
Provably Adaptive Average Reward Reinforcement Learning for Metric Spaces

Avik Kar1 Rahul Singh1

1 Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru

Abstract

We study infinite-horizon average-reward rein-
forcement learning (RL) for Lipschitz MDPs, a
broad class that subsumes several important classes
such as linear and RKHS MDPs, function approxi-
mation frameworks, and develop an adaptive algo-
rithm ZoRL with regret bounded as O

(
T 1−d−1

eff.
)
,

where deff. = 2dS +dz +3, dS is the dimension of
the state space and dz is the zooming dimension. In
contrast, algorithms with fixed discretization yield
deff. = 2(dS + dA) + 2, dA being the dimension
of action space. ZoRL achieves this by discretiz-
ing the state-action space adaptively and zoom-
ing into “promising regions” of the state-action
space. dz , a problem-dependent quantity bounded
by the state-action space’s dimension, allows us
to conclude that if an MDP is benign, then the
regret of ZoRL will be small. The zooming dimen-
sion and ZoRL are truly adaptive, i.e., the current
work shows how to capture adaptivity gains for
infinite-horizon average-reward RL. ZoRL outper-
forms other state-of-the-art algorithms in experi-
ments, thereby demonstrating the gains arising due
to adaptivity.

1 INTRODUCTION

Reinforcement Learning (RL) [Sutton and Barto, 2018] is
a popular model for systems involving real-time sequen-
tial decision-making and has applications in many fields
such as robotics, natural language processing [Ibarz et al.,
2021, Sodhi et al., 2023]. An agent interacts sequentially
with an environment by applying actions and gathers re-
wards. The environment is modeled as a Markov decision
process (MDP) [Puterman, 2014], its transition probabilities
are not known to the agent. Its goal is to choose actions
sequentially so as to maximize the cumulative rewards.

The current work develops an RL algorithm for infinite-
horizon average reward Lipschitz MDPs on metric
spaces. Popular frameworks such as tabular and linear MDPs
that have been well-studied in detail in RL literature, are
not suitable for real-world applications since these typi-
cally involve nonlinear systems that reside on continuous
spaces [Kumar et al., 2021]. For continuous spaces, the
learning regret could grow linearly with time horizon T
unless the problem has some structure [Kleinberg et al.,
2008]. Hence, we focus on Lipschitz MDPs, which is a very
general class and subsumes several popular classes such
as linear MDPs [Jin et al., 2020], RKHS MDPs [Chowd-
hury and Gopalan, 2019], linear mixture models, RKHS
approximation, and the nonlinear function approximation
framework [Osband and Van Roy, 2014, Kakade et al.,
2020]. See Maran et al. [2024a,b] for more details.

Throughout, we use dS , dA to denote the dimensions of
the state-space and the action-space respectively, and d :=
dS + dA. In episodic RL for Lipschitz MDPs, the regret is
known to scale as Õ

(
K1−d−1

eff.
)

1, where K is the number
of episodes, while deff. is the effective dimension associ-
ated with the underlying MDP and also importantly the
algorithm. A naive algorithm that uses a fixed discretiza-
tion has deff. = d + 2 [Song and Sun, 2019]. One can use
problem structure to reduce deff.; prior works on episodic
Lipschitz MDPs such as Sinclair et al. [2019], Cao and Kr-
ishnamurthy [2020] reduce effective dimension to dz + 2,
where the zooming dimension dz measures the size of the
near-optimal state-action pairs. These gains are achieved
by performing an adaptive discretization of the state-action
space and “zooming in” to only the promising regions of the
state-action space by creating a finer grid around these as
time progresses. However, Kar and Singh [2024a] show that
zooming technique and algorithms developed for episodic
MDPs are inappropriate for average reward RL tasks, in
that dz → d as T → ∞, which is what one would have
obtained via a naive fixed discretization scheme. Kar and
Singh [2024a] derives an O(ϵ2dS+dϵ

z+1 log T ) upper-bound

1Õ suppresses poly-logarithmic dependence in K or T .
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on the regret with respect to an ϵ suboptimal comparator
policy class, where dϵz is the “ϵ-zooming dimension” and
satisfies dϵz ≤ d. However, dϵz → d in the limit ϵ ↓ 0, which
shows that no adaptivity gains are achieved if the policy
class contains optimal policy, i.e., one wants to attain opti-
mal performance. In a later version of the same paper, Kar
and Singh [2024b] rectifies this issue to some extent by com-
peting against an optimal policy class. They work directly
in the policy space, and show zooming behavior in this
space rather than the state-action space, i.e., their algorithm
“activates” more number of policies from the near-optimal
regions in the policy space. They obtain deff. = dΦz + 2,
where dΦz measures the size of near-optimal policies in the
set of policies Φ that can be chosen. dΦz is the log-covering
number of the set consisting of (β, 2β]-suboptimal policies
in Φ. However, dΦz can be prohibitively large if either the
MDP or the policy-set Φ is not structured, since it involves
coverings in function spaces [Guntuboyina and Sen, 2012].
The current work remedies this and upper-bounds the regret
in terms of an alternative notion of zooming dimension, one
that can be bounded by d in the worst case. Though the
analysis of our algorithm is performed in the policy space,
it relates the suboptimality of a policy with that of the asso-
ciated state-action pairs, thereby deriving an upper-bound
of the number of plays of suboptimal policies in terms of
coverings of the state-action space.

1.1 CONTRIBUTIONS

We propose a computationally efficient algorithm ZoRL for
Lipschitz MDPs in the infinite-horizon average reward RL
setup. ZoRL combines adaptive discretization with the prin-
ciple of optimism and yields zooming behavior. We provide
a regret upper-bound of ZoRL as a function of the zooming
dimension dz , where dz is defined in terms of the subopti-
mality gap of the state action pairs (2). We show that the
regret of ZoRL is upper-bounded as Õ

(
T 1−d−1

eff.
)
, where

deff. = 2dS + dz + 3, and dz ≤ d. In order to attain a
low deff., we had to overcome several challenges. These are
discussed in detail below.

1. Bypassing Policy Covers: As is discussed above, work-
ing with policy coverings could lead to a large deff.. Let
Φ(β) denote the set of all (β, 2β]-suboptimal poli-
cies. By establishing an upper-bound on the total num-
ber of plays of Φ(β) in terms of the β-covering number
of the set of all β-suboptimal state-action pairs, the cur-
rent work attains a small deff.. Our proof hinges on the
existence of certain “key cells.” More specifically, we
show that whenever ZoRL plays a suboptimal policy ϕ,
there exists a ball in the state-action space that satisfies
the following two properties: (i) it has not been visited
sufficiently many times, and (ii) the stationary measure
under ϕ assigns a large probability mass to it. Such a
ball is called a “key cell” for that particular episode,

see Fig. 1. Lemma 4.1 unveils a relation between the
suboptimality of a policy, and the suboptimality gap of
the state-action pairs through which this policy passes.
This result plays a crucial role in proving the existence
of key cells. We derive an upper-bound on the num-
ber of plays of a cell during which it is a key cell and
policies from Φ(β) are played; here β can be chosen
from (0, 1]. This upper-bound helps us to express the
regret in terms of a covering of a state-action space,
which yields a bound that depends upon the zooming
dimension (3).

2. Adaptive Episode Durations: In order to attain deff. =
2dS +dz+3, we have to ensure that with a high proba-
bility, the key cells are visited at least a certain number
of times in each episode. This is achieved by choos-
ing the episode durations as a function of the “proxy
diameter” of the policy that is played currently. We
note that the popular approaches for choosing episode
duration, such as ending the episode upon doubling
the number of visits to any cell, would fail to yield
deff. = 2dS + dz + 3.

We verify the gains of ZoRL over both popular fixed
discretization-based algorithms and existing adaptive
discretization-based algorithms through simulation experi-
ments.

1.2 PAST WORKS

Lipschitz Bandits: The idea of zooming was first proposed
in [Kleinberg et al., 2008] for Lipschitz multi-armed ban-
dits. Bubeck et al. [2011] proposed a similar idea that uses
a hierarchical partition of the arm space to perform adaptive
discretization.

Lipschitz MDPs: Domingues et al. [2021] uses smooth-
ing kernels in order to construct model estimates and ob-
tain Õ

(
H3K1−(2d+1)−1

)
regret. Provable gains arising

due to adaptive discretization and zooming is first demon-
strated in [Cao and Krishnamurthy, 2020]. They obtain
Õ
(
H2.5+(2dz+4)−1

K1−(2dz+1)−1
)

regret, where dz is the
zooming dimension defined specifically for episodic RL. In
another work, Sinclair et al. [2023] proposes a model-based
algorithm with adaptive discretization and shows the regret
to be upper-bounded as Õ

(
LvH

3
2K1−(dz+dS)−1

)
, where

Lv is the Lipschitz constant for the value function. As com-
pared the general function approximation-based works, re-
gret bounds obtained in works on Lipschitz MDPs have
a worse growth rate as a function of time horizon. How-
ever, this is expected since Lipschitz MDPs are a more
general class of MDPs and have a regret lower-bound of
Ω(K1−(dz+2)−1

) [Sinclair et al., 2023].

Non-episodic RL: The minimax regret of state-of-the-art
algorithms for finite MDPs [Jaksch et al., 2010, Tossou



et al., 2019] with S states and A actions is bounded as
Õ(
√
DSAT ) where D is the diameter of the MDP. For fi-

nite MDPs in which the transition kernel is a mixture of d
component transition kernels, regret is upper-bounded as
Õ(d
√
DT ) [Wu et al., 2022]. The current work develops

algorithm for continuous MDPs. Wei et al. [2021] analyzes
continuous MDPs under the assumption that the relative
value function is a linear function of the features, and ob-
tains a Õ(

√
T ) regret. Another work, He et al. [2023] ap-

proximates the MDP, as well as the value function by using
general function classes. They derive a regret upper-bound
of Õ(poly(dE , B)

√
dFT ) regret, where B is the span of

the relative value function, dE , dF are the eluder dimension
and log-covering number of the function class, respectively.
When the underlying continuous MDP has a α-Hölder con-
tinuous and infinitely often smoothly differentiable tran-
sition kernel, then Ortner and Ryabko [2012] shows how
to obtain a Õ

(
T

2d+α
2d+2α

)
regret. To the best of our knowl-

edge, only [Kar and Singh, 2024a,b]2 have studied adaptive
discretization for average reward Lipschitz MDPs; how-
ever, they analyze regret with respect to a given class of
policies. For [Kar and Singh, 2024a], when this class is
“sufficiently rich” so that it contains an optimal policy, then
their algorithm does not exhibit adaptivity gains, i.e., their
zooming dimension reduces to d, which is what one would
attain via a fixed discretization scheme. In Kar and Singh
[2024b], the zooming dimension could be even larger than
d if the policy class is complex.

2 PROBLEM SETUP

Notation. The set of natural numbers is denoted by N. We
denote the span of a R-valued function f ∈ RX by sp (f),
i.e., sp (f) = maxx∈X f(x) − minx∈X f(x). We abbre-
viate “with high probability” as “w.h.p.” For a σ-algebra
F and a measure µ : F → R, we let ∥µ∥TV denote
its total variation norm [Folland, 2013], i.e., ∥µ∥TV :=
sup {|µ(B)| : B ∈ F}. a ∨ b denotes the maximum, and
a∧b denotes the minimum of two real numbers a and b. ⌈a⌉
denotes the smallest integer that is greater than or equal to
a. At certain places, we use a single variable (z) to denote
state-action pairs.

LetM = (S,A, p, r) be an MDP, where the state-space S
and action-space A are compact sets of dimension dS and
dA, respectively. Let S be endowed with Borel σ-algebra
BS . To simplify exposition, we assume that S = [0, 1]dS

and A = [0, 1]dA without loss of generality. We denote
the system state and action taken at time t by st, at respec-
tively. The state st evolves as follows,

2 Kar and Singh [2024b] is a later version of the same pa-
per Kar and Singh [2024a].

P (st+1 ∈ B|st = s, at = a) = p(s, a,B), a.s.,
∀(s, a,B) ∈ S ×A× BS , t ∈ {0} ∪ N,

where p : S×A×BS → [0, 1] is the transition kernel that is
not known by the agent. The agent earns a reward r(st, at)
at time t, where the reward function r : S × A → [0, 1]
is a measurable map. The goal of the agent is to maximize
the infinite horizon average reward. The spaces S,A are
endowed with metrics ρS and ρA, respectively. The space
S ×A is endowed with a metric ρ that is sub-additive, i.e.,
we have,

ρ ((s, a), (s′, a′)) ≤ ρS(s, s′) + ρA(a, a
′),

for all (s, a), (s′, a′) ∈ S×A. ForZ ⊆ S×A, diam (Z) :=
supz1,z2∈Z ρ(z1, z2). A stationary deterministic policy is a
measurable map ϕ : S → A that implements the action ϕ(s)
when the system state is s. Let ΦSD be the set of all such
policies. The infinite horizon average reward of a policy ϕ
when it acts on an MDPM is denoted by JM(ϕ), and is
defined as,

JM(ϕ) := lim inf
T→∞

1

T
EM,ϕ

[
T−1∑
t−0

r(st, at)

]
,

where EM,ϕ denotes expectation taken under considera-
tion that policy ϕ is used to take actions throughout on the
MDPM. The optimal average reward of the MDPM is
defined as J⋆

M := supϕ∈ΦSD
JM(ϕ). The regret [Lattimore

and Szepesvári, 2020] of a learning algorithm ψ until T is
defined as,

R(T ;ψ) := TJ⋆
M −

T−1∑
t=0

r(st, at). (1)

The goal of this work is to design a learning algorithm with
tight regret upper bound for Lipschitz MDPs. An MDP is
Lipschitz if it satisfies the assumption below.

Assumption 2.1 (Lipschitz continuity). (i) The reward
function r is Lr-Lipschitz, i.e., ∀ s, s′ ∈ S, a, a′ ∈ A,

|r(s, a)− r(s′, a′)| ≤ Lrρ ((s, a), (s
′, a′)) .

(ii) The transition kernel p is Lp-Lipschitz, i.e., ∀ s, s′ ∈
S, a, a′ ∈ A,

∥p(s, a, ·)− p(s′, a′, ·)∥TV ≤ Lpρ ((s, a), (s
′, a′)) .

The following assumption ensures that the underlying MDP
is ergodic and is typically required for average reward
setup [Ortner, 2020, Wei et al., 2021, Hao et al., 2021].

Assumption 2.2 (Uniform ergodicity). We assume that {st},
the controlled Markov process (CMP) induced by transition



kernel p under application of any stationary deterministic
policy is uniformly ergodic [Douc et al., 2018], that is, for
every ϕ ∈ ΦSD, there exists a unique distribution µ(∞)

ϕ,p , two
constants, C ∈ (0,∞) and α ∈ (0, 1) such that∥∥∥µ(t)

ϕ,p,s − µ
(∞)
ϕ,p

∥∥∥
TV
≤ Cαt, ∀s ∈ S, t ∈ {0} ∪ N,

where µ(t)
ϕ,p,s denotes the distribution of st under the appli-

cation of policy ϕ given s0 = s.

We note that even when M is known, (2.2) is the weak-
est known sufficient condition that ensures a computation-
ally efficient way to obtain an optimal policy [Arapos-
tathis et al., 1993]. Consider the Average Reward Opti-
mality Equation (AROE) corresponding to the MDP M,
J+h(s) = maxa∈A

{
r(s, a) +

∫
S
h(s′) p(s, a, s′) ds′

}
. It

can be shown that under Assumption 2.2, there exists a
function hM : S → R such that (J⋆

M, hM) satisty the
AROE [Hernández-Lerma, 2012] where hM is the relative
value function. Imposing an additional condition h(s⋆) = 0
results in unique solution to the AROE, where s⋆ is a des-
ignated state. Also, there exists a stationary deterministic
policy ϕ⋆ that is optimal, i.e., J⋆

M = JM(ϕ⋆). Similarly,
for a policy ϕ ∈ ΦSD there is a function hϕM : S → R
such that (JM(ϕ), hϕM) is the solution of J + h(s) =
r(s, ϕ(s))+

∫
S
h(s′) p(s, ϕ(s), s′) ds′. See Appendix A for

more details on properties of average reward MDPs. The
suboptimality gap [Burnetas and Katehakis, 1997] of a state-
action pair is defined as follows:

gap (s, a) :=J⋆
M + hM(s)− r(s, a)

−
∫
S
hM(s′) p(s, a, s′) ds′. (2)

Zooming dimension. Let us denote the set of state-action
pairs (s, a) such that gap (s, a) ≤ β by Zβ . We define the
zooming dimension as

dz := inf
{
d′ > 0 | Ncsβ (Zβ) ≤ czβ−d′

, ∀β > 0
}
, (3)

where Ncsβ (Zβ) denotes the csβ-covering number [Cao
and Krishnamurthy, 2020] of Zβ , cs (71) and cz are
problem-dependent constants. Note that dz is logarithm
of the covering number of a subset of S×A, hence dz ≤ d.

3 ALGORITHM

The proposed algorithm, ZoRL discretizes the state-action
space in a non-uniform grid adaptively, and the grid becomes
finer as time progresses. In this section, first, we explain the
adaptive discretization process.

Definition 3.1 (Cells). A cell is a dyadic cube with vertices
from the set {2−ℓ(v1, v2, . . . , vd) : vj ∈ {0, 1, . . . , 2ℓ}, j =

1, 2, . . . , d} with sides of length 2−ℓ, where ℓ ∈ N. The
quantity ℓ is called the level of the cell. We also denote the
collection of cells of level ℓ by P(ℓ). For a cell ζ ⊆ S ×A,
its S-projection is called an S-cell,

πS(ζ) : = {s ∈ S | (s, a) ∈ ζ for some a ∈ A} , (4)

and its level is the same as that of ζ . Denote the set of S-cells
of level ℓ by Q(ℓ). For a cell/S-cell ζ, we let ℓ(ζ) denote its
level, and let q(ζ) denote a point from ζ that is its unique
representative point. q−1 maps a representative point to the
cell/S-cell that the point is representing, i.e., q−1(z) = ζ
such that q(ζ) = z.3

Definition 3.2 (Partition tree). A partition tree of depth ℓ is
a tree in which (i) Each node at a depth m ≤ ℓ of the tree is
a cell of level m. (ii) If ζ is a cell of level m, where m < ℓ
then, a) all the cells of level m+1 that collectively generate
a partition of ζ , are the child nodes of ζ . The corresponding
cells are called child cells, and we use Child(ζ) to denote
all the child cells of ζ. b) ζ is called the parent cell of these
child nodes. The set of all ancestor nodes of cell ζ is called
ancestors of ζ.

ZoRL (3) maintains a set of “active cells.” The following
rule is used for activating and deactivating cells.

Definition 3.3 (Activation rule). For a cell ζ define,

Nmax(ζ) :=
ca2

dS+2 log
(
T
δ

)
diam (ζ)

dS+2
, and, (5)

Nmin(ζ) :=

 1 if ζ = S ×A
ca log (T

δ )
diam(ζ)dS+2 , otherwise,

(6)

where ca > 1 is a constant that satisfies (92), and δ ∈ (0, 1)
is the confidence parameter. The number of visits to ζ is
denoted Nt(ζ) and is defined as follows.

1. Any cell ζ is said to be active if Nmin(ζ) ≤ Nt(ζ) <
Nmax(ζ).

2. Nt(ζ) is defined for all cells as the number of times
ζ or any of its ancestors has been visited while being
active until time t, i.e.,

Nt(ζ) :=

t−1∑
i=0

1{(si,ai)∈ζi}, (7)

where ζi is the unique cell that is active at time i and
satisfies ζ ⊆ ζi.

Denote the set of active cells at time t by Pt.

3With a slight abuse of notation, we use the maps ℓ(·), q(·) and
q−1(·) for both cells and S-cells. Note that for cells and S-cells,
these maps have different domains and codomains.



We note that since the diameter of a child cell is half that
of its parent, a parent cell is deactivated, and its child cells
are activated simultaneously. Since a cell is partitioned by
its child cells, the set of active cells at time t, Pt forms
a partition of the state action space. ZoRL clusters all the
state-action pairs into the active cells by utilizing the infor-
mation gathered until t. Each point in an active cell (cluster)
ζ looks similar for the purpose of generating optimal ac-
tions, and is hence represented via its unique representative
point q(ζ). Denote the collection of representative points of
the active cells at time t by Zt := {q(ζ) : ζ ∈ Pt}. Let
ℓmax,t be the level of the smallest cells in Pt. At time
t, ZoRL partitions the state-space into S-cells of level ℓmax,t.
We denote this S-cell partition by Qt, i.e., Qt := Q(ℓmax,t),
and the corresponding representative points by St, i.e.,
St := {q(ζ) : ζ ∈ Qt}. St can be thought of as the dis-
cretized state space at time t. ZoRL maintains estimates of
the transition probability kernel that has support on St.

Now, we introduce a generic notation for discretized transi-
tion kernels, which will be used often in this paper. Let S̃ be
a set of representative points of a partition of S consisting
of only S-cells. Then, for a continuous transition kernel p̃,
and Z̃ ⊆ S × A, we define ℘Z̃→S̃,p̃(z, ·) : Z̃ 7→ [0, 1]S̃ as
follows,

℘Z̃→S̃,p̃(z, s) := p̃(z, q−1(s)), ∀z ∈ Z̃, s ∈ S̃. (8)

The kernel ℘Z̃→S̃,p̃ can be viewed as a discretization of p̃.

Estimating the Transition Kernel. Let Nt(ζ, ξ) be the
total number of transitions from a cell ζ, or from its
active ancestors to a S-cell ξ until t, i.e., Nt(ζ, ξ) :=∑t−1

i=1 1{(si,ai,si+1)∈ζi×ξ}. For any state-action pair z, we
let q−1

t (z) denote the active cell that contains z. Denote
S̃t(z) := {q(ξ) : ξ ∈ Q(ℓ(q−1

t (z)))}, which is the set of
representative states of the S-cells of level ℓ(q−1

t (z)). We
first construct an estimate p̂(d)t (9) of the discretized version
of the true stochastic kernel as follows,

p̂
(d)
t (z, s) :=

Nt

(
q−1(z), q−1(s)

)
1 ∨Nt (q−1(z))

, (9)

z ∈ Zt, s ∈ S̃t(z). Note that the distribution p̂(d)t (z, ·) is
supported on a finite set S̃t(z), and the sets {S̃t(z)} are
adaptive. p̂(d)t (z, ·) is then extended to obtain a continuous
kernel p̂t. p̂t is defined as,

p̂t(z,B) :=
∑

s∈S̃t(z)

λ(B ∩ q−1(s))

λ(q−1(s))
p̂
(d)
t (z, s), (10)

where z ∈ Zt, B ∈ BS , and λ(·) is the Lebesgue measure
on (S,BS). To obtain a computationally feasible algorithm,
we work with the discretization ℘Zt→St,p̂t

of p̂t.

Note that the set S̃t(z) depends upon the diameter of the ac-
tive cell containing z, so that the support of the discrete ker-
nel p̂(d)t (z, ·) varies with z. The construction of ℘Zt→St,p̂t

from p̂
(d)
t ensures that the support of the discrete kernel

at every point is the same (St). This allows us to use the
EVI algorithm, which will be introduced later in this sec-
tion.

Concentration Inequality. ZoRL constructs a confidence
ball centered at ℘Zt→St,p̂t that contains discretized ver-
sion of the true transition kernel, p w.h.p. For a cell
ζ ∈ Pt, the confidence radius associated with the estimate
℘Zt→St,p̂t

(q(ζ), ·) is defined as follows,

ηt(ζ) := min

{
2, 3

(
ca log

(
T
δ

)
Nt(ζ)

) 1
dS+2

+ (3Lp + Cp)diam (ζ)

}
, (11)

where Cp is an upper bound on the derivatives of the tran-
sition density functions, as described in Assumption 4.2,
and the constant ca ≥ 1 satisfies (92). It turns out that the
following value of ca satisfies (92):

ca =
2d

dS
2

9

log
(
6d

d
2

)
log
(
T
δ

) +
d

dS + 2
+ 1. (12)

Lemma F.1 shows that w.h.p.,

∥℘S×A→St,p(z, ·)− ℘Zt→St,p̂t
(q(ζ), ·)∥TV ≤ ηt(ζ),

∀z ∈ ζ,

for every t and every ζ ∈ Pt. This leads to the definition of
the confidence ball that ZoRL uses.

Now, we introduce the discrete state-action space that we
will use in the definition of the confidence ball. The set
of all the relevant cells for s ∈ S at time t are defined as
Relt(s) := {ζ ∈ Pt | ∃a ∈ A such that (s, a) ∈ ζ}. These
are those active cells whose S-projection contain the state
s. Thus, Relt(s) can be seen as the set of those cells in the
state-action space that are associated with state s currently.
Recall that St is the discrete state space at time t. Define

At(s)

:= ∪ζ∈Relt(s){a ∈ A | q(ζ) = (s′, a) for some s′ ∈ S}.

At(s) denotes the set of actions that are available to the
agent that can be played by it currently in state s. The dis-
crete action space at time t is given by At := {At(s) : s ∈
St}. Let St × At := {(s, a) | s ∈ St, a ∈ At(s)}. Define
the confidence ball,

Ct :={
θ : St ×At 7→ [0, 1]St |

∑
s∈St

θ(z, s) = 1, ∀z ∈ St ×At,

∥θ(z′, ·)− ℘Zt→St,℘̂t(z̄, ·)∥1 ≤ ηt(q
−1(z̄)) for every

z̄ ∈ Zt, z
′ ∈ q−1(z̄) ∩ St ×At

}
. (13)



As a consequence of Lemma F.1, Ct contains ℘St×At→St,p

w.h.p. Denote the time when the k-th episode of ZoRL be-
gins by τk. At the beginning of each episode k, ZoRL con-
structs a set of discrete MDPsM+

τk
with transition kernel

can be chosen from Cτk , and reward function is equal to the
true rewards at the discrete points St × At, plus a bonus
term. Such a set of MDPs is called the “extended MDP” and
it is commonly used to incorporate optimism in upper confi-
dence bound-based RL algorithms [Jaksch et al., 2010]. The
optimal average reward of the extended MDP exceeds the
optimal average reward of the true MDP since Ct contains
the true discretized transition kernel ℘St×At→St,p w.h.p.;
this yields an “optimistic push” which ensures “sufficient
exploration.” The confidence ball shrinks with the number
of visits to different state-action pairs; this causes a reduc-
tion in the amount of optimism bonus. The extended MDP
thus closely approximates the true MDP in the “important
regions” (those necessary for recovering an optimal policy)
of the state-action space as time progresses. Next, we dis-
cuss the extended MDP in detail, how to solve it, and its
role in ZoRL.

Extended MDP. Consider the following modified reward
function defined on St ×At,

r̃t(s, a) = r(q(q−1
t (s, a))) + Lrdiam

(
q−1
t (s, a)

)
,

in which a bonus term proportional to the diameter of the
active cell that contains (s, a) has been included in order
to compensate for the “discretization error.” Consider the
following collection of MDPs M+

t := {(St,At, p̃, r̃t) :
p̃ ∈ Ct}. One may view M+

t as an MDP with the finite
state space St and an extended action space, hence the name
extended MDP. An element from the extended action space
has two components: control input fromAt, and a transition
kernel from Ct. Let Φt be the set of those policies ϕ that
satisfy ϕ(s) ∈ At(s), ∀s ∈ St. Denote the optimal average
reward ofM+

t by J⋆
M+

t

. ZoRL uses the EVI algorithm in
order to obtain an optimal policy for the extended MDP at
the beginning of every episode. This is discussed next.

Algorithm 1 Extended Value Iteration (EVI)

Input Extended MDPM+, accuracy parameter γ > 0.
Initialize v0 = {0}|S|, n = 0.
while True do
vn+1 = T vn (14)
if sp (vn+1 − vn) ≤ γ then

break
end if
n← n+ 1

end while
return Greedy Policy w.r.t. vn

EVI (Algorithm 1) takes as input an extended MDP, and
an error tolerance parameter γ > 0, and returns a pol-
icy whose average reward is γ-close to the optimal value

Algorithm 2 Extended Policy Evaluation (EPE)

Input Extended MDPM+, policy ϕ, accuracy parameter
γ > 0, reference state s⋆.
Initialize v0 = {0}|S|, n = 0.
while True do
vn+1 = max

θ∈C

{
r̃(s, ϕ(s)) +

∑
s′∈S

θ(s, ϕ(s), s′)vn(s
′)
}

if sp (vn+1 − vn) ≤ (vn+1(s⋆)− vn(s⋆)) γ then
break

end if
n← n+ 1

end while
return vn+1(s⋆)− vn(s⋆)

of the extended MDP. A generic extended MDP M+ =
{(S,A, p̃, r̃) : p̃ ∈ C} has a discrete state space S, and
discrete action space A = {A(s) : s ∈ S} where A(s) is
the set of actions that are permissible in state s. C is a set of
transition kernels which yield a distribution over S for each
point in S×A. r̃ is the reward function. Given the extended
MDPM+, define the following operator T : RS 7→ RS ,

T v(s) = max
a∈A(s)
θ∈C

{
r̃(s, a) +

∑
s′∈S

θ(s, a, s′)v(s′)
}
. (14)

See that T is the Bellman operator [Puterman, 2014] for the
extended MDP,M+, where maximization of the value is
done over the extended action space, A(s)× C. Recall that
the Bellman operator for usual MDPs maximizes over the
set of all actions. At time τk, ZoRL calls EVI(M+

τk
, 1/
√
T ).

The EVI subroutine then applies the Bellman operator (14)
for M+

τk
repetitively until stopping criterion is met and re-

turns the policy ϕ̃k ∈ Φτk , which is 1/
√
T -near optimal

(Lemma G.1). ZoRL then extends ϕ̃k on the entire continu-
ous space S to obtain ϕk as follows: for every state in the
S-cell ξ ∈ Qτk , ϕk plays ϕ̃k(q(ξ)), i.e.,

ϕk(s) = ϕ̃k(q(ξ)),∀s ∈ ξ, ξ ∈ Qτk . (15)

Episode Duration. ZoRL chooses the duration of the k-th
episode as a function of the expected diameter of the states
visited at stationarity of the chosen policy, ϕk. Define the
extended MDPMd,+

t = {(St,At, p̃, dt) : p̃ ∈ Ct}, where

dt(s, a) := diam
(
q−1
t (s, a)

)
, ∀(s, a) ∈ St ×At.

Let ϕ̃ ∈ Φt. We define the proxy diameter of ϕ̃ at time t as
the average reward of the policy ϕ̃ evaluated on MDPMd,+

t

and denote it by d̃iamt(ϕ̃). To be precise, d̃iamt(ϕ̃) is the
optimal value ofMd,+

t when the control input component
of the extended action is chosen according to the policy ϕ̃,
and the transition kernel is chosen so as to maximize the
average reward. Define the diameter of a policy ϕ ∈ ΦSD

at time t as follows:

diamt(ϕ) :=

∫
S

diam
(
q−1
t (s, ϕ(s))

)
µ
(∞)
ϕ,p (s)ds. (16)



In Appendix C, we show that d̃iamτk(ϕ̃k) is a tight upper-
bound of diamτk(ϕk) for every k. The duration of the k-th
episode, Hk is chosen as,

Hk =
CH log (T/δ)

d̃iamτk(ϕ̃k)
2(dS+1)

, (17)

where CH , a problem-dependent quantity of O(log(T )),
satisfies (68). This choice of episode duration ensures a
reduction of the diameter of the chosen policy in every
episode. ZoRL uses EPE (Algorithm 2) in order to com-
pute d̃iamτk(ϕ̃k). EPE(M

d,+
t , ϕ̃, γ, s⋆) returns a value from

[(1 + γ)
−1 d̃iamt(ϕ̃), (1− γ)−1 d̃iamt(ϕ̃)] (Corollary G.2)

for any ϕ̃ ∈ Φt where γ is a parameter chosen by the agent.

Algorithm 3 Zooming Algorithm for RL (ZoRL)

Input Horizon T , upper-bounds on Lr, Lp, Cp, constants
ca, CH and accuracy parameter γ > 0
Initialize h = 0, k = 0, H0 = 0, P0 = {S × A}
for t = 0 to T − 1 do

if h ≥ Hk then
k ← k + 1, h← 0, τk = t, s⋆ ∈ St
ConstructM+

τk
andMd,+

τk

ϕ̃k = EVI(M+
τk
, 1/
√
T )

Obtain ϕk from ϕ̃k according to (15)
dk = EPE(Md,+

τk
, ϕ̃k, γ, s⋆)

Hk = CH log (T/δ) d
−2(dS+1)
k

end if
h← h+ 1
Play at = ϕk(st), observe st+1 and receive r(st, at)
if Nt(q

−1
t (st, at)) = Nmax(q

−1
t (st, at)) then

Pt+1 = Pt ∪ Child(q−1
t (st, at)) \ {q−1

t (st, at)}
else
Pt+1 = Pt

end if
end for

4 REGRET ANALYSIS

We let ∆(ϕ) := J⋆
M − JM(ϕ) denote the suboptimality of

policy ϕ. The following result establishes a relation between
the suboptimality of a policy, and the suboptimality gap
of the state-action pairs through which this policy passes,
where suboptimality gap of state-action pair is defined in
(2). Its proof is deferred to Appendix A.

Lemma 4.1. Consider the MDPM = (S,A, p, r). For any
policy ϕ ∈ ΦSD, we have

∆(ϕ) =

∫
S

gap (s, ϕ(s)) µ(∞)
ϕ,p (s) ds.

We make the following assumption on the true kernel p
for deriving concentration bound for the estimate of the
discretized transition kernel ℘St×At→St,p (8).

Assumption 4.2 (Bounded Radon-Nikodym derivative).
The probability measures {p(s, a, ·)} are absolutely-
continuous w.r.t. the Lebesgue measure on (S,BS), with
density functions given by {f(s,a)}. We assume that these
densities satisfy∥∥∥∥∂f(s,a)(s+)∂s+(i)

∥∥∥∥
∞
≤ Cp,∀(s, a) ∈ S ×A, i = 1, 2, . . . , dS ,

where the variable s+ = (s+(1), s+(2), · · · , s+(dS)) rep-
resents the next state.

Assumption 4.2 ensures that the discretizations of p(s, a, ·)
with respect to the partitions Q(ℓ(q−1

t (s,a))) and Qt are at
most Cp diam

(
q−1
t (s, a)

)
distance apart (Lemma I.2). Us-

ing this result, Lemma F.1 shows that under Assumption 2.1
and Assumption 4.2, ∩T−1

t=0 {℘St×At→St,p ∈ Ct} occurs
w.h.p. The following assumption allows us to derive an
upper-bound on the span of the EVI iterates, which is essen-
tial to ensure that the algorithm is not overly optimistic.

Assumption 4.3 (Bound on Stationary Distributions). There
is a constant κ > 0 such that for every policy ϕ ∈ ΦSD,
and for every ζ ∈ BS , we have, κ · λ(ζ) ≤ µ(∞)

ϕ,p (ζ), where
λ(·) denotes the Lebesgue measure on (S,BS).

Remark (Regarding Assumptions). In the average reward
setup for continuous space MDPs, assumptions similar
to Assumption 4.3 or more restrictive assumptions are
needed. For example, Ormoneit and Glynn [2002] assumes
that the transition kernel of the underlying MDP has a
strictly positive Radon-Nikodyn derivative in order to show
that a proposed adaptive policy converges to an optimal
policy. Wang et al. [2024] and Shah and Xie [2018] derive
optimal sample complexity for average reward RL and for
discounted reward RL, respectively, under an assumption
that the m-step transition kernel is bounded below by a
known measure. Kar and Singh [2024b] also make the same
assumption as ours in order to derive the regret upper-bound
of their adaptive discretization-based algorithm. Wei et al.
[2021] bounds the regret for average reward RL algorithm
when the relative value function is a linear function of a set
of known feature maps. Their “uniformly excited features”
assumption ensures that upon playing any policy, the con-
fidence ball shrinks in each direction, which has a similar
effect as Assumption 4.3.

We now present our main result that provides an upper-
bound on regret of ZoRL. We only provide a proof sketch
here and delegate its detailed proof to the appendix.

Theorem 4.4. Under Assumptions 2.1, 2.2, 4.2 and 4.3, with
probability at least 1 − δ, R(T ;ZoRL) is upper-bounded
as O

(
T 1−d−1

eff.
)

where deff. = 2dS + dz + 3.

Proof sketch. We decompose the regret (1) in the following
manner. Let K(T ) denote the total number of episodes



during T timesteps. Then,

R(T ;ZoRL) = TJ⋆
M −

K(T )∑
k=1

τk+1−1∑
t=τk

r(st, at)

=

K(T )∑
k=1

Hk (J
⋆
M − JM(ϕk))︸ ︷︷ ︸
(a)

+

K(T )∑
k=1

(
Hk JM(ϕk)−

τk+1−1∑
t=τk

r(st, ϕk(st))

)
︸ ︷︷ ︸

(b)

.

(a) captures the regret arising due to playing a suboptimal
policy ϕk during the k-th episode, while (b) captures the
possible degradation in performance during the transient
stage as compared with the average rewards of the chosen
policies. (a) and (b) are bounded separately below.

Bounding (a): Step 1: In Lemma B.1, we show that the
policy obtained by solving M+

t is optimistic, i.e., w.h.p.
J⋆
M+

t

≥ J⋆
M. Also, in Lemma B.3, we show that w.h.p.,

J⋆
M+

t

≤ J⋆
M + Cub diamt(ϕk), where Cub is as defined in

(53). As a consequence of the above two results, on a high
probability set, a suboptimal policy ϕ will never be played
from episode k onwards if diamτk(ϕ) ≤ C

−1
ub ·∆(ϕ). Note

that the cumulative regret arising due to policies with ∆(·)
less than ϵ is at most ϵT . We choose ϵ optimally and restrict
the analysis to regret arising from playing other policies.

Step 2: We combine Step 1 with Lemma 4.1 in Lemma E.1
and show that on a high probability set, in each episode k,
there is a state s ∈ S such that

diam (ζ) ≥
1

3Cub
max{gap (s, ϕk(s)) , Cubdiamτk(ϕk)}, (18a)

µ
(∞)
ϕk,p

(πS(ζ)) ≥
(

diamτk(ϕk)

3

)dS+1

, (18b)

where ζ = q−1
τk

(s, ϕk(s)). This cell ζ is called a key cell in
the k-th episode.

Step 3: Then we show that with a high probabil-
ity, the key cells of the k-th episode are visited at
least O

(
log
(
T
δ

)
diam (ζ)

−(dS+1)
)

times during the k-th
episode. This is done in Lemma E.2.

Step 4: We obtain a bound on the cardinality of the key cells
associated with playing policies from the set Φ2−i = {ϕ ∈
ΦSD | ∆(ϕ) ∈ (2−i, 2−i+1]} by showing that these cells
are contained within a set of cells that has a cardinality at
most O(2idz ). We then use this bound along with the lower-
bound on the number of plays of the key cells, and conclude
that the policies from Φ2−i are played for a maximum of
O
(
log
(
T
δ

)
2i(2dS+dz+3)

)
time-steps (Lemma E.3).
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Figure 1: Key cell: The policy ϕ is played during the k-
th episode. This diagram depicts the discretization grid at
the beginning of the k-th episode. Then, one of the cells
ζ1,1, ζ2,3 and ζ2,4 must be a key cell with a high probability
(Lemma E.1). There must be a state s such that (s, ϕ(s))
belongs to this cell, and s satisfies (18a) and (18b).

Step 5: The term (a) can be written as the sum of the regrets
arising due to playing policies from the sets Φ2−i , where
i = 1, 2, . . . ,

⌈
log
(
1
ϵ

)⌉
, where ϵ = T

− 1
2dS+dz+3 . To bound

the regret arising due to playing policies from Φ2−i , we
multiply O

(
log
(
T
δ

)
2i(2dS+dz+3

)
by 2−i+1. We then add

these regret terms from i = 1 to
⌈
log
(
1
ϵ

)⌉
and ϵT .

Step 6: Lastly, we add
√
T to the final bound to compensate

for the inaccuracy caused by EVI due to finite computa-
tional resources. This gives us the upper-bound on (a) w.h.p.

Bounding (b): upper-bound on the term (b) relies on the
uniform ergodicity property (Assumption 2.2) of M and
a trick that converts “Markovian noise” to “martingale
noise” [Metivier and Priouret, 1984]. Proposition E.4 shows
that on a high probability set, we must pay a constant penalty
each time we change policy, which is O(K(T ) +

√
T ). We

show that the rule which decides when to start a new episode

ensures thatK(T ) is bounded above byO(T
dz+1

2dS+dz+3 ), and
so is the term (b).

Summing the upper-bounds on (a) and (b), we obtain the
desired regret bound.

5 SIMULATIONS

We compare the performance of ZoRL (Algorithm 3) with
that of UCRL2 [Jaksch et al., 2010], TSDE [Ouyang
et al., 2017], RVI-Q [Borkar and Meyn, 2000] which
is a Q-learning algorithm for average-reward RL, ZoRL-
ϵ [Kar and Singh, 2024a], and the heuristic algorithm
PZRL-H [Kar and Singh, 2024b]. For competitor policies
that are designed for finite state-action spaces, we apply



them on a uniform discretization of S × A performed
at time t = 0. Simulation experiments are conducted on
the following systems: (i) Continuous RiverSwim,
where the environment models an agent who is swim-
ming in a river. (ii) Linear Quadratic (LQ) control sys-
tems [Abbasi-Yadkori and Szepesvári, 2011] where the
state evolves as st+1 = Ast + Bat + wt, and we trun-
cate the state-action space in order to ensure that they are
compact. Denote the two systems of dimension 2× 2 and
2× 4 as Truncated LQ-1 and Truncated LQ-2, re-
spectively. (iii) Non-linear System where the state
evolves as st+1 = Af(st) + Bg(at) + wt, where f and g
are non-linear functions. Similar to the truncated LQ sys-
tems, we truncate the state-action space. Details of the envi-
ronments can be found in Kar and Singh [2024a], and also
in Appendix H. We plot the cumulative rewards averaged
over 50 runs in Figure 2. ZoRL performs the best among all
six algorithms on each of the environments. Very recently,
Kar and Singh [2024b] has replaced PZRL-H with two al-
gorithms, PZRL-MB and PZRL-MF. In Appendix H we
compare their performance with ZoRL.
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(a) Continuous RiverSwim
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(b) Truncated LQ-1
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(c) Truncated LQ-2
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(d) Non-linear System

Figure 2: Cumulative Reward Plots.

6 CONCLUSION

We propose a computationally efficient algorithm for aver-
age reward RL for Lipschitz MDPs in continuous spaces,
and show that it is truly adaptive, i.e. it achieves a regret
of Õ

(
T 1−d−1

eff.
)
, where deff. = 2dS + dz + 3. The zooming

dimension dz is a problem-dependent quantity, measures the
size of near-optimal state-action pairs and is bounded above
by d, the dimension of the state-action space. Simulation
experiments support the theoretical findings. ZoRL overper-
forms the popular fixed discretization-based algorithms as
well as adaptive discretization-based algorithms.
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Organization of the Appendix. Some properties of the MDPs that satisfy Assumption 2.2 are discussed in Appendix A. It
also includes the proof of Lemma 4.1. Some important properties of extended MDPs can be found in Appendix B. We use
these properties while analyzing the regret of ZoRL. Next, in Appendix C, we show certain properties of the proxy diameters
of policies. Results obtained in Appendix B play a crucial role in deriving those properties. A high probability lower bound
on the number of visits to the key cells in each episode is derived in Appendix D. In Appendix E, we derive the desired
regret bound. Appendix F covers the concentration results for estimates of the discretized model. In Appendix G, we derive
bounds on inaccuracy that EVI and EPE injects into ZoRL due to finite computation power. Details of the experiments, the
associated environments and additional simulation results are reported in Appendix H. Appendix I derives some key results
that are used in the proof of Lemma F.1. Appendix J contains some known results that are used in this paper.

A GENERAL RESULTS FOR MDPS

Consider an MDPM = (S,A, p, r) and a policy ϕ ∈ ΦSD that maps states in S to actions in A. We assume that the
transition kernel p satisfies Assumption 2.2. Hence, there exists a unique invariant distribution µ(∞)

ϕ,p for the controlled
Markov process (CMP) induced by the transition kernel p under the application of policy ϕ. Under Assumption 2.2, there
exists a solution to the following Poisson equation [Hernández-Lerma and Lasserre, 2012]:

J + h(s) = r(s, ϕ(s)) +

∫
S
h(s′)p(s, ϕ(s), ds′), ∀s ∈ S. (19)

Specifically, (JM(ϕ), hϕM) ∈ R× RS satisfies (19), where

JM(ϕ) = lim inf
T→∞

1

T
E

[
T−1∑
t=0

r(st, ϕ(st)) | s0 = s

]
=

∫
S
r(s, ϕ(s))µ

(∞)
ϕ,p (ds), (20)

and hϕM(s′) =

∞∑
t=0

∫
S
r(s, ϕ(s))(µ

(∞)
ϕ,p − µ

(t)
ϕ,p,s′)(ds), ∀s

′ ∈ S. (21)

Recall that µ(t)
ϕ,p,s denotes the distribution of st when initial state is s0 = s, where {st}t is the CMP induced by the transition

kernel p under the application of ϕ. hϕM is called the relative value function of ϕ.

The following is popularly known as the average reward optimality equation (AROE),

J + h(s) = max
a∈A

{
r(s, a) +

∫
S
h(s′)p(s, a, s′)ds′

}
, and

h(s⋆) = 0,

where s⋆ ∈ S is a designated state. Hernández-Lerma [2012] shows that under Assumption 2.2, AROE has a solution. A
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policy ϕ⋆ is optimal if it satisfies the following,

ϕ⋆(s) ∈ argmax
a∈A

{
r(s, a) +

∫
S
hϕ

⋆

M(s′)p(s, a, s′)ds′
}
, ∀s ∈ S. (22)

In that case, J⋆
M = JM(ϕ⋆) and hM = hϕ

⋆

M solve AROE.

Denote the t-stage transition kernel under the application of policy ϕ by p(t)ϕ , i.e.,

p
(t)
ϕ (s,B) = P(sτ+t ∈ B | sτ = s, at′ = ϕ(st′), t

′ = τ, τ + 1, . . . , τ + t− 1), t ∈ N, s ∈ S, B ∈ BS , τ ∈ N. (23)

Our next result shows that when t is sufficiently large, then Assumption 2.2 is equivalent to saying that p(t)ϕ has the
“contractive property,” (24).

Lemma A.1. Consider an MDPM = (S,A, p, r) such that p satisfies Assumption 2.2. Then, for every policy ϕ ∈ ΦSD we
have, ∥∥∥p(i)ϕ (s, ·)− p(i)ϕ (s′, ·)

∥∥∥
TV
≤ 2α, ∀s, s′ ∈ S, i ≥ m⋆, (24)

where p(i)ϕ is the i-stage transition probability of the CMP induced by the transition kernel p under the application of policy
ϕ as defined in (23), and

m⋆ :=
⌈
log 1

α
(C)
⌉
+ 1. (25)

Conversely, if ∥∥∥p(m)
ϕ (s, ·)− p(m)

ϕ (s′, ·)
∥∥∥
TV
≤ 2α′, ∀s, s′ ∈ S,

for some m ∈ N, then Assumption 2.2 holds with C = 2
α′ and α = α′ 1

m .

Proof. We first note that p(i)ϕ (s, ·) = µ
(i)
ϕ,p,s for every s ∈ S. Hence, for any s, s′ ∈ S,∥∥∥p(i)ϕ (s, ·)− p(i)ϕ (s′, ·)

∥∥∥
TV
≤
∥∥∥µ(i)

ϕ,p,s − µ
(∞)
ϕ,p

∥∥∥
TV

+
∥∥∥µ(i)

ϕ,p,s′ − µ
(∞)
ϕ,p

∥∥∥
TV

.

Also, Cαi ≤ α for i ≥ log 1
α
(C) + 1. Now, using Assumption 2.2, we have that when i ≥ m⋆, then the following holds,∥∥∥p(i)ϕ (s, ·)− p(i)ϕ (s′, ·)

∥∥∥
TV
≤
∥∥∥µ(i)

ϕ,p,s − µ
(∞)
ϕ,p

∥∥∥
TV

+
∥∥∥µ(i)

ϕ,p,s′ − µ
(∞)
ϕ,p

∥∥∥
TV

≤ 2α.

This concludes the proof of the first claim.

Now, we prove the second claim. Consider the CMP that is described by the transition kernel p and evolves under the
application of the policy ϕ. Consider two copies of this CMP, where these copies differ in the distribution of the initial state.
Denote these distributions by µ(0)

1 and µ(0)
2 . Denote the distributions of si in the corresponding processes by µ(i)

1 and µ(i)
2 ,

respectively. We show the following:∥∥∥µ(i)
1 − µ

(i)
2

∥∥∥
TV
≤ C̃ · α̃i

∥∥∥µ(0)
1 − µ

(0)
2

∥∥∥
TV

, ∀i ∈ N, (26)

where C̃ = 1
α′ and α̃ = α′ 1

m . The claim then follows by letting µ(0)
1 = δs and µ(0)

2 = µ
(∞)
ϕ,p . Note that,∥∥∥µ(m)

1 − µ(m)
2

∥∥∥
TV

= 2 sup
A⊆S

{
(µ

(m)
1 − µ(m)

2 )(A)
}

= 2 sup
A⊆S

{∫
S
p
(m)
ϕ (s,A) d(µ

(0)
1 − µ

(0)
2 )(s)

}
≤ sup

A⊆S
s,s′∈S

{
p
(m)
ϕ (s,A)− p(m)

ϕ (s′, A)
}∥∥∥µ(0)

1 − µ
(0)
2

∥∥∥
TV

≤ α′
∥∥∥µ(0)

1 − µ
(0)
2

∥∥∥
TV

. (27)



Also, note that for any i ∈ N,∥∥∥µ(i)
1 − µ

(i)
2

∥∥∥
TV

= 2 sup
A⊆S

{
(µ

(i)
1 − µ

(i)
2 )(A)

}
= 2 sup

A⊆S

{∫
S
p(s, ϕ(s), A) d(µ

(i−1)
1 − µ(i−1)

2 )(s)

}
≤ sup

A⊆S
s,s′∈S

{p(s, ϕ(s), A)− p(s′, ϕ(s′), A)}
∥∥∥µ(i−1)

1 − µ(i−1)
2

∥∥∥
TV

≤
∥∥∥µ(i−1)

1 − µ(i−1)
2

∥∥∥
TV

, (28)

where the first step follows from the definition of the total variation norm, while the third step follows from Lemma J.6. Com-
bining (27) and (28), we can write∥∥∥µ(i)

1 − µ
(i)
2

∥∥∥
TV
≤ α′⌊ i

m⌋
∥∥∥µ(0)

1 − µ
(0)
2

∥∥∥
TV

≤ 1

α′

(
α′ 1

m

)i ∥∥∥µ(0)
1 − µ

(0)
2

∥∥∥
TV

, ∀i ∈ N.

This concludes the proof of the lemma.

Consider two CMPs {s1,i} and {s2,i}, both of which are induced by ϕ operating on the MDPM that has transition kernel
p. Their initial state distributions are µ(0)

1 and µ(0)
2 respectively. Next, we derive an upper-bound on the cumulative sum of

distances of the distributions of s1,i and s2,i.

Lemma A.2. Consider an MDPM = (S,A, p, r) that satisfies Assumption 2.2, and a policy ϕ ∈ ΦSD. Let {s1,i} and
{s2,i} be two CMPs induced by ϕ when it is applied to M. Let µ(i)

1 and µ(i)
2 denote the distributions of s1,i and s2,i,

respectively. Then,

∞∑
i=0

∥∥∥µ(i)
1 − µ

(i)
2

∥∥∥
TV
≤ m⋆

1− α

∥∥∥µ(0)
1 − µ

(0)
2

∥∥∥
TV

,

where m⋆ is as defined in (25).

Proof. From Lemma A.1, we have that,∥∥∥µ(i)
1 − µ

(i)
2

∥∥∥
TV
≤ α

∥∥∥µ(0)
1 − µ

(0)
2

∥∥∥
TV

, for i ≥ m⋆. (29)

Also, for any i ∈ N we have,∥∥∥µ(i)
1 − µ

(i)
2

∥∥∥
TV

= 2 sup
A⊆S

{
(µ

(i)
1 − µ

(i)
2 )(A)

}
= 2 sup

A⊆S

{∫
S
p(s, ϕ(s), A) d(µ

(i−1)
1 − µ(i−1)

2 )(s)

}
≤ sup

A⊆S
s,s′∈S

{p(s, ϕ(s), A)− p(s′, ϕ(s′), A)}
∥∥∥µ(i−1)

1 − µ(i−1)
2

∥∥∥
TV

≤
∥∥∥µ(i−1)

1 − µ(i−1)
2

∥∥∥
TV

,

where the first step follows from the definition of the total variation norm, and the third step follows from Lemma J.6. Hence,∥∥∥µ(i)
1 − µ

(i)
2

∥∥∥
TV
≤
∥∥∥µ(0)

1 − µ
(0)
2

∥∥∥
TV

, ∀i ∈ N (30)



Using (29) iteratively, and (30), we can write,

∞∑
t=0

∥∥∥µ(i)
1 − µ

(i)
2

∥∥∥
TV

=

m⋆−1∑
m=0

∞∑
i=0

∥∥∥µ(m+i·m⋆)
1 − µ(m+i·m⋆)

2

∥∥∥
TV

≤ m⋆

1− α

∥∥∥µ(0)
1 − µ

(0)
2

∥∥∥
TV

.

where m⋆ =
⌈
log 1

α
(C)
⌉
+ 1. This concludes the proof.

We now derive an upper-bound on the span of the relative value function hϕM (21) associated with a policy ϕ ∈ ΦSD.

Lemma A.3 (Bound on the span of relative value function). Consider an MDPM = (S,A, p, r) such that p satisfies
Assumption 2.2. For any policy ϕ ∈ ΦSD, the span of the corresponding relative value function hϕM (21) can be bounded as,

sp
(
hϕM

)
≤ m⋆ sp (r)

1− α
, (31)

where m⋆ is as defined in (25).

Proof. From the definition of hϕM (21) we obtain,

sp
(
hϕM

)
= sp

( ∞∑
t=0

∫
S
r(s, ϕ(s))

(
µ
(∞)
ϕ,p − µ

(t)
ϕ,p,·

)
(ds)

)

≤
∞∑
t=0

sp
(∫

S
r(s, ϕ(s))

(
µ
(∞)
ϕ,p − µ

(t)
ϕ,p,·

)
(ds)

)

≤ 1

2

∞∑
t=0

max
s

∥∥∥µ(∞)
ϕ,p − µ

(t)
ϕ,p,s

∥∥∥
TV

sp (r) , (32)

where the first inequality follows since span is a seminorm [Puterman, 2014], while the second inequality follows from
Lemma J.6. In Lemma A.2 we let µ(0)

1 = µ
(∞)
ϕ,p and µ(0)

2 = δs, where δs is the Dirac measure on (S,BS) centered at s, and
get the following,

1

2

∞∑
t=0

max
s

∥∥∥µ(∞)
ϕ,p − µ

(t)
ϕ,p,s

∥∥∥
TV

sp (r) ≤ m⋆ sp (r)
1− α

.

This concludes the proof.

Lemma A.4 (Bound on the span of policy evaluation iterates). Consider an MDPM = (S,A, p, r) such that p satisfies
Assumption 2.2, and consider the policy evaluation algorithm applied to obtain the average reward of a policy ϕ ∈ ΦSD on
M i.e.,

V ϕ
0 (s) = 0,

V ϕ
i+1(s) = r(s, ϕ(s)) +

∫
S
p(s, ϕ(s), s′)V ϕ

i (s′)ds′, i = 1, 2, . . . . (33)

We have,

sp
(
V ϕ
i

)
≤ m⋆ + 1

1− α
, (34)

where m⋆ =
⌈
log 1

α
(C)
⌉
+ 1.



Proof. Since Assumption 2.2 holds, Lemma A.1 gives us the following,∥∥∥p(m⋆)
ϕ (s, ·)− p(m

⋆)
ϕ (s′, ·)

∥∥∥
TV
≤ 2α, ∀s, s′ ∈ S,

where p(m)
ϕ (23) is the m-step transition kernel of the CMP induced by the transtion kernel p under the application of policy

ϕ. Also, note that

V ϕ
i+m⋆(s) =

m⋆∑
j=0

E [r(si+j , ϕ(si+j)) | si = s] +

∫
S
p
(m⋆)
ϕ (s, s′)V ϕ

i (s′)ds′.

Hence,

sp
(
V ϕ
i+m⋆

)
≤ sp

m⋆∑
j=0

E [r(si+j , ϕ(si+j)) | si = s]

+ sp
(∫

S
p
(m⋆)
ϕ (s, s′)V ϕ

i (s′)ds′
)

≤ m⋆ + 1 +
1

2
sp
(
V ϕ
i

)∥∥∥p(m⋆)
ϕ (s, ·)− p(m

⋆)
ϕ (s′, ·)

∥∥∥
TV

≤ m⋆ + 1 + α sp
(
V ϕ
i

)
,

where the second inequality follows from Lemma J.6. Using the above inequality, we have that for every k ≤ m⋆,

sp
(
V ϕ
i·m⋆+k

)
≤ (m⋆ + 1)

i−1∑
j=0

αj + αi sp
(
V ϕ
k

)

≤ (m⋆ + 1)

i−1∑
j=0

αj +m⋆αi

≤ m⋆ + 1

1− α
.

This concludes the proof.

A.1 PROOF OF LEMMA 4.1

Proof. Using the definition of gap (s, ϕ(s)) (2), we obtain that,∫
S

gap (s, ϕ(s)) µ(∞)
ϕ,p (s) ds =

∫
S

(
J⋆
M + hM(s)− r(s, ϕ(s))−

∫
S
hM(s′) p(s, ϕ(s), s′) ds′

)
µ
(∞)
ϕ,p (s) ds

= J⋆
M

∫
S
µ
(∞)
ϕ,p (s) ds+

∫
S
hM(s)µ

(∞)
ϕ,p (s) ds−

∫
S
r(s, ϕ(s))µ

(∞)
ϕ,p (s) ds

−
∫
S

(∫
S
hM(s′) p(s, ϕ(s), s′) ds′

)
µ
(∞)
ϕ,p (s) ds

= J⋆
M +

∫
S
hM(s)µ

(∞)
ϕ,p (s) ds− JM(ϕ)

−
∫
S
hM(s′)

(∫
S
p(s, ϕ(s), s′)µ

(∞)
ϕ,p (s) ds

)
ds′

= J⋆
M − JM(ϕ) +

∫
S
hM(s)µ

(∞)
ϕ,p (s) ds−

∫
S
hM(s)µ

(∞)
ϕ,p (s) ds

= ∆(ϕ), (35)

where the third equality follows from (20) and the fourth equality follows from the property of the stationary distribution.
This concludes the proof.



B PROPERTIES OF EXTENDED MDP

We present three results in this section. We begin by showing that extended MDPs constructed by ZoRL are optimistic, i.e.,
on the set G1 (82), the optimal average reward of the extended MDPM+

t is greater than or equal to the optimal average
reward of the true MDP for all t ∈ {0, 1, . . . , T − 1}. Next, we show that the span of the EPE iterates (42) for the extended
MDPM+

t and any ϕ ∈ Φt are bounded for all t ∈ {0, 1, . . . , T − 1}. Lastly, we derive an upper-bound on the average
reward of policy ϕ ∈ Φt evaluated on MDPM+

t for every t ∈ {0, 1, . . . , T − 1}.

Lemma B.1 (Optimism). On the set G1, we have,

J⋆
M+

t
≥ J⋆

M, for every t ∈ {0, 1, . . . , T − 1}, (36)

where J⋆
M+

t

is the optimal average reward of the extended MDPM+
t , and J⋆

M is the optimal average reward of the MDP
M.

Proof. Consider the value iteration algorithm applied to the MDPM. For every s ∈ S,

V0(s) = 0,

Vn+1(s) = max
a∈A

{
r(s, a) +

∫
S
p(s, a, s′)Vn(s

′)ds′
}
, ∀n ∈ N. (37)

We assumed thatM is uniformly ergodic in Assumption 2.2, and hence the following value iteration algorithm converges,
i.e., limn→∞ sp (Vn+1 − Vn) = J⋆

M. Also, it follows from [Hernández-Lerma, 2012] that limn→∞ |Vn(s) − (nJ⋆
M +

hM(s))| = 0 for every s ∈ S. Since we have shown in Lemma A.3 that hM is bounded, it then follows that

lim
n→∞

1

n
Vn(s) = J⋆

M, ∀s ∈ S. (38)

We will prove that Vn(s′) ≤ vn(s) for every n ∈ N, s ∈ St and s′ ∈ q−1(s). We prove this via induction. The base case, i.e.
n = 0 is seen to hold trivially. Next, assume that the following hold for all i ∈ [n], where n ∈ N,

vi(s) ≥ Vi(s′), ∀s ∈ St, ∀s′ ∈ q−1(s). (39)

Consider a state-action pair (s, a) ∈ S ×A and let s̃ ∈ St such that s ∈ q−1(s̃). Then,

r(s, a) +

∫
S
p(s, a, s′)Vn(s

′)ds′ ≤ r(s, a) +
∑
s′∈St

℘S×A→St,p(s, a, s
′)vn(s

′)

≤ r(q(ζ)) + Lrdiam (ζ) +
∑
s′∈St

℘S×A→St,p(s, a, s
′)vn(s

′)

≤ max
ã∈At(s̄)
θ∈Ct

{
r̃t(s̃, ã) +

∑
s′∈St

θ(s̃, ã, s′)vn(s
′)

}
= vn+1(s̃), (40)

where the first inequality follows from (39), the second inequality follows from Assumption 2.1 (i), while the third inequality
follows from the definition of the set G1. Since we have shown the above inequality for an arbitrary action a, we get,

Vn+1(s) = max
a∈A

{
r(s, a) +

∫
S
p(s, a, s′)Vn(s

′)ds′
}

≤ vn+1(s̃). (41)

This completes the induction argument. The proof is then completed by dividing both sides of this inequality by n and then
taking limit n→∞.



Lemma B.2. Let t ∈ {0, 1, . . . , T − 1}. Consider the extended MDP M+
t , a policy ϕ ∈ Φt and the corresponding

EPE (2) iterates:

vϕ,t0 (s) = 0,

vϕ,tn+1(s) = max
θ∈Ct

{
r̃t(s, ϕ(s)) +

∑
s′∈St

θ(s, ϕ(s), s′)vϕ,tn (s′)

}
, ∀s ∈ St, n ∈ N. (42)

On the set G1, we have

sp
(
vϕ,tn

)
≤ Cv, ∀n ∈ N, t ∈ N,

where,

Cv := max


m(m+ 5)

2
+

3

Cαm+1
+

4m̃

1− α
,

⌈
log

( 1
α )

m̃−1

(
2
α

)
+ 1

⌉
1− αm̃−1

, (43)

m :=

log 1
α

2C

κ

(
Cηm̃

√
d

1− α

)dS
 , and (44)

m̃ :=

⌈
log 1

α

(
2C

3α− 1

)⌉
. (45)

C and α are as in Assumption 2.2.

Proof. We first note that vϕ,tn (s) is the optimal value of the expected reward for the extended MDPM+
t that is accumulated

during the first n steps when the process starts in state s. The first component of the extended action of the extended MDP is
taken to be policy ϕ and doesn’t need to be optimized, while the second component is the transition kernel that maximizes
the r.h.s. of (42) in every step i ∈ {0, 1, . . . , n− 1}. We consider the following two cases separately.

Case 1: When,

max
s∈St

diam
(
q−1
t (s, ϕ(s))

)
≥ 1− α

2(3(1 + Lp) + Cp) (m̃+ 1)
. (46)

Let ζ be the cell with the largest diameter from the set {q−1
t (s, ϕ(s)) : s ∈ St}. We first show that {si}∞i=0, the CMP

induced by the transition kernel p under the application of policy ϕ, hits πS(ζ) within

m(m+ 5)

2
+

3

Cαm+1

steps in expectation, where m is as defined in (44). From Assumption 2.2, Assumption 4.3 and (46), we have that for any
s′ ∈ S,

µ
(i)
ϕ,p,s′(πS(ζ)) ≥

1

2
µ
(∞)
ϕ,p (πS(ζ)), and µ(i)

ϕ,p,s′(πS(ζ)) ≤
3

2
µ
(∞)
ϕ,p (πS(ζ)) ∀i ≥ m.

Now, consider another process {xi}∞i=0 that is independent across time; xi assumes the value 1 with a probability
µ
(i)
ϕ,p,s′(πS(ζ)), and 0 with a probability 1− µ(i)

ϕ,p,s′(πS(ζ)). Define the following random variables T (x)
{1} and T (s)

πS(ζ),s′ ,

T
(x)
{1} := inf {i ≥ 0 | xi = 1}, and

T
(s)
πS(ζ),s′ := inf {i ≥ 0 | si ∈ πS(ζ), s0 = s′}.

We note that the distributions of T (x)
{1} and T (s)

πS(ζ),s′ are identical, so that E
[
T

(x)
{1}

]
= E

[
T

(s)
πS(ζ),s′

]
. We derive an upper-bound



on E
[
T

(x)
{1}

]
, and this would also serve as the upper-bound on E

[
T

(s)
πS(ζ),s′

]
. We have,

E
[
T

(x)
{1}

]
=

∞∑
i=0

i · µ(i)
ϕ,p(πS(ζ))

i−1∏
j=0

(
1− µ(j)

ϕ,p,s(πS(ζ))
)

≤ m(m− 1)

2
+

∞∑
i=m

3i

2
µ
(∞)
ϕ,p (πS(ζ))

i−1∏
j=m

(
1− 1

2
µ
(∞)
ϕ,p (πS(ζ))

)

≤ m(m− 1)

2
+

3

2
µ
(∞)
ϕ,p (πS(ζ))

∞∑
i=0

i

(
1− 1

2
µ
(∞)
ϕ,p (πS(ζ))

)i

+
3m

2
µ
(∞)
ϕ,p (πS(ζ))

∞∑
i=0

(
1− 1

2
µ
(∞)
ϕ,p (πS(ζ))

)i

≤ m(m+ 5)

2
+

6

µ
(∞)
ϕ,p (πS(ζ))

.

Furthermore, from Assumption 4.3, and since E
[
T

(x)
{1}

]
= E

[
T

(s)
πS(ζ),s′

]
, we get,

E
[
T

(s)
πS(ζ),s′

]
≤ m(m+ 5)

2
+

6

κ

( √
d

diam (ζ)

)dS

.

From (46) we can write,

E
[
T

(s)
πS(ζ),s′

]
≤ m(m+ 5)

2
+

6

κ

(
(3(1 + Lp) + Cp)

√
d(m̃+ 1)

1− α

)dS

≤ m(m+ 5)

2
+

3

Cαm+1
.

Next, consider two states s ∈ St, and s̃ ∈ q−1(s). We note that on the set G1, for the extended MDPM+
t whenever the

state is s, there is an extended action such that the next state transition distribution is p(s̃, ϕ(s̃), ·). Hence, on the set G1,
there is a sequence of extended actions such that starting from any state, in expectation, within m(m+5)

2 + 3
Cαm+1 steps the

process hits q(πS(ζ)) where πS(ζ) is the S-projection of ζ, the largest cell in {q−1
t (s, ϕ(s)) : s ∈ St}.

Now, consider the process {st} associated with the extended MDP, in which the initial state is s ∈ St. We claim that for
any state s′, there exists a sequence of extended actions where the first components of the extended actions are chosen
by ϕ such that s′ can be reached in 2

(3(1+Lp)+Cp) diam(q−1
t (s,ϕ(s)))

steps in expectation. This is true because there is a

transition kernel in Ct that assigns at least 3(1+Lp)+Cp

2 diam
(
q−1
t (s, ϕ(s))

)
transition probability to s′ when the current

state is from s. To summarize, starting from any state using a sequence of actions the state process can reach q(ζ) in
m(m+5)

2 + 3
Cαm+1 steps in expectation, and from q(ζ), again it can reach any other state using a sequence of actions in

2

(3(1+Lp)+Cp)diam(q−1
t (s,ϕ(s)))

. Therefore, there cannot be state s′ such that

max
s∈St

vϕ,tn (s) > vϕ,tn (s′) +
m(m+ 5)

2
+

3

Cαm+1
+

2

(3(1 + Lp) + Cp)diam (ζ)
.

Now, from the lower-bound on diam (ζ) (46), we obtain that

sp
(
vϕ,tn

)
≤ m(m+ 5)

2
+

3

Cαm+1
+

4m̃

1− α
. (47)

Case 2: In this case, we have that

max {diam
(
q−1
t (s, ϕ(s))

)
: s ∈ St} <

1− α
2(3(1 + Lp) + Cp) (m̃+ 1)

. (48)

Let ϕ̄ ∈ ΦSD be the extension of policy ϕ ∈ Φt such that

ϕ̄(s) = ϕ(q(πS(ζ))), for ever s ∈ πS(ζ), for every πS(ζ) ∈ Qt.



Claim: We claim that there is a sequence of extended actions for the extended MDPM+
t such that the first components

of the extended actions are governed by ϕ and on the set G1, the m-step state transition kernel prescribed by the sequence
of extended actions is the same as the discretization of the m-step composition of true transition kernel induced under
application of policy ϕ̄. Let the state process of the extended MDP be denoted by {s̃i} and let the state process of the
extended MDP be denoted by {si}. Then, mathematically, our claim says that there exists a sequence of probability kernels
{p̃i ∈ Ct : i ∈ {1, 2, . . .}} such that

P(s̃i = s′ | s̃0 = s, p̃, ϕ) = P(si ∈ q−1
t (s′) | s0 = s, ϕ̄), ∀s, s′ ∈ St,

where P denotes the joint probability distribution of the processes {s̃i} and {si}, condition on p̃ and ϕ implies that the
extended actions are governed by p̃ and ϕ. Similarly, condition on ϕ̄ implies that the actions are governed by ϕ̄. We show
this using mathematical induction. The base cases follow from Lemma F.1. Let us assume that for every s, s′ ∈ St and for
every j ∈ {1, 2, . . . i},

P(s̃j = s′ | s̃0 = s, p̃, ϕ) = P(sj ∈ q−1
t (s′) | s0 = s, ϕ̄).

See that

P(s̃i+1 = s′ | s̃0 = s, p̃, ϕ) =
∑
s̃∈St

P(s̃i+1 = s′ | s̃i = s̃, p̃, ϕ)P(s̃i = s̃ | s̃0 = s, p̃, ϕ)

=
∑
s̃∈St

p̃i+1(s̃, ϕ(s̃), s
′)P(si = q−1

t (s̃) | s0 = s, ϕ̄).

Here, we note that for every s ∈ S × A, there is a kernel θs ∈ Ct such that θs(q−1
t (s, ϕ(s)), s′) = p(s, ϕ̄(s), q−1

t (s′)) for
every s′ ∈ St. As the set Ct is convex, for any probability measure ν on (S,BS),∫

S
θs(s̃, ϕ(s̃), s

′)dν(s) ∈ Ct.

Taking ν to be a measure that satisfies ν(B) = P(si ∈ B | si ∈ q−1
t (s̃)) for every B ∈ BS , we get that∫

S
θs(s̃, ϕ(s̃), s

′)dν(s) = P(si+1 ∈ q−1
t (s′) | si ∈ q−1

t (s̃)).

Taking p̃i+1(s̃, ϕ(s̃), ·) =
∫
S θs(s̃, ϕ(s̃), ·)dν(s), we get that

P(s̃i+1 = s′ | s̃0 = s, p̃, ϕ) =
∑
s̃∈St

p̃i+1(s̃, ϕ(s̃), s
′)P(si = q−1

t (s̃) | s0 = s, ϕ̄)

=
∑
s̃∈St

P(si+1 ∈ q−1
t (s′) | si ∈ q−1

t (s̃))P(si = q−1
t (s̃) | s0 = s, ϕ̄)

= P(si+1 ∈ q−1
t (s′) | s0 = s, ϕ̄).

This completes the proof of our claim.

From (48), we have that for any θ ∈ Ct,

max
s∈St

∥θ(s, ϕ(s), ·)− p̃i(s, ϕ(s), ·)∥1 ≤
1− α
2m̃

, ∀s ∈ St, s′ ∈ q−1
t (s).

Define the discretization of the m-step transition kernel under the application of policy ϕ̄ as follows:

℘
(m)
t,ϕ (s, s′) := p

(m)
ϕ (s, q−1

t (s′)), ∀s ∈ S, s′ ∈ St.

Let θ(m)
ϕ denote the m-step transition kernel of the CMP induced by θ under application of policy ϕ. From the previous

claim and Lemma J.7, we have that ∥∥∥℘(m̃)
t,ϕ (s, ·)− θ(m̃)

ϕ (s, ·)
∥∥∥
1
≤ 1− α

2
, (49)



where p(m)
ϕ is defined in (23). Also, observe that

max
s,s′∈St

∥∥∥℘(m̃)
t,ϕ (s, ·)− ℘(m̃)

t,ϕ (s′, ·)
∥∥∥
1
≤ 3α− 1

2
. (50)

Hence, combining (49) and (50), we have that for any θ ∈ Ct,

max
s,s′∈St

∥∥∥θ(m̃)
ϕ (s, ·)− θ(m̃)

ϕ (s′, ·)
∥∥∥
1
≤ max

s,s′∈St

{∥∥∥θ(m̃)
ϕ (s, ·)− ℘(m̃)

t,ϕ (s, ·)
∥∥∥
1
+
∥∥∥℘(m̃)

t,ϕ (s, ·)− ℘(m̃)
t,ϕ (s′, ·)

∥∥∥
1

+
∥∥∥℘(m̃)

t,ϕ (s′, ·)− θ(m̃)
ϕ (s′, ·)

∥∥∥
1

}
≤ 1− α

2
+ 3α− 1 +

1− α
2

= 2α.

Now, from Lemma A.1, we have that the Markov chain induced by the transition kernel θ under the application of policy ϕ
is uniformly ergodic with constants 2

α and αm̃−1

, i.e.,∥∥∥µ(i)
ϕ,θ,s − µ

(∞)
ϕ,θ

∥∥∥
1
≤ 2

α
·
(
αm̃−1

)i
, ∀i ∈ N.

Hence, from Lemma A.4, we conclude that

sp
(
vϕ,tn

)
≤

⌈
log

( 1
α )

m̃−1

(
2
α

)⌉
+ 1

1− αm̃−1 . (51)

Combining the upper-bounds from (47) and (51), we obtain the desired upper-bound.

In the next lemma, we establish that the optimism injected by ZoRL is not huge.

Lemma B.3. Consider time t ∈ N and a policy ϕ ∈ Φt. Let ϕ̄ ∈ ΦSD be the extension of ϕ as follows:

ϕ̄(s) = ϕ(q(ξ)), for every s ∈ ξ, for every ξ ∈ Qt.

Then, we have that on the set G1,

JM+
t
(ϕ) ≤ JM(ϕ̄) + Cub diamt(ϕ̄), ∀t ∈ N, ϕ ∈ Φt, (52)

where JM+
t
(ϕ) is the optimal value ofM+

t when the control input component of the extended action is chosen according to
the policy ϕ, and the transition kernel is chosen so as to maximize the average reward, diamt(ϕ̄) is as defined in (16), and

Cub := 2Lr + (3(1 + Lp) + Cp)Cv. (53)

Lr, Lp are as stated in Assumption 2.1, Cp is as stated in Assumption 4.3, and Cv is as defined in (43).

Proof. Consider the iteration (42). From Corollary G.2 it follows that

lim
n→∞

(
vϕn+1(s)− vϕn(s)

)
= JM+

t
(ϕ), for every s ∈ St.

As the sequence of Cesaro means converges to the same limit, we can write

lim
n→∞

1

n
vϕn(s) = JM+

t
(ϕ).

Similarly, from the policy evaluation iteration for the true MDP (33), we have that

lim
n→∞

1

n
V ϕ̄
n (s) = JM(ϕ̄).



In order to prove the lemma, we will show that on the set G1, for every n ∈ N, for every s ∈ St and for every s′ ∈ q−1(s),
the following holds,

vϕn(s) ≤ V ϕ̄
n (s′) + Cub Ep,ϕ̄

[
n−1∑
i=0

diam
(
q−1
t (si, ϕ̄(si))

)∣∣∣∣∣s0 = s′

]
, (54)

where Ep,ϕ denotes that the expectation is taken with respect to the measure induced by ϕ when it is applied to MDP with
transition kernel p. We prove this using induction. The base case (n = 0) is seen to hold trivially. Next, we assume that the
following holds for i ∈ {0, 1, . . . , n}, where n ∈ N,

vϕi (s) ≤ V
ϕ̄
i (s′) + Cub Ep,ϕ̄

i−1∑
j=0

diam
(
q−1
t (sj , ϕ̄(sj))

)∣∣∣∣∣∣s0 = s′

 , (55)

for every s ∈ St and for every s′ ∈ q−1(s). Let us fix s ∈ St and s′ ∈ q−1(s) arbitrarily, then from (42) we obtain the
following,

vϕn+1(s) = r(q(q−1
t (s, ϕ(s)))) + max

θ∈Ct

∑
s′′∈St

θ(q(q−1
t (s, ϕ(s))), s′′)vϕn(s

′′) + Lr diam
(
q−1
t (s, ϕ(s))

)
= r(q(q−1

t (s, ϕ(s)))) +
∑

s′′∈St

θn(q(q
−1
t (s, ϕ(s))), s′′)V̄ ϕ

n (s′′) + Lr diam
(
q−1
t (s, ϕ(s))

)
≤ r(s′, ϕ(s′)) +

∑
s′′∈St

℘(s′, ϕ(s′), s′′;St ×At,Qt) v
ϕ
n(s

′′) + ηt(q
−1
t (s, ϕ(s))) sp

(
vϕn
)
+ 2Lr diam

(
q−1
t (s, ϕ(s))

)
≤ r(s′, ϕ(s′)) +

∫
S
p(s′, ϕ(s′), s′′)V ϕ

n (s′′)ds′′ + Cub Ep,ϕ

[
n∑

i=1

diam
(
q−1
t (si, ϕ(si))

)∣∣∣∣∣s0 = s′

]
+ (2Lr + (3(1 + Lp) + Cp)Cv) diam

(
q−1
t (s, ϕ(s))

)
≤ r(s′, ϕ(s′)) +

∫
S
p(s′, ϕ(s′), s′′)V ϕ

n (s′′)ds′′ + Cub Ep,ϕ

[
n∑

i=1

diam
(
q−1
t (si, ϕ(si))

)∣∣∣∣∣s0 = s′

]
+ (2Lr + (3(1 + Lp) + Cp)Cv) diam

(
q−1
t (s, ϕ(s))

)
= V ϕ

n+1(s) + Cub Ep,ϕ

[
n∑

i=0

diam
(
q−1
t (si, ϕ(si)))

)∣∣∣∣∣s0 = s

]
,

where θn is a transition kernel belonging to the set Ct that maximizes the expression in the r.h.s. of the first equality. The
first inequality follows from Lipschitz continuity of the reward function, the definition of event G1 and from Lemma J.6. The
second inequality is obtained by invoking the induction hypothesis (55), and by using the upper-bound on sp

(
vϕn
)

from
Lemma B.2. This concludes the induction argument, and proves (54). The proof of the claim follows by dividing both side
of (54) by n and taking limit n→∞.

C PROPERTIES OF PROXY DIAMETER

In this section, we present three results as the corollaries of the results obtained in the previous section.

Corollary C.1. Fix a time t. Let ϕ ∈ Φt and ϕ̄ ∈ ΦSD be the unique extension of ϕ such that

ϕ̄(s′) = ϕ(s), for every s ∈ St and s′ ∈ q−1(s). (56)

On the set G1, we have,

d̃iamt(ϕ) ≥ diamt(ϕ), ∀t ∈ {0, 1, . . . , T − 1}, ϕ ∈ Φt. (57)

where d̃iamt(ϕ) is the average reward of policy ϕ evaluated on the extended MDP Md,+
t and diamt(ϕ̄) =∫

S q
−1
t (s, ϕ(s))µ

(∞)
ϕ,p (s)ds.



Proof. Define the MDP,Md
t := (S,A, p, d̃) where

d̃(s, a) = diam
(
q−1
t (s, a)

)
, for every (s, a) ∈ S ×A.

As p satisfy Assumption 2.2,

JMd
t
(ϕ̄) = diamt(ϕ̄), for every ϕ̄ ∈ ΦSD.

Note that the extended policy evaluation (42) and policy evaluation (33) algorithms are equivalent to extended value
iteration (93) and value iteration (37) algorithms, respectively, except that the control inputs have to be chosen from singleton
sets. Then the proof follows from Lemma B.1.

Corollary C.2. Let t ∈ {0, 1, . . . , T − 1}. Consider the extended MDPMd,+
t , a policy ϕ ∈ Φt and the corresponding

EPE (2) iterates:

gϕ,t0 (s) = 0,

gϕ,tn+1(s) = max
θ∈Ct

{
dt(s, ϕ(s)) +

∑
s′∈St

θ(s, ϕ(s), s′)gϕ,tn (s′)

}
, ∀s ∈ St, n ∈ N.

On the set G1, we have

sp
(
gϕ,tn

)
≤ Cv, ∀n ∈ N, t ∈ N,

where, Cv , m and m̃ are defined in (43), (44) and (45), respectively.

Proof. Follows from Lemma B.2.

Corollary C.3. Consider time t ∈ N and a policy ϕ ∈ Φt. Let ϕ̄ ∈ ΦSD be the extension of ϕ as defined in (56). Then, we
have that on the set G1,

d̃iamt(ϕ) ≤ (Cub + 1) diamt(ϕ̄), ∀t ∈ N, ϕ ∈ Φt,

where Cub is as defined in (53).

Proof. Noting that JMd
t
(ϕ̄) = diamt(ϕ̄) and JMd,+

t
(ϕ) = d̃iamt(ϕ), the claim follows from Lemma B.3 and Corollary C.2.

D GUARANTEE ON NUMBER OF VISITS TO CELLS

Recall that µ(t)
ϕ,p,s denotes the distribution of st when policy ϕ is applied to the MDP that has the transition kernel p and

the initial state is s, and µ(∞)
ϕ,p denotes the unique invariant distribution of the Markov chain induced by the policy ϕ on the

MDP with transition kernel p. Consider an S-cell ξ for which the diameter is greater than ϵ, and µ(∞)
ϕ,p (ξ) ≥ (ϵ/3)dS+1 for

all stationary deterministic policies ϕ, where ϵ > 0. Later we will choose an appropriate value for ϵ. From Assumption 2.2
we get that for all ϕ ∈ ΦSD and for every initial state s ∈ S we have,

µ
(t)
ϕ,p,s(ξ) ≥ µ

(∞)
ϕ,p (ξ)− C

2
αt.

Since µ(∞)
ϕ,p (ξ) ≥ (ϵ/3)dS+1, we have

µ
(t)
ϕ,p,s(ξ) ≥

1

2
µ
(∞)
ϕ,p (ξ), ∀t ≥ t⋆(ϵ), (58)

where,

t⋆(ϵ) :=

⌈
log 1

α

(
C

(
3

ϵ

)dS+1
)⌉

. (59)



Lemma D.1. Fix k ∈ N and consider a S-cell ξ ∈ Qτk such that µ(∞)
ϕ,p (ξ) ≥ (ϵ/3)dS+1. Let ζ ∈ Pτk denote the active cell

that contains {(s, ϕk(s))}s∈ξ . Let nk(ζ) be the number of visits to ζ in the k-th episode, and Hk be the duration of the k-th
episode. Then, with a probability at least 1− δ

3 , we have,

nk(ζ) ≥
Hk µ

(∞)
ϕ,p (ξ)

2t⋆(ϵ)
−

√
Hk

t⋆(ϵ)
log

(
6T

t⋆(ϵ)δ

)
− 1.

Proof. Denote m := ⌊Hk/t
⋆(ϵ)⌋ and ti := τk + i t⋆(ϵ). Let i⋆ ∈ {0} ∪ N be such that ti⋆ ≤ T < ti⋆+1. Define the

following martingale difference sequence {bi}i w.r.t. the filtration {Fti}i,

bi := 1{sti∈ξ} − E
[
1{sti∈ξ} | Fti−1

]
, i = 1, 2, . . . , i⋆.

Also, define

gi := 1{(i−1)t⋆(ϵ)≤Hk}, i = 1, 2, . . . , i⋆,

and note that it is {Fti}i-predictable sequence. It can be shown that bi’s are conditionally 1
2 sub-Gaussian, i.e., E[exp(β bi) |

Fti−1
] ≤ exp(β2/8) [Raginsky et al., 2013]. Also, note that {gi}i is a {0, 1}-valued, {Fti}-predictable stochastic process.

Hence, we can use Corollary J.4 and obtain,

P

(
m+1∑
i=1

1{sti∈ξ} ≤
m+1∑
i=1

E
[
1{sti∈ξ} | Fti−1

]
−

√
m+ 2

2
log

(
3(m+ 2)

δ

))
≤ δ

3
. (60)

From (58), (59) we have that

E
[
1{sti−1

∈ξ} | Fti−1

]
≥ 1

2
µ
(∞)
ϕ,p (ξ). (61)

Also, observe that m+ 1 > Hk

t⋆(ϵ) and m ≤ Hk

t⋆(ϵ) . Since under ZoRL algorithm we have Hk ≥ 2t⋆(ϵ), we get m+ 2 ≤ 2m.
Upon using (61) and m+ 2 ≤ 2m in (60), we obtain,

P

(
m∑
i=1

1{sti∈ξ} ≤
Hk µ

(∞)
ϕ,p (ξ)

2t⋆(ϵ)
−

√
Hk

t⋆(ϵ)
log

(
6Hk

t⋆(ϵ)δ

)
− 1

)
≤ δ

3
.

The claim then follows since Hk ≤ T , and
∑m

i=1 1{sti∈ξ} ≤ nk(ζ).

Corollary D.2. Fix an ϵ > 0. Consider the triplet (k, ξ, ζ) such that k ∈ {0} ∪ N, ξ ∈ Qτk , diam (ξ) ≥ ϵ, µ(∞)
ϕ,p (ξ) ≥

(ϵ/3)dS+1, ζ ∈ Pτk , and for every s ∈ ξ, (s, ϕk(s)) ∈ ζ. Define the event,

G2,ϵ :=

nk(ζ) ≥ Hk µ
(∞)
ϕ,p (ξ)

2t⋆(ϵ)
−

√√√√ Hk

t⋆(ϵ)
log

(
12T 2d

d
2

t⋆(ϵ)ϵdδ

)
− 1, ∀(k, ξ, ζ) that satisfies the above conditions.

 , (62)

where t⋆(ϵ) =
⌈
log 1

α

(
C
(
3
ϵ

)dS+1
)⌉

. We have, P(G2,ϵ) ≥ 1− δ
3 .

Proof. Since k denotes the episode number, it can not exceed T . By definition of Pτk and Qτk , diam (ζ) ≥ diam (ξ). Also,
the number of cells that have a diameter greater than ϵ is less than (

√
d/ϵ)d. So, the total number of possible combinations

of (k, ξ, ζ) that satisfies the given condition is at most T (
√
d/ϵ)d. The proof then follows from Lemma D.1 by taking a

union bound over all (k, ξ, ζ) and by the fact that Hk ≤ T .



E REGRET ANALYSIS

Regret decomposition: Recall the regret (1) decomposition of ZoRL,

R(T ;ZoRL) = TJ⋆
M −

K(T )∑
k=1

τk+1−1∑
t=τk

r(st, at)

=

K(T )∑
k=1

Hk (J
⋆
M − JM(ϕk))︸ ︷︷ ︸
(a)

+

K(T )∑
k=1

(
Hk JM(ϕk)−

τk+1−1∑
t=τk

r(st, ϕk(st))

)
︸ ︷︷ ︸

(b)

. (63)

The term (a) captures the regret arising due to the gap between the optimal value of the average reward and the average
reward of the policies {ϕk} that are actually played in different episodes, while (b) captures the sub-optimality arising since
the distribution of the induced Markov chain does not reach the stationary distribution in finite time. (a) and (b) are bounded
separately.

Bounding (a): This term can be further decomposed into the sum of the regrets arising due to playing policies from the
sets Φ(2−i), for i = 1, 2, . . . , ⌈log (1/ϵ)⌉, and the regret arising from playing all ϵ-optimal policies. To bound the regret
arising due to policies from Φ(2−i), we count the number of timesteps in which policies from Φ(2−i) are played, and then
multiply it by 2−i+1. We then add these regret terms from i = 1 to ⌈log (1/ϵ)⌉. Note that the cumulative regret arising from
playing the set of ϵ-optimal policies is upper-bounded by ϵT . Recall that at the beginning of the k-th episode, ZoRL solves
M+

τk
with the accuracy parameter set equal to 1√

T
. This “loss of accuracy” as compared to the case where ZoRL could

have solvedM+
τk

accurately at the beginning of every episode, leads to an additional term in the upper-bound of (a). From
Lemma G.1, the difference between the two solutions is at most 1√

T
for each episode, hence this term can be upper-bounded

as
√
T . Hence, we bound (a) by firstly considering that ZoRL solvesM+

τk
for the optimal policy (with complete accuracy),

and then add
√
T to obtain the upper-bound of term (a).

The regret arising due to playing policies from the set Φ(2−i) is bounded as follows. Lemma E.1 proves the existence of
a key cell in every episode on the set G1. Its proof relies crucially on Lemma 4.1 and on the properties of the index of
policies that are derived in Section B. Lemma E.2 gives a lower-bound of the number of plays of a key cell in any episode by
ZoRL using Lemma E.1, Corollary D.2, and Lemma J.5. Next, Lemma E.3 establishes an upper-bound on the number of
timesteps when policies from Φ(2−i) are played. This upper-bound multiplied by 2−i+1, is the regret arising from playing
policies from Φ(2−i). Next, we derive an important property of the policy ϕ ∈ ΦSD that is played in the k-th episode. This
is used to upper-bound the number of plays of sub optimal policies.

Lemma E.1. Consider a sample path from the set G1 (82). For each k = 1, 2, . . ., there exists at least one s ∈ S (where s
could vary with k, and here we are suppressing dependence upon k) such that

diam
(
q−1
τk

(s, ϕk(s))
)
≥ 1

3Cub
max {gap (s, ϕk(s)) , Cub diamτk(ϕk)} ,

and µ(∞)
ϕk,p

(πS(q
−1
τk

(s, ϕk(s)))) ≥ (diamτk(ϕk)/3)
dS+1.

Such a q−1
τk

(s, ϕk(s)) is called a key cell for the k-th episode.

Proof. Let us fix k ∈ N and a policy ϕ ∈ Φτk . Let ϕ̄ be the unique continuous extension of ϕ as defined in (56). We will
first show that if

diamτk(ϕ̄) ≤ ∆(ϕ̄)/Cub, (64)

then ϕ̄ will not be played from episode k onwards. From Lemma B.1 we have that on the set G1, J⋆
M+

τk

= JM+
τk
(ϕ̃k) ≥

J⋆
M. Hence, if JM+

τk
(ϕ) < J⋆

M, then the algorithm will not play ϕ̄. From Lemma B.3 we have that on the set G1,

JM+
τk
(ϕ) ≤ JM(ϕ̄) + Cub diamτk(ϕ̄). Thus, on G1, ϕ̄ will never be played from the k-th episode onwards if

JM(ϕ̄) + Cub diamτk(ϕ̄) ≤ J⋆
M,



or, if diamτk(ϕ̄) ≤ ∆(ϕ̄)/Cub. In other words, on the set G1,

diamτk(ϕk) > ∆(ϕk)/Cub. (65)

We will prove the result by contradiction. Let us assume that for all s ∈ S that satisfy µ(∞)
ϕk,p

(πS(q
−1
τk

(s, ϕk(s)))) ≥
(diamτk(ϕk)/3)

dS+1, the following is true:

diam
(
q−1
τk

(s, ϕk(s))
)
≤ 1

3Cub
max {gap (s, ϕk(s)) , Cubdiamτk(ϕk)}. (66)

Define the following sets of S-cells:

Q(1) := {ξ ∈ Qτk | µ
(∞)
ϕk,p

(ξ) < (diamτk(ϕk)/3)
dS+1, diam

(
q−1
τk

(q(ξ), ϕk(q(ξ)))
)
≥ diamτk(ϕk)/3},

Q(2) := {ξ ∈ Qτk | diam
(
q−1
τk

(q(ξ), ϕk(q(ξ)))
)
< diamτk(ϕk)/3},

Q(3) := {ξ ∈ Qτk | µ
(∞)
ϕk,p

(ξ) ≥ (diamτk(ϕk)/3)
dS+1, diam

(
q−1
τk

(q(ξ), ϕk(q(ξ)))
)
≥ diamτk(ϕk)/3}.

We observe that Qτk is partitioned by Q(1), Q(3) and Q(3). Note that
∣∣Q(1)

∣∣ ≤ (diamτk(ϕk)/3)
−dS . Also, note

that by the necessary condition for ϕk to be played and by our assumption, for every ξ ∈ Q(3), 1
3diamτk(ϕk) ≤

diam
(
q−1
τk

(q(ξ), ϕk(q(ξ)))
)
≤ 1

3Cub
mins∈ζ{gap (s, ϕk(s))}. Then,

diamτk(ϕk) =

∫
S

diam
(
q−1
τk

(s, ϕk(s))
)
µ
(∞)
ϕk,p

(s) ds

=
∑

ξ∈Qτk

diam
(
q−1
τk

(q(ξ), ϕk(q(ξ)))
)
µ
(∞)
ϕk,p

(ξ)

=
∑

ξ∈Q(1)

diam
(
q−1
τk

(q(ξ), ϕk(q(ξ)))
)
µ
(∞)
ϕk,p

(ξ) +
∑

ξ∈Q(2)

diam
(
q−1
τk

(q(ξ), ϕk(q(ξ)))
)
µ
(∞)
ϕk,p

(ξ)

+
∑

ξ∈Q(3)

diam
(
q−1
τk

(q(ξ), ϕk(q(ξ)))
)
µ
(∞)
ϕk,p

(ξ)

≤ diamτk(ϕk)

3
+

diamτk(ϕk)

3
+

1

3Cub

∫
S

gap (s, ϕk(s))µ
(∞)
ϕk,p

(s) ds

=
diamτk(ϕk)

3
+

diamτk(ϕk)

3
+

∆(ϕk)

3 Cub

< diamτk(ϕk),

which yields us a contradiction. Hence, we conclude that our assumption (66) was wrong. This concludes the proof.

Define,

ϵ(T ) := T
− 1

2dS+dz+3 , ϵ̃(T ) := T
− 1

2dS+d+3 (67)

Note that ϵ(T ) ≥ ϵ̃(T ) since dz ≤ d. Also, note that t⋆(ϵ(T )) ≤ t⋆(ϵ̃(T )), where t⋆(·) is defined ins (59).

Choosing CH : We choose the constant associated with the episode duration (17) of ZoRL as,

CH ≥ 16 t⋆(ϵ̃(T ))

(
3(1 + Cub)

1− γ

)2(dS+1) log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

log(T/δ)
. (68)

Lemma E.2. Pick a sample path from the set G1 ∩ G2,ϵ, where G1 and G2,ϵ are as in (82) and (62), respectively. Let ζ be a
key cell in episode k (such key cells have been shown to exist in Lemma E.1), i.e., for some ξ ⊆ πS(ζ) such that ξ ∈ Qτk ,
and for some s ∈ ξ, the following holds,

diam (ζ) >
1

3Cub
max {gap (s, ϕk(s)) , Cub diamτk(ϕk)}, and,

µ
(∞)
ϕk,p

(ξ) ≥ (diamτk(ϕk)/3)
dS+1.



Then, if ∆(ϕk) ≥ ϵ(T )Cub, then the number of visits to ζ during the k-th episode can be lower-bounded as follows,

nk(ζ) ≥
4t⋆(ϵ̃(T ))

t⋆(ϵ(T ))

(
log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

)
diam (ζ)

−(dS+1)
. (69)

Proof. Recall that on G1 we have diamτk(ϕk) ≥
∆(ϕk)
Cub

(65). Hence, diamτk(ϕk) > ϵ(T ) and µ(∞)
ϕk,p

(ξ) ≥ (ϵ(T )/3)dS+1. So,
upon using Corollary D.2 we obtain,

nk(ζ) ≥
Hk µ

(∞)
ϕk,p

(ξ)

2t⋆(ϵ(T ))
−

√√√√ Hk

t⋆(ϵ(T ))
log

(
8T 2d

d
2

t⋆(ϵ(T ))ϵ(T )dδ

)
− 1.

Next, we note that the duration of the k-th episode Hk can be lower-bounded as follows,

Hk ≥
CH(1− γ)2(dS+1) log (T/δ)

d̃iamτk(ϕk)
2(dS+1)

≥ CH(1− γ)2(dS+1) log (T/δ)

(3(1 + Cub))2(dS+1)

(
3

diamτk(ϕk)

)2(dS+1)

≥ 16t⋆(ϵ(T ))

µ
(∞)
ϕk,p

(ξ)2

(
log

(
8T 2d

d
2

t⋆(ϵ(T ))ϵ(T )dδ

)
+ 1

)
, (70)

where the first inequality follows from the lower-bound of Hk (96), the second inequality follows since from Corol-
lary C.3 we have d̃iamτk(ϕk) ≤ (1 + Cub)diamτk(ϕk). The third inequality follows from the fact that µ(∞)

ϕk,p
(ξ) ≥

(diamτk(ϕk)/3)
dS+1. Lemma J.5 when combined with (70) yields

nk(ζ) ≥
Hk µ

(∞)
ϕk,p

(ξ)

2t⋆(ϵ(T ))
−

√√√√ Hk

t⋆(ϵ(T ))
log

(
8T 2d

d
2

t⋆(ϵ(T ))ϵ(T )dδ

)
− 1

≥
Hk µ

(∞)
ϕk,p

(ξ)

4t⋆(ϵ(T ))
,

or,

nk(ζ) ≥
CH(1− γ)2(dS+1) log

(
T
δ

)
4 t⋆(ϵ(T ))

d̃iamτk(ϕk)
−2(dS+1) × (diamτk(ϕk)/3)

dS+1

≥
CH log

(
T
δ

)
4 t⋆(ϵ(T )) (3(1 + Cub)2)dS+1

diamτk(ϕk)
−(dS+1)

≥
CH log

(
T
δ

)
4 t⋆(ϵ(T )) (3(1 + Cub))2(dS+1)

diam (ζ)
−(dS+1)

≥ 4t⋆(ϵ̃(T ))

t⋆(ϵ(T ))

(
log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

)
diam (ζ)

−(dS+1)
,

where the first inequality follows from the lower-bound of Hk (96) and from the fact that µ(∞)
ϕk,p

(ξ) ≥ (diamτk(ϕk)/3)
dS+1.

The second and the third inequality follow from the fact that d̃iamτk(ϕk) ≤ (1 + Cub)diamτk(ϕk), and diamτk(ϕk) <
3 diam (ζ), respectively. The fourth inequality follows from (68). This concludes the proof.

Lemma E.3. Consider the set of policies Φ(2−i) = {ϕ ∈ ΦSD | ∆(ϕ) ∈ (2−i, 2−i+1]}, where i ∈ N. On the set
G1, ZoRL can play policies from the set Φ(2−i) for a maximum of O(log

(
T
δ

)
2i(2dS+dz+3)) time steps.

Proof. We prove this lemma in the following three steps: First, we derive the number of episodes in which a cell can serve as
a key cell while policies from Φ(2−i), i ∈ N are being played. Secondly, we derive an upper-bound on the episode duration
when policies from Φ(2−i) are played. Thirdly, we multiply upper-bounds on the number of episodes with the upper-bound



on the duration of the episodes and then sum it over all possible key cells corresponding to policies in Φ(2−i), and this yields
the desired upperbound on cumulative plays from Φ(2−i).

Before proceeding with proving these three properties, we begin with some preliminary results. Recall that for β > 0, the
set Zβ ⊆ S ×A consists of those state-action pairs (s, a) for which gap (s, a) ≤ β. Let us denote the smallest subset of Pt

that covers Zβ , as the active covering of Zβ at time t. From Lemma E.1, we obtain that if for all j = 0, 1, . . . , i, the active
covering of Z2−j at time τk does not contain a cell ζ that satisfies the following conditions,

1. diam (ζ) ≥
√
d

3Cub
2−j , and

2. µ(∞)
ϕ,p (ξ) ≥ (∆(ϕ)/3Cub)

dS+1 for all ξ which satisfy ξ ∈ Qτk and ξ ⊆ πS(ζ),

then there is no cell that qualifies to be a key cell for a policy from the set Φ(2−i). Thus, under the above condition, ZoRL will
not play a policy from Φ(2−i) k-th episode onwards. Let Yj be the covering of Z2−j by cells of diameter

√
d

3Cub
2−j . We

make the following observation: If every cell in Yj for j = 1, 2, . . . , i is split, then no cell in the active covers of Z2−j for
j = 1, 2, . . . , i can serve as the key cell while playing policies from Φ(2−i). This is a sufficient condition for any policy
from Φ(2−i) to be not played by ZoRL.

Step 1: First, we bound the number of episodes when a cell ζ ∈ Yi or any of its ancestors has served as a
key cell. From the cell activation rule (3.3), we have that ζ would be split when the number of visits to ζ exceeds
ca2

dS+2 log
(
T
δ

)
diam (ζ)

−(dS+2). In Lemma E.3, we derived the lower-bound on the number of visits to a key cell.
Invoking that lower-bound, we obtain that ζ can be played in at most

cat
⋆(ϵ(T ))2dS+2 log

(
T
δ

)
4t⋆(ϵ̃(T ))

(
log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

)diam (ζ)
−1

episode as a key cell when the corresponding episode plays a policy from Φ(2−i). Replacing diam (ζ) with
√
d

3Cub
2−j , we

obtain that ζ can be played in at most

3cat
⋆(ϵ(T ))Cub2

dS+2 log
(
T
δ

)
4t⋆(ϵ̃(T ))

√
d

(
log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

) 2j

episode as a key cell when the corresponding episode plays a policy from Φ(2−i).

Step 2: Now, we produce an upper-bound on the length of the episodes while playing policies from Φ(2−i). See that

Hk ≤
CH(1 + γ)2(dS+1) log

(
T
δ

)
d̃iamτk(ϕk)

2(dS+1)

≤
CH(1 + γ)2(dS+1) log

(
T
δ

)
diamτk(ϕk)

2(dS+1)

≤
CH((1 + γ)Cub)

2(dS+1) log
(
T
δ

)
2−i2(dS+1)

,

where the first inequality follows from the upper-bound on Hk (96), the second inequality follows from Corollary C.1, and
the third inequality follows from the definition of Φ(2−i).

Step 3: First, we note that the cardinality of Yj is at most cz2jdz for every j ∈ N, where the scaling constant of the
zooming dimension,

cs :=

√
d

3Cub
. (71)

This follows from the definition of the zooming dimension (3). Multiplying the bounds from step 1 and step 2, we obtain
an upper-bound on the number of plays of a cell ζ ∈ Yj as a key cell while playing policies from Φ(2−i). Summing this



upper-bound for all cells in Yj and then summing those terms over j = 1, 2, . . . , i, we obtain that the total number of time
steps in which policies from Φ(2−i) is played, can be bounded above by

i∑
j=1

∑
ζ∈Yj

 3cat
⋆(ϵ(T ))Cub2

dS+2 log
(
T
δ

)
4t⋆(ϵ̃(T ))

√
d

(
log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

) 2j

×
(
CH((1 + γ)Cub)

2(dS+1) log
(
T
δ

)
2−i2(dS+1)

)

=
3caczt

⋆(ϵ(T ))CHC
2dS+3
ub (1 + γ)2(dS+1)2dS+2

(
log
(
T
δ

))2
4t⋆(ϵ̃(T ))

√
d

(
log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

) 2i2(dS+1)
i∑

j=0

2j(dz+1)

≤
3caczt

⋆(ϵ(T ))CHC
2dS+3
ub (1 + γ)2(dS+1)2dS+1

(
log
(
T
δ

))2
t⋆(ϵ̃(T ))

√
d

(
log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

) 2i(2dS+dz+3).

This concludes the proof.

Let us denote

C ′ :=
3caczt

⋆(ϵ(T ))CHC
2dS+3
ub (1 + γ)2(dS+1)2dS+1

(
log
(
T
δ

))2
t⋆(ϵ̃(T ))

√
d

(
log

(
12T 2d

d
2

t⋆(ϵ(T ))ϵ̃(T )dδ

)
+ 1

) . (72)

As has been discussed earlier at the beginning of this section, we derive an upper-bound on (a) of (63) by summing the three
terms: the regret due to playing policies from the set Φ(2−i), i = 1, 2, . . . , ⌈log 1/ϵ(T )⌉, the regret due to playing other
policies, and the suboptimality that arises due to the inaccuracy in the solution of the extended MDPs at the beginning of
every episode, which can be bounded by

√
T . The first term is bounded using the bound obtained on the number of plays of

policies from Φ(i) in Lemma E.3. The regret arising from playing policies that are not in ∪⌈log 1/ϵ⌉
i=1 Φ(2−i) is at most ϵ(T )T .

Hence,

K(T )∑
k=1

Hk(J
⋆
M − JM(ϕk) ≤ C ′

i⋆∑
i=1

2i(2dS+dz+3) × 2−i+1 + ϵ(T )T +
√
T

≤ 2C ′ 2i
⋆(2dS+dz+2) + T

2dS+dz+2

2dS+dz+3 +
√
T

≤ (2C ′ + 1) T
2dS+dz+2

2dS+dz+3 +
√
T , (73)

where the second step follows from Lemma E.3.

Bounding (b): We now provide an upper-bound on the term (b) of (63). This proof relies on the uniform ergodicity
property (Assumption 2.2) of the underlying MDPM and a trick that converts Markovian noise to martingale noise using
the Poisson equation (19) [Metivier and Priouret, 1984].

Proposition E.4. Define

G3 := {ω : (75) holds } , (74)

K(T )∑
k=1

τk+1−1∑
t=τk

JM(ϕk)− r(st, ϕk(st)) ≤
m⋆

1− α

√
T

2
log

(
3

δ

)
+

m⋆

1− α
(1 +K(T )), (75)

where K(T ) denotes the total number of episodes until time T , and m⋆ =
⌈
log 1

α
(C)
⌉
+ 1. Then, we have,

P (G3) ≥ 1− δ

3
, δ ∈ (0, 1). (76)



Proof. Let us denote the episode index at time t by k(t). We begin by converting the Markovian noise to a martingale
difference sequence, i.e.,

T−1∑
t=0

JM(ϕk(t))− r(st, ϕk(t)(st))

=

T−1∑
t=0

∫
S
h
ϕk(t)

M (s)p(st, ϕk(t)(st), ds)− h
ϕk(t)

M (st)

=

T−1∑
t=1

∫
S
h
ϕk(t)

M (s)p(st−1, ϕk(t−1)(st−1), ds)− h
ϕk(t)

M (st)

+

T−1∑
t=1

∫
S
h
ϕk(t)

M (s)p(st, ϕk(t)(st), ds)−
∫
S
h
ϕk(t)

M (s)p(st−1, ϕk(t−1)(st−1), ds)

+

∫
S
hϕ1

M(s)p(s0, ϕ1(s0), ds)− hϕ1

M(s0)

=
T−1∑
t=1

∫
S
h
ϕk(t)

M (s)p(st−1, ϕk(t−1)(st−1), ds)− h
ϕk(t)

M (st)

+

T−1∑
t=1

∫
S

(
h
ϕk(t)

M (s)− hϕk(t−1)

M (s)
)
p(st−1, ϕk(t−1)(st−1), ds)

+

∫
S
h
ϕk(T−1)

M (s)p(sT−1, ϕk(T−1)(sT−1), ds)− hϕ1

M(s0). (77)

Now consider the first summation term in the r.h.s. of (77). Denote mt =
∫
S h

ϕk(t)

M (s)p(st−1, ϕk(t−1)(st−1), ds) −
h
ϕk(t)

M (st). Noting that ϕk is Fτk−1-measurable, we obtain the following:

E [mt | Ft−1] = E
[∫

S
h
ϕk(t)

M (s)p(st−1, ϕk(t−1)(st−1), ds)− h
ϕk(t)

M (st) | Ft−1

]
=

∫
S
h
ϕk(t)

M (s)p(st−1, ϕk(t−1)(st−1), ds)−
∫
S
h
ϕk(t)

M (s)p(st−1, ϕk(t−1)(st−1), ds)

= 0.

Hence, {mt} is a martingale difference sequence. Also, from the bound on the span of hϕM that was derived in Lemma A.3,

we have that mt ∈
[
− m⋆

1−α ,
m⋆

1−α

]
. An application of Azuma-Hoeffding inequality (Lemma J.1), yields the following: for

each δ ∈ (0, 1), with probability at least 1− δ
3 we have,

T−1∑
t=1

∫
S
h
ϕk(t)

M (s)p(st−1, ϕk(t−1)(st−1), ds)− h
ϕk(t)

M (st) ≤
m⋆

1− α

√
T

2
log

(
3

δ

)
. (78)

Now, consider the second summation term in the r.h.s. of (77). The t-th element in this summation can assume a non-zero
value only when a new episode starts at time t. Hence, upon using Lemma A.3, we conclude that this summation can be
upper-bounded as

T−1∑
t=1

∫
S

(
h
ϕk(t)

M (s)− hϕk(t−1)

M (s)
)
p(st−1, ϕk(t−1)(st−1), ds) ≤

m⋆

1− α
K(T ), (79)

where K(T ) denotes the number of episodes that have been started until time T by the learning algorithm. Again by using
Lemma A.3, the third term can be bounded as,∫

S
h
ϕk(T−1)

M (s)p(sT−1, ϕk(T−1)(sT−1), ds)− hϕ1

M(s0) ≤
m⋆

1− α
. (80)



Putting all the individual bounds from (78), (79) and (80) together, we have that for any δ ∈ (0, 1) with probability at least
1− δ,

T−1∑
t=1

JM(ϕk(t))− r(st, ϕk(t)(st)) ≤
m⋆

1− α

√
T

2
log

(
3

δ

)
+

m⋆

1− α
(1 +K(T )). (81)

This concludes the proof.

Upon combining the upper-bounds on all the terms of the regret decomposition, we obtain the upper-bound on the regret.
This is done in the next section.

E.1 PROOF OF THEOREM 4.4

Proof. We first derive an upper-bound on K(T ), which is the total number of episodes. The number of episodes of length

greater than T
2dS+2

2dS+dz+3 is trivially bounded above by T
dz+1

2dS+dz+3 . Now let us bound the number of episodes of length less

than T
2dS+2

2dS+dz+3 . If the length of the k-th episode is less than T
2dS+2

2dS+dz+3 , then from the rule of setting episode duration (17),
we have

CH log
(
T
δ

)
d̃iamτk(ϕk)

2(dS+1)
≤ T

2dS+2

2dS+dz+3 ,

or

d̃iamτk(ϕk) ≥
(
CH log

(
T

δ

)) 1
2(dS+1)

T
− 1

2dS+dz+3 .

From Corollary C.1 and Corollary C.3, we obtain that

1

3(Cub + 1)
d̃iamτk(ϕk) ≤

1

3
diamτk(ϕk).

Also, from the condition of a cell ζ to be a key cell in the k-th episode, we have that

diam (ζ) ≥ 1

3
diamτk(ϕk).

Combining the above three relations, we obtain that if the length of the k-th episode is less than T
2dS+2

2dS+dz+3 , then the
diameter of the corresponding key cell is greater than(

CH log
(
T
δ

)) 1
2(dS+1)

3(Cub + 1)
T

− 1
2dS+dz+3 .

From the definition of the zooming dimension (3), it follows that there can at most be O
(
T

dz
2dS+dz+3

)
such key cells

activated by ZoRL, and each key cell of level ℓ becomes deactivated when it has been played in O(2ℓ) episodes. Hence

there can be at most O
(
T

dz+1
2dS+dz+3

)
episodes of length less than T

2dS+2

2dS+dz+3 . Hence,

K(T ) ≤ CKT
dz+1

2dS+dz+3 ,

where CK is a constant.

We now add all the upper-bounds of various regret components from (73) and (81), and use the upper-bound on K(T )
derived above. This yields,

R(T ;ZoRL) ≤ (2C ′ + 1) T
2dS+dz+2

2dS+dz+3 +
√
T +

m⋆

1− α

√
T

2
log

(
3

δ

)
+

m⋆

1− α
(1 +K(T ))

≤ (2C ′ + 1) T
2dS+dz+2

2dS+dz+3 +

(
1 +

m⋆

1− α

√
1

2
log

(
3

δ

))√
T +

m⋆

1− α

(
1 + CKT

dz+1
2dS+dz+3

)
= Õ

(
T

2dS+dz+2

2dS+dz+3

)
.



Note that P(G1 ∩ G2,ϵ ∩ G3) ≥ 1− δ. Thus, we have the desired regret upper-bound with probability at least 1− δ.

F CONCENTRATION INEQUALITY

In this section, we will show that the discretized MDP kernel belongs to a confidence ball around its estimate. First, let us
introduce some notations. Let Z̃ ⊆ S×A, and Q̃ be a partition of S that is made of S-cells. Let S̃ be the set of representative
points of the S-cells in Q̃. Recall the discretization of p given Z̃ and S̃, ℘Z̃→S̃,p (8). Denote the continuous extension of
℘Z̃→S̃,p by ℘̄Z̃→S̃,p, i.e.,

℘̄Z̃→S̃,p(z,B) :=
∑
ξ∈Q

λ(B ∩ ξ)
λ(ξ)

℘Z̃→S̃,p(z, q(ξ)),

for every z ∈ Z, B ∈ BS . Define the set,

G1 := ∩T−1
t=0

{
∥℘S×A→St,p(z

′, ·)− ℘Zt→St,p̂t(z, ·)∥1
}
≤ ηt(ζ) for every z ∈ Zt, z

′ ∈ q−1(z). (82)

We show that G1 holds with a high probability.

Lemma F.1. P(G1) ≥ 1− δ
3 , where G1 is as in (82).

Proof. Fix t, and consider a point z ∈ Zt. Within this proof, we denote q−1
t (z) by ζ. Let ζ be of level ℓ, and

note that ζ is active at time t. Let z′ be an arbitrary point in ζ. We want to get a high probability bound on
∥℘Zt→St,p̂t

(z, ·)− ℘S×A→St,p(z, ·)∥1. We have,

∥℘Zt→Qt,p̂t
(z, ·)− ℘S×A→St,p(z, ·)∥1

= ∥p̂t(z, ·)− ℘̄S×A→St,p(z
′, ·)∥TV

≤
∥∥p̂t(z, ·)− ℘̄S×A→S(ℓ),p(z

′, ·)
∥∥
TV

+
∥∥℘̄S×A→S(ℓ),p(z

′, ·)− ℘̄S×A→St,p(z
′, ·)
∥∥
TV

≤
∥∥∥p̂(d)t (z, ·)− ℘S×A→S(ℓ),p(z

′, ·)
∥∥∥
1
+
∥∥℘̄S×A→S(ℓ),p(z

′, ·)− ℘̄S×A→St,p(z
′, ·)
∥∥
TV

. (83)

By definition, Qt is a finer partition of S than Q(ℓ). Hence, from Lemma I.2, we have that∥∥℘̄S×A→S(ℓ),p(z
′, ·)− ℘̄S×A→St,p(z

′, ·)
∥∥
TV
≤ Cp diam (ζ) .

Next, we will provide a high probability upperbound on the first term of r.h.s. of (83). We will denote ℘S×A→S(ℓ),p(z
′, ·)

by p(d)t (z′, ·) in order to simplify the notation. Note that both p̂(d)t (z, ·) and p(d)t (z′, ·) have the support S̃t(z), where
|S̃t(z)| ≤ d

dS
2 diam (ζ)

−dS . Let S̃+t (z) denote the collection of those points in St such that for any s ∈ S̃+t (z), we have
p̂
(d)
t (z, s)− p(d)t (z′, s) > 0. So, we can write the following:

P
(∥∥∥p̂(d)t (z, ·)− p(d)t (z′, ·)

∥∥∥
1
≥ ι
)
= P

(
max

S′⊂S̃+
t (z)

∑
s∈S′

p̂
(d)
t (z, s)− p(d)t (z′, s) ≥ ι

2

)

= P

(
∪S′⊂S̃+

t (z)

{∑
s∈S′

p̂
(d)
t (z, s)− p(d)t (z′, s) ≥ ι

2

})
. (84)

Note that if S ′ ⊂ S̃+t (z), then S̃t(z) \ S ′ ̸⊂ S̃+t (z). Hence the number of subsets of S̃+t (z) is at most 2|S̃t(z)|−1. If
P
(∑

s∈S′ p̂
(d)
t (z, s)− p(d)t (z′, s) ≥ ι

2

)
≤ bι, ∀S ′ ⊂ S̃+t (z), then by an application of union bound in (84), we obtain that

the following must hold,

P
(∥∥∥p̂(d)t (z, ·)− p(d)t (z′, ·)

∥∥∥
1
≥ ι
)
≤ 2|S̃t(z)|−1bι. (85)

Consider a fixed ξ ⊆ S. Define the following random processes,

vi(z) := 1{(si,ai)∈ζi}, (86)
vi(z, ξ) := 1{(si,ai,si+1)∈ζi×ξ}, (87)

wi(z, ξ) := vi(z, ξ)− p(si, ai, ξ)vi(z), (88)



where i = 0, 1, . . . , T − 1. Let S ′ ⊂ S+
t and ξ = ∪s∈S′q−1(s). Then we have,∑

s∈S′

p̂
(d)
t (z, s)− p(d)t (z′, s) =

Nt (ζ, ξ)

Nt (ζ)
− p(z′, ξ)

=
Nt (ζ, ξ)− p(z′, ξ)Nt (ζ)

Nt (ζ)

≤ 1

Nt (ζ)

(
t−1∑
i=0

wi(z, ξ)

)
+

Lp

2Nt (ζ)

Nt(ζ)∑
i=0

diam (ζti)

≤ 1

Nt (ζ)

(
t−1∑
i=0

wi(z, ξ)

)
+ 1.5Lp diam (ζ) , (89)

where the last step follows from Lemma I.1. Note that {wi(z, ζ)}i∈[T−1] is martingale difference sequence w.r.t.
{Fi}i∈[T−1]. Moreover, |wi(z, ζ)| ≤ 1. Hence from Lemma J.1 we have,

P

({∑t−1
i=0 wi(z, ξ)

Nt (ζ)
≥

√
2

Nt(ζ)
log

(
3

δ

)
, Nt(ζ) = N

})
≤ δ

3
.

Upon combining this with (89) we get,

P

({∑
s∈S′

p̂
(d)
t (z, s)− p(d)t (z′, s) ≥

√
2

Nt(ζ)
log

(
3

δ

)
+ 1.5Lp diam (ζ) , Nt(ζ) = N

})
≤ δ

3
.

Upon using (85) in the above, and taking a union bound over all possible values of N , we obtain,

P

∥∥∥p̂(d)t (z, ·)− p(d)t (z′, ·)
∥∥∥
1
≥

√
2|S̃t(z)|
Nt(ζ)

log

(
3T

δ

)
+ 3Lp diam (ζ) , Nt(ζ) = N


 ≤ δ

3
.

Note that we do not have to take a union over all possible values of S̃t(z) because of the one-to-one correspondence between
Nt(ζ) and S̃t(z). Replacing |S̃t(z)| by its upper-bound d

dS
2 diam (ζ)

−dS , we have,

P

∥∥∥p̂(d)t (z, ·)− p(d)t (z′, ·)
∥∥∥
1
≥ diam (ζ)

− dS
2

√
2 d

dS
2 log

(
3T
δ

)
Nt(ζ)

+ 3Lp diam (ζ)

 ≤ δ

3
. (90)

Let N1 := 2d
d
2

(
T

ca log (T/δ)

) d
dS+2

, which is the number of cells the ZoRL can activate under all sample paths. Upon taking
union bound over all the cells that could possibly be activated in all possible sample paths at some t and using the fact that
Nt(ζ) ≥ Nmin(ζ), the above inequality yields that with a probability at least 1− δ

3 , the following holds,

∥∥∥p̂(d)t (z, ·)− p(d)t (z′, ·)
∥∥∥
1
≤ 3

(
ca log

(
T
δ

)
Nt(ζ)

) 1
dS+2

+ 3Lp diam (ζ) , (91)

for every z ∈ ζ, ζ ∈ Pt, and t ∈ {0, 1, . . . , T − 1}, where ca is a constant that satisfies

d
dS
2 log

(
3TN1

δ

)
≤ 4.5ca log

(
T

δ

)
. (92)

After some algebraic manipulation, we obtain that it suffices to have,

ca =
2d

dS
2

9

log
(
6d

d
2

)
log
(
T
δ

) +
d

dS + 2
+ 1.

The proof follows upon combining the upper-bounds of the first and the second terms of (83).

Remark. See that ∩T−1
t=0 {℘St×At→St,p(·, ·) ∈ Ct} ⊆ G1, where Ct is as defined in (13). Hence,

P
(
∩T−1
t=0 {℘St×At→St,p ∈ Ct}

)
≥ 1− δ

3
.



G PROPERTIES OF EXTENDED VALUE ITERATION (EVI) AND EXTENDED POLICY
EVALUATION (EPE)

We recall the definition of Extended MDP at time t that was discussed in Section 3,

M+
t = {(St,At, p̃, r̃t) : p̃ ∈ Ct},

where St and At are the discretized state and action space respectively, at time t, while r̃ is the discretized reward
function with an additional bonus term. Ct is a set of plausible discrete transition kernels. Note that ZoRL calls the
EVI subroutine (Algorithm 1) with a parameter γ which specifies the desired accuracy; upon calling EVI with accuracy
parameter γ, it returns a policy that is γ-optimal for the extended MDP. We begin with introducing some notation. For
ϕ ∈ Φt, JM+

t
(ϕ) denotes the value of the policy ϕ evaluated on the extended MDPM+

t . To be precise, this is the optimal
average reward when the control action for the extended MDP is chosen according to the policy ϕ, and the kernel is chosen
so as to maximize the average reward. The next result is similar in spirit to Jaksch et al. [2010, Theorem 7].

Lemma G.1. Fix a time t ∈ N. Consider the extended MDPM+
t and the corresponding EVI iterates:

v0(s) = 0,

vn+1(s) = max
a∈At(s)
θ∈Ct

{
r̃t(s, a) +

∑
s′∈St

θ(s, a, s′)vn(s
′)

}
, ∀s ∈ St, n ∈ N. (93)

Then,

lim
n→∞

(vn+1(s)− vn(s)) = J⋆
M+

t
.

Moreover, whenever sp (vn+1 − vn) ≤ γ, the policy that chooses greedy actions which are optimal w.r.t. vn, is γ-optimal.

Proof. Consider the n-th step of the EVI iteration, and let the action an(s) and the kernel θn maximize the r.h.s. of (93),
i.e.,

(an(s), θn) ∈ argmax
a∈At(s)
θ∈Ct

{
r̃t(s, a) +

∑
s′∈St

θ(s, a, s′)vn(s
′)

}
, for every s ∈ St.

Let s⋆ ∈ argmaxs∈St vn(s). Then, θi(s, ·) has to be chosen from the set Ct in such a manner that one assigns the maximum
possible probability to a state in s⋆. Thus, we must have θi(s, s⋆) ≥ min

{
1, 12ηt(q

−1
t (s, an(s)))

}
, where q−1

t (s, an(s)) is
the active cell at time t that contains (s, an(s)). Since ηt(q−1

t (s, an(s))) > 0 for all s ∈ St, it follows that θi(s⋆, s⋆) > 0. It
is evident that the associated Markov chain is aperiodic. The proof then follows from Puterman [2014, Theorem 9.4.4]. The
second claim follows from Puterman [2014, Theorem 8.5.6].

The next result follows from the previous result. It proves the convergence of the EPE algorithm (2), also derives the gap
between the true value of a policy and that returned by the EPE.

Corollary G.2. Fix a time t ∈ N. Recall the extended MDPMd,+
t = {(St,At, p̃, dt) : p̃ ∈ Ct}, where

dt(s, a) = diam
(
q−1
t (s, a)

)
, ∀(s, a) ∈ St ×At,

policy ϕ ∈ Φt and the corresponding EPE iterates:

gϕ0 (s) = 0,

gϕn+1(s) = max
θ∈Ct

{
dt(s, ϕ(s)) +

∑
s′∈St

θ(s, ϕ(s), s′)gϕn(s
′)

}
, ∀s ∈ St, n ∈ N. (94)

Then

lim
n→∞

(
gϕn+1(s)− gϕn(s)

)
= d̃iamt(ϕ).



Moreover, when sp
(
gϕn+1 − gϕn

)
≤ γ(gϕn+1(s⋆) − gϕn(s⋆)), i.e. the stopping criteria is met, then (gϕn+1(s⋆) − gϕn(s⋆))

satisfies the following:

d̃iamt(ϕ)

1 + γ
≤ (gϕn+1(s⋆)− gϕn(s⋆)) ≤

d̃iamt(ϕ)

1− γ
. (95)

Proof. Similar to the proof of Lemma G.1, one can show that the transition kernels which maximize the r.h.s. in every
iteration of EPE (94) are aperiodic. The convergence of EPE then follows from Puterman [2014, Theorem 9.4.4]. From
Puterman [2014, Theorem 8.5.6], it follows that∣∣∣(gϕn+1(s⋆)− gϕn(s⋆))− d̃iamt(ϕ)

∣∣∣ ≤ γ (gϕn+1(s⋆)− gϕn(s⋆)),

or

gϕn+1(s⋆)− gϕn(s⋆) ≤
d̃iamt(ϕ)

1− γ
, and, gϕn+1(s⋆)− gϕn(s⋆) ≥

d̃iamt(ϕ)

1 + γ
.

This concludes the proof.

Remark (Upper and lower-bounds of episode duration). Let dk = EPE(Md,+
τk

, ϕ̃k, γ, s⋆) be the value of the policy ϕ̃k
evaluated onMd,+

τk
. From Corollary G.2 we have,

d̃iamτk(ϕ̃k)

1 + γ
≤ dk ≤

d̃iamτk(ϕ̃k)

1− γ
.

As Hk =
CH log (T

δ )
d
2(dS+1)

k

, we conclude that

CH(1− γ)2(dS+1) log
(
T
δ

)
d̃iamτk(ϕ̃k)

2(dS+1)
≤ Hk ≤

CH(1 + γ)2(dS+1) log
(
T
δ

)
d̃iamτk(ϕ̃k)

2(dS+1)
. (96)

H SIMULATION EXPERIMENTS

We perform simulations on the following environments.

1. Continuous RiverSwim: This environment models an agent who is swimming in a river [Strehl and Littman,
2008]. Though the original MDP is discrete, we use a continuous version of it. The state denotes the location of the
agent in the river in a single dimension, and the action captures the movement of the agent. The state and action spaces
are [0, 6] and [0, 1], respectively. The state of the system evolves as follows:

st+1 =


min{max{0, st − 1

2 (1 +
wt

2 )}, 6} w.p. 2(1−at)
5

st w.p. 0.2
min{max{0, st + 1

2 (1 +
wt

2 )}, 6} w.p. 2(1+at)
5 ,

where {wt} is a 0-mean i.i.d. Gaussian random sequence. The reward function is given by

r(s, a) = 0.005(((s− 6)/6)4 + ((a− 1)/2)4) + 0.5((s/6)4 + ((a+ 1)/2)4).

2. Truncated LQ System: The state of an LQ [Abbasi-Yadkori and Szepesvári, 2011] system evolves as follows:

st+1 = Ast +Bat + wt,

where A,B are matrices of appropriate dimensions, and wt is i.i.d. Gaussian noise. The reward at time t is −s⊤t Pst −
a⊤t Qat. We clip the state vector since our framework allows only compact state-action spaces. More specifically,
we ensure that the state value for each coordinate lies within the interval [cℓ, cu], and restrict the action space to be
[−1, 1]dA . Hence, the i-th coordinate of the state process evolves as

st+1(i) = max {min {(Ast +Bat + wt)(i), cu}, cℓ}.

We have used the following two sets of system parameters:



(a) Truncated LQ-1:

A =

[
−0.2 −0.07
0.6 0.07

]
, B =

[
0.07 0.09
−0.03 −0.1

]
,

P = 0.4 I2
1, Q = 0.6 I2 and mean and standard deviation of wt are 0 and 0.05, respectively. We consider

cu = −cℓ = 4.
(b) Truncated LQ-2:

A =

[
−0.2 −0.07
0.6 0.07

]
, B =

[
0.1 −0.01 0.12 0.08
0.02 −0.1 0.3 0.001

]
.

Values of P , Q, cu, cℓ and mean and standard deviation of wt are the same as Truncated LQ-1.

3. Non-linear System: We consider a non-linear system [Kakade et al., 2020] where the state evolves as

st+1(i) = max {min {(Af(st) +Bg(at) + wt)(i), cu}, cℓ},

where f and g are non-linear functions, A,B are matrices of appropriate dimensions, and wt is noise sequence. This
system can be viewed as a generalization of the LQ control system in which the dynamics are linear in the feature
vectors corresponding to state-action values. The feature maps f(·), g(·) can be non-linear functions. The reward
function is a function of the state and the actions. We have set the values for the matrices A,B, P , Q, cu and cℓ to be
the same as that of Truncated LQ-1. We set

f(s)(i) = 0.5s(i) + 0.5s(i)2, for i ∈ {1, 2} , and g(a) = a2,

where v(i) denotes the i-th element of vector v. Similar to the LQ system, we consider the action space to be
[−1, 1]dA .

H.1 CHOOSING HYPERPARAMETERS

Since Lr (Assumption 2.1), ca (92), Cη, CH (68) may not be known, we instead provide their estimates/appropriate
upper-bounds to ZoRL in lieu of these parameters. Our theoretical upper-bounds on regret continue to hold, we simply
replace these parameters with the chosen upper-bounds. In addition to these ZoRL we pass δ and γ as hyperparameters
to ZoRL. A brief description of these quantities are as follows:

1. Lr: We assume the knowledge of an upper-bound on Lr, the Lipschitz constant for the reward function (Assump-
tion 2.1).

2. ca: ZoRL activates a cell ζ if Nt(ζ) ≥
ca log (T

δ )
diam(ζ)dS+2 (6), and deactivates ζ if Nt(ζ) ≥

ca2
dS+2 log (T

δ )
diam(ζ)dS+2 (5).

3. Cη: Recall from Section 3 that if ζ is an active cell at time t, then its confidence radius ηt(ζ) satisfies ηt(ζ) ≤
Cη diam (ζ), where Cη = 3(1 + Lp) + Cp. In order to avoid computing ηt(ζ), we use Cη diam (ζ) as a substitute for
ηt(ζ), and choose Cη as a hyperparameter for ZoRL

4. CH : CH is the multiplicative constant associated with the episode duration that satisfies (68).

5. δ: δ ∈ (0, 1) is the probability parameter.

6. γ: γ > 0 is the accuracy parameter for EPE subroutine that is used by ZoRL in order to compute the proxy diameter of
the chosen policy in an episode.

The values of the following three hyperparameters are kept unchanged across four experiments: Lr = 0.001, δ = 0.1 and
γ = 0.05. Values of the rest of the parameters are reported in Table 1.

H.2 COMPARISON WITH PZRL-MF AND PZRL-MB

Kar and Singh [2024b] allows the agent to play policies from a parametric class. The latest version of Kar and Singh
[2024b] proposes two new algorithms PZRL-MF and PZRL-MB2. Due to paucity of time, we could not compare PZRL-
MF and PZRL-MB with ZoRL on the four environments discussed in Section 5. However, here we compare PZRL-MB

1In denotes identity matrix of size n× n.
2These replace the PZRL-H algorithm, that has been proposed in an earlier version of the same paper.



Experiments Ca Cη CH

Truncated LQ-1 0.2 1 0.1
Truncated LQ-2 0.1 1 0.001

Continuous RiverSwim 0.1 1 0.001
Non-linear System 1 5 0.1

Table 1: ZoRL hyper-parameters.
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Figure 3: Comparison with PZRL-MF and PZRL-MB.

and PZRL-MF with ZoRL on the following two environments: (i) Continuous RiverSwim and (ii) Continuous
GridWorld.

Continuous RiverSwim: This environment has been discussed above. We use the following two policy parameteriza-
tion schemes for PZRL-MF and PZRL-MB.

1. ϕ(s;w) = w · s, w ∈ [−1, 1].

2. ϕ(s;w) = w(1) + w(2)s2, w = (w(1), w(2)) ∈ [−1, 1]2.

Continuous GridWorld: In GridWorld environment [Sutton and Barto, 2018], the agent moves around a compact
space, and the space contains a designated reward-yielding region such that the agent earns a reward of 1 whenever it stays
inside the reward-yielding region, and earns no reward otherwise. We design a continuous version of the same environment;
the reward-yielding region is taken to be a circle of radius 0.1 units whose center is [0.8, 0.8]. The state space is [0, 1]2 and
the action space is [0, 2π]. The state of the system evolves as follows:

yt+1 = st + β

[
cos at
sin at

]
+ wt, and

st(i) = (0 ∨ yt(i)) ∧ 1, for i = 1, 2, ∀t ∈ {0} ∪ N,

wherewt is a zero-mean i.i.d. Gaussian noise, and β > 0 is the step-size. The standard deviation ofwt is set to 0.1, and we use
a step size β = 0.2. For this environment, we parametrize the policies as follows: ϕ(s;w) = w(0) + s(0)w(1) + s(1)w(2),
where w ∈ [0, 1]3 and s ∈ [0, 1]2.

We plot the cumulative rewards incurred by PZRL-MF, PZRL-MB, and ZoRL, averaged over 50 runs for both the systems
in Figure 3.

Computing resources. We have conducted experiments on a 11-th Gen Intel Core-i7, 2.5GHz CPU processor with 16GB
RAM using Python-3 and PyTorch library.



I AUXILIARY RESULTS

In this section, we derive some useful properties of the algorithm that are used in the proof of regret upper-bound. The first
lemma shows that for any active cell ζ at time t, the quantity 1

Nt(ζ)

∑Nt(ζ)
i=1 diam (ζti) is bounded above by 3 diam (ζ). We

use this in concentration inequality for the transition kernel estimate.

Lemma I.1. For all t ∈ [T − 1] and ζ ∈ Pt, let ti denote the time instance when ζ or any of its ancestor was visited by
ZoRL for the i-th time. Then

1

Nt(ζ)

Nt(ζ)∑
i=1

diam (ζti) ≤ 3 diam (ζ) .

Proof. By the activation rule (3.3), a cell ζ ′ can be played at most Nmax(ζ
′)−Nmin(ζ

′) = c̃a2
2ℓ(ζ′) + c̃a

3 1{ζ′=S×A} times
while being active, where c̃a = 3cad

−1 log
(
T
ϵδ

)
ϵ−dS . We can write,

1

Nt(ζ)

Nt(ζ)∑
i=1

diam (ζti) =
1

Nt(ζ)

Nmin(ζ)∑
i=1

diam (ζti) +
1

Nt(ζ)

Nt(ζ)∑
i=Nmin(ζ)+1

diam (ζti)

=
c̃a
√
d

3Nt(ζ)
+
c̃a
√
d

Nt(ζ)

ℓ(ζ)−1∑
ℓ=0

2ℓ +
Nt(ζ)−Nmin(ζ)− 1

Nt(ζ)
diam (ζ)

<
c̃a
√
d

Nt(ζ)
2ℓ(ζ) +

Nt(ζ)−Nmin(ζ)− 1

Nt(ζ)
diam (ζ)

=
3Nmin(ζ)

Nt(ζ)
diam (ζ) +

Nt(ζ)−Nmin(ζ)− 1

Nt(ζ)
diam (ζ)

=
(Nt(ζ) + 2Nmin(ζ)− 1) diam (ζ)

Nt(ζ)

≤ 3 diam (ζ) ,

where the last step is due to the fact that Nmin(ζ) ≤ Nt(ζ).

Next, we show that under Assumption 4.2, the total variation norm between ℘̄S×A→St,p(z, ·) and ℘̄S×A→S(ℓ),p(z, ·) is
bounded above by the discretization width of the partition Q(ℓ). We use this result in Lemma F.1.

Lemma I.2. Let us fix any state-action pair z and time t. Let ℓ = ℓ(q−1
t (z)). Recall distributions ℘̄S×A→St,p(z, ·) and

℘̄S×A→S(ℓ),p(z, ·) from Lemma F.1. Under Assumption 4.2, we have that∥∥℘̄S×A→S(ℓ),p(z, ·)− ℘̄S×A→St,p(z, ·)
∥∥
TV
≤ Cp

√
d 2−ℓ

for every z ∈ S ×A.

Proof. Recall that St is the set of representative points of Qt and that Q(ℓ) is a coarser partition of S than Qt. Let us fix
ξ ∈ Q(ℓ), and let us denote the Radon-Nikodym derivative of the distribution p(z, ·) by f . Let f̄ = p(z, ξ)/λ(ξ). We have,

sup
B⊆ξ

∣∣℘̄S×A→S(ℓ),p(z,B)− p(z,B)
∣∣ ≤ ∫

ξ

(f − f̄)1{f≥f̄}dλ

≤
∫
ξ

(f̄ + Cp

√
dϵ)1{f≥f̄}dλ−

∫
ξ

f̄1{f≥f̄}dλ

≤ Cp

√
dϵ× ϵdS ,

where ϵ = 2−ℓ. Hence, by Assumption 4.2, we have that for every z ∈ S ×A and for every ξ ∈ Q(ℓ),

sup
B⊆ξ

∣∣℘̄S×A→S(ℓ),p(z,B)− ℘̄S×A→St,p(z,B)
∣∣ ≤ sup

B⊆ξ

∣∣℘̄S×A→S(ℓ),p(z,B)− p(z,B)
∣∣

≤ Cp

√
dϵ× ϵdS .



As Q(ℓ) is coarser than Q, it follows that∥∥℘̄S×A→S(ℓ),p(z, ·)− ℘̄S×A→St,p(z, ·)
∥∥
TV
≤
∑

ξ∈Q(ℓ)

sup
B⊆ξ

∣∣℘̄S×A→S(ℓ),p(z,B)− p(z,B)
∣∣

≤ Cp

√
dϵ× ϵdS × ϵ−dS

≤ Cp

√
dϵ.

Hence, we have proven the claim.

J USEFUL RESULTS

J.1 CONCENTRATION INEQUALITIES

Lemma J.1 (Azuma-Hoeffding inequality). Let X1, X2, . . . be a martingale difference sequence with |Xi| ≤ c∀i. Then for
all ϵ > 0 and n ∈ N,

P

{
n∑

i=1

Xi ≥ ϵ

}
≤ e−

ϵ2

2nc2 (97)

The following inequality is Proposition A.6.6 of Van Der Vaart et al. [1996].

Lemma J.2 (Bretagnolle-Huber-Carol inequality). If the random vector (X1, X2, . . . , Xn) is multinomially distributed
with parameters N and (p1, p2, . . . , pn), then for ϵ > 0

P

(
n∑

i=1

|Xi −Npi| ≥ 2
√
Nϵ

)
≤ 2ne−2ϵ2 . (98)

Alternatively, for δ > 0

P

(
n∑

i=1

∣∣∣∣Xi

N
− pi

∣∣∣∣ <
√

2n

N
log

(
2

δ
1
n

))
≥ 1− δ. (99)

The following is essentially Theorem 1 of Abbasi-Yadkori et al. [2011].

Theorem J.3 (Self-Normalized Tail Inequality for Vector-Valued Martingales). Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1 be
a real-valued stochastic process such that ηt is Ft measurable and ηt is conditionally R sub-Gaussian for some R > 0, i.e.,

E [exp(ληt)|Ft−1] ≤ exp
(
λ2R2/2

)
,∀λ ∈ R.

Let {Xt}∞t=1 be an Rd valued stochastic process such that Xt is Ft−1 measurable. Assume that V is a d× d positive definite
matrix. For any t ≥ 0, define

V̄t := V +

t∑
s=1

XsX
⊤
s ,

and

St :=

t∑
s=1

ηsXs.

Then, for any δ > 0, with a probability at least 1− δ, for all t ≥ 0,

∥St∥2V̄ −1
t
≤ 2R2 log

(
det(V̄t)

1/2 det(V )−1/2

δ

)
.



Corollary J.4 (Self-Normalized Tail Inequality for Martingales). Let {Fi}∞i=0 be a filtration. Let {ηi}∞i=1 be a {Fi}∞i=0

measurable stochastic process and ηt is conditionaly R sub-Gaussian for some R > 0. Let {Xi}∞i=1 be a {0, 1}-valued
Fi−1 measurable stochastic process.

Then, for any δ > 0, with a probability at least 1− δ, for all k ≥ 0,∣∣∣∣∣
k∑

i=1

ηiXi

∣∣∣∣∣ ≤ R
√√√√2

(
1 +

k∑
i=1

Xi

)
log

(
1 +

∑k
i=1Xi

δ

)
.

Proof. Taking V = 1, we have that V̄t = 1 +
∑t

s=1Xs. The claim follows from Theorem J.3.

J.2 OTHER USEFUL RESULTS

Lemma J.5. Consider the following function f(x) such that 0 < a0 ≤ a1

4 ,

f(x) = a0x−
√
a1x− 1.

Then for all x ≥ 1.5a1

a2
0

, f(x) ≥ 0.

Proof. See that f(x) ≥ 0 for all x ≥
(√

a1+
√
a1+4a0

2a0

)2
. Since a1 ≤ 4a0, we have that for all x ≥ 1.5a1

a2
0
f(x) ≥ 0.

Lemma J.6. Let µ1 and µ2 be two probability measures on Z and let v be an R-valued bounded function on Z. Then, the
following holds. ∣∣∣∣∫

Z

(µ1 − µ2)(z)v(z)dz

∣∣∣∣ ≤ 1

2
∥µ1 − µ2∥TV sp (v) .

Proof. Denote λ(·) := µ1(·)− µ2(·). Now let Z+, Z− ⊂ Z be such that λ(B) ≥ 0 for every B ⊆ Z+ and λ(B) < 0 for
every B ⊆ Z−. We have that

λ(Z) = λ(Z+) + λ(Z−) = 0. (100)

Also,

λ(Z+)− λ(Z−) = ∥µ1 − µ2∥TV . (101)

Combining the above two, we get that

λ(Z+) =
1

2
∥µ1 − µ2∥TV . (102)

Now, ∣∣∣∣∫
Z

λ(z)v(z)dz

∣∣∣∣ =
∣∣∣∣∣
∫
Z+

λ(z)v(z)dz +

∫
Z−

λ(z)v(z)dz

∣∣∣∣∣
≤
∣∣∣∣λ(Z+) sup

z∈Z
v(z) + λ(Z−) inf

z∈Z
v(z)

∣∣∣∣
=

∣∣∣∣λ(Z+) sup
z∈Z

v(z)− λ(Z+) inf
z∈Z

v(z) + λ(Z+) inf
z∈Z

v(z) + λ(Z−) inf
z∈Z

v(z)

∣∣∣∣
= λ(Z+)

(
sup
z∈Z

v(z)− inf
z∈Z

v(z)

)
=

1

2
∥µ1 − µ2∥TV sp (v) .

Hence, we have proven the lemma.



Lemma J.7. Let θ1 and θ2 be two transition probability kernels of two Markov chains with common state space S. Let
maxs∈S ∥θ1(s, ·)− θ2(s, ·)∥TV ≤ c. Then,∥∥∥θ(m)

1 (s, ·)− θ(m)
2 (s, ·)

∥∥∥
TV
≤ m · c, ∀m ∈ N.

where θ(m)
i is the m-step transition kernel of the Markov chain with one-step transition kernel θi for i = 1, 2.

Proof. We shall prove this using mathematical induction. The base case is given. Let us assume that,∥∥∥θ(i)1 (s, ·)− θ(i)2 (s, ·)
∥∥∥
TV
≤ i · c, ∀i = 1, 2, . . . ,m− 1.

See that ∥∥∥θ(m)
1 (s, ·)− θ(m)

2 (s, ·)
∥∥∥
TV

=

∥∥∥∥∫
S
θ
(m−1)
1 (s, s′)θ1(s

′, ·)ds′ −
∫
S
θ
(m−1)
2 (s, s′)θ1(s

′, ·)ds′

+

∫
S
θ
(m−1)
2 (s, s′)θ1(s

′, ·)ds′ −
∫
S
θ
(m−1)
2 (s, s′)θ2(s

′, ·)ds′
∥∥∥∥
TV

≤ 2 sup
A∈BS

∫
S

(
θ
(m−1)
1 (s, s′)− θ(m−1)

2 (s, s′)
)
θ1(s

′, A)ds′

+ 2 sup
A∈BS

∫
S
θ
(m−1)
2 (s, s′) (θ1(s

′, A)− θ2(s′, A)) ds′

≤
∥∥∥θ(m−1)

1 (s, ·)− θ(m−1)
2 (s, ·)

∥∥∥
TV

sup
A∈BS

sp (θ1(·, A))

+

∫
S
θ
(m−1)
2 (s, s′) ∥θ1(s′, ·)− θ2(s′, ·)∥TV ds

′

≤
∥∥∥θ(m−1)

1 (s, ·)− θ(m−1)
2 (s, ·)

∥∥∥
TV

+max
s′∈S
∥θ1(s′, ·)− θ2(s′, ·)∥TV ,

where the first inequality follows from triangle inequality and from the definition of total variation distance, the second
inequality follows from Lemma J.6 and by taking the supremum inside integration. This concludes the proof of the
lemma.
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