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ABSTRACT

In this study, we revisit the representation learning problem for adversarial training
from the perspective of relation preservation. Typical adversarial training methods
tend to pull clean and adversarial samples closer to improve robustness. However,
our experimental analysis reveals that such operation would lead to cluttered
feature representations thus decreasing the accuracy for both clean and adversarial
samples. To alleviate the problem, we build a robust discriminative feature space
for both clean and adversarial samples by taking into account a relational prior
which preserves the relationship between features of clean samples. A flexible
relationship preserving adversarial training (FRPAT) strategy is proposed to transfer
the well-generalized relational structure of the standard training model into the
adversarial training model. Moreover, it acts as an extra regularization term
mathematically, making it easy to be combined with various popular adversarial
training algorithms in a plug-and-play way to achieve the best of both worlds.
Extensive experiments on CIFAR10 and CIFAR100 demonstrate the superiority
of our algorithm. Without additional data, it improves clean generalizability up to
8.78% and robust generalizability up to 3.04% on these datasets.

1 INTRODUCTION

Deep neural networks have a tremendous impact on various research directions, such as self-
driving (Bojarski et al., 2016), speech recognition (Nassif et al., 2019), machine translation (Stahlberg,
2020), and more. However, DNNs are observed to be vulnerable to adversarial examples, which
are normal data with human imperceptible perturbations (Szegedy et al., 2014). Recently, various
adversarial defense methods (Madry et al., 2017; Xie et al., 2017; Dhillon et al., 2018; Zhang et al.,
2019; Bashivan et al., 2021; Sarkar et al., 2021) have been proposed. Adversarial training proves to
be the most powerful way to improve adversarial robustness by generating adversarial examples as
data augmentation during training (Schott et al., 2018; Pang et al., 2021; Maini et al., 2020).

Compared with standard training, adversarial training methods (Madry et al., 2017; Zhang et al.,
2019; Wang et al., 2019; Li et al., 2021) improve the model robustness by aligning the representations
of clean data and adversarial samples or classifying the adversarial data correctly. As illustrated in
Fig. 1a, generated adversarial samples are distributed differently to natural samples and misclassified
by standard training models; by narrowing the distance between natural and corresponding adversarial
samples, adversarial training models could handle part of adversarial samples. As shown in Fig. 1b,
the feature representation for clean samples are influenced by adversarial training and thus results
in cluttered over-smoothing feature space. Some existing works try to mitigate the over-smoothing
representation by distilling the logits of the standard training model (Cui et al., 2021; Chen & Lee,
2021; Arani et al., 2020). However, these point-wise distilling models ignore the geometric properties
of the feature space which is important for improving the model generalization (Belkin et al., 2006).

In this paper, we qualitatively and quantitatively analyzed the correlation between the adversarial
strengths and the inter-sample relationships. Visualizations also proof that standard training will make
the features for clean and adversarial samples distributed unevenly while adversarial training tends to
make the features less discriminate. We build k-nearest neighbor graph with the features of clean and
adversarial samples and then measure the manifold quality by conducting k-NN classification on the
graph. Different adversarial strengths under various neighbor numbers are tested. Results show an
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Figure 1: Illustrations for feature space under different training conditions. (a) In the representation
space of the standard training, the clean samples are clearly separated, but the corresponding
adversarial samples are far and misclassified. (b) The adversarial training representation is more robust
to adversarial attacks, but the clean data representations are negatively affected by the adversarial
ones, and the inter-sample relationship is destroyed. (c) Our method maintains the inter-sample
relationship while bring clean and adversarial representations together, thus forming a robust and
discriminative representation space.

obvious connection between the adversarial strength and the quality of geometric structure of the
feature space (See Sec. 2.2 for more details).

Based on these observations, we propose a flexible relation preserving adversarial training (FPRAT)
approach to keep the feature relation of standard training models. Two models are involved for
FRPAT: one for standard training on clean samples and the other for adversarial training. Graph
for each model is built based on the relationship of different samples. Considering the great gap
between standard and adversarial models because of adversarial training smoothness effects, we
define flexibly the relationship of samples as the probability that different samples are neighbors,
and relational distillation is achieved by aligning the probability distributions of the two graphs. As
illustrated in Fig. 1c, FPRAT preserves well-generalizable inter-sample relationships of clean samples
from the standard model, to avoid the clean representations being pulled away by the adversarial
representations during adversarial training. Our contributions are as follows:

• We reveal that adversarial training strength is negatively correlated with inter-sample
relationships in representation spaces, which provides a new view for solving the
generalization problem of adversarial robustness.

• We propose a flexible relation preserving regularization to flexibly preserve the inter-sample
relationship structure during adversarial training, which could work in a plug-and-play way
combined with various adversarial training approaches.

• Extensive quantitative and qualitative experiments on both CIFAR10 and CIFAR100 datasets
show the effectiveness of the proposed FRPAT (maximum 8.78% improvement for the clean
sample accuracy and 3.04% for the robust accuracy).

2 METHODS

2.1 PRELIMINARY

Adversarial training generates adversarial examples as training data to defend against adversarial
attacks. Madry et al. (2017) makes use of projected gradient descent (PGD) to generate adversarial
data, and for the first time formally define the goal of adversarial training as:

argmin
θ

E(x,y)∈D

(
max
δ∈S

L(x+ δ, y; θ)

)
, (1)

where D is the data distribution for input x and its corresponding label y, θ is the model parameters.
δ stands for the perturbation applied to x and is usually limited by perturbation size ϵ. S =
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Figure 2: Analytical experiments on adversarial training strength and sample relationship quality
in feature space. (a), (b) and (c) show the difference in feature space between the standard training
model, adversarial training model, and ours on CIFAR-100 training set (small plots) and test set
(big plots). The red value is the clean accuracy, and the blue value is the PGD-20 accuracy. The
penultimate layer of features of the network is visualized using t-SNE. (d) shows negative correlations
between adversarial training strength and inter-samples relationship quality.

{
δ| ∥δ∥p ≤ ϵ

}
is the feasible domain for δ. L (·) usually is the cross-entropy loss for classification.

By min-max gaming, adversarial training aims to correctly recognize all adversarial examples
(x̃ = x+ δ).

2.2 EMPIRICAL ANALYSIS OF THE FEATURE STRUCTURE FOR ADVERSARIAL TRAINING

In this section, we analyze how adversarial training influences feature relationships compared with
standard training models. Here standard training models refer to the model without adversarial
training, and their architectures are ResNet18. Adversarial training models are trained by TRADES
with different β which means different adversarial training strengths. We choose the penultimate
layer representations (before logits) of the standard training model and adversarial training models for
qualitative and quantitative experimental analysis. As shown in Fig. 2a, compared with the standard
training model both on the test set and training set, the representation visualization for adversarial
training models shows more robustness, but worse relationships among different data resulting in
lower discrimination in different classes.

To accurately analyze the correlation between adversarial training strength and the relationship
between samples, we conduct quantitative analysis by setting the β = 1, 2, ..., 6 for TRADES. The
larger β represents the greater strength of adversarial training. We use k-NN to evaluate the quality
of inter-sample relationships for different models, which is often used in manifold learning (Van der
Maaten & Hinton, 2008; McInnes et al., 2018) to evaluate the quality of manifolds. Specifically, we
first use PGD-20 (ϵ = 0.031) to generate adversarial data for CIFAR-100 dataset, then we use both
clean and adversarial data in the training set as the support set to predict the labels of all the examples
in the test set. To verify the reliability of the observation conclusion, we choose k = 5, 30, 50,
respectively. Finally, the k-NN accuracy is used as the relationship score for the learned feature space.
The higher the score, the more reasonable the relationship between the samples. Fig. 2d shows the
strength of adversarial training for different models and their corresponding relationship qualities for
different k. A negative correlation between the strength of adversarial training and the relationship
quality between samples could be observed.

Why does adversarial training destroy inter-sample relationships? Adversarial representations
are usually far away from their true class distribution. Therefore, the existing adversarial training
algorithms will make the representation of clean samples further away from true class distribution
while narrowing the adversarial representation and clean representation. Compared with the standard
training model, the relationship between samples of the adversarial training model is worse. Zhang
et al. (2021) point out that adversarial training is equivalent to a special kind of regularization and
has a strong smoothing effect, which also supports our view. To mitigate the negative impact of
close adversarial samples and clean samples, and maintain the inter-sample relationship, we use the
inter-sample relationship of the standard training model as prior knowledge to guide the adversarial
training and improve the generalization of the model.
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2.3 FLEXIBLE RELATION PRESERVING ADVERSARIAL TRAINING

To relieve the overwhelming smoothing effect Zhang et al. (2021) caused by adversarial training, we
consider building a robust discriminative feature space for both clean samples and adversarial samples
by transferring the structure prior contained in the model trained on clean data to the adversarial
training model.

We train two models simultaneously: a standard training model M on clean input x with cross-entropy
loss Lst(·) and an adversarial training model M̃ on x̃ which is updated by a specific adversarial
training algorithm. Furthermore, to prevent the feature space of M̃ from being over smoothing, we
transfer the knowledge of M to M̃ . The overall optimizing objective Lat(·) of M̃ is formulated as:

minLrobust(x̃) + λLRP (M,M̃), (2)
where Lrobust(·) stands for the adversarial training loss and LRP (·) works as a regularization item to
bound the over smoothing feature distribution of M̃ by the learned discriminative feature space of M .

Absolute Relationship Preservation. The geometry/structural knowledge means the relationship
graph constructed by the similarity between samples or approximated as the manifolds they form. It
can be formalized as:

min
θ̃

E(x,y)∈D (F (P,Q)) , (3)

where P and Q stand for the relationship graph constructed by the inter-sample similarity for M
and M̃ , respectively. F (·) measures the similarity of two relationships. A straightforward way to
construct the relation graph P and Q could be directly applying cosine distance to calculate the
distances of any two samples in the high dimensional feature space of M and M̃ :

P = {dij |0 < i, j ≤ N}, Q = {d̃ij |0 < i, j ≤ N}, (4)

where dij and d̃ij are defined as:

dij = 1− f(xi)
T f(xj)

||f(xi)||2||f(xj)||2
, d̃ij = 1− f̃(x̃i)

T f̃(x̃j)

||f̃(x̃i)||2||f̃(x̃j)||2
. (5)

However, there is a huge difference in the feature space between adversarial training and standard
training due to the over-smoothing in adversarial training. Thus direct absolute relationship distillation
is difficult to optimize.

Flexible Relationship Preservation. Considering the great gap between standard and adversarial
models because of adversarial training smoothness effects, we define flexibly the relationship of
samples as the probability that different samples are neighbors, and relational distillation is achieved
by aligning the probability distributions of the two graphs; we model the conditional probability
distribution with a cosine similarity-based affinity metric for relation graph construction:

P =

{
pi|j

∣∣∣∣pi|j = (2− (dij − ρj))∑N
k=1,k ̸=j(2− (djk − ρj))

, 0 < i, j ≤ N

}
, (6)

where pi|j is the conditional probability that the ith clean sample is the neighbor of the jth clean
sample in the feature space of M . ρj represents the distance from the jth data point to its nearest
neighbor. Subtracting ρj ensures the local connectivity of the manifold, avoiding isolated points and
thus better preserves the global structure (McInnes et al., 2018). Similarly, the relationship graph for
M̃ is:

Q =

{
qi|j

∣∣∣∣qi|j = (2− (d̃ij − ρj))∑N
k=1,k ̸=j(2− (d̃jk − ρj))

, 0 < i, j ≤ N

}
. (7)

We use cross-entropy loss to measure the similarity of P and Q for such flexible relationships. Finally,
the LRP for FRPAT is:

LRP = CE(P,Q) =
∑
i

∑
j

[
pi|j log

(
pi|j

qi|j

)
+
(
1− pi|j

)
log

(
1− pi|j

1− qi|j

)]
. (8)

Note that the proposed FRPAT could be applied to other adversarial training methods in a plug-and-
play way. Alg. 1 shows the overall process for the flexible relation preserving adversarial training
method.
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Discussion LBGAT (Cui et al., 2021) also involves two models and transfers the prior knowledge
of M to M̃ . By directly distilling the logits of clean samples x from M to the logits of corresponding
adversarial sample x̃ on M̃ , LBGAT guides the adversarial training model’s feature boundary of
different categories to inherit from the clean model. Since the clean model is trained independently
from x̃, the logits of x by M is quite different from that for x̃ by M̃ . Thus LBGAT needs to update
not only M̃ but also M by LRP (·), which conversely introduces the smoothing effect to M (see
Sec. 2.2 for more details). In this study, we propose to build a robust discriminative feature space for
M̃ by transferring the geometry/structural knowledge of M . 4

Algorithm 1 Flexible Relational Preserving for Adversarial Training

Require: the step size of perturbations ϵ, batch size n, learning rate α, attack algorithm optimization
iteration times K, the number of training epochs T , adversarial training model M̃ with its
parameters θ̃, standard training model M with its parameters θ, loss weight λ and training dataset
(x, y) ∈ D

Ensure: robust model M̃ with θ̃
1: Randomly initialize θ , θ̃
2: for i = 1, ..., T do
3: Sampling a random mini-batch X = {x1, x2, ..., xn} and corresponding labels Y =

{y1, y2, ..., yn} from D

4: Generating adversarial data X̃ = {x̃1, x̃2, ..., x̃n} through attack algorithms (such as PGD,
FGSM)

5: fX , logitX = M(X)

6: f̃X̃ , logitX̃ = M̃(X̃)
7: Evaluate Lst = CE(softmax(logitX))
8: Evaluate Lat = λLRP + Lrobust

9: Update model parameters:
10: θ = θ − α 1

n

∑n
i=1 ∇θLst

11: θ̃ = θ̃ − α 1
n

∑n
i=1 ∇θ̃Lat

12: end for

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Datasets We choose CIFAR10 and CIFAR100 datasets (Krizhevsky et al., 2009) to validate our
algorithm. CIFAR10 contains 60, 000 images with the category number of ten in total, in which
50, 000 are in the training set and 10, 000 in the test set. CIFAR100 contains 60, 000 images from
100 categories, and the numbers of images in the training and testing set are the same as CIFAR10.
Following Cui et al. (2021), the input size of each image is 32 × 32, and the training data is
normalized to [0, 1] after standard data augmentation: random crops of 4 pixels padding size and
random horizontal flip. The test set is normalized to [0, 1] without any extra augmentation. We also
report the results of Tiny ImageNet (Deng et al., 2009) in supplementary materials.

Training details For fair comparisons with LBGAT (Cui et al., 2021) which also involves two
models for adversarial training, we follow the same network configurations: ResNet18 for standard
training and WideResNet-34-10 for adversarial training. Following LBGAT, the adopted adversarial
attacking method during training is PGD-10, with a perturbation size ϵ = 0.031 , a step size of
perturbations ϵ1 = 0.007. The initial learning rate is set to 0.1 with a total of 100 epochs for training
and reduced to 0.1x at the 75-th and 90-th epochs. The optimization algorithm is SGD, with the
momentum of 0.9 and weight decay of 2× 10−4.

Baselines We choose three strong baselines to show our method’s effectiveness: Vanilia AT (Madry
et al., 2017), TRADES (Zhang et al., 2019), and LBGAT (Cui et al., 2021). For TRADES, we
set β = 6.0. For LBGAT, we conduct experiments based on Vanilla AT and TRADES (β = 6.0).
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Table 1: Quantitative results on CIFAR10. "*" are the results directly quoted from LBGAT.

Defense Clean Acc. Robust Acc. Relationship Score
PGD-20 Acc. C&W-20 Acc. AA Acc. Clean Robust

Standard Training 94.46 0 0 0 94.94 -

Vanilla AT 86.69 53.45 53.72 48.95 86.51 53.94
Vanilla AT + Ours 88.85(↑ 2.16) 55.64 (↑ 2.19) 56.18 (↑ 2.46) 50.89(↑ 1.94) 89.11(↑ 2.60) 56.55(↑ 2.61)

Vanilla AT + LBGAT 86.55 54.34 53.35 47.27 86.64 54.26
Vanilla AT + LBGAT + Ours 89.42(↑ 2.87) 56.21(↑ 1.87) 57.48(↑ 4.13) 51.77(↑ 4.50) 89.25(↑ 2.61) 56.59(↑ 2.33)

TRADES 84.42* 56.59* 54.91* 51.91* 85.58 56.73
TRADES + Ours 87.30(↑ 2.88) 58.20(↑ 1.61) 56.31 (↑ 1.40) 53.09 (↑ 1.18) 90.01(↑ 4.43) 58.86(↑ 2.13)

TRADES + LBGAT 81.98* 57.78* 55.53* 53.14* 84.57 57.79
TRADES + LBGAT + Ours 87.62(↑ 5.64) 57.73 58.08(↑ 2.55) 53.64(↑ 0.50) 89.50(↑ 5.00) 57.02

Table 2: Quantitative results on CIFAR-100. "*" are the results directly quoted from LBGAT.

Defense Clean Acc. Robust Acc. Relationship Score
PGD-20 Acc. C&W-20 Acc. AA Acc. Clean Robust

Standard Training 77.39 0 0 0 77.07 -

Vanilla AT 60.44 28.06 27.85 24.81 57.17 31.32
Vanilla AT + Ours 66.39(↑ 5.95) 29.88 (↑ 1.82) 29.84 (↑ 1.99) 25.81 (↑ 1.00) 64.70(↑ 7.53) 32.84(↑ 1.52)

Vanilla AT + LBGAT 61.01 30.10 28.09 25.63 61.28 30.47
Vanilla AT + LBGAT + Ours 68.20(↑ 7.19) 29.83 30.84(↑ 2.75) 25.88(↑ 0.25) 66.08(↑ 4.80) 32.48(↑ 2.01)

TRADES 56.50* 30.93* 28.43* 26.87* 52.57 32.17
TRADES + Ours 65.28( ↑ 8.78) 33.97(↑ 3.04) 30.86(↑ 2.43) 28.25 (↑ 1.38) 65.78 (↑ 13.21) 34.53 (↑ 2.36)

TRADES + LBGAT 60.43* 35.50* 31.50* 29.34* 61.06 37.52
TRADES + LBGAT + Ours 62.62(↑ 2.19) 36.27(↑ 0.77) 31.72 (↑ 0.22) 29.19 64.84 (↑ 3.78) 38.25(↑ 0.73)

In addition, we combine FRPAT with them to demonstrate the superiority of our approach. All
experiments were done on GeForce RTX 3090 with the same training configurations such as the
number of epochs and learning rate schedule.

Evaluation metrics In order to evaluate the generalization of the model on clean and adversarial
samples, our evaluation metrics are clean data accuracy (Clean Acc.) and robust accuracy (Robust
Acc.). Robust accuracy is the model classification accuracy under adversarial attacks. We choose
three representative adversarial attack methods for evaluation: PGD-20, C&W-20 (Carlini & Wagner,
2017) and Auto Attack (Croce & Hein, 2020). We denote the model’s defense success rate under
their attacks separately as PGD-20 Acc., C&W-20 Acc., and AA Acc. What’s more, we use training
sets as support sets and make KNN test accuracy as a relationship score following manifold analysis
methods (Van der Maaten & Hinton, 2008; McInnes et al., 2018) under the PGD-20 attack.

3.2 MAIN RESULTS

We conducted adequate quantitative analysis on CIFAR10 and CIFAR100, and the results show that
the proposed flexible relation preserving knowledge transfer can be combined with other adversarial
training algorithms to improve the data relational structure of the feature space and increase the
accuracy of both clean and adversarial samples. In the following, we will present the experimental
results for each of the two datasets.

Results on CIFAR-10 According to Table. 1, our FRPAT gets an improvement by 2.16% compared
to Vanilla AT baseline on clean data. It surpasses Vanilla AT on PGD-20, C&W and AA accuracy
by 2.19%, 2.46%, 1.94% respectively, indicating its high robustness. Our method also has an edge
on LBGAT by 3.6% to 1.3% in all aspects. For another common baseline, TRADES, FRPAT also
gets competitive results on both clean and adversarial data. Note that clean accuracy decreases when
applying LBGAT to TRADES, so it also brings a large enhancement when combined with our method.
For the relationship score which is measured by KNN accuracy, FRPAT could boost the performance
by a large margin. Since KNN classification is based only on inter-sample relationships, such results
prove that FRPAT could help build a discriminative feature space for both clean and adversarial
samples.
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+ Ours

Figure 3: CIFAR-10/100 t-SNE visualizations. A total of 512 samples are selected. Crosses and
circles are adversarial samples and clean samples, respectively. Different colors represent different
classes.

Results on CIFAR-100 The overall results on CIFAR-100 are similar to CIFAR-10. As shown
in Table. 2, FRPAT performs better than Vanilla AT and LBGAT and gets a further improvement
when deployed with LBGAT simultaneously. For TRADES, our method surpasses LBGAT by
a large margin (4.85%) on clean data, with the cost of slight drops (around 1%) on robust data.
Adding LBGAT to FRPAT causes a decrease in clean accuracy but achieves the best accuracy in
PGD-20 and C&W-20. The above results show that the proposed FRPAT could be applied to popular
adversarial training pipelines for achieving SOTA performance on both clean accuracy and robust
accuracy. Furthermore, we report the results of using the experimental setting as Jia et al. (2022) in
supplementary materials.

Qualitative analysis To demonstrate that our algorithm can indeed help the adversarial training
model construct a uniform discriminative feature space, we use t-SNE to visualize samples from
ten randomly selected categories in CIFAR-100 test set and all categories of the CIFAR-10 test set
for qualitative analysis. Fig. 3 shows the results. For standard training (Fig. 3a), the clean data are
well clustered, however, the adversarial samples are out of place, resulting in poor performance in
robust accuracy. TRADES guides the clean and adversarial data to be close to each other, which
could improve the robust accuracy but the feature space is less discriminative (Fig. 3b). As shown
in Fig. 3c, applying the proposed FRPAT to TRADES could drive the cluster for each category be
more compact. Compared with TRADES+LBGAT (Fig. 3d), we have fewer misclassified samples in
the middle section. Finally, Fig. 3e shows the result of the combination of FRPAT and LBGAT on
TRADES, and the visualization for the clustering effect is also a composite of them.

3.3 ABLATION STUDIES

In this section, we delve into FPRAT to study its effectiveness in many aspects. All the ablation
experiments are based on CIFAR-100 dataset. The experimental settings are the same as the main
results.

Different relation preserving approaches. In this study, we propose a flexible relation preserving
knowledge transfer approach to learn discriminative features for both clean samples and robust
samples. In this section, we compare our method with possible alternatives: one metric learning
approach MCA (Yang et al., 2021) and two absolute relationship distillation methods RKD (Park
et al., 2019) and CRD (Tian et al., 2019). MCA applies supervised contrastive loss into adversarial
training. RKD takes the absolute value of the cosine distance between samples as the relationship as
discussed in Sec. 2.3. To distill the teacher model’s structure in feature space, CRD requires that the
same sample representation of the student model is closer to the teacher model, and farther from the
representation of other samples in the teacher model.
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Table 4 shows the statistics. Compared with vanilla AT, MCA improves robustness while decreasing
clean generalization, which is consistent with our conjecture: only supervised contrastive loss will
exacerbate the negative influence of the clean samples from the adversarial samples in the feature
space. Compared with RKD, CRD prefers to be exactly the same as the teacher model, but this is not
necessary for the adversarial training task: we only need to maintain the relative relationship between
the clean examples of the standard trained model. What’s more, adversarial training models are
very different from standard training models, and forcing samples to have exactly the same features
is detrimental to learning. It can also be seen from the results that our method of maintaining the
relative relationship between samples achieves the optimum results.

Time costing for training. Table 3 shows the time statistics for training one epoch (with batch size
equals 128) by different baselines. It takes additional 28 seconds when combined with Vanilia AT
and 30 seconds on TRADES for FRPAT, which is as fast as LBGAT.

Table 3: Time cost comparisons. We show the number of seconds required for different algorithms to
train an epoch on one RTX 3090 GPU.

Vanilla AT Vanilla AT + LBGAT Vanilla AT + Ours TRADES TRADES + LBGAT TRADES + Ours
821 848 849 1079 1106 1109

The impact of different batch sizes. As shown in Table 5, we tried 128, 256, 384 samples per
batch for relation calculating. Among them, a batch size of 256 achieves the best results, but the
difference among different configurations is not large. Overall our method is not sensitive to different
batch sizes.

Table 4: The ablation experiment about different
relation preserving approaches.

Methods Clean Acc Robust Acc
PGD-20 Acc C&W-20 Acc AA Acc

Vanilla AT 60.44 28.06 27.85 24.81
MCA 57.18 29.31 27.23 25.76

Vanilla AT + RKD 64.00 28.32 27.92 24.92
Vanilla AT + CRD 62.22 27.47 27.42 24.53
Vanilla AT + Ours 66.39 29.88 29.84 25.81

Table 5: The ablation experiment about
different batch sizes.

Batch Size 128 256 384

Clean Acc. 66.39 66.55 66.26
PGD-20 Acc. 29.88 31.08 30.60
C&W-20 Acc. 29.84 30.72 30.16
AA Acc. 25.81 26.07 25.41

Sensitivity analysis of hyper-parameter λ. As Table 6 shows, with the increase of λ in Eq. 2,
clean accuracy always gets higher, while the PGD-20 accuracy rises at first and then decreases. It is
reasonable because a large λ forces the manifold to be highly close to that of standard training, thus
the robustness of the model is weakened.

Table 6: Sensitivity analysis of hyper-parameter λ.

0 5 10 20 50

Clean Acc. 57.99% 61.52% 63.21% 65.28% 66.40%
PGD-20 Acc. 31.53% 32.31% 33.47% 33.90% 33.62%

4 RELATED WORK

Adversarial Training Adversarial training is known as one of the most effective methods to
improve the adversarial robustness of DNNs. Most adversarial training algorithms (Madry et al.,
2017; Zhang et al., 2019; Wang et al., 2019; Wong et al., 2020; Wu et al., 2020; Li et al., 2021;
Jia et al., 2022) focused on getting clean samples close to the representation of the adversarial
samples they generate. Madry et al. (2017) generated adversarial examples by PGD attack method as
model input during training, and based on that, Zhang et al. (2019) proposed TRADES by punishing
the model for outputting different logits of adversarial examples and their corresponding natural
images, which as a regularization term adding to the cross-entropy loss. Considering the influence
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of misclassified data, Wang et al. (2019) introduced Misclassification Aware adveRsarial Training
(MART), which emphasizes misclassified examples by higher weights. Due to the large computational
cost of adversarial training, Wong et al. (2020); Li et al. (2021) use single-step attacks to obtain
adversarial examples that greatly reduce training time. Wu et al. (2020) improved the adversarial
robustness by flattening the weight loss landscape. Jia et al. (2022) proposed LAS from the view
of automatically generating adversarial examples of proper epsilon. However, They all ignored the
impact of adversarial training on the relationship between samples, resulting in cluttered feature
space.

There are also works (Mao et al., 2019; Yang et al., 2021; Fan et al., 2021; Bui et al., 2021) that relate
to the relationship between different samples. Mao et al. (2019) introduced metric learning in the field
of adversarial training, using triplet loss to enhance model generalization. Yang et al. (2021); Fan
et al. (2021); Bui et al. (2021) further used contrastive learning. However, they recognized the huge
difference in the distribution of adversarial and clean samples, but did not notice the excessive impact
on clean samples when narrowing them, which resulted in that they did not effectively improve the
sample relationship.

Knowledge Distillation in Adversarial Training Knowledge distillation (Passalis & Tefas, 2018;
Tung & Mori, 2019; Park et al., 2019; Zhu et al., 2021) can transfer the ability of the teacher network
to the student network and is often used to achieve model compression. Goldblum et al. (2020); Zi
et al. (2021) distilled large robust models for robust model compression. Arani et al. (2020); Cui
et al. (2021); Chen & Lee (2021) distilled the clean data logits of the standard training model to
enhance adversarial training on clean accuracy. Chen & Lee (2021) considered additional temperature
factor during distillation. However, they did not constrain the relationship between samples, and their
distillation loss updates both standard and adversarially-trained models at the same time. Therefore,
they were also negatively affected by adversarial examples.

5 CONCLUSIONS AND FUTURE WORK

Adversarial training shows significant over smoothing in the model feature space and results in poor
generalization. Different from previous algorithms, we propose Flexible Relation Preserving for
Adversarial Training (FRPAT) from the perspective of inter-sample relationships. It improves the
clustering in the adversarial training feature space by migrating the relationships between clean
samples of the standard training model. Because the adversarial training will make the clean samples
close to the feature distribution of their generated adversarial samples, the clean sample generalization
and robust generalization will be improved. FRPAT is simple yet effective. On the CIFAR10 and
CIFAR100 datasets, we get a maximum improvement of 8.78% in clean sample accuracy and
3.04% in robust accuracy, demonstrating that our method does help the adversarial training model to
constitute a better inter-sample relationship through visualization.

There are a few future directions we plan to pursue. First, FRPAT is a label-free algorithm, so it can
be naturally applied to various unlabeled data. Second, we can distill the inter-sample relationships of
pre-trained models, even across modalities, since FRPAT is only related to the feature space regardless
of the label space and the model architecture. Third, FRPAT introduces a new perspective to the
combination of transfer learning and adversarial robustness. We transfer the relationship between
samples as a whole instead of one-to-one, which could be an inspiration for other works.

REPRODUCIBILITY STATEMENT

We provide core source codes in the supplementary material, and detailed experimental settings in
the paper.

ETHICS STATEMENT

FRPAT can be used in combination with other adversarial training algorithms to further improve the
classification accuracy of the model for unknown samples, enhance the robust security of the model,
and reduce the possibility of criminals using adversarial attacks to cause nefarious effects. But there
is still a lot of room for improvement to achieve a fully robust model.
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Supplementary Materials for “FLEXIBLE RELATION PRESERVING
FOR ADVERSARIAL TRAINING”

Here we will introduce more details about our method and experiments.

A MORE DETAILS ABOUT OUR METHODS

Here we show more details about how we get the relationships between samples. Inspired by t-SNE
and UMAP (Van der Maaten & Hinton, 2008; McInnes et al., 2018), we want to use the conditional
probability distribution to represent relationships between samples. t-SNE and UMAP make use of
the regular Kernel Density Estimation (KDE) for approximations of the conditional probabilities. It
has too many hyper-parameters to tune, and the training cost is unacceptable for us. So followed by
PKT (Passalis & Tefas, 2018), we use the cosine similarity-based affinity metric.

dij = 1− f(xi)
T f(xj)

||f(xi)||2||f(xj)||2
, (1)

Kcos(f(xi), f(xj)) =
1

2

(
f(xi)

T f(xj)

||f(xi)||2||f(xj)||2
+ 1

)
,

=
1

2
(2− dij),

(2)

where f(xi) is the feature of the i-th sample, dij is the cosine distance between xi and xj , and Kcos

is cosine similarity-based affinity metric value for xi and xj .

Moreover, we are also inspired by UMAP to better preserve the global structure of feature space by
adding ρj , which is the distance between xj and its nearest neighbor.

d′ij = dij − ρj . (3)

Finally, after normalization, we can get the probability that xi is a neighbor of xj by Kcos for the
standard training model.

pi|j =
2− dst

′

ij∑N
k=1,k ̸=j(2− dst

′
jk )

,

=
(2− (dstij − ρj))∑N

k=1,k ̸=j(2− (dstjk − ρj))
.

(4)

Similarly, for the adversarial training model:

qi|j =
2− dat

′

ij∑N
k=1,k ̸=j(2− dat

′
jk )

,

=
(2− (datij − ρj))∑N

k=1,k ̸=j(2− (datjk − ρj))
,

(5)

To make it easier for the reader to understand our method, we show the pipeline of the method in
Fig. 1

What’s more, when combined with Vanilla AT, Lrobust = CE(softmax(M̃(X̃)));

when combined with LBGAT and Vanilla AT, Lrobust = CE(softmax(M̃(X̃))) +

MSE(M(X̃), M̃(X̃));

when combined with TRADES, Lrobust = CE(softmax(M̃(X))) + β ∗KL(M̃(X), M̃(X̃));

and when combined with LBGAT and TRADES, Lrobust = MSE(M(X̃), M̃(X̃)) + β ∗
KL(M̃(X), M̃(X̃))
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Figure 1: The whole framework of FPRAT.

Table 1: Quantitative experiment on Tiny ImageNet. "*" are the results directly quoted from LBGAT.

Defense Clean Acc. PGD-20 Acc.
Vanilla AT* 30.65 6.81
Vanilla AT + LBGAT* 36.50 14.00
ALP* 30.51 8.01
LBGAT + ALP* 33.67 14.55
TRADES (β = 6.0)* 38.51 13.48
TRADES (β = 6.0) + LBGAT* 39.26 16.42

TRADES (β = 6.0) + Ours 41.12 16.18
TRADES (β = 6.0) + LBGAT+ Ours 41.53 17.09

B MORE RESULTS

Training details Here we will add more training details. Firstly, for different experiment settings,
we choose different λ. We set λ = 5 on CIFAR-10 dataset, and λ = 20γ on CIFAR-100 dataset,
where γ = 2

1+e
−10t
100

−1
and t is the current t-th epoch during training. Moreover, all our experimental

results are reproducible with random seed = 1. Finally, we also provided our core code in the
supplementary material, and all the existing assets we used chose MIT license.

Experiments on Tiny ImageNet. To verify the effectiveness of our method on a larger dataset, we
conduct new experiments on Tiny ImageNet (Deng et al., 2009), which contains 120, 000 64× 64
color images in classes. Experimental settings are the same as LBGAT. * are the results directly
quoted from LBGAT. For the training set, we resize the image from 64× 64 to 32× 32, and the data
augmentation is random crops with 4 pixels of padding; finally, we normalize pixel values to [0,1].
For test set, we resize the image to 32× 32, and normalize pixel values to [0,1]. Others are the same
as CIFAR-100 and CIFAR-10.

As shown in Table. 1, combined with our algorithm can further improve the clean sample
generalization and robustness of TRADSES and LBGAT.
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Table 2: The ablation experiment about different standard training model architecture.

Model Method Teacher Model Clean Acc Robust Acc
PGD-20 Acc C&W-20 Acc AA Acc

ResNet-18 Standard Training None 77.39 0 0 0

WideResNet34-10 TRADES+Ours ResNet-18 62.62 36.27 31.72 29.19

WideResNet34-10 Standard Training None 78.11 0 0 0

WideResNet34-10 TRADES+Ours WideResNet34-10 63.09 35.54 30.41 28.76

Table 3: Quantitative experiment on TRADES (β = 0) on CIFAT-10 and CIFAR-100.

Dataset Transfer Methods Clean Acc Robust Acc
PGD-20 Acc C&W-20 Acc AA Acc

CIFAR-10 LBGAT 87.64 57.16 55.52 52.38
LBGAT+Ours 88.09 57.55 56.91 52.87

CIFAR-100 LBGAT 69.39 33.05 29.74 26.59
LBGAT+Ours 69.20 33.22 30.68 27.59

Ablations on Different teacher architectures. As shown in Table. 2, our approach is not
sensitive to standard training model architectures, as ResNet18 has achieved comparable results to
WideresNet34-10 on the CIFAR datasets.

Here we also show that our algorithm can further improve the performance of the LBGAT algorithm
under the TRADES (β = 0) experimental setting (Table. 3).

Moreover, we also show our methods can alleviate the overfitting of adversarial training and get
better performance both on the best epoch model and the last epoch model. (Table. 5 and Table. 5)

More discussion about LBGAT. As shown in Table. 6, we find that if only the adversarial training
model is updated for the distillation loss of LBGAT ( LBGATdetach), the clean accuracy of the
model will be further improved, but the robustness will be decreased, and it is difficult to converge in
the training stage, which verifies our speculation.

C NEW RESULTS

New experimental settings To compared with LAS (Jia et al., 2022), a state-of-the-art adversarial
training method, we also follow Jia et al. (2022) to rerun our experiments. ϵ is 8/255. The initial
learning rate is set to 0.1 with a total of 110 epochs for training and reduced to 0.1x at the 100-th and
105-th epochs. Weight decay is 5e-4; other experimental Settings are the same as in the main text.

Quantitative experiment results As shown in Table. 7 and Table. 8, our algorithm has obvious
advantages in clean accuracy and achieves better or comparable results in defense accuracy of
different attack methods compared with most popular adversarial training algorithms. TRADES
and LBGAT achieve significant improvement in clean sample generalization by combining with
our algorithm, and the robust generalization is also relatively improved or maintained. Compared

Table 4: Quantitative experiment on CIFAR-10. GAP is the best epoch model’s accuracy minus the
last epoch model’s accuracy. ↑ means the higher, the better, and ↓ means the lower, the better.

Model Baseline Transfer Methods Last Epoch Clean Acc (↑) Last Epoch PGD-20 Acc (↑) PGD-20 GAP (↓)

WideResNet34-10

Vanilia AT

None 86.35 49.68 3.77
Ours 89.10 52.16 3.48
LBGAT 85.91 51.77 2.57
LBGAT+Ours 89.42 53.88 2.33

TRADES

None* 85.35 53.24 3.35
Ours 88.28 56.59 1.61
LBGAT* 82.31 57.74 0.30
LBGAT+Ours 87.62 57.73 0.00
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Table 5: Quantitative experiment on CIFAR-100. GAP is the best epoch model’s accuracy minus the
last epoch model’s accuracy. ↑ means the higher, the better, and ↓ means the lower, the better.

Model Baseline Transfer Methods Last Epoch Clean Acc (↑) Last Epoch PGD-20 Acc (↑) PGD-20 GAP (↓)

WideResNet34-10

Vanilia AT

None 59.83 26.03 2.03
Ours 66.45 27.15 2.73

LBGAT 59.37 27.43 2.67
LBGAT+Ours 68.39 28.03 1.9

TRADES

None 57.94 28.48 2.45
Ours 64.97 32.23 1.74
LBGAT 60.43 35.11 0.97
LBGAT+Ours 62.89 35.29 0.98

Table 6: Analysis experiments on LBGAT on CIFAR-100.

Methods Clean Acc Robust Acc
PGD-20 Acc C&W-20 Acc AA Acc

Vanilla AT + LBGATdetach 71.30 28.16 28.65 24.09
Vanilla AT + LBGAT 61.01 30.10 28.09 25.63

with SOTA method LAS-TRADES, We also have clear advantages in clean sample accuracy and
robustness.

Table 7: New quantitative experiment on CIFAR10. "*" are the results directly quoted from Jia et al.
(2022).

Defense Clean Acc. Robust Acc.
PGD-20 Acc. C&W-20 Acc. AA Acc.

Vanilla AT* 85.17 55.08 53.91 51.69
MART* 84.17 58.56 54.58 51.10
FAT* 87.97 49.86 48.65 47.48
GAIRAT* 86.30 59.54 45.57 40.30
AWP* 85.57 58.13 56.03 53.90
TRADES* 85.72 56.10 53.87 53.40

LAS-TRADES* 85.24 57.07 55.45 54.15
TRADES + Ours 87.07 58.51 56.81 54.70
TRADES + LBGAT 80.20 57.41 54.84 53.32
TRADES + LBGAT +Ours 86.69 58.04 56.75 54.47

16



Table 8: New quantitative experiment on CIFAR100. "*" are the results directly quoted from Jia et al.
(2022).

Defense Clean Acc. Robust Acc.
PGD-20 Acc. C&W-20 Acc. AA Acc.

Vanilla AT* 60.89 31.69 30.10 27.86
SAT* 62.82 27.17 27.32 24.57
AWP* 60.38 33.86 31.12 28.86
TRADES* 58.61 28.66 27.05 25.94

LAS-TRADES* 60.62 32.53 29.51 28.12
TRADES + Ours 67.47 34.99 31.61 28.95

TRADES + LBGAT* 60.64 34.75 30.65 29.33
TRADES + LBGAT+ Ours 65.40 35.46 32.36 30.17
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