether the former tasks are being
catastrophically forgotten in continuous optimization.

As such, the overall objective grows in complexity over time, along with the number of tasks presented.
The accuracy of the investigated continual learning techniques is thus compared to the maximally
achievable upper-bound accuracy, assuming the upfront presence of the entire video, and a naive con-
tinued training, where training greedily continues only on the current sub-sequence without any mech-
anism to prevent catastrophic interference. To provide information on the statistical deviation of all
approaches, each experiment has been repeated 5 times. A detailed account of the training, it’s hyper-
parameters and how datasets were generated can be found in the appendix. Our code is an extension of
the public OCDVAE codebase [8] in combination with the Avalanche [54] continual learning library.
It is available at: https://github.com/TimmHess/OCDVAEContinualLearning.

4.3 Continual Learning Results
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Figure 4: Comparison of deep continual learning accuracy across five experiments in three conceivable
scenarios: incremental object appearance (left), decreasing illumination intensity (middle) and
changing weather conditions (right). Accuracy for each method is measured after completion of the
training phase for every respective task increment. The training data stems only from the current task
increment to be learned, while evaluation is conducted on the cumulative test data comprising all tasks
up to the present point in time. Learning without Forgetting (LwF) [9], Synaptic Intelligence (SI)
[14], Elastic Weight Consolidation [13], Gradient Episodic Memory [22], direct exemplar replay, and
Open-set Denoising Variational Auto-Encoder (OCDVAE) [8]] are contrasted with naively continued
training and the maximally obtainable accuracy when accumulating all tasks’ data.

Figure ] shows the overall achieved accuracies at the end of each sub-sequence for the considered
continual learning techniques, corresponding naive continued training, and the maximally attainable
upper-bound. Note that the upper-bound indicates that the three scenarios can in principle be
fully solved with the chosen neural architecture. Whereas regularization methods provide some
benefit in class incremental scenarios, they seem to fall behind even a naive continued training,
which is supposed to incur full catastrophic interference, in the other settings. For instance, they
all significantly under-perform with global weather changes. Although the employed OCDVAE
generative replay can be observed to prevent the occurrence of catastrophic interference almost
completely for class increments, it also begins to struggle when the environment’s weather changes.
We suspect that this might be due to the generative model having more difficulties in capturing the
statistics of weather and its implications such as puddles, in contrast to only having to accurately
generate different objects under fixed environmental conditions.

Interestingly, the trends observed in regularization techniques seem to be mirrored when using gradient
episodic memory, even though it makes use of auxiliary stored data examples. We hypothesize that
this is a consequence of GEM nevertheless relying on a regularization technique at its core, that
is, the employed gradient constraints based on the stored pattern information. In the absence of
explicit task labels this seems to be challenging. In light of this result, it is particularly interesting
to observe that a more straightforward exemplar replay implementation, where the same amount
of retained data instances is simply interleaved directly into the continuous training process, seems


https://github.com/TimmHess/OCDVAEContinualLearning

to achieve accuracies that are sufficiently close to the upper-bound. Naturally, such an approach to
continual learning could perhaps be viewed as the most trivial solution, where performance is directly
proportional to the amount of retained original data instances.

4.3.1 Continual Learning with Quasi-illumination Invariants

Following the results of figure[d] we observe that some deep continual methods are less generically
suitable than initially advocated. In practice however, we desire robustness to broader amounts of
scenarios, made accesible through our simulator. As an example, mitigating performance degradation
as a result of homogeneous lighting changes in the raw video through transformation into illumination
invariant spaces has been well known for multiple decades [55} 156, 57]. To showcase the severity of
the deep methods’ shortcomings, we repeat the naive continuous training in the progressive lighting
experiment with an included photometric color invariance operation.

Based on the assumption that color ratios are quasi- Table 1: Incremental lighting experiment
invariant under a dichromatic reflection model with under consideration of a photometric color
white illumination [56], we can define: ¢, = invariant or local binary patterns (LBP).

arctan(R/max{G, B}), and corresponding definitions

A ‘0
for the other two channels. Table[I] shows that such pre- couracy [%]

. Illumination  Naive Naive + Naive +
processing halves the gap to the upper-bound. Note how Intensity photometric ~ LBP
inclusion of such a simple assumption already leads to a [Lux] color invariant
naive greedy deep network rivalling and even surpassing 7638 99.20 98.66 99.18

: . . . . o1 019 *+olos
the accuracies of the continual leamlpg sp'emﬁc'demgns. 192 PYRTI 9861 9927
Making use of another long known invariant visual de- £ +047 +032
scriptor, local binary patterns [58} 159, 160l 61]], the accu- 9.6 93.55 98.61 99.26
racy in table[I]even closely approaches a 100%, see the » ;2"75 9*" - ;42

. . . o A 5 7.5 A
appendix for further details. This further highlights the o o7 oo
%mportance of cqnsidering the nature O.f diverse scenar- 12 90.89 05.28 99.40
ios, as deep continual learning should ideally leverage 3 13 +284

quasi-invariant spaces where possible to be stable.

S Discussion of Simulator Use-Cases and Prospects for Analysis

Our presented empirical investigation has consciously focused on rather simple classification tasks in
an attempt to provide an initial experimental showcase for our simulator’s utility. The rationale behind
this choice has been two-fold: a) The experiments should be directly relatable to the community
with respect to following the predominant set-ups of prior investigations, e.g. incremental MNIST,
CIFAR and similar continual classification practices (even though it could be argued whether seeing
only trees, or only cars is a realistic assumption in practice). b) The experiments seem to sufficiently
demonstrate that the phenomenon of catastrophic interference in continual learning requires a more
principled exploration in more diverse and controlled settings.

We note that, as a benefit of our flexible simulator design and its accessible modularly parametrized
generative model, the presented classification experiments represent but a small subset of readily
assessable future experiments. To point out the present investigation’s limitations, we highlight
immediately conceivable investigations in a short outline:

e Semantic segmentation & modalities: Continual learning investigation in semantic seg-
mentation [62} 163} 164} 165]]. On the one hand, we can conduct experiments in direct extension
to the presented classification ones. On the other hand, we could investigate an alternative
where objects are always present and instead labels are progressively added to become
increasingly fine-grained, see the example of figure[I] Similarly, analysis can be extended
through consideration of the simulator’s other modalities, such as surface normals and depth.

e Frequency of occurrence: Our experiments have presently focused on introduction of a
single class at a time or illumination and weather conditions being equally likely. In practice,
it is certainly the case that probability of occurrence plays a major role. We expect that
future investigations can adapt our presently assumed probabilities, for instance, in order to
investigate scenarios with rare occurrences, or continual learning scenarios where concepts
appear or disappear multiple times throughout the entire video sequence.



o Identifying distribution shift: Present continual learning mechanisms of the experiments
were provided with task-boundary information. The increasingly important question of
whether a devised approach can identify various sources for, potentially continuous or
gradual, distribution shift can and should be considered (e.g. to decide when to learn
continually or when to protect the model from catastrophic interference) .

e Disentangled representations: Apart from above straightforward prospects, recall that our
simulation has explicitly laid open and parametrized physics-based rendering properties.
This leads to multiple imaginable video sequences that we believe will have particular
importance for future work. In figure [T] an example where the scene is rendered without
material object normals, surface roughness and is devoid of color has already been depicted.
There is no light reflections or refractions such that the image presents a simplified gray-scale
world with a focus on geometry. Governing such physics-based rendering properties in
conjunction with real-time control over appearing objects and environmental conditions
can facilitate future analysis into the disentanglement of representations in deep generative
models [66, 67, 68]], enable further investigation into the debate on texture versus shape
bias in deep learning [69 [70], or allow for the analysis of meaningful learning curricula of
increasing complexity [71]].

e Temporal consistency: Finally, it is worth to remember that our simulator renders tem-
porally cohesive video streams, even though our initial classification experiments have
considered frames independently. All of the above suggestions can thus be conducted under
consideration of temporal consistency, arguably being a natural mode of data presentation
for continually learning systems.

In addition to these mentioned prospects, we point out that future analysis could also consider the
degree of transfer from trained simulated models to the real-world. Although this is not the essential
premise of our work, the latter could be regarded as a present limitation of our work. As with
any simulator, the degree of transfer inevitably scales with the availability of high-fidelity assets.
To this end, please see the appendix, where we provide a more detailed discussion on this issue
with respect to our simulator. Nevertheless, we recall that catastrophic interference should ideally
first be overcome in well understood simulation before deducing generic mechanisms with opaque
interpretations on real-world applications. A final assimilation of simulator to real-world statistics
could thus be regarded as a subsequent goal [43],149].

6 Conclusion

We have introduced a parametric interpretable generative model and its 3D graphics engine realization
for the procedural online generation of continual learning scenarios. It provides a rich set of flexible
generative factors that are adjustable by a straight forward configuration and cover all aspects of the
continuously evolving virtual world. This allows the user to easily generate temporally consistent
data streams which would require potentially insurmountable effort to be acquired in the real-world.
To bootstrap the proposed benchmark generator, initial exploration on the basis of three distinct
generated scenarios has been aligned to the currently employed evaluation scheme of using a set of
successive tasks, each composed of an iid classification dataset. Without raising the complexity to
temporally consistent online learning, or objectives such as semantic segmentation, the presented
experiments already highlight the necessity of such a simulation for more extensive evaluation, in
order to analyze and overcome the current shortcomings of continual deep learning mechanisms.
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