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Abstract—1In this article, a novel reinforcement learning (RL)
approach, continuous dynamic policy programming (CDPP),
is proposed to tackle the issues of both learning stability and
sample efficiency in the current RL methods with continuous
actions. The proposed method naturally extends the relative
entropy regularization from the value function-based framework
to the actor—critic (AC) framework of deep deterministic policy
gradient (DDPG) to stabilize the learning process in continuous
action space. It tackles the intractable softmax operation over
continuous actions in the critic by Monte Carlo estimation and
explores the practical advantages of the Mellowmax operator. A
Boltzmann sampling policy is proposed to guide the exploration of
actor following the relative entropy regularized critic for superior
learning capability, exploration efficiency, and robustness. Evalu-
ated by several benchmark and real-robot-based simulation tasks,
the proposed method illustrates the positive impact of the relative
entropy regularization including efficient exploration behavior
and stable policy update in RL with continuous action space and
successfully outperforms the related baseline approaches in both
sample efficiency and learning stability.

Index Terms— Reinforcement learning (RL), robot learning.

I. INTRODUCTION

N RECENT years, deep reinforcement learning (DRL),
the combination of deep learning [1] and reinforcement
learning (RL) [2], has led to an appealing solution of artifi-
cial intelligence that iteratively learns optimal or suboptimal
control policies of complex tasks from high-dimensional
unprocessed sensory information. Besides the successful
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implementations that outperform humans in a wide range of
tasks based on programming code or human-made rule [3], [4]
using discrete actions, many DRL approaches, such as deep
deterministic policy gradient (DDPG) [5], soft actor—critic
(SAC) [6], and proximal policy optimization (PPO) [7], are
extended to the continuous action space to properly learn
continuous control policy in a wide range of engineering appli-
cations [8], [9], [10], [11], [12], [13], [14], [15]. On the other
hand, the practical DRL approach still remains a long-term
ambition as a result of the black-box property and the
data-driven nature of its neural network structure, which result
in both the instability during the learning process and the mas-
sive samples required for exploration [16], [17]. These issues
have become more serious in the continuous action-based
approaches: their actor—critic (AC) framework requires more
samples to separately train the networks of value function and
policy, while the mismatch between two networks turns to an
extremely unstable learning process due to not only the huge
overestimation of value function and policy but also the strong
sensitivity to hyperparameters [18]. To address these issues,
advantage actor—critic (A2C) and asynchronous advantage
actor—critic (A3C) [19], [20] introduce the advantage function
as a baseline to alleviate the unstable learning caused by the
overestimation of the value function in the AC framework that
focuses on value function approximation. The distributional
value function was also integrated with SAC to reduce the
overestimation of Q function [21]. The exploration efficiency
was addressed in [22] by introducing weakly pessimistic
value estimation and optimistic policy optimization. For the
policy-based approaches, additional constraints are employed
in the policy gradient to avoid overlarge policy updates and
achieve more stable learning procedures [23], [24]. The off-
policy version of the existing approach was proposed with a
theoretical guarantee of monotonic improvement for superior
sample efficiency [25].

As one potential solution to tackle the issues above in a
natural way, the dynamic policy programming (DPP) [26]
first introduces the relative entropy, i.e., Kullback-Leibler
(KL) divergence between the current and previous policies
into the value function-based RL as a regularization term
to avoid overlarge policy update and smooth the learn-
ing process. Theoretical research has demonstrated that the
relative entropy term implicitly averages the error of the
approximated value function with state-of-the-art (SOTA) error
dependency [27], [28]. In terms of applications, this
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Fig. 1. Principle of CDPP proposed in this work.

characteristic also contributes to superior sample efficiency
and learning capability in a wide range of engineering tasks
from robot control [29], [30] to chemical platform optimiza-
tion [31], [32] where the agents efficiently explore the target
tasks with a limited number of interactions using smoothly
updated policies. However, despite the promising results in
practice, the current works are mainly limited to tasks with
discrete actions, while directly extending the relative entropy
regularization to the DDPG-like RL approaches with contin-
uous action space is tricky: the relative entropy regularization
in DPP requires traversal softmax operations over the entire
discrete action space, which is intractable to the continuous
actions under the AC structure of DDPG. One related work
improved the robustness of the AC structure-based RL by
restricting the actor using the relative entropy term [33], while
a general approach that jointly constrains both the actor and
critic remains an open issue.

This article aims to tackle the issues of both learning
stability and sample efficiency in the learning of complex
tasks with continuous action space. Following the principle
described in Fig. 1, a novel RL approach, continuous DPP
(CDPP), is proposed to naturally introduce the relative entropy
regularization from the existing value function-based approach
DPP [26] with discrete action space to the AC structure of
DDPG [5] with continuous action space. For the critic, CDPP
tackles the intractable softmax operation through Monte Carlo
estimation and explores the advantages of the Mellowmax
operator instead of the softmax operator for a better conver-
gence performance toward the unique fixed point according
to the theoretical study [34]. For the actor, CDPP proposes a
Boltzmann sampling policy to guide the deterministic action
to explore following the relative entropy regularized value
function. CDPP migrates the Boltzmann sampling policy,
which contributes to high exploration efficiency in DPP, from a
discrete action space to a continuous one. This naturally brings
about superior learning capability, exploration efficiency, and
robustness over the original deterministic policy with addi-
tional exploration noise in the traditional AC framework,
as reported by Cesa-Bianchi et al. [35] and Wang et al. [36].
Evaluated by several benchmark and real-robot-based simu-
lation tasks with different complexities, the proposed CDPP
naturally integrated the sample efficiency and learning capa-
bility of relative entropy regularization to the AC structure
with continuous action space and successfully demonstrated
a superior learning performance with not only more smooth
exploration behavior but also less overestimation of the value
function compared with other baseline approaches. According
to the relationship of related works concluded in Table I, the
contributions of this article are summarized as follows.
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TABLE I
COMPARISON OF CDPP AND THE RELATED APPROACHES
Approach Relative entropy | Continuous action | Mellowmax
DQN [3] X X X
DPP [26], [27] O X X
DDPG [5] X ©) X
SAC [6] X O X
PPO [7] X O X
CDPP (ours) O O O

1) For the theoretic study, this work novelly extended
the relative entropy regularized RL from the value
function-based approach with discrete action space to
the AC structure with continuous action space, which
expands the potential of relative entropy regularization
as an emerging direction of practical RL.

2) For the algorithm development, the proposed CDPP suc-
cessfully integrated both sample efficiency and stability
of DPP and the effectiveness of the Mellowmax oper-
ator with theoretically better convergence performance
toward the unique fixed point within one algorithm,
which explores the advantages of Mellowmax in the
relative entropy regularized RL.

3) For the experimental validations, the proposed approach
was evaluated in various benchmark tasks with differ-
ent complexities compared with the related baseline
approaches. The experimental results clearly illustrated
the advantages of CDPP, including not only better
learning stability and sample efficiency but also less
overestimation of the value function.

The remainder of this article is organized as follows. The
preliminaries are presented in Section II. The proposed CDPP
is detailed in Section III. The experimental results are demon-
strated in Section IV. The conclusions are given in Section V.

II. PRELIMINARIES

A. Markov Decision Process

The environment is modeled as Markov decision processes
in RL with a five-tuple (S, A, R, P, ), where S denotes the
finite set of states, A is a set of actions called the action
space, Ry, is the immediate reward received after transitioning
from state s to state s’ under action a, P represents the corre-
sponding state transition probability matrix following Py, =
p(s’|s,a), and y € [0, 1] is the discount factor. A policy
function m(a|s) maps states to a probability distribution that
represents the probability of selecting each action. The value
function is defined as the expected discounted total reward in
state §

(o]
Va($) =Ex| D ¥'rolso=s )
1=0
where r;, = > acA_ n(als) Py, R, is the expected

St+1 . . . .
reward from state Et. The objective of RL is to find opti-
mal policy 7* that maximizes the value function following
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Bellman equation [2]:

V*(s) = max Z (als)

acA
s'eS

,P;ls’ (R?s/ + Y V* (S,)). (2)

It is also equivalent to represent such an optimal Bellman
equation through the value function of state—action pairs (s, @)

=m7flxzpfs'( ss,+yz (a'ls") O*(s' a))

s'eS a'eA
(3)

0" (s,a)

B. Deep Deterministic Policy Gradient

As a traditional RL approach for continuous action space,
DDPG [5] employs the AC structure to separately train the
approximated Q-function network (the critic) Q for evaluating
the state—action pairs and the policy network [t (the actor)
for decision making with independent parameters 6 and ¢.
During step ¢ in the sample collection stage, the exploration
behavior of DDPG is achieved by an additional noise fol-
lowing Gaussian distribution or Ornstein—Uhlenbeck process
a, = [i(s;, ¢) + . The agent executes a; to the environment,
moves to the next state s,,1, and receives an immediate reward
R;‘/M The transition (s;, a;, R;‘;SM,S,H) will be stored in
memory replay buffer D.

The training process mainly follows deep Q-learning
(DQL) [3] with memory replay and target networks. The
parameter of critic network € is optimized by minimizing the
following loss:

1 / ~ 2

7 > (yi— 0(s;.a;.0)) 4)
j=1

yi = Rg/js,url + VQlarget(sj-&-lv ,atargel (sj-‘rl’ ¢_)v 07) (5)

where J is the samples randomly selected from the experience
replay buffer, and Qlarget and flirgec are the target networks
of critic and actor with parameters 6~ and ¢~ . The actor is
updated by sampled policy gradient [2], [5]

L) =

1< s
V¢ <~ 7;Va}Q(Sj,a

0) |a’/:;l(s,-.¢) V¢M(sj’ ¢) (6)

Let t € (0, 1], and the target networks are smoothly updated
as follows:

0 <~ 10+ —1)0"

¢ <~ 1d+(1—-1)p". @)

ITII. APPROACH
A. Relative Entropy Regularized AC Structure

In this section, we detail the proposed approach, CDPP,
that extends the relative entropy regularization from value
function-based method DPP [26] to the AC structure for
continuous action space.

Defining the current and previous policies as m(a|s) and
7 (als), the relative entropy between them is calculated as

follows:
= Z m(als) log(jf(am).
(als)

acA

Dy (s)

DPP attempts to introduce this relative entropy term into the
value function as follows:

VI(s) = [Zy( ——DKL<st))|so=s] ©)

where the inverse temperature n controls the KL divergence
penalty. The corresponding optimal value function, thus, sat-
isfies a Bellman equation by combining (2) and (9)

V¥(s) = max Z m(als)Pg (

acA
s'eS

1
Rey +yVi(s)) — ;DKL(s).

(10)

The optimal value function VZ* o 4l (s) and policy 7y, (als)
can be calculated by the f0110w1ng two equations, respectively,
according to [37]:

1 _
;10g2n,(a|s)

acA
P, (R;’s, + yVT_ﬁt(s’))) (11)

X exp(n Z
s'eS
7. (als) exp(n 2ves Pis (R + Vfoz(s/)))
exp(nV7,,,®) |

V;Hl(s) =

Ti11(als) =

12)

These equations can be expressed by the action preferences
function following [2], [26], which is close to the Q function:

llogm(aIS)+Z As/( +VV;7,;(S/))-
s'eS (13)

Combine (13) with (11) and (12), the following simple double
equations at the ¢-th iteration are obtained:

Wiii(s,a) =

Vi@ = Liog > expn¥i(s, a) (14)
acA
711 (als) = POV @) as)

D weaxp(m¥(s,a))’

The corresponding update rule is derived by inserting (14) and
(15) into (13)

Vipi(s, @) = W (s,a) — L,V (s)
+ D PL(RE +vLy¥(s))  (16)
s'eS
1
L,V (s) = —log Z exp(n¥, (s, a)). (17
acA

In practice, £, in (17) can be replaced by a Boltzmann softmax
operator B, in order to solve the interaction problem in high-
dimensional state—action space [26], [29]

Z exp(n\W; (s, @)V (s, a)

i acA za’e.A exp(n¥; (s, a’))

(18)

To introduce the relative entropy regularization from DPP
to the AC structure, a straightforward solution is to replace
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the Q function in DPPG’s critic with the action preferences
function W. Defining \il(s, a, ) and \ilmget (s,a,d) as the
main and target networks of the original W, the corresponding
temporal-difference (TD) errors are defined as follows:

L(0Y) = E[(y(s,a, 07) —V(s,a, 0))2]
y(S, a, 0_) - \i}target (S, a, 0_) + R?Sr — Bn\ijtargel (S, 0_)
+ By Wiarger (5'.07). (19)

However, the calculation of operator B, in (19) is intractable
in continuous action space due to the integration over all
candidate actions in (18).

B. Critic With Estimated Softmax Operation

To tackle this issue, CDPP approximately estimates the
Boltzmann softmax operation by Monte Carlo sampling fol-
lowing multiple dimensional Gaussian distributions in local
action space. Given the input action a in (18), CDPP
extends it to a set of m + 1 Monte Carlo samples Ayc =
(@Y, ales - - - » afcl, where aly . = a, and other elements
are biased following a Gaussian distribution ay,- = a + €',
e ~N(,¢) fori =1, ..., m. The corresponding Boltzmann
softmax operation B, in (19) is calculated as follows:

B, ‘ijtarget(s 0_)
Z exp n\ytarget (S a, 0" ))\Ilmrge[ (s’ a, 0‘)
acAvc Za’EAMC eXp(’?‘ytarget (S, a, 07))

(20)

Without the intractable integration over all continuous actions,
CDPP statistically estimates the action preferences function
near the given action a, while the smoothness of the softmax
operator is also controlled by 5 following DPP.

According to [18], the overestimation of the approximated
value function results in an accumulated error during the
learning process. Define the noise from networks and sam-
ples as e, the approximated value function usually follows
E[max, Q(s,a’) + €] > max, Q(s,a’). The learning per-
formance of the original DDPG is easily damaged by this
accumulated error due to its AC structure: the overestimated
value function in critic turns to improper policy update, which,
in turn, leads to a poor learning process of the value function.
As a comparison, CDPP’s critic enjoys a relieved overestima-
tion of the value function in the AC structure because of the
smooth mean-like property in the estimated softmax operation,
i.e., E[max, Q(s, a’) + €] > E[softmax, Q(s, a’) + €].

As reported by Asadi and Littman [34], the Boltzmann
softmax operator has multiple fixed points without nonexpan-
sion property that theoretically guarantees the convergence of
“Q-learning-like” algorithms to a unique fixed point. To tackle
the issue of convergence performance, CDPP replaces the
Boltzmann softmax operator in (18) with the Mellowmax
operator with a unique fix point and nonexpansion property
following [34]:

1
MyWi(s) = ;1og(| A Zexp(n\ll,(s a))) @1)
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where | A| is the number of the discrete actions and 1 € (0, c0)
is the inverse temperature. The corresponding estimated Mel-
lowmax operation for continuous action space is summarized
in Algorithm 1.

Algorithm 1 Estimated Mellowmax Operation

Input: s,a,n, ¢, m
Function CalMm (s, a):
# Build m + 1 Monte Carlo samples set

AMC = [a](a/[ca allv[Cs ML)

ayc=a

ayc=a+e, e ~N©O¢) fori=1,.

# Estimate Mellowmax operation basqd on AMC
1 DaeAnc P arger(s,a”,07))

M \Ijtd.rget(s 0~ )_ lo ( A ‘AMC|g

Return M \Ijtarget(s 0 )

m
ayc]

Algorithm 2 Boltzmann Sampling Policy
Input: s, ¢, D
Function CBSP (D) :
# Generate deterministic action from actor
a = ﬁtargel(sa ¢)
# Build m 4 1 Monte Carlo samples set based on a

Amc = [adc, @y - - alic]

ayc =a

ayc=a+e, e ~N©O¢) fori=1,

# Calculate the probability of each actlon in AMC
and store in vector p

for j =0 tom do

i exp(Wiarger (5.,a1,,0~
L P(“ljwc) =3 j\ic efp((\ym:dc(s,a'),)o*))
p < plaj)
# Sample one action following probability vector p
asampled ~p
Execute @gympied, Obtain s’ and R::,""p'm
# Store the 4-tuple to the memory buffer D

Asampled ’
L D « (sv Asampled s Rss’ P )

C. Actor With Boltzmann Sampling Policy

In the original DDPG, the exploration behavior of the actor
is implemented by introducing an additional noise follow-
ing Gaussian distribution or the Ornstein—Uhlenbeck process,
which is independent of the current value function. As a
comparison, the Boltzmann sampling policy following (15)
where the probability of selecting one action is based on
its action preferences function has proved to enjoy superior
learning performances in practical applications of DPP with
discrete actions [29], [30], [31].

In order to gap such a mismatch between the determinis-
tic continuous actions with independent exploration noise in
DDPG and the Boltzmann sampling policy of discrete actions
in DPP, CDPP employs an estimated Boltzmann sampling
policy in actor following the Monte Carlo sampling trick intro-
duced in Section III-B. Given a deterministic action from the
approximated actor network @ = fi(s, ¢~ ), CDPP randomly
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selects an exploration action @gmpleq Within the expanded set
of m + 1 Monte Carlo samples Ayc based on the following
probability:
exXp (\ptmget (S » @sampled 07))

D ye P (Viarger (s, @, 67))
Denoting the memory replay buffer as D, the interac-
tion between the agent and environment is concluded in
Algorithm 2, where the critic and actor are naturally general-
ized with the regularization of relative entropy by statistically

biasing the deterministic action from actor based on critic’s
value function smoothed by the Boltzmann softmax operator.

p (asampled) = 22)

Algorithm 3 CDPP

Initialize critic network \i/ actor network [ with
random parameters @, ¢, memory replay buffer D
# Pre-train phase
for t =1 to T, do
# Collect samples with a random policy
L D <« (s;,ay, R?:S,H, Si+1)

fort =1t T do

# Interaction phase

D <« CBSP(D)

# Training phase

Sample mini-batch of J samples from D

for j =11t J do

a,j ZAIltarget(sj-H ,97)

Mnl{/ta:get(sjv 07) < Cale(sj, aj)

an/targel(sjﬂ—lv 07) < Cale(sj+l , a;)

# Calculate TD error

Yi < 7?rs isin T VM lI’target(»s‘ja 07) +

L ‘"Iltdrget(sjvaj70 )—M lIjtdrget(sj+lvo )

# Update 6 by gradient descent optimization

=V a.0))?

0 < argminy ==—————

# Update ¢ by gradlent descent optimization
Z Vo ll/(s a 0)| , vs)V(;,;/.(S )

a u(:

V¢ <
# Update target networks
0 10+ —1)0"
L ¢ <o+ (-0

return ¥, 7

D. Summary of CDPP

Algorithm 3 summarizes the entire process of the proposed
CDPP. Following the main process of DDPG, the proposed
method employs main networks of critic and actor ¥ and m
with parameters 6 and ¢. The corresponding target networks
lilmget and [l are initialized with copied parameters 6~ <«
0 and ¢~ <« ¢ to stabilize the learning process. The initialized
memory replay buffer D is first warmed up by Tina Steps
samples collected by a random policy. The training procedure
includes T steps. At each step, the CDPP agent first interacts
with the environment and collects new samples following
the Boltzmann sampling policy introduced in Algorithm 2.
After the interaction, the agent moves to the training phase.

Fig. 2.
(17-D observation and 6-D action). (b) Walker2d-v1 (17-D observation and
6-D action). (c) Hopper-v1 (11-D observation and 3-D action). (d) LunarLan-
derContinuous-v2 (8-D observation and 2-D action). (¢) Swimmer-v1
(8-D observation and 2-D action).

Benchmark tasks for evaluation in this article. (a) HalfCheetah-v1

It randomly samples a mini-batch of J transitions from D
and calculates the corresponding TD error using the estimated
Mellowmax operation introduced in Algorithm 1. The param-
eters of the critic and actor are updated by gradient descent
optimization following (5) and (6), where the Q function
is replaced by the action preferences function. The target
networks are then smoothly updated with parameter t. Please
note that the Boltzmann sampling policy is only utilized in
the training process, and the agent directly decides deter-
ministic actions from [t in the evaluation phase. Although
CDPP closely follows the traditional RL approach based on
the AC framework, it suffers from additional computational
complexity due to the Monte Carlo sampling in both the
estimated Mellowmax operator and the Boltzmann sampling
policy, which bridges DPP from a discrete action space to a
continuous one. Section IV-C analyzes and discusses this issue
as the main challenge of applying CDPP in practice.

IV. EXPERIMENTS
A. Experimental Settings

In this section, the proposed approach CDPP was
evaluated by five benchmark control tasks with differ-
ent complexities developed in OpenAl Gym [38] and
MuJoCo [39]: HalfCheetah-vl, Walker2d-vl, Hopper-vl,
LunarLanderContinuous-v2, and Swimmer-vl, as shown in
Fig. 2. For the baselines, we selected CDPP without using
Mellowmax (denoted as CDPP-B), DPPG [5] and its current
extension episodic memory AC (EMAC) [40],! the baseline
value function approach A3C [19], [20],2 and a current con-
strained policy gradients approach CVaR PPO (CPPO) [24] to
sufficiently investigate the advantages of not only the relative
entropy regularization but also the Mellowmax in the proposed
AC-based approach. The proposed CDPP and DDPG were
developed by PaddlePaddle [41] under its RL toolkit PARL.*
All experiments were conducted on a computational server
with Intel Xeon-W2265 CPU, NVIDIA GeForce RTX-3080Ti
GPU, 32-GB memory, and Ubuntu 20.04 OS.

The common parameters and network structures of all
compared approaches were listed in Table II. The network
structures of all baselines were set according to their open-
source code. We developed CDPP and CDPP-B following the
network structures of DDPG and EMAC with 256 x 256
multiple-layer perceptron (MLP) and rectified linear unit

'EMAC was developed following https:/github.com/schatty/EMAC.

2A3C was developed following https://github.com/ikostrikov/pytorch-a3c.
3CPPO was developed following https://github.com/yingchengyang/CPPO.
“https://github.com/PaddlePaddle/PARL
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TABLE II
COMMON HYPERPARAMETER SETTINGS OF COMPARED APPROACHES

CDPP/CDPP-B DDPG A3C CPPO EMAC
Critic Learning Rate 5.10~4 10-3 10~4 10-3 10-3
Actor Learning Rate 5.107° 10—4 10~ 3.10~4 103
Actic and Critic Structure (256,256) (256,256) (256,256,128,128) (64,32) (256,256)

=LSTM(128)=-(128)

Target Update Rate () 5x 1073 10-3 1.0 1.0 5x 1073
Batch Size (J) 64 64 / 4000 256
Discount Factor (v) 0.99 0.99 0.99 0.99 0.99
Memory Size (E) 106 106 / 4-10° 108
Warmup Steps (Ninitiat) 104 104 / / 104
Exploration Noise / N(0,0.1) / / N(0,0.1)

TABLE III

IMPORTANCE RANKING AND VALUES OF HYPERPARAMETERS
FOR CDPP AND CDPP-B ALGORITHMS

Rank Hyperparameter Value Range
1 KL Temperature (1) 0.05 | [5x 1074,1.0]
2 Policy Sampling Number 50 [1,00)
3 Softmax Sampling Number 30 [1,00)
4 Sampling Noise variance 0.1 (0, 00)
5 Exploration Noise variance 0.1 (0, 0)

(ReLU) activation function in both critic and actor. Other
common parameters in CDPP were mainly selected based on
DDPG’s SOTA performance [18], except for a smaller learning
rate and a larger target update rate to fully adapt to the KL
regularization term. The specific parameters of baselines were
set based on their paper and open-source code. All tunable
parameters of CDPP were summarized in Table III with a rank
of importance. The most important parameter 1 controls the
KL regularization term, and it was set to n = 0.05 based on the
experiment in Section IV-D. The Monte Carlo samples in both
estimated Mellowmax operation (Algorithm 1) and Boltzmann
sampling policy (Algorithm 2) followed a Gaussian noise
with a variance of 0.1, which is the same as the exploration
noise in DDPG and EMAC. Their corresponding sampling
numbers were set as 30 and 50 separately to balance the
learning capability and computational efficiency. Please note
that all parameters of CDPP were selected in a general way
to fairly compare with other baselines, and it is possible to
further enhance the performance of CDPP on specific tasks
with fining-tuned parameters.

B. Evaluation of the Learning Capability

The learning capability of CDPP was first evaluated in this
section. All compared approaches were trained in one million
time steps and evaluated every 5000 steps. Each evaluation
reported the average reward over five episodes without explo-
ration noise. All experimental results were conducted by five
independent trials with different random seeds for statistical
evidence.

Fig. 3 illustrated the average learning curves of all
approaches over five benchmark tasks. The corresponding
max average returns with standard deviation were reported
in Table IV, where the maximum values were bolded. It is

observed that the proposed CDPP with the Mellowmax oper-
ator outperformed CDPP-B without the Mellowmax operator
and the original DDPG overall most tasks in not only the
sample efficiency but also the robustness after quick con-
vergences. This result clearly indicated the superior learning
capability in AC structure by introducing the relative entropy
regularization into DDPG. In addition, CDPP-B with the
Boltzmann operator also outperforms DDPG in most tasks
except swimmer, but could not reach the performances of
the proposed CDPP with the Mellowmax operator. In the
hopper task, CDPP-B achieved the highest average return
in the middle of learning but quickly degenerated to the
level of DDPG. As a comparison, CDPP successfully main-
tained high average returns without any oscillation. In other
tasks, the learning performances of CDPP-B were all more
degraded than CDPP, especially in the swimmer task where
the learning capability was even worse than DDPG. Please
note that DDPG achieved the highest return but could not
maintain it while its convergence was far slower than CDPP.
This result indicated the positive effect of the Mellowmax
operator in CDPP to avoid the local optimum and improper
behavior during the RL process regularized by the relative
entropy. CDPP also demonstrated significant superiorities in
convergence and average returns compared with other related
works, including the baseline value function approach A3C,
the constrained policy gradients approach CPPO, and EMAC,
which is an extension of DDPG with SOTA performance. A3C
only achieved comparable performance in the LunarLander
task. CPPO demonstrated overall slow sample efficiency due
to its on-policy nature. EMAC outperformed CDPP in the
walker task and achieved similar performance in the hopper
task, but converged slowly with fewer average returns in other
tasks.

In this work, we defined the sample efficiency as the number
of interactions with the environment used to complete the
learning process, which is important to the implementation
of RL in real-world hardware. The sample efficiency of the
proposed method was evaluated in Fig. 4, where the bars with
different colors present the number of steps used for each
approach to reach the lower boundary of the max average
returns in Table IV over five tasks. Overall, CDPP utilized far
fewer interactions (about 16% than CDPP-B, 33% than DDPG,
68% than A3C, 58% than CPPO, and 40% than EMAC) to
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TABLE IV
MAX AVERAGE RETURNS OVER FIVE BENCHMARK TASKS
CDPP CDPP-B DDPG A3C CPPO EMAC
HalfCheetah 9778.59+403.35 | 9159.85+451.23 | 9316.274+1198.09 | 640.84+212.37 1875.99+362.97 | 3867.25+752.85
Walker2d 2530.71+£397.55 | 2281.69+303.12 1879.67+£384.23 957.02+101.85 1087.24£82.79 | 4153.98+571.65
Hopper 2681.72+321.86 | 2883.294+262.96 | 2205.49+308.64 | 948.86+121.52 | 1659.03£114.30 | 2654.664+733.83
LunarLanderContinuous 225.91+21.71 223.45+50.09 115.95+£106.64 207.14+32.39 7.61£28.00 153.38+113.75
Swimmer 144.431+16.21 134.924+7.92 148.25+15.44 44.67+2.14 116.774+10.11 44.7449.98
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Fig. 3. Learning curves over five benchmark tasks. The shaded region represents the standard deviation of the average evaluation over five independent trials.
Curves are uniformly smoothed for visual clarity. (a) HalfCheetah-v1. (b) Walker2d-v1. (c) Hopper-v1. (d) LunarLanderContinuous-v2. (e) Swimmer-v1.

reach the low boundary of performances over all five tasks
compared with other approaches. This result indicated the
superior sample efficiency of CDPP, which is consistent with
the results in its previous works with discrete action [29],
[30], [32] and clearly showed the positive impact of the KL
divergence in practical RL.

C. Implementation on Real-Robot-Based Simulation

In this section, CDPP was compared with other baselines
in a real-robot-based simulation robo-gym [42] to evaluate
its potential in more complex hardware. We selected the
end-effector position task using a URS robot arm and obstacle
avoiding task using a Mirl00 mobile robot, as shown in
Fig. 5. CDPP-B was not compared in this section due to its
suboptimal learning performances in previous results.

The learning curves of average returns in two tasks were
demonstrated in Fig. 6. Except for EMAC, which achieved
superior learning performance to CDPP in the end-effector
position task, CDPP significantly outperformed all comparison
methods in terms of sampling efficiency and max average

returns in both URS and Mir100 robots. This result indicated
the potential of the proposed method in real-robot systems.
To analyze the additional computational burden of the
Monte Carlo sampling in CDPP, the average time (including
decision-making and networks update) of all approaches over
every 50000 step was compared in Fig. 7. The additional
computational burden of CDPP was acceptable with a suitable
setting of Monte Carlo sampling number in these two tasks.
In the obstacle avoiding task with 20-D state and 2-D action,
CDPP achieved a close computational time to DDPG and A3C.
Although it was about 37% slower than CPPO, it outperformed
EMAC with over 21% less computational time. Turning to
the end-effector position task with 27-D state and 5-D action,
CDPP worked a bit slower than DDPG and CPPO with 7% and
4% more time. A3C achieved the best computational efficiency
in this task because of its asynchronous nature, while the
SOTA approach EMAC had a heavy computational burden.

D. Evaluation of the Relative Entropy Regularization

In this section, the effect of parameter n in CDPP that
controls the regularization of relative entropy was evaluated in
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Fig. 5. Real-robot-based tasks. (a) End-effector position task using a URS
robot arm (27-D observation and 5-D action). (b) Obstacle avoiding task using
a Mir100 mobile robot (20-D observation and 2-D action).
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Fig. 6. Learning curves of two real-robot-based simulation tasks. The
shaded region represents the standard deviation of the average evaluation
over five independent trials. Curves are uniformly smoothed for visual clarity.
(a) EndEffectorPositioningURSim-v0. (b) ObstacleAvoidanceMir 100Rob-v0.

the Halfcheetah task by setting n = [0.15, 0.05, 0.005, 0.0005]
and compared with DDPG. Other experimental settings
followed Section I'V-A. From the experimental result demon-
strated in Fig. 8, it is clearly observed that all candidate CDPP
outperformed DDPG regardless of 7 in the early and middle
periods of training with superior stability. On the other hand,
both n = 0.15 and n = 0.0005 resulted in poor learning
capability after time step 6 x 10°: the overlarge 1 turned to
insufficient constrained policies with less sample efficiency,
while the oversmall 1 could slow down the convergence by
learning over conservative policies that are far from the opti-
mal one. This result was consistent with related works of the
relative entropy regularized RL [29], [30]. As a comparison,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

CDPP —#-DDPG —%—A3C —4-CPPO —4—EMAC CDPP —#-DDPG —%—A3C —4-CPPO —#-EMAC

03+

g %U.M
2025 ]
£ £
E go12
021
0.1
015 M 0.08
0.1 0.06
0.0 1.0 20 3.0 4.0 5.0 0.0 1.0 20 3.0 4.0 5.0
Time steps (1e5) Time steps (1e5)
(a) (b)
Fig. 7. Average calculation time of two real-robot-based simulation tasks.

(a) EndEffectorPositioningURSim-v0. (b) ObstacleAvoidanceMirl 00Rob-v0.

12000
10000 [
8000 -
a
1=}
2
&
5 6000 -
20
g
>
< 4000 [
2000 —— =015 ——7 =005
7= 0.005 s 1) = 0.0005
= DDPG
0
0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)
Fig. 8. Learning curves of the CDPP with different values of n compared

with DDPG in the Halfcheetah task. The shaded region represents the standard
deviation of the average evaluation over five trials. Curves are smoothed
uniformly for visual clarity.

the proper settings of n = [0.05, 0.005] could balance the
penalty items between the overlarge policy update and the
speed of convergence. This result indicated the importance of
properly selecting the parameter, and n = 0.05 was selected
for all other experiments based on its superior converge speed
and average return in the final step.

E. Evaluation of the Smooth Policy Update

In this section, the smooth policy update in CDPP was
investigated. We first explored the effect of the relative entropy
regularization in the sampling behavior of CDPP under the
Walker2d task with the comparison of DDPG. The samples
collected by both CDPP and DDPG during (0, 10], (30, 40],
(60,70], and (90, 100] 1000 steps in one trial with the
same random seed were visualized by t-distributed stochastic
neighbor embedding (t-SNE) [43] in Fig. 9, where the colors
from blue to red presented the corresponding value function
(¥ and Q) with low to high values.

At the early stage of learning (+ < 10*), DPPG drove
a more general exploration among the whole state space,
while CDPP was stuck in relatively low value states due
to the policy constrained by the relative entropy. However,
compared with the unfocused exploratory behavior of DDPG
with the increase of time step from 30k to 40k, CDPP accel-
erated its learning by smoothly exploring near the previously
explored area and successfully obtained relatively high value
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Fig. 10. Update of action distributions in one dimension using CDPP and

DDPG over three consecutive time steps in the hopper task.

states in local areas. In the following learning procedure,
DPPG collected relatively low value states without focusing
on the local areas of high reward. As a comparison, CDPP
efficiently explored the state space with high value function
with the smoothness constrained by the previous policies and,
therefore, enjoyed a better learning capability than DPPG:
over 25% improved converged return and 40% faster con-
vergence according to the learning curve of the Walker2d
task in Fig. 8. This result demonstrated the superiority of the
proposed CDPP in a unique learning process: it efficiently
explored the high dimensional state space and collected more
samples with high rewards, which contributed to better sample
efficiency and learning capability compared with the baseline
approaches.

Next, we evaluated the smoothness of policy updates by
one case study of the policy’s action distributions over three
consecutive time steps in the hopper task. The distributions
were calculated based on 30 observations randomly sampled
from the current memory buffer. For simplicity, only one
dimension of the action was analyzed. According to the sta-
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Fig. 11.  Overestimation of the value function in DDPG and CDPP in the

Walker2d task over 1 million time steps.

tistical histograms shown in Fig. 10, it is clearly observed that
the average distribution of action in CDPP enjoyed a relatively
smooth change within three consecutive time steps, while the
one in DPPG was more drastically updated. This observation
coincided with the positive effect of the relative entropy in
exploration behavior from the view of action distributions and
further indicated the benefit of the smooth policy update in
CDPP compared with the original DDPG.

F. Evaluation of the Overestimation

The last experiment focused on the overestimation in the
AC framework reported by Fujimoto et al. [18]. Fig. 11 illus-
trated the approximated value functions and the corresponding
true values of both CDPP and DPPG in the Walker2d task
following the same hyperparameters introduced in Section V-
A. Following [18], the approximated value functions were
estimated based on 10000 states, and the true value functions
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were estimated by averaging the discounted returns over
1000 episodes under the current learned policies. The sampled
states in approximated value and the start states in true value
were all randomly sampled from the current memory buffer.

We can observe that the overestimation of the value function
was significantly alleviated in CDPP under the regularization
of the relative entropy. Starting from a bit large value, the
overestimation of CDPP was quickly reduced during the
learning and finally maintained on a limited scale. As a
comparison, DDPG achieved a deteriorating overestimation
over the learning process with a far larger mismatch between
the approximated and true values than CDPP. This result
clearly demonstrated the advantage of CDPP in tackling the
overestimation issue in DDPG and validated the theoretical
contribution of the relative entropy regularized RL [27] in
averaging the approximated error of value function under the
AC structure.

G. Advantage and Limitation of CDPP

Based on the studies in Sections IV-D-IV-F, the superiority
of CDPP in the max average return and sample efficiency
mainly came from the KL-divergence regularization. In terms
of policy update, the KL-divergence regularization turned
to smoother action distributions during the learning process,
as shown in Fig. 10. It contributed to a more efficient explo-
ration in Fig. 9 to quickly find high reward samples with fewer
number of interaction. In terms of the overestimation of the
value function, Fig. 11 demonstrated a significant reduction
of the approximation error. It is consistent with the theoretical
study that the relative entropy regularization would implicitly
average the error of the approximated value function [27].
All these results indicated that the benefit of the relative
entropy regularization was kept after translating to the AC
framework with continuous action space through the Monte
Carlo sampling.

For the limitation of the proposed method, although CDPP
has several advantages compared with most baselines, such as
DDPG, it falls behind the SOTA methods, such as EMAC in
the walker and end-effector position tasks. This result indicates
that CDPP may not achieve superior performance than other
approaches in all control tasks. It is also observed that an
improper value of the constraint parameter n can lead to a
degradation of learning capability. The computational burden
with a large number of Monte Carlo samplings could further
limit its implementation in more challenging scenarios.

V. CONCLUSION

In this article, a novel RL approach, CDPP, was pro-
posed to tackle the issues of the sample efficiency and
learning stability in RL with continuous action space by
extending the relative entropy regularized RL from the value
function-based approach to the AC framework-based one.
The proposed method successfully estimated the intractable
Boltzmann softmax operation over continuous actions in the
critic by Monte Carlo sampling and explored the benefit of
employing the Mellowmax operator in convergence capability.
A Boltzmann sampling policy was also designed in CDPP to
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naturally guide the exploration of actors following the relative
entropy regularized critic. Evaluated by several benchmark and
real-robot-based simulation tasks with different complexities,
CDPP demonstrated its significant superiority in both learning
stability and sample efficiency compared with related base-
line approaches. The positive effect of CDPP in efficiently
exploring the high-dimensional state—action space, smoothly
updating the action distribution of the policy, and alleviating
the overestimation of the approximated value function was
studied and illustrated. All these results indicated the potential
of CDPP as an emerging stable and sample-efficient RL
approach for various control problems with continuous action
space. Our future work will mainly focus on addressing the
current limitations of CDPP to meet the requirements of
real-time robot control applications. In terms of parameter
selection, we will explore an effective training method to adap-
tively change n according to the learning performance. It is
also interesting to reduce the computational burden of Monte
Carlo sampling from the perspective of the distributional value
function.
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