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ABSTRACT

Large Language Models (LLMs) achieve great success across many general tasks,
but the mismatch among different vocabularies hinders further applications like
token-level distillation and inference with various models. To align the vocabularies
of LLMs, we propose a simple yet effective method named UnifyVocab to replace
the vocabulary of an LLM at a limited cost. A new vocabulary alignment method is
devised first to align the source vocabulary to the target one. We then rearrange the
corresponding parameters like embeddings, and progressively fine-tune the model.
Experimental results on models across multiple parameter scales demonstrate the
effectiveness and generalization of UnifyVocab, which costs as few as 10B tokens
to recover 98.02% performance of the vanilla models on average. We further find
that unifying the vocabularies significantly facilitates the token-level distillation
which remarkably boosts (+4.4%) the model with only 235M tokens. Moreover,
our method provides a better initialization of multilingual vocabulary for LLMs to
adapt to new languages.

1 INTRODUCTION

Large language models like LLaMA, GPT-4, and Qwen (Touvron et al., 2023b; OpenAI, 2023; Qwen,
2024) show impressive general abilities. These models have specific strengths and weaknesses, which
arise from their pre-training corpus and method. However, the mismatch among their vocabularies
impedes the deep knowledge transfer between these models like token-level distillation and ensemble.
Thus, it is important to unify the vocabulary of the large language model at a low cost.

The vocabulary of the language model is kept unchanged after pre-training unless adapted to a new
language. It is common to append new tokens to improve the effectiveness of encoding on a new
language (Tran, 2020; Wang et al., 2020; Chau et al., 2020; Minixhofer et al., 2022; Cui et al., 2023;
Liu et al., 2024).

In this paper, we introduce a method called UnifyVocab to replace the vocabulary of large language
models from a view of token-token co-occurrences. As the general process to train an LLM, the
pre-training corpus is first tokenized into token IDs, and then input into the model. Given the same
pre-training corpus, different tokenizers result in various sequences of token IDs, while the semantic
and syntactic information is preserved in the token-token co-occurrence. Therefore, UnifyVocab
strives to align the token IDs from the original vocabulary and the target ones based on the global
token-token co-occurrence matrix (Pennington et al., 2014). We further propose a metric to evaluate
the performance of the token-token alignment matrix. The new embedding and language modeling
head of LLMs (“lm head” in the transformers (Wolf, 2019)) are initialized from the re-arranged
parameters using the learned alignment matrix. Further adaptation process for the new vocabulary is
divided into a progressive two-stage procedure to improve the stability of convergence.

Given a target vocabulary for substitution, results on models across different scales show that as
few as 10B tokens are needed for our method to recover 98.02% performance of vanilla models on
average. The training process of UnifyVocab is 1.92x faster than the best baseline method. Unifying
vocabulary further facilitates the token-level distillation between models, which is 4.4% better than
the sentence-level distillation on the same corpus. In addition, the model trained on the English
corpus obtains a good initialization for the multilingual vocabulary, decreasing the perplexity from
2.9e5 to 2e2, and could adapt to new languages with only 4B tokens using UnifyVocab.
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莫听穿林打叶声， 
何妨吟啸且徐行。 The way to get started is to 

quit talking and begin doing. 
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Figure 1: Illustration of UnifyVocab to align the token IDs from different vocabularies. We train
token representations on the tokenized corpus, and align token IDs by the cosine similarity. It is noted
that the IDs of tokens belonging to both vocabularies are directly replaced without alignment.

To sum up, our contributions are as follows:

• We propose a general method to align token IDs between two vocabularies and replace the
vocabulary of the large language model from the token-token co-occurrence view, which
costs as few as 10B tokens in the new vocabulary adaptation.

• We introduce a metric to evaluate the performance of token-level alignment, which is found
proportional to the initial loss of pre-training.

• Experimental results show that our method promotes deep knowledge transfer between
models like token-level distillation, and even the cross-lingual knowledge transfer among
multiple languages.

2 UNIFYVOCAB

2.1 VOCABULARY ALIGNMENT

As shown in Figure 1, there are three steps in UnifyVocab to align two vocabularies of language models
from the token-token co-occurrence information. We denote the source tokenizer as Tokenizers,
which has Vs tokens, and the target tokenizer as Tokenizert with Vt tokens, correspondingly.

Step 1: Tokenization The comprehensiveness of the pre-training corpus is important to obtain a
well-trained token representation. An unbalanced corpus makes it hard to train the representation
of tokens in the tail of vocabulary. Thus, the corpus used in this work is empirically composed of
multilingual corpus CulturaX[40%] (Nguyen et al., 2023), code corpus The Stack[30%] (Kocetkov
et al., 2023), and math corpus Proof-Pile-2[30%] (Azerbayev et al., 2024). We tokenize the mixed
corpus using various tokenizers of different LLMs, and obtain multiple sequences of token IDs for
the same corpus. The default token amount of corpus used in this step is 1B, which is investigated in
Appendix B.1.

Step 2: Token Representation Learning We adopt GloVe (Pennington et al., 2014) to train the
representation of the tokens from Step 1. The main reason is that GloVe considers more global
statistical information than those slide window methods like CBOW and fastText (Mikolov et al.,
2013a;b; Bojanowski et al., 2017). The details of training settings for GloVe vectors are reported in
Appendix A.

Step 3: Token Alignment Based on the assumption that token representations capture the semantic
information in the token, we align token IDs using the pair-wise cosine similarity of learned token
representations. It should be noted that the ID of tokens belonging to both vocabularies are directly

2
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I think therefore I am. 
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(50%) 
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Figure 2: (1) We choose BLEU to evaluate the performance of alignment matrix Ms→t (2) The
embedding and lm head are tuned at the first half part of the tuning process, which follows the full
parameter tuning. * indicates the parameter of each target token is initialized from the one of the
most similar source token by alignment matrix Ms→t.

replaced without the need to align. We denote the token-token alignment matrix Ms→t, which maps
the token id from the source vocabulary to the one with the highest cosine similarity from the target
vocabulary.

2.2 ALIGNMENT EVALUATION

Figure 2(1) illustrates our metric to evaluate the performance of alignment matrix Ms→t. We first
tokenize the test corpus C using different tokenizers, which results in Cs and Ct. The token ID corpus
Cs from the source tokenizer is converted by the alignment matrix Ms→t, and comes to the corpus
C′

t . The higher BLEU score between C′

t and the corpus Ct from the Tokenizert, the better alignment
matrix Ms→t is. The other two metrics, BLEU-1 and BertScore, to evaluate the performance of
alignment matrix are investigated in the Appendnix B.4.

2.3 PROGRESSIVE ADAPTATION

Given the alignment matrix Ms→t, the parameters of each token in the target vocabulary are initialized
from the ones of the most similar source token. We find that these re-arranged embedding and lm head
provide a good initialization for the new model (Section 3.2 and 4.2). Figure 2(2) illustrates the two
stages designed for a LLM to adapt to the new vocabulary. The re-arranged embedding and lm head
are tuned first to avoid loss spike and improve the stability during tuning (Figure 5(c)). The other
parameters of internal layer are further tuned together in the last half part. We acknowledge that a
better designed adaptation method can bring a higher performance, which can be investigated in the
future.

3 EXPERIMENTS

3.1 EXPERIMENTS SETTINGS

Large Language models We adopt the fully open-source language model series Pythia (Biderman
et al., 2023) as base models in this work. It is noted that this work does not intend to achieve the
state-of-the-art performance of large language models but rather investigate an effective method to
replace the tokenizer. To achieve token-level knowledge transfer from other capable large language
models, the tokenizers (vocabularies) of Gemma (Team et al., 2024), Qwen2 (Yang et al., 2024),
LLaMA2 (Touvron et al., 2023b), and LLaMA3 (Meta, 2024) are selected as the target tokenizer to
replace. We report hyper-parameters in Appendix A.

Corpus To reduce the risk of distribution shift from the training data, we choose the vanilla pre-
training corpus (Gao et al., 2020; Soboleva et al., 2023; Kocetkov et al., 2023) of the base model

3
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Pythia in the fine-tuning process. Corpora from downstream tasks and multiple languages are applied
in token-level distillation and cross-lingual transfer experiments (Section 4).

Evaluation Tasks Following the common practices to evaluate large language models (Lin et al.,
2022; Biderman et al., 2023; Zhang et al., 2024), there are 10 datasets, including commonsense
reasoning (Conneau et al., 2018; Clark et al., 2018; Mihaylov et al., 2018; Zellers et al., 2019; Ponti
et al., 2020; Bisk et al., 2020; Sakaguchi et al., 2020; Tikhonov & Ryabinin, 2021) and reading
comprehension (Clark et al., 2019) tasks, used in this work. To avoid the randomness from the
prompt and evaluation method, we adopt the default prompt from the commonly used language model
evaluation harness framework (Gao et al., 2024).

Baselines We introduce the following methods from the cross-lingual vocabulary adaptation domain
as baseline methods in this work:

• Random Initialization for each token t ∈ {Vt \(Vt∩Vs)} employs the default initialization
method of huggingface transformers and reuses the parameters of token t ∈ {Vt ∩ Vs},
which belongs to overlapping vocabularies.

• Random Permutation initializes each token t ∈ {Vt \ (Vt ∩ Vs)} using the parameter of a
randomly chosen token from the source vocabulary. The parameters of shared tokens are
also reused.

• WECHSEL (Minixhofer et al., 2022) transfers embeddings of source tokens into target
tokens by tokenizing and recomposing additional word embeddings Ws and Wt, which are
aligned with a bilingual dictionary.

• OFA (Liu et al., 2024) factorizes the embeddings of source model Es into the primitive
embeddings P and source coordinates Fs that is further re-composed by multilingual word
embeddings W to the target coordinates Ft. The assembled primitive embeddings P and
target coordinates Ft comes the target embeddings Et.

• Focus (Dobler & de Melo, 2023) initializes the embedding parameters of token t ∈ {Vt \
(Vt ∩ Vs)} using the weighted sum of the ones from the token t ∈ {Vt ∩ Vs}. It largely
depends on the size of ∥ Vt ∩ Vs ∥, and performs poorly when the overlapping percentage
of Vt and Vs is low.

• ZeTT (Minixhofer et al., 2024) trains an additional hypernetwork Hθ to generate the
parameters for each token t ∈ Vt. The added hypernetwork brings a lot of training cost.

Table 1: The main results of replacing the vocabulary of Pythia to Gemma using 10B tokens from
the Pile corpus. “w/ SlimPajama” adopts 1B tokens from SlimPajama to train GloVe embeddings.“+
Align Rep.” adds alignment process for GloVe embedding before calculating cosine similarity
following Moschella et al. (2023). The best performance among the vocabulary adaptation methods
is displayed in bold.

ARC-E BoolQ HellaSwag OpenbookQA PIQA WinoGrande Avg

Model 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Pythia1B 56.82 58.71 60.43 57.37 37.68 37.66 18.80 19.00 70.40 71.49 53.20 52.01 49.55 49.37

w/ Rand. Init. 31.36 31.61 37.83 49.11 26.35 26.40 14.00 12.60 54.57 55.33 49.17 49.17 35.55 37.37

w/ Rand. Perm. 31.69 32.95 37.77 54.80 26.43 26.39 14.00 12.60 55.50 55.98 47.04 50.67 35.40 38.90

w/ OFA 38.17 37.79 55.14 52.35 28.29 28.62 14.40 12.20 58.43 58.54 49.96 50.99 40.73 40.08

w/ WECHSEL 43.35 45.33 56.61 54.34 32.53 32.41 14.80 16.20 61.70 62.89 52.01 52.72 43.50 43.98

w/ Focus 46.55 48.95 56.21 55.78 32.27 32.46 19.20 18.00 63.82 64.80 51.70 51.78 44.96 45.29

w/ ZeTT 47.14 49.03 57.06 53.70 34.06 34.06 18.40 19.40 64.15 65.34 52.09 51.22 45.48 45.46

w/ UnifyVocab 54.46 56.86 58.90 52.26 36.16 36.27 21.00 20.20 67.74 68.50 52.25 50.91 48.42 47.50

w/ SlimPajama 53.54 55.68 57.55 53.85 36.10 35.99 19.40 20.20 67.03 67.52 52.09 51.22 47.62 47.41

+ Align Rep. 54.25 56.65 59.33 54.68 37.08 36.91 20.20 19.40 67.36 68.17 54.38 52.80 48.77 48.10

Pythia2.8B 63.80 67.00 63.91 65.14 45.32 45.04 24.00 25.20 74.05 74.43 58.64 60.77 54.95 56.26

w/ Rand. Init. 30.47 32.91 38.20 51.07 26.46 26.69 14.40 13.20 55.17 55.06 48.30 50.51 35.50 38.24

w/ Rand. Perm. 31.48 31.86 37.83 50.46 26.48 26.49 13.60 14.40 54.03 54.95 50.20 48.86 35.60 37.84

w/ Focus 54.29 58.16 61.44 62.84 38.38 39.09 20.00 20.20 68.44 68.28 54.62 56.04 49.53 50.77

w/ UnifyVocab 61.62 65.15 63.82 65.47 43.13 43.18 23.40 25.80 72.14 72.42 58.17 61.17 53.71 55.53
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3.2 MAIN RESULTS AND ANALYSES

We first conduct experiments to replace the tokenizer of Pythia with the Gemma tokenizer using
10B tokens. Results on six datasets are shown in Table 1. Given limited tokens to fine-tune, it
can be found that UnifyVocab performs better than the other three baseline methods. The average
improvement of UnifyVocab over the strong baseline method ZeTT reaches 2.49%, and the 97.63%
performance of the vanilla model is reserved after vocabulary replacement. Replace the corpus to
train the GloVe embedding with 1B SlimPajama (Soboleva et al., 2023) tokens comes to a comparable
results. It demonstrates the robustness of our method on the pre-training corpus for token embedding
and alignment matrix. We find that the performance can be further advanced by aligning the GloVe
embedding into the relative representation using 300 common tokens occur in both vocabularies
following Moschella et al. (2023), which is the row with “+ Align Rep.” label.

Better alignment brings better initialization. The loss curves of Pythia1B with different methods
during the first 5B tokens training are shown in Figure 3(a). We find that UnifyVocab brings a better
initialization and decreases the first-step training loss from 17.8 (Focus) to 9.5. Moreover, the training
process with UnifyVocab is faster than the ones with other methods, which reaches 2.75 with only
2.6B tokens and is 1.92x (5B/2.6B) speed up than the method Focus.

1 2 3 4 5
Tokens (B)

0

2

4

6

8

10

12

14

16

18

Lo
ss

Rand. Init.
Rand. Perm.
Focus
UnifyVocab

22

1.92x

(a) Initialization method comparison

2.4355 2.4360 2.4365 2.4370 2.4375
BLEU

10

12

14

16

18
Lo

ss
Rand. Init.
Rand. Perm.
Focus
UnifyVocab

(b) The relationship of initial loss and BLEU

Figure 3: The training loss of Pythia2.8b with different methods (a) and Ms→t learned using UnifyVo-
cab, which is denoted by red point (b).

Table 2: The benchmark results of UnifyVocab using 10B tokens from the Pile corpus. The overlap-
ping ratio between the vocabulary of Pythia and other models are 6.23%(Gemma), 26.92%(Qwen2),
28.10%(LLaMA2), 32.85%(LLaMA3).

ARC-E BoolQ HellaSwag OpenbookQA PIQA WinoGrande Avg

Model #V (k) 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Pythia1B 50.3 56.82 58.71 60.43 57.37 37.68 37.66 18.80 19.00 70.40 71.49 53.20 52.01 49.55 49.37

→ Gemma 256.0 54.46 56.86 58.90 52.26 36.16 36.27 21.00 20.20 67.74 68.50 52.25 50.91 48.42 47.50

→ Qwen2 152.1 54.46 57.07 54.80 49.79 37.18 37.04 19.20 18.40 68.44 70.24 53.35 52.80 47.91 47.56

→ LLaMA2 32.0 49.45 52.02 58.32 55.75 35.38 35.45 18.80 17.80 66.32 66.65 53.91 50.91 47.03 46.43

→ LLaMA3 128.0 54.63 57.28 55.84 53.70 37.34 37.43 20.20 20.40 69.04 70.18 54.46 53.43 48.59 48.74

Pythia2.8B 50.3 63.80 67.00 63.91 65.14 45.32 45.04 24.00 25.20 74.05 74.43 58.64 60.77 54.95 56.26

→ Gemma 256.0 61.62 65.15 63.82 65.47 43.13 43.18 23.40 25.80 72.14 72.42 58.17 61.17 53.71 55.53
→ Qwen2 152.1 62.54 66.04 62.35 63.55 44.46 44.39 23.20 24.60 73.50 73.56 59.04 59.59 54.18 55.29

→ LLaMA3 128.0 61.83 64.60 64.40 63.94 44.62 44.59 23.80 25.60 73.45 73.29 57.54 58.72 54.27 55.12

Pythia6.9B 50.3 65.99 69.23 62.84 62.02 47.56 47.64 25.00 27.00 74.65 75.41 60.46 62.43 56.08 57.29

→ Gemma 256.0 65.40 68.35 62.39 59.57 45.75 45.86 22.00 25.60 73.39 74.10 60.38 61.17 54.89 55.77

→ Qwen2 152.1 65.57 68.43 64.07 57.61 46.84 46.91 25.60 25.40 73.45 74.65 61.17 63.14 56.12 56.02

→ LLaMA3 128.0 66.46 68.35 63.79 60.64 47.28 47.31 25.60 28.20 74.48 75.84 61.48 63.30 56.52 57.27
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We further investigate the impact of the learned alignment matrix Ms→t by changing the hyper-
parameters of GloVe. It is noted that different alignment matrices Ms→t bring different initial
parameters, and also come to different BLEU scores on the same evaluation corpus. Figure 3(b)
illustrates the negative relationship between the first-step training loss and the BLEU. In other words,
the higher the BLEU score for the alignment matrix Ms→t, the better the initial parameter is. The
other metrics like BLEU-1 and BertScore are also used to evaluate the alignment metrix, and also
show a negative relationship with the initial training loss in Appendix B.4.

More overlapping comes to faster convergence and higher performance. The UnifyVocab is
further applied to the other three target tokenizers: Qwen2, LLaMA2, and LLaMA3. Table 2 reports
the performance of models after replacing vocabulary on six datasets. UnifyVocab recovers 98.02%
performance of the base model on average with only 10B tokens. Given a target vocabulary with
more tokens than the one of Pythia (50.3k), it can be found that a higher overlapping ratio brings a
better performance of model replaced (97.62% for Gemma to 99.07% for LLaMA3). The zero-shot
in-context learning results for Pythia6.9B with LLaMA3 vocabulary even surpass the vanilla base
model. The results of Pythia1B with LLaMA2 vocabulary are only 94.47%, which is inferior to the
average result of 98.02%. We argue that it may come from the missing 75.0M parameters (7.4% for
Pythia1B) after switching to a 32.0k vocabulary from the 50.3k vocabulary.

Figure 4(a) shows the training loss curve during the first 5B tokens. The replacing process of the
Gemma tokenizer is the slowest, which may come from the only 6.23% overlapping ratio between
two vocabularies. It is interesting to find that other conditions for three tokenizers converge with only
1B tokens under the same setting. Further analyses for the convergence of vocabulary adaptation
refer to Appendix B.2, which shows a similar phenomenon.
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(a) Overlapping ratio
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Figure 4: The training loss curve of Pythia1B for different overlapping ratios (a), and learning rate
used during replacing to the Gemma tokenizer (b).

Two-stage tuning brings a more stable convergence. To replace the tokenizer and keep the
performance of the vanilla model, we adopt only fine-tuning the vocabulary-related parameters at
the first stage. The main reason for two-stage tuning is to take these parameters as the adapters for
different tokenizers, and avoid the well-trained parameters of the internal layer distracted by the new
initialized parameters.

Figure 5 illustrates that our two-stage tuning method makes the convergence more stable under a high
learning rate like 6.4e-4, which comes to better performance after tuning on 10B tokens. It is noted
that the loss spike also occurs at the first stage, fine-tuning vocabulary-related parameters only, under
such a high learning rate like 2.56e-3 in Figure 4(b).

4 APPLICATIONS

In this section, we illustrate two direct applications of UnifyVocab: token-level distillation (Section
4.1) and cross-lingual knowledge transfer (Section 4.2).
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Figure 5: The loss curve of Pythia1B under two-stage tuning or direct full parameters tuning.

4.1 TOKEN-LEVEL DISTILLATION

To compensate for the performance gap between these capable open-source language models and
Pythia, we take these models as the teacher model of Pythia after replacing the tokenizer. Training
samples from downstream tasks and the corpus of Pile are used in the token-level distillation
experiments. The logit of each token from the teacher model is taken as the soft label of Pythia to
learn. We empirically set the proportion of training samples to 15% to avoid a significant degradation
in the performance of language modeling (Wei et al., 2023).

Table 3 reports the results of two baseline methods and token-level distillation from three teacher
models using 235M tokens. We can find that token-level distillation is significantly better than the
one of sentence-level distillation. Given the same teacher model Qwen27B, the improvement of Pythia
over the sentence-level distillation result reaches 4.37%, which further demonstrates the importance
of unifying tokenizer between models. The knowledge transfer between models will be constrained
in sentence-level distilling without unifying vocabulary. It is also noted that models with token-level
distillation on strong teacher models like Qwen2 outperform the ones of direct tuning.

Table 3: The main results of token-level distillation on six downstream tasks using 235M tokens.
“+Sentence distill” denotes the sentence-level distillation results with Qwen27B(Yang et al., 2024),
which fine-tunes on the output from Qwen27B given questions as prompt.

ARC-E BoolQ HellaSwag OpenbookQA PIQA WinoGrande Avg

Model 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Pythia1B 56.82 58.71 60.43 57.37 37.68 37.66 18.80 19.00 70.40 71.49 53.20 52.01 49.55 49.37

+ Direct tuning 57.49 55.64 70.70 72.11 41.24 41.60 25.40 28.40 69.04 70.08 54.70 54.78 53.10 53.77

+ Sentence distill 52.27 53.41 67.49 67.06 39.03 39.08 21.80 22.80 66.97 68.99 51.85 52.17 49.90 50.58

w/ Gemma7B 55.39 56.99 67.19 69.69 36.53 37.26 19.00 22.80 68.82 69.21 52.33 53.51 49.88 51.58

w/ Qwen27B 62.33 63.17 70.18 72.54 41.58 42.21 22.00 28.20 73.01 73.18 55.01 55.56 54.02 55.81

w/ LLaMA38B 64.02 64.56 73.91 74.19 42.11 42.34 24.20 27.60 72.74 73.83 55.49 56.43 55.41 56.49

Pythia6.9B 65.99 69.23 62.84 62.02 47.56 47.64 25.00 27.00 74.65 75.41 60.46 62.43 56.08 57.29

+ Direct tuning 66.25 66.20 79.30 78.87 52.21 53.39 33.20 33.00 72.91 74.48 62.90 61.72 61.13 61.28

+ Sentence distill 61.70 65.36 76.64 76.88 48.98 51.33 28.20 30.40 70.18 71.55 58.96 62.19 57.44 59.62

w/ Gemma7B 67.59 68.94 76.06 75.66 47.83 48.36 28.40 31.40 73.78 75.52 59.04 64.17 58.78 60.67

w/ Qwen27B 71.72 73.27 79.85 80.00 50.78 51.12 29.20 34.00 77.26 77.91 61.33 64.56 61.69 63.48
w/ LLaMA38B 67.05 69.78 77.83 78.78 48.83 50.15 26.00 32.00 74.21 76.22 60.22 60.93 59.02 61.31

4.2 CROSS-LINGUAL TRANSFER

The tokens for other languages can be aligned and initialized by the tokens with similar semantics in
the source vocabulary, which can speed up the cross-lingual knowledge transfer. In this section, we
use UnifyVocab to conduct cross-lingual transfer experiments using 4B tokens from the CulturaX
corpus. The tokenizer of Qwen2 is used as the target tokenizer for Pythia.
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Table 4: The normalized perplexity on the valid corpus of CulturaX. The perplexity is normalized to
the vocabulary of Pythia following Wei et al. (2023). “High”, “Medium” and “Low” denotes the
available amount of linguistic resources.

High Medium Low

Model #Tune (B) ar de en ja zh bn ko th uk vi ta te ur Avg

Qwen21.5B − 4.7 11.1 15.7 6.0 4.6 2.4 3.3 2.6 5.7 3.3 2.8 3.4 4.0 5.3

Pythia1B − 7.6 15.4 21.7 9.9 13.2 3.4 5.6 4.3 6.7 6.3 2.9 3.3 5.8 8.2

w/ Focus 0 4.1e3 1.7e5 1.8e6 2.1e4 9.6e2 6.5e4 1.0e3 5.6e3 1.6e6 8.4e2 5.0e4 1.9e5 1.9e5 3.1e5

4 8.3 27.1 59.7 14.0 14.0 3.6 5.9 3.8 7.3 5.9 3.5 3.6 4.3 12.4

w/ UnifyVocab 0 1.6e2 9.4e2 3.6e2 3.1e2 1.5e2 89.6 94.1 94.3 1.6e2 1.1e2 36.1 27.8 1.1e2 2.0e2

4 6.5 14.1 24.0 9.0 9.2 2.5 4.5 3.2 5.3 4.5 2.3 2.4 3.8 7.0

Qwen27B − 3.9 8.1 11.8 4.9 3.8 2.1 2.9 2.3 3.8 2.9 2.3 2.6 3.3 4.2

Pythia6.9B − 5.9 10.8 16.7 7.9 9.9 3.0 4.6 3.7 4.9 4.9 2.6 2.9 4.8 6.3

w/ Focus 0 6.9e3 1.6e5 1.2e6 2.4e4 1.3e3 2.5e4 7.2e2 3.3e3 1.9e6 7.9e2 1.7e4 1.5e5 1.2e5 2.8e5

4 6.8 17.6 39.3 10.8 11.1 2.5 5.0 3.3 5.2 4.8 2.3 2.5 3.7 8.8

w/ UnifyVocab 0 1.9e2 8.0e2 2.8e2 3.3e2 1.6e2 85.3 97.0 94.3 1.7e2 1.1e2 36.1 23.8 1.0e2 1.9e2

4 5.4 10.1 18.1 7.5 8.0 2.1 4.0 2.8 4.1 3.8 2.1 2.1 3.1 5.6

As shown in Table 4, the perplexity of Pythia initialized with UnifyVocab (2.0e2) is significantly better
than the one of Focus baseline (2.9e5). After only 4B tokens tuning, the improvement of UnifyVocab
is 13.1% over the vanilla model on average. The performance of Pythia using UnifyVocab on three
low-resource languages even outperforms the ones of Qwen2 under a similar parameter amount.

Table 5 and 7 report in-context learning results on four multilingual datasets. We can find that
UnifyVocab brings a better-initialized model than the baseline method Focus (+3.5%), and transfers
the knowledge into other languages like Vietnamese (vi, +2.3%) and Urdu (ur, +0.9%).

It is interesting to find that the perplexity of Pythia1B initialized by UnifyVocab reaches 2.0e2, while
the in-context learning results are comparable with the ones of Focus after 4B tokens tuning. We argue
that it arises from the mostly reserved English ability with UnifyVocab, which is 56.2% outperforming
the 43.6% of Focus.

Table 5: Zero-shot in-context learning results of cross-lingual transfer. “#Tune(B)=0” denotes
performance of the model after parameter initialization without any tuning. Refer to Table 7 in
Appendix B.5 for five-shot results.

XNLI XCOPA XStoryCloze XWinograd

Model #Tune(B) en de zh ar th vi ur en th vi ta en zh ar te en zh ja Avg

Pythia1B − 51.0 37.8 42.6 35.9 34.8 37.0 34.7 62.4 54.4 50.6 55.4 64.4 48.7 48.0 52.9 57.1 53.2 59.3 48.9

w/ Focus 0 32.8 32.2 33.6 33.6 33.5 32.0 32.8 49.4 51.2 48.4 54.4 46.0 47.7 48.7 46.5 49.7 47.2 50.3 42.8

4 46.0 35.1 34.9 32.9 32.5 35.4 34.7 53.0 52.6 50.0 54.2 57.1 50.0 47.5 52.5 52.2 51.7 54.4 45.9

w/ UnifyVocab 0 48.4 35.9 33.4 33.1 31.8 32.5 33.8 54.6 52.0 47.4 57.2 58.6 46.5 46.7 51.0 54.4 50.2 50.5 45.4

4 51.2 39.0 42.3 38.5 35.8 38.9 35.7 60.8 55.2 51.8 53.8 64.0 51.0 47.5 54.1 56.0 52.5 56.9 49.2

Pythia6.9B − 54.4 39.0 46.2 39.3 39.8 39.3 36.4 70.8 57.6 51.2 53.0 70.7 54.0 50.4 53.5 63.7 60.1 67.1 52.6

w/ Focus 0 31.5 31.3 33.0 32.6 33.4 32.2 32.6 46.4 52.4 49.0 56.6 44.6 47.3 48.2 47.4 48.3 46.8 51.1 42.5

4 52.6 34.9 36.6 35.1 33.6 39.0 34.5 61.6 52.4 52.0 53.8 62.1 49.3 47.1 54.6 56.2 52.1 58.9 48.1

w/ UnifyVocab 0 50.9 37.6 34.3 34.6 33.7 33.1 33.7 60.2 52.6 48.0 55.8 63.1 47.1 47.0 50.3 59.6 48.6 51.4 46.8

4 55.1 35.5 41.6 39.1 39.6 42.8 37.1 70.2 56.0 53.6 51.4 70.4 52.5 49.1 54.3 61.5 54.0 60.7 51.4

5 RELATED WORKS

Our work is related to word representation, large language models, and vocabulary adaption, which
will be briefly introduced below.

Word Representation Based on the distributional semantic hypothesis, Bengio et al. (2003)
introduced the neural probabilistic language model to learn word representation. Researchers mainly

8
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focus on improving the effectiveness during learning word representations (Mikolov et al., 2013a;b;
Bojanowski et al., 2017), which provide a good initialization for neural networks like LSTM and
GRU (Hochreiter, 1997; Chung et al., 2014). GloVe (Pennington et al., 2014) provides a method to
train word representations from a view of global word-word co-occurrence matrix decomposition.
It motivates us to train a word representation for each token and align the token ID from statistical
co-occurrence information in the pre-training corpus.

Large Language Model Through scaling in the parameters and pre-training corpus (Kaplan et al.,
2020; Hoffmann et al., 2022), large language models including GPT and LLaMA (Radford et al.,
2018; 2019; Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023a;b; Meta, 2024; GLM et al.,
2024) demonstrate impressive performance across multiple tasks. However, the knowledge transfer
between different models is greatly hindered by the mismatch in the vocabulary. We aim to mitigate
this problem by introducing an effective method to replace the tokenizer of a pre-trained large
language model.

Vocabulary Adaption is investigated mainly in the multilingual domain, especially the cross-
lingual knowledge transfer problem (Workshop et al., 2023; Muennighoff et al., 2023; Yang et al.,
2023; Zhu et al., 2023; Üstün et al., 2024; Li et al., 2024). It aims to improve the encoding
effectiveness of tokenizer on corpora from new languages, and is often implemented by extending
the original vocabulary (Tran, 2020; Chau et al., 2020; Minixhofer et al., 2022; Dobler & de Melo,
2023; Downey et al., 2023). Most methods like Focus (Dobler & de Melo, 2023) rely on the tokens
belonging to both source vocabulary and target vocabulary to initialize the other new tokens in the
target vocabulary. Our method differs from these studies for the whole replacement of vocabulary
using a limited corpus. It does not rely on the tokens in both source vocabulary and target vocabulary.

6 LIMITATIONS

The first limitation comes from the assumption that the pre-training data distribution is available. We
conduct experiments on Pythia with different parameter amounts, which provide public model weights
and pre-training corpus. Due to the limited computation resource budget, open-source language
models with unknown pre-training corpus like Mistral (Jiang et al., 2023) are not investigated in
this work. However, the pre-training corpus distribution of open-weighted large language models
can be roughly inferred by the BPE vocabulary (Hayase et al., 2024). It can re-construct a similar
pre-training corpus to conduct replacing tokenizer experiments.

The 10B tokens of model tuning cost in replacing a tokenizer using UnifyVocab is another limitation,
although it is only 3.33% of the 300B tokens pre-training corpus for Pythia. From the loss curve of
UnifyVocab (Figure 4), we find that the start of full parameters tuning can be less than 5B tokens,
which may result in a better balance.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduce a method named UnifyVocab to replace the tokenizer of large language
models from a token-token co-occurrence view. Extensive experiments demonstrate that UnifyVocab
reserves the most performance of vanilla models (98.02% on average) using only 10B tokens, which
enables deeper knowledge transfer between models like token-level distillation and cross-lingual
knowledge transfer.

Beyond replacing the vocabulary of large language models, our method can be extended to replace
the vocabulary of multi-modal models by aligning different modal tokens. The other direction is to
develop a method with less training cost, e.g., incorporating meta-learning to replace the two-stage
tuning method.

8 REPRODUCIBILITY STATEMENT

Codes and weights will be made public after review to advocate future research. Hyper-parameters
are reported in the Appendix A. The weight of models with replaced vocabulary and source codes
will be public after review to advocate future research.
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A HYPER-PARAMETERS

GloVe Training We empirically train GloVe vectors with 1B tokens, which covers most tokens from
Gemma (95.10%), Qwen2 (93.40%), LLaMA2 (99.35%), and LLaMA3 (98.04%). The dimension
size is set to 300. The max training iteration and the size of the slide window are 15.

Model Tuning The optimizer adopted in this work is AdamW (Loshchilov & Hutter, 2019), where
β1 = 0.9 and β2 = 0.999. The learning rate for baseline methods is set to 5e-5 to reduce the loss
spike in Figure 5(b) and Figure 5(c). We adopt bf16 mixed precision training and ZeRO-1 to save
GPU memory cost and speed up the training process (Micikevicius et al., 2018; Rasley et al., 2020).
Following Biderman et al. (2023), the batch size is set to 2M tokens and the max sequence length is
2048.

B ADDITIONAL RESULTS

B.1 GLOVE VECTORS

We show the effects of different token amounts for the GloVe vectors training in Figure 6. It can
be found that 1B tokens used in this work provide a high vocabulary coverage (>90%) and better
initialization for Pythia1B. Due to the limited computation budget, experiments with more than 1B
tokens are not conducted.
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Figure 6: The average vocabulary coverage (a) and initial training loss of Pythia1B (b) under different
amount tokens to train the GloVe vector.

B.2 CONVERGENCE ANALYSIS

To investigate the effect of overlapping rate between two tokenizers to the convergence of training, we
plot Figure 7(a) for the random initialization baseline method. The convergence of Gemma tokenizer
is slower than the other tokenizers and comes to worse results, which are similar to the case in 4(a).
Moreover, we randomly shuffle the alignment matrix learned in UnifyVocab to imitate the case that
other worse methods rather than cosine similarity to calculate the alignment matrix. Figure 7(b)
shows that the higher percentage of randomly shuffle comes to higher initial training loss and slower
convergence.
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Figure 7: The training loss for random initialization to different tokenizers (a) and UnifyVocab for
Qwen2 using Pythia1b.

B.3 VOCABULARY ADAPTATION RESULTS WITH 2B TOKENS

We further investigate a challenge condition that only 2B tokens are provided to adapt the target
vocabulary. To meet the requirement, batch size is set to 1M tokens and training steps are reduced
to 2k, correspondingly. Table 6 shows results of adapting to other 3 tokenizers using UnifyVocab.
It can be found that 95.66% performance of vanilla model is recovered on average, which further
demonstrates the effectiveness of our method.

B.4 ADDITIONAL ALIGNMENT METRICS

The BLEU-1 and BertScore can also be used to evaluate the performance of alignment matrix learned.
The alignment evaluation process of BLEU-1 is same with the one of BLEU, which is the averaged of

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: The main results of replacing the vocabulary of Pythia for UnifyVocab using 2B tokens
from the Pile corpus.

ARC-E BoolQ HellaSwag OpenbookQA PIQA WinoGrande Avg

Model #V (k) 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Pythia1B 50.3 56.82 58.71 60.43 57.37 37.68 37.66 18.80 19.00 70.40 71.49 53.20 52.01 49.55 49.37

→ Gemma 256.0 51.09 52.44 53.12 52.35 35.00 35.05 20.20 18.60 64.80 65.83 53.12 51.62 46.22 45.98

→ Qwen2 152.1 53.41 55.47 53.52 55.81 36.12 36.38 20.80 18.00 68.50 68.88 54.38 52.80 47.79 47.89

→ LLaMA3 128.0 51.73 55.09 59.05 55.08 36.42 36.52 19.40 19.60 67.68 68.34 53.43 53.75 47.95 48.06

BLEU-1, BLEU-2, BLEU-3 and BLEU-4. As for BertScore, we first de-tokenized the target token ID
corpus C′

t using Tokenizert into the text corpus C′
, and evaluate the semantic similarity between C′

and the vanilla test corpus C using the sentence embedding model named “all-mpnet-base-v2” (Song
et al., 2020). As shown in Figure 8, these metrics both show a clear negative relationship with the
inital training loss.
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Figure 8: The relationship between initial training loss and BLEU-1 (a) or BertScore (b) for Pythia1b.

B.5 CROSS-LINGUAL TRANSFER

Table 7 reports the 5-shot in-context learning results on 4 multilingual datasets. The average
improvement over the baseline method Focus is 3.4% after 4B tokens tuning. We can find that the
model initialized by UnifyVocab is comparable to the one of Focus after 4B tokens tuning.

Table 7: The 5-shot in-context learning results of cross-lingual transfer.

XNLI XCOPA XStoryCloze XWinograd

Model #Tune(B) en de zh ar th vi ur en th vi ta en zh ar te en zh ja Avg

Pythia1B − 46.2 38.6 38.9 36.9 35.2 38.9 34.9 64.0 54.0 49.4 55.2 65.5 48.4 48.2 53.0 68.9 59.7 51.4 49.3

w/ Focus 0 32.8 32.2 33.6 33.6 33.5 32.0 32.8 49.4 51.2 48.4 54.4 46.0 47.7 48.7 46.5 49.7 47.2 50.3 42.8

4 47.0 36.7 35.4 34.3 33.5 35.1 33.9 54.2 52.2 51.6 54.8 57.0 50.4 47.6 52.2 55.4 53.8 50.9 46.4

w/ UnifyVocab 0 48.4 35.9 33.4 33.1 31.8 32.5 33.8 54.6 52.0 47.4 57.2 58.6 46.5 46.7 51.0 54.4 50.2 50.5 45.4

4 44.5 37.5 38.3 35.6 35.0 37.7 35.5 63.4 54.4 52.0 53.8 65.0 51.2 48.1 53.3 65.8 58.7 53.3 49.1

Pythia6.9B − 53.0 40.7 41.7 38.9 37.3 41.3 35.1 75.2 58.0 54.2 52.4 73.9 54.1 50.4 54.0 73.6 71.0 56.8 53.4

w/ Focus 0 31.5 31.3 33.0 32.6 33.4 32.2 32.6 46.4 52.4 49.0 56.6 44.6 47.3 48.2 47.4 48.3 46.8 51.1 42.5

4 45.1 37.7 35.3 33.4 35.0 38.1 33.8 58.8 53.8 51.6 53.2 63.2 50.0 46.7 54.5 61.7 62.5 52.2 48.1

w/ UnifyVocab 0 50.9 37.6 34.3 34.6 33.7 33.1 33.7 60.2 52.6 48.0 55.8 63.1 47.1 47.0 50.3 59.6 48.6 51.4 46.8

4 46.8 39.1 37.3 37.7 38.0 42.5 34.9 73.2 55.6 54.6 53.4 73.1 53.9 49.2 54.0 74.0 63.3 56.7 52.1

Case study of multilingual token alignment. Table 8 provides nine new tokens from three
languages with their top 3 tokens in the source vocabulary. In most cases, a clear semantic relationship
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between two aligned tokens cannot be found. We argue that it may come from the following two
reasons:

Table 8: The case study of new tokens from other languages in the target vocabulary with top-3
source tokens aligned. The language family of French, Chinese, and Korean are Indo-European,
Sino-Tibetan, and Koreanic, respectively.

French Chinese Korean

Top-3 dire(speak) aller(go) oui(are) 吃(eat) 科学(science) 智能(intelligence) 능능능(competence) 집집집(house) 왜왜왜(why)

Qwen2 (Target Tokenizer)

1 ada Ġsta Ġsalv allel Ġantagon {[ Si ĠBart bst
2 ays ĠÃ¨ Ġvas Ġindicator Ġign liquid uria ĠPAT rains
3 Ġ- Ġdetermin Ġexplos Ġbasic Ġcritic Layer ost ĠEdgar irc

Gemma (Target Tokenizer)

1 Ġj Cor Tools kernel ĠLed Ġcommittee Ġmang Ġcru Ġcholesterol
2 Ġdar Ġequality directed sentence COUNT ĠUND ial Ġcal Ġmolecule
3 ba Lex afx messages Ġglycine Ġfactors Ġrebut Ġmalt apor

• BPE algorithm (Sennrich et al., 2016) divides words into the sub-word units, also called to-
kens, from the statistical co-occurrence information. There may be less superficial semantic
information in the tokens divided compared with words in the natural language.

• The GloVe vector for each token is obtained from the token-token co-occurrence information.
These aligned tokens often appear together, e.g.,科学(science) and “Ġcritic”,왜(why) and
“rains”.

Therefore, it is better to choose a matric to quantify the performance of the alignment matrix learned,
for example, the BLEU score in Section 2.2 or the perplexity of the initialized model.

C LANGUAGE CODES

We provide details of languages involved in Table 9. Following Lai et al. (2023), languages are
divided by the data ratios in CommomCrawl: High (>1%), Medium (>0.1%), and Low (>0.01%).

Table 9: Details of Language codes in this work.

ISO 639-1 Language Family

AR Arabic Afro-Asiatic
BN Bengali Indo-European
DE German Indo-European
EN English Indo-European
JA Japanese Japonic
KO Korean Koreanic

ISO 639-1 Language Family

TA Tamil Dravidian
TE Telugu Dravidian
TH Thai Kra-Dai
UR Urdu Indo-European
VI Vietnamese Austroasiatic
ZH Chinese Sino-Tibetan
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