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ABSTRACT

We address the computational and theoretical limitations of current distributional
alignment methods for source-free unsupervised domain adaptation (SFUDA). In
particular, we focus on estimating classification performance and confidence in
the absence of target labels. Current theoretical frameworks for these methods
often yield computationally intractable quantities and fail to adequately reflect the
properties of the alignment algorithms employed. To overcome these challenges,
we introduce the Optimal Transport (OT) score, a confidence metric derived from
a novel theoretical analysis that exploits the flexibility of decision boundaries
induced by Semi-Discrete Optimal Transport alignment. The proposed OT score
is intuitively interpretable and theoretically rigorous. It provides principled un-
certainty estimates for any given set of target pseudo-labels. Experimental results
demonstrate that OT score outperforms existing confidence scores. Moreover, it
improves SFUDA performance through training-time reweighting and provides a
reliable, label-free proxy for model performance.

1 INTRODUCTION

In recent years, deep neural networks have achieved remarkable breakthroughs across a wide range of
applications. However, if the distribution of the training and test data differs, significant performance
degradation occurs, which is known as a domain shift (Tsymbal, 2004), which makes retraining
critical for the model to re-gain the generalization ability in new domains.

Unsupervised domain adaptation (UDA) mitigates the domain shift problem where only unlabeled
data is accessible in the target domain (Glorot et al., 2011). A key approach for UDA is aligning
the distributions of both domains by mapping data to a shared latent feature space. Consequently, a
classifier trained on source domain features in this space can generalize well to the target domain.
Several existing works (Long et al., 2015; 2017; Damodaran et al., 2018; Courty et al., 2016; Rostami
& Galstyan, 2023) exhibit a principled way to transform target distribution to be "closer" to the source
distribution so that the classifier learned from the source data can be directly applied to the target
domain thus pseudo-labels (or predictions) can be made accordingly.

This leads to the question of whether such transformations from the target to the source distribution
can accurately match the corresponding class-conditional distributions. For any given target dataset,
it is always possible to align its feature distribution with that of the source domain using a divergence
function, regardless of whether classes overlap. However, performing UDA in this way is reasonable
only if target features remain well-separated by the decision boundaries induced through alignment
in the latent feature space—something that is typically difficult to determine in practice. Moreover,
the marginal distribution alignment approach complicates the identification of samples with low-
confidence pseudo-labels (i.e., samples close to overlapping regions), potentially causing noisy
supervision and thus degrading classification performance. This issue becomes particularly critical
when no labeled information for the target data is available. Some existing works (Luo & Ren,
2021; Ge et al., 2023; Le et al., 2021) minimize a class-conditional discrepancy between the class-
conditional feature distributions PS(Z | Y ) and PT (Z | Y ). However, using pseudo labels from
model predictions to determine the target class-conditional distributions exposes the alignment to
noisy supervision—especially early in training.

Under the Optimal Transport (OT) framework, it has been investigated in some theoretical works that
the generalization error on the target domain is controlled by both the marginal alignment loss and
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Figure 1: (Left) Overlapping clusters. (Right) Separated clusters with flexible decision boundaries.

the entanglement between the source and target domains. For example, Redko et al. (2017) proves
the following:

Theorem 1 (Informal Redko et al. (2017)). Under certain assumptions, with probability at least
1− δ for all hypothesis h and ς ′ <

√
2 the following holds:

ϵT (h) ≤ ϵS(h) +W1 (µ̂S , µ̂T ) +

√
2 log

(
1

δ

)
/ς ′

(√
1

NS
+

√
1

NT

)
+ λ

where λ is the combined error of the ideal hypothesis h∗ that minimizes the combined error of
ϵS(h) + ϵT (h).

A bad pulling strategy on target domain T might minimize W1 term to 0 without any guarantee
for the λ term in the feature space. Similarly, Koç et al. (2025) also show that, during the optimal
transport association process, the source inputs x can be associated to target inputs x′ that have
different matching labels. Minimizing the marginal Wasserstein distance between such entangled
pairs can cause the entanglement term to increase. To address these challenges, we will focus on the
following question in this work:

Question: What is the condition on the domain shift so that the target distribution can be aligned
back to the source while preserving the correct class labels? Additionally, with only potentially
noisy target pseudo-labels available, is there a theoretically guaranteed and computable metric
to quantify the degree of violation of this condition?

Formally, we seek conditions under which the OT between the marginals is label-preserving—i.e., it
decomposes into per-class OT between the class-conditional marginals. We formalize and prove these
conditions in Section 3. Guided by our theoretical analysis under the semi-discrete OT framework
(Section 3.2), we propose the OT score—a confidence metric designed to quantify uncertainty in
pseudo-labeled target samples. It measures the degree to which the assigned pseudo-label would
violate marginal alignment, thereby serving as a diagnostic of class-conditional alignment. As
illustrated in Figure 1, the OT score reflects the flexibility of decision boundaries induced by semi-
discrete OT alignment, which enables effective uncertainty estimation in the target domain. This
allows the algorithm to abstain from classifying samples with high uncertainty. Compared to fully
continuous or fully discrete OT formulations, semi-discrete OT is computationally more efficient,
especially in high-dimensional spaces and large-scale datasets. A detailed comparison with existing
confidence scores is provided in Appendix A.

We also propose two applications of OT score. First, within SFUDA it acts as a training-time
reweighting signal: less confident pseudo labels are down-weighted, suppressing harmful updates
and improving accuracy. Second, it provides a reliable label-free proxy for target performance: the
mean OT score serves as a surrogate for target error, enabling model selection without target labels.

Contributions:

• We provide theoretical justifications about allowed distribution shifts in order to have a
label-preserving OT.
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• We define a novel confidence score, the OT score, which is theoretically interpretable
and accounts for the geometry induced by OT alignment between the source and target
distributions.

• Experimental results demonstrate that filtering out low-confidence predictions consistently
improves classification accuracy, and that the proposed OT score significantly outperforms
existing confidence metrics across diverse pseudo-labeling strategies.

• We demonstrate two practical uses of the OT score: (i) as a training-time reweighting
signal for SFUDA that down-weights less confident target pseudo-labels to suppress harmful
updates and improve accuracy; and (ii) as a label-free proxy for target performance, which
enables model selection without target labels.

Notation. Given any probability measure µ and a measurable map T between measurable spaces,
T : X −→ Y , we denote T#µ the pushforward measure on Y which is characterized by (T#µ) (A) =

µ
(
T−1(A)

)
for measurable set A. Let µ̂ denote the corresponding empirical measure 1

N

∑N
i=1 δxi

where xi are i.i.d. samples from µ. We also write x ∈ µ̂ to indicate x ∈ {xi}Ni=1. If not otherwise
specified, ∥ · ∥ represents the Euclidean norm.

2 OPTIMAL TRANSPORT AND DOMAIN ADAPTATION

In this section, we first present the domain adaptation problem. Then we give necessary backgrounds
of optimal transport.

2.1 DOMAIN ADAPTATION

Let Ω ⊆ Rd be the sample space and P(Ω) be the set of all probability measures over Ω. In a general
supervised learning paradigm for classification problems, we have a labeling function fθ∗ : Rd → Rk

obtained from a parametric family fθ by training on a set of points XS = {xS1 , ..., xSNS} sampled from
a source distribution PS ∈ P(Ω) and corresponding one-hot encoded labels YS = {yS1 , ..., ySNS}.

Let XT = {xT1 , ..., xTNT } be a dataset sampled from a target distribution PT ∈ P(Ω) without label
information. The difference between PS and PT may lead to a poor performance if we use fθ∗ for
the new classification problem. In order to overcome the challenge of distributional shift, a common
way is to decompose a neural network fθ into a feature mapping ϕv composed with a classifier hw
such that fθ = hw ◦ ϕv , followed by minimizing the distance between (ϕv∗)#PS and (ϕv)#PT so
that the target distribution will be aligned with the source distribution in the feature space. Then
we may classify target data points based on the optimization result in the feature space. Various
choices of divergence objective D((ϕv∗)#PS , (ϕv)#PT ) can be utilized. In this work, we focus on
the distributional alignment between (ϕv∗)#PS and (ϕv)#PT using Wasserstein distance.

2.2 OPTIMAL TRANSPORT

2.2.1 GENERAL THEORY OF OT

Given two probability distributions µ, ν ∈ P(Rd), the Wasserstein-p distance for p ∈ [1,+∞] is
defined by

Wp(µ, ν) :=
(

min
γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥pdγ
) 1

p

,

where Γ(µ, ν) is the collection of all couplings of µ and ν. The optimization problem

min
γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥pdγ (KP)

is referred as the Kantorovitch problem in optimal transport. It is shown by Kantorovich–Rubinstein
Duality theorem that (KP) has a dual form (Santambrogio, 2015):
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Theorem 2 (Kantorovich–Rubinstein Duality).

min
(KP )

= sup
{∫

Rd

ϕ(x) dµ+

∫
Rd

ψ(y) dν : (ϕ, ψ) ∈ Lipb(Rd)×Lipb(Rd), ϕ(x)+ψ(y) ≤ ∥x−y∥p
}
.

In addition, when the supremum in the dual formulation is a maximum, the optimal value is attained
at a pair (ϕ, ϕc) with ϕ, ϕc bounded and Lipschitz, where ϕc(y) := infx∈Rd ∥x− y∥p − ϕ(x).

With the dual problem introduced, Brenier (1991) proves Brenier’s theorem, which gives a sufficient
condition under which the minimizer of the optimal transport problem is unique and is induced by a
map T = ∇ϕ for some convex function ϕ, i.e. the OT map exists.

Under mild conditions on µ and ν, Brenier’s theorem is satisfied when c(x, y) = ∥x − y∥p for
p > 1. Although there is no guarantee about uniqueness of the optimal transport map when p = 1,
the existence of an optimal transport map can be proved through a secondary variational problem
Santambrogio (2015):
Theorem 3 (Existence of optimal transport map when p = 1). Let O(µ, ν) be the optimal transport
plans for the cost ∥x−y∥ and denote by Kp the functional associating to γ ∈ P(Ω×Ω), the quantity∫
∥x− y∥p dγ. Under the usual assumption µ≪ Ld, the secondary variational problem

min {K2(γ) : γ ∈ O(µ, ν)}
admits a unique solution γ̄, which is induced by a transport map T.

2.2.2 SEMI-DISCRETE OPTIMAL TRANSPORT

A special case of interest is when ν =
∑m

j=1 bjδyj
is a discrete probability measure. Adapting the

duality result to this setting, we have

W p
p (µ, ν) = max

w∈Rm

∫
Rd

wc(x) dµ+

m∑
j=1

wjbj ,

and in this case, wc(x) := minj ∥x− yj∥p − wj .

We can define a disjoint decomposition of the whole space using the Laguerre cells associated to the
dual weights w:

Lw(yj) :=
{
x ∈ Rd : ∀j′ ̸= j, ∥x− yj∥p − wj ≤ ∥x− yj′∥p − wj′

}
.

Then

W p
p (µ, ν) = max

w∈Rm

m∑
j=1

∫
Lw(yj)

(
∥x− yj∥p − wj

)
dµ+ ⟨w, b⟩.

The optimization problem above can be solved by (stochastic) gradient ascent methods since the
j-th entry of gradient for the objective function can be computed via bj −

∫
Lw(yj)

dµ. Once the
optimal vector w is computed, the optimal transport map T ν

µ simply maps x ∈ Lw(yj) to yj Peyré
et al. (2019). Also, it can be shown such OT map is unique under mild assumptions (Hartmann &
Schuhmacher, 2017; Geiß et al., 2013). In the rest of the paper, for any x ∈ suppµ and yj ∈ supp ν,
we denote d̃w(x, yj) := ∥x− yj∥p − wj . Convergence properties of semi-discrete optimal transport
have been studied extensively; see, e.g., Genevay et al. (2016) and Peyré et al. (2019) for details.

3 THEORETICAL ANALYSIS

In this section, we present theoretical insights into the use of OT for addressing DA problems.
Complete proofs of all theoretical results are provided in Appendix C. For clarity and tractability, we
focus on binary classification tasks. An extension to multiclass classification follows by a one-vs-all
reduction. As discussed in Section 2.1, our interest lies in neural network–based DA. To this end, we
adopt assumptions inspired by Neural Collapse (Kothapalli, 2022), a prevalent phenomenon observed
in well-trained neural networks. The extent to which the target feature distribution conforms to the
Neural Collapse structure depends on the severity of the distributional shift between the source and
target domains.
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Remark 1 (Neural Collapse). Neural collapse (NC) is a phenomenon observed in well-trained neural
networks where the learned features of samples belonging to the same class converge to a single
point or form tightly clustered structures in the feature space, while the features of different classes
become maximally separated. NC emerges while training modern classification DNNs past zero
error to further minimize the loss (Papyan et al., 2020). During NC, the class means of the DNN’s
last-layer features form a symmetric structure with maximal separation angle, while the features
of each individual sample collapse to their class means. This simple structure of the feature layer
not only appears beneficial for generalization but also helps in transfer learning and adversarial
robustness. There are three main theoretical frameworks proposed to explain the emergence of NC:
"Unconstrained Features Model" (Lu & Steinerberger, 2022; Tirer & Bruna, 2022; Ji et al., 2021),
"Local Elasticity" (Zhang et al., 2021) and "Neural (Tangent Kernel) Collapse" (Seleznova et al.,
2024).

In the following subsection, we focus on the setting where the class-conditional distributions in both
the source and target domains are supported on, or concentrated within, bounded subsets of the feature
space. Stronger NC in the source representation yields smaller cluster radii, thereby strengthening
our results. Under this assumption, we analyze how data clusters are transported by the OT map.

3.1 SUFFICIENT CONDITIONS FOR CORRECT CLASSIFICATION

We begin by presenting a necessary condition on the target data distribution under which correct
classification can be expected after applying optimal transport. The following theorem quantifies
the relationship between the probability of misclassification and the concentration properties of
class-conditional distributions. Intuitively, if each class distributions is concentrated within a bounded
region and these regions are well-separated across classes, classification results after OT map will be
correct with high probability.
Theorem 4. Suppose for each of the probability measures µi, νi there exist disjoint bounded sets
Eµi(or Eνi) such that µi(Eµi) ≥ 1 − ϵ and (rµ1 + rν1 + l1) + (rµ2 + rν2 + l2) < L1 + L2,
where rµi(or rνi) is the diameter of Eµi(or Eνi), li = d(Eµi , Eνi), L1 = d(Eµ1 , Eν2), L2 =
d(Eµ2

, Eν1
). Assume further that Eν1

and Eν2
are correctly separated by the trained classifier. Then

with probability greater than 1 − 7ϵ, target samples will be correctly classified after the optimal
transportation Tµ

ν .
Remark 2. Our concentration assumption applies to various probability distributions including
subgaussian distributions.

The proof is based on the intuitive observation from the following lemma:
Lemma 5. Suppose we have probability measures µi and νi with bounded support. Also as-
sume suppµ1 and suppµ2 are disjoint, supp ν1 and supp ν2 are disjoint. Let rµi

denote the
diameter of the support of µi and set li = d(suppµi, supp νi), L1 = d(suppµ1, supp ν2),
L2 = d(suppµ2, supp ν1). Suppose µ := 1

2µ1 +
1
2µ2, ν := pν1 + (1− p)ν2 for some p ∈ (0, 12 ]. If

(rµ1
+ rν1

+ l1) + (rµ2
+ rν2

+ l2) < L1 + L2, then Tµ
ν (supp ν1) ⊂ suppµ1 up to a ν negligible

set.

3.2 SEMI-DISCRETE SETTING

Although results in Section 3.1 provide valuable theoretical insights into OT alignment, they remain
difficult to compute or verify in practical settings. In this section, we leverage the semi-discrete OT
formulation to derive an equivalent condition for perfect classification under OT alignment. Building
upon this, we introduce a novel quantity, OT score, that can be utilized in practice to post-check the
performance of the classification from distributional alignment based DA algorithms. Also, we will
show later how the following theorem inspires a way to recognize target data points classified with
low confidence.
Theorem 6. Suppose µ and ν are compactly supported. Then (T µ̂

ν )#ν1 = µ̂1 and (T µ̂
ν )#ν2 = µ̂2 if

and only if

sup
x∈ν1

max
z∈µ̂2

min
y∈µ̂1

d̃w(x, y)− d̃w(x, z) ≤ 0 ≤ inf
x∈ν2

max
z∈µ̂2

min
y∈µ̂1

d̃w(x, y)− d̃w(x, z),

where d̃ is defined as in Section 2.2.2
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Algorithm 1 OT score

1: Input: Source class-wise mean feature representations ZS , corresponding labels yS , source
sample weights a, target features ZT and corresponding predicted labels (or pseudo labels) ŷT ,
entropic regularization parameter ε, learning rate γ.

2: Initialize w0 = 0.
3: Compute class proportions pc =

|{zT
i ∈ZT :ŷT

i =c}|
|ŷT | .

4: for t = 1, 2, . . . ,max_iter do
5: Draw a batch of samples ZT

Bt
from ZT .

6: Compute smoothed indicator functions of Laguerre cells Lwt
(zSj ) for each zSj :

χε
j(x,w) =

e
−∥x−zSj ∥+w

j
t

ε∑
ℓ e

−∥x−zS
ℓ

∥+w
j
t

ε

.

7: Update wt: wt+1 = wt − γ
[
χε
j(x,wt)− aj

]NS

j=1
∈ RNS .

8: end for
9: for (zTi , ŷ

T
i ) ∈ (ZT , ŷT ) do

10: Compute gj(x) := maxy∈X
ŷT
i

minz∈Xj
d̃(x, z)− d̃(x, y) for each class j.

11: Compute OT score of zTi : g(zTi ) = minj gj(z
T
i )

12: end for

With µ being the source measure and ν being the target measure, we define a new function g(x) :=
maxz∈µ̂2 miny∈µ̂1 d̃(x, y) − d̃(x, z). Hence, the g value gap infx∈ν2 g(x) − supx∈ν1

g(x) reflects
the flexibility of a classification boundary induced by semi-discrete OT and a larger g value gap
implies better classification performance. See Figure 1 for a visual illustration.

In practice, this g value gap can be used as a post-check tool once target pseudo labels have been
assigned by any algorithm. We can compute the gap infx∈ν1 g(x)− supx∈ν2

g(x) based on pseudo-
labeled partition of the target distribution ν1 and ν2. In addition to global assessment, the individual
g(x) values can also serve as confidence indicators. Specifically, for target samples pseudo-labeled as
class ν2, larger g(x) values indicate higher classification confidence; conversely, for samples labeled
as class ν1, smaller g(x) values indicate higher confidence.

Remark 3. Although a similar version of Theorem 6 can be derived in the discrete OT setting using
analogous techniques, we choose to adopt the semi-discrete OT formulation for computing the OT
score in our work, due to the following reasons:

(1) Efficient incremental optimization: Semi-discrete OT can be updated incrementally with SGD
instead of being solved from scratch. As target pseudo-labels evolve, we reuse the previous solution
as initialization and perform a few mini-batch SGD updates to reflect the new assignments.

(2) Handling ambiguity in low-confidence filtering: In the discrete case, there exists ambiguity
in determining which points should be eliminated as low-confidence samples—whether to remove
points with split weights across transport plans, or those with only small transport margins. The
semi-discrete formulation mitigates such ambiguity by providing more stable and geometrically
meaningful transport behavior.

The following corollary might be helpful in some computation scenarios: it enables computing the
semi-discrete OT for each component separately, thereby reducing the dimension of the dual weights.

Corollary 7. Under assumptions of 6 and suppose m and l are the weight vectors associated with
T µ̂1
ν1

and T µ̂2
ν2

, respectively. Then (T µ̂
ν )#ν1 = µ̂1 and (T µ̂

ν )#ν2 = µ̂2 if and only if

sup
x∈ν1

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y)− d̃l(x, z) ≤ inf
x∈ν2

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y)− d̃l(x, z).
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4 OT SCORE COMPUTATION

In this section, we extend the definition of OT score to multiclass setting and present the algorithm
used for computation. Specifically, we model the source distribution in the feature space as a discrete
measure and treat the target data as samples drawn from a continuous measure.
Definition 1. Suppose the source data (or features) XS consists of c classes. For each target sample
x with pseudo label i and any class label j, we define the binary OT score as

gj(x) := max
y∈XSi

min
z∈XSj

d̃(x, z)− d̃(x, y),

where d̃(·, ·) requires computing the semi-discrete OT. The OT score is defined as

g(x) := min
j
gj(x).

We summarize our OT score computation in Algorithm 1. We represent the source distribution by
class-wise mean features. Accordingly, the definition of gj simplifies to gj(x) = d̃(x, µj)− d̃(x, µi),
where µi and µj are the mean features of classes i and j, respectively. Under this setting, we show
that classification accuracy increases as samples with low OT scores are filtered out.
Theorem 8. Let ν1, ν2 be the continuous probability measures with means m1 and m2, respectively
and µ̂i consists of singletons yi. Denote ν := 1

2ν1 +
1
2ν2 and µ̂ := 1

2 µ̂1 +
1
2 µ̂2. Suppose νi(|Xi −

mi| ≥ t) ≤ 2 exp
(
− t2

2σ2

)
and ∥m1 − y1∥ + ∥m2 − y2∥ < ∥m1 − y2∥ + ∥m2 − y1∥, then

P
(
T µ̂
ν (Xi) ̸= Yi|g(Xi) > g

)
≤ 2 exp

(
−mini=1,2 dist(mi,S)2

2σ2

)
, where

(1) S :=
{
x : ∥x− y1∥ − (w∗ + g) = ∥x− y2∥

}
(2) d := ∥y2 − y1∥, e := y2−y1

d , m = αe+ u, u ⊥ e is the orthogal decomposition of m
and denote ρ := ∥u∥.

(3)dist(m,S) = minr≥0

√(
t(r)− α

)2
+
(
r − ρ

)2
where t(r) is defined through√

t2 + r2 =
√
(t− d)2 + r2 + (w∗ + g), r ≥ 0.

5 APPLICATIONS AND EMPIRICAL EVALUATION

In this section, we present: (i) an Area Under the Risk–Coverage Curve (AURC) evaluation across
confidence scores (Section 5.1); (ii) an SFUDA application using the OT score for training-time
reweighting to improve accuracy (Section 5.2); and (iii) a label-free model-selection analysis showing
that the mean OT score on the target set correlates with final accuracy (Section 5.3). Additional
details and results are provided in Appendix D.

5.1 AURC COMPARISONS

To demonstrate the effectiveness of the proposed OT score, we compare it against several widely-used
confidence estimation methods, including Maxprob, Entropy (Ent), and JMDS. The evaluation is
conducted on four standard UDA benchmarks: Digits, Office-Home, ImageCLEF-DA, and VisDA-17.
We compute confidence scores in the feature space extracted by the last layer of our neural network.

For evaluation, we adopt the Area Under the Risk-Coverage Curve (AURC) proposed by Geifman
et al. (2018); Ding et al. (2020) and subsequently employed in Lee et al. (2022). Specifically,
after obtaining the high-confidence subset XT

h :=
{
xTi | s

(
xTi , ŷ

T
i

)
> h

}
, where h is a predefined

confidence threshold, the risk is computed as the average empirical loss over XT
h , and the coverage

corresponds to
∣∣XT

h

∣∣ / ∣∣XT
∣∣. A lower AURC value indicates higher confidence reliability, as it

implies a lower prediction risk at a given coverage level. Notably, when the 0/1 loss is applied, a high
AURC reflects a high error rate among pseudo-labels, thus indicating poor correctness and calibration
of the confidence scores.
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Table 1: Evaluation of confidence scores based on AURC.

Dataset Task Maxprob Ent Cossim JMDS OT Score

Office-Home

Ar → Cl 0.3485 0.3592 0.3013 0.2885 0.2623
Ar → Pr 0.1697 0.1789 0.1297 0.1237 0.1208
Ar → Rw 0.1032 0.1133 0.0897 0.0797 0.0770
Cl → Ar 0.2686 0.2849 0.2045 0.2362 0.2020
Cl → Pr 0.1916 0.2027 0.1182 0.1483 0.1424
Cl → Rw 0.1703 0.1837 0.1180 0.1275 0.1179
Pr → Ar 0.2629 0.2753 0.1977 0.2123 0.2063
Pr → Cl 0.3910 0.4052 0.3189 0.3193 0.3249
Pr → Rw 0.0997 0.1085 0.0757 0.0786 0.0741
Rw → Ar 0.1516 0.1621 0.1315 0.1369 0.1167
Rw → Cl 0.3339 0.3463 0.2873 0.2664 0.2539
Rw → Pr 0.0731 0.0796 0.0639 0.0737 0.0557
Avg. 0.2137 0.2250 0.1697 0.1743 0.1628

VisDA-2017 T → V 0.3071 0.3203 0.2780 0.2021 0.1704

ImageCLEF-DA

C → I 0.0515 0.0570 0.0181 0.0325 0.0252
C → P 0.1902 0.1991 0.1579 0.1459 0.1143
I → C 0.0099 0.0131 0.0038 0.0055 0.0036
I → P 0.1198 0.1221 0.1280 0.1170 0.1000
P → C 0.0260 0.0303 0.0062 0.0216 0.0092
P → I 0.0347 0.0382 0.0177 0.0276 0.0186
Avg. 0.0720 0.0766 0.0553 0.0583 0.0452

Maxprob and Ent use labels assigned by the pretrained source classifier while Cossim, JMDS, OT
score receive pseudo labels from a Gaussian Mixture Model (GMM), following the same setup of
Lee et al. (2022).

To further assess the robustness of the proposed OT score under varying pseudo-label quality, we
consider another case where the pseudo labels are generated by the DSAN algorithm (Zhu et al.,
2020). Under this setting, only Cossim and OT score are capable of incorporating externally generated
high-quality pseudo labels. Table 5 in Appendix D shows the significant benefits of leveraging high
quality pseudo labels. The OT score achieves the lowest AURC value in most adaptation tasks across
the considered scenarios.

5.2 OT SCORE REWEIGHTING

We integrate the OT score into CoWA-JMDS (Lee et al., 2022) as a per-sample weight for pseudo-
labeled target instances. For each target sample xi, we set

wi = 2 ·OT(xi) · JMDS(xi),

where JMDS(xi) is computed online from features during training, while OT(xi) is computed from
features extracted by the pre-adaptation model, thereby decoupling the confidence signal from the
evolving target representation. Relying solely on the same training-time features that are continually
updated by pseudo-labels risks self-reinforcement (confirmation bias): incorrect pseudo-labels →
representation drift → inflated “confidence” → further amplification. We mitigate this by computing
the OT score from pre-adaptation features, which constrains the pseudo-label feedback loop and
reduces confirmation bias. Here, the OT score is normalized to [0, 1]; the prefactor 2 offsets the
dynamic-range compression induced by the product of two numbers in [0, 1].

This integration yields higher accuracy than the original CoWA-JMDS. We evaluate on Office-Home
(Tables 2) and VisDA-2017 (Tables 3) in the SFUDA setting, reporting target-domain accuracy
averaged over three seeds (see Appendix D).Training settings (backbone, optimizer, pseudo-labeling)
follow Lee et al. (2022); the only change is the per-sample weight wi.

5.3 MODEL COMPARISON

The OT score also serves as a label-free proxy for adaptation performance. This is particularly
valuable when target labels are unavailable, as training accuracy on noisy pseudo-labels can be a
misleading indicator (Zhang et al., 2016). At the end of adaptation training, we compute the mean
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Method Ar→Cl Ar→Pr Ar→RwCl→Ar Cl→Pr Cl→RwPr→Ar Pr→Cl Pr→RwRw→ArRw→ClRw→Pr Avg

BAIT (Yang et al., 2020) 57.4 77.5 82.4 68.0 77.2 75.1 67.1 55.5 81.9 73.9 59.5 84.2 71.6
SHOT (Liang et al., 2020) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
NRC (Yang et al., 2021) 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
ELR (Yi et al., 2023) 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6
CPD (Zhou et al., 2024) 59.1 79.0 82.4 68.5 79.7 79.5 67.9 57.9 82.8 73.8 61.2 84.6 73.0

CoWA (Lee et al., 2022) 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
OTScore 58.0 79.6 81.5 69.6 80.2 80.0 68.3 57.6 82.3 73.2 61.1 84.7 73.0

Table 2: Accuracy (%) on Office-Home (ResNet-50).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

SFIT (Hou & Zheng, 2021) 94.3 79.0 84.9 63.6 92.6 92.0 88.4 79.1 92.2 79.8 87.6 43.0 81.4
SHOT (Liang et al., 2020) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
NRC (Yang et al., 2021) 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
AdaCon (Chen et al., 2022) 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
ELR (Yi et al., 2023) 97.3 89.1 89.8 79.2 96.9 97.5 92.2 82.5 95.8 94.5 87.3 34.5 86.4
CPD (Zhou et al., 2024) 96.7 88.5 79.6 69.0 95.9 96.3 87.3 83.3 94.4 92.9 87.0 58.7 85.8

CoWA (Lee et al., 2022) 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
OTScore 95.6 89.0 82.8 78.3 96.3 98.0 91.2 86.8 95.5 94.7 89.9 55.7 87.8

Table 3: Accuracy (%) on VisDA-2017 (ResNet-101).

OT score over the target set predictions. As shown in Fig. 2, for a fixed source domain, the mean
OT score provides an ordinal proxy of post-adaptation accuracy across targets: higher mean OT
corresponds to higher accuracy. Moreover, comparing MNIST→USPS with FLIP-USPS→USPS
shows that a source model obtained via pixel-value inversion (FLIP-USPS) yields substantially lower
SFUDA performance than using MNIST as the source as shown in Table 4.

Figure 2: Mean OT Score vs. accuracy on Office-Home.
Lines connect targets sharing the same source. Points
denote individual target domains.

Table 4: Accuracy (%) on USPS
with different sources.

Source Mean Score Accuracy (%)

MNIST 4.02 94.7
FLIP-USPS 0.55 47.8

6 CONCLUSION AND FUTURE WORK

We investigate theoretical guarantees about allowed distribution shifts in order to have a label-
preserving OT. Using semi-discrete OT, we derive the OT score which considers the decision
boundary induced by the OT alignment. The definition of OT score can be easily extended to other
cost functions other than the standard Euclidean norm. Additionally, confidence scores are helpful
for training-time sample reweighting and model comparison.

Currently, we address class imbalance in the OT-score computation by weighting the source class
mean features with class proportions estimated from pseudo labels. However, when pseudo labels are
unreliable, these estimates can be biased. Under the assumptions in Section E, we show that the OT
objective is minimized when the source and target class proportions coincide (see Theorem 11). A
natural next step is to model and propagate class-proportion uncertainty into the confidence score.
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7 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproduction of our results. An anonymous code package
is provided in the supplementary materials. Experimental settings—datasets, preprocessing, model
architectures, hyperparameters and training schedules are summarized in Section 5 and Appendix D.
Theoretical results are stated with explicit assumptions and accompanied by complete proofs in
Section 3 (see also Appendix C).
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A RELATED WORKS

Theory about DA: Several theoretical works have investigated the learnability and generalization
guarantees of domain adaptation (DA). Specifically, Ben-David & Urner (2012) analyzes the DA
learnability problem and sample complexity under the standard VC-dimension framework, and
identifies a setting in which no algorithm can successfully solve the DA problem. In a related
direction, Redko et al. (2019) provides a theoretical analysis about the existence of a hypothesis
that performs well across both source and target domains, and further establishes finite-sample
approximation properties of the λ term. Le et al. (2021) alleviates the label mismatching problem by
searching for a transformation T that satisfies the following conditions: (1) T#µS = µT , and (2) T
preserves the labels.

Confidence Scores: Uncertainty estimation and confidence score have been prevalently employed in
machine learning to improve model robustness. In particular, ordinal ranking techniques have been
commonly used for selective classification (Lakshminarayanan et al. (2017); Geifman & El-Yaniv
(2017); Mandelbaum & Weinshall (2017); Nair et al. (2020)), where the goal is to prioritize or filter
samples based on their confidence scores in order to exclude low-confidence samples during training.
Karim et al. (2023) select reliable pseudo-labels by thresholding the maximum softmax probability of
the teacher’s augmentation-averaged prediction. Litrico et al. (2023) reweight the classification loss by
entropy, assigning higher weights to low-entropy (more confident) samples. Lee et al. (2022) propose
the JMDS score to effectively identify low-confidence samples, thereby enhancing the reliability of
the DA process. However, most existing confidence scores rely primarily on cluster-level information
in the feature space, without explicitly modeling the geometric relationship between domains. In
contrast, our proposed OT score take into account the geometry induced by the OT map, establishing
a stronger connection between the source and target domains when computing confidence scores.

B CONFIDENCE SCORES

We provide details of the confidence scores used for comparison. Let xTi denote the i-th target sample,
and let pS represent the class probability predicted by the pretrained source model. Here, K is the
total number of classes, and CŷT

i
denotes the center of the cluster corresponding to the predicted

label ŷTi for xTi .

Maxprob
(
xTi

)
= max

c
pS

(
xTi

)
c
,

Ent
(
xTi

)
= 1 +

ΣK
c=1pS

(
xTi

)
c
log pS

(
xTi

)
c

logK
,

Cossim
(
xTi

)
=

1

2

1 +

〈
xTi , CŷT

i

〉
∥∥xTi ∥∥∥∥∥CŷT

i

∥∥∥
 .

JMDS score is computed by JMDS
(
xTi

)
= LPG

(
xTi

)
·MPPL

(
xTi

)
. LPG is the Log-Probability

Gap computed from log data-structure-wise probability log pdata
(
xTi

)
using GMM on the target

feature space. MPPL provides high scores for samples whose GMM pseudo-label is the same based
on pS

(
xTi

)
and pdata

(
xTi

)
. Details about JMDS score can be found in Lee et al. (2022).

C PROOFS

Proof of Theorem 4. Due to the concentration assumptions on µ and ν, we can pick sets Eµi
and

Eνi
such that µ1(Eµ1

) = µ2(Eµ2
) ≥ 1 − ϵ. So 1

2 + 1
2ϵ ≥ µ(Eµi) ≥ 1

2 − 1
2ϵ. The same holds for

ν(Eνi).
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Consider Fi = (Tµ
ν )

−1(Eµi
), we have ν(Fi) = µ(Eµi

) ≥ 1
2 − 1

2ϵ as well. Let F = F1 ∪ F2. So
Eνi

∩ F is a bounded set with

1

2
+

1

2
ϵ ≥ ν(Eνi ∩ F ) = ν(Eνi)− ν(Eνi ∩ F c) (1)

≥ 1

2
− 1

2
ϵ− ν(F c) (2)

≥ 1

2
− 1

2
ϵ− ϵ =

1

2
− 3

2
ϵ (3)

Without loss of generality, we assume ν(Eν1
∩ F ) ≥ ν(Eν2

∩ F ). Since ν ≪ L, we can pick R > 0
such that ν(Eν1

∩ F ∩BR) = ν(Eν2
∩ F ).

Now consider the optimal transport map Tµ
ν restricted on (Eν1 ∩ F ∩BR) ∪ (Eν2 ∩ F ). By (Villani

et al., 2009, Theorem 4.6), this restricted map is an optimal transport map between the marginal
measures.

Since µ
(
Tµ
ν (Eν1

∩ F ∩ BR) ∪ Tµ
ν (Eν2

∩ F )
)
= ν

(
(Eν1

∩ F ∩ BR) ∪ (Eν2
∩ F )

)
≥ 1 − 3ϵ, we

get an estimate µ
(
(Tµ

ν (Eν1 ∩ F ∩BR) ∪ Tµ
ν (Eν2 ∩ F )) ∩ Eµi

)
≥ (1− 3ϵ)− ( 12 + 1

2ϵ) =
1
2 − 7

2ϵ.
Therefore, we can use Lemma 9 to conclude that with probability greater than 1− 7ϵ, target samples
will be correctly classified after optimal transportation.

Lemma 9. Suppose we have probability measures µi and νi with bounded support. Also as-
sume that suppµ1 and suppµ2 are disjoint, supp ν1 and supp ν2 are disjoint. Let rµi

denote
the diameter of the support of µi and set li = d(suppµi, supp νi), L1 = d(suppµ1, supp ν2),
L2 = d(suppµ2, supp ν1). Suppose µ := 1

2µ1 +
1
2µ2, ν := pν1 + (1− p)ν2 for some p ∈ (0, 12 ]. If

(rµ1 + rν1 + l1) + (rµ2 + rν2 + l2) < L1 + L2, then Tµ
ν (supp ν1) ⊂ suppµ1 up to a negligible set.

Proof of Lemma 9. Suppose there exists a set A ⊂ supp ν1 with ν(A) = δ > 0 and Tµ
ν (A) ⊂

suppµ2. Then there must be a set B ⊂ supp ν2 with ν(B) ≥ δ + 1 − p − 1
2 = 1

2 + δ − p and
Tµ
ν (B) ⊂ suppµ1. Since νi ≪ L, we can pick B′ ⊂ B such that ν(B′) = δ. Then for any

measurable T̃ such that T̃ (A) = Tµ
ν (B

′) and T̃ (B′) = Tµ
ν (A),∫

A∪B′
∥T̃ (x)−x∥ dx ≤ δ(rµ1+rν1+l1)+δ(rµ2+rν2+l2) < δ(L1+L2) ≤

∫
A∪B′

∥Tµ
ν (x)−x∥ dx,

which contradicts the optimality of Tµ
ν .

Proof of Theorem 6. Let w be any weight vector associated with T µ̂
ν̄ . We start with the observation

that (T µ̂
ν̄ )#ν̄1 = µ̂1 and (T µ̂

ν̄ )#ν̄2 = µ̂2 is equivalent to the following two conditions:

(1) For ∀x ∈ ν̄1, d̃w(x, µ̂1) ≤ d̃w(x, µ̂2).

(2) And for ∀x ∈ ν̄2, d̃w(x, µ̂2) ≤ d̃w(x, µ̂1).

(1) requires any point from ν̄1 to be assigned to some point in µ̂1 and (2) requires any point from ν̄2
to be assigned to some point in µ̂2, i.e.

sup
x∈ν̄1

d̃w(x, µ̂1)− d̃w(x, µ̂2) ≤ 0 ≤ inf
x∈ν̄2

d̃w(x, µ̂1)− d̃w(x, µ̂2). (4)

We rewrite 4 by unwarpping the definition of d̃ to get

sup
x∈ν̄1

(
min
y∈µ̂1

d̃w(x, y)

)
−
(
min
z∈µ̂2

d̃w(x, z)

)
≤ 0 ≤ inf

x∈ν̄2

(
min
y∈µ̂1

d̃w(x, y)

)
−
(
min
z∈µ̂2

d̃w(x, z)

)
, (5)

i.e.
sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃w(x, y)− d̃w(x, z) ≤ 0 ≤ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃w(x, y)− d̃w(x, z). (6)
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Proof of Corollary 7. Observe that w1 = m+ C and w2 = l+D are also weight vectors for T µ̂1
ν̄1

and T µ̂2
ν̄2

for any constants C and D.

Moreover,

sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃w1
(x, y)− d̃w2

(x, z) ≤ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃w1
(x, y)− d̃w2

(x, z),

which is the same as

C −D+ sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y)− d̃l(x, z) ≤ C −D+ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y)− d̃l(x, z). (7)

Choosing the difference C −D allows us to conclude (T µ̂
ν̄ )#ν̄1 = µ̂1 and (T µ̂

ν̄ )#ν̄2 = µ̂2 by setting
w = [w1,w2].

Conversely, let w be the corresponding weight vector of T µ̂
ν̄ and assume (T µ̂

ν̄ )#ν̄1 = µ̂1, (T µ̂
ν̄ )#ν̄2 =

µ̂2. Then w1 (or w2) differs from m (or l) by some constant C (or D) (Geiß et al., 2013, Theorem
2). By Theorem 6,

sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃w1(x, y)− d̃w2(x, z) ≤ 0 ≤ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃w1(x, y)− d̃w2(x, z),

which implies

C −D + sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y)− d̃l(x, z) ≤ 0 ≤ C −D + inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y)− d̃l(x, z),

i.e.

sup
x∈ν̄1

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y)− d̃l(x, z) ≤ D − C ≤ inf
x∈ν̄2

max
z∈µ̂2

min
y∈µ̂1

d̃m(x, y)− d̃l(x, z).

This proposition shows how the classification accuracy improves with samples conditioned on high
confidence scores ∆w.
Theorem 10. Let ν1, ν2 be the continuous probability measures with means m1 and m2, respectively
and µ̂i consists of singletons yi. Denote ν := 1

2ν1 +
1
2ν2 and µ̂ := 1

2 µ̂1 +
1
2 µ̂2. Suppose νi(|Xi −

mi| ≥ t) ≤ 2 exp
(
− t2

2σ2

)
and ∥m1 − y1∥ + ∥m2 − y2∥ < ∥m1 − y2∥ + ∥m2 − y1∥, then

P
(
T µ̂
ν (Xi) ̸= Yi|g(Xi) > ∆w

)
≤ 2 exp

(
−mini=1,2 dist(mi,S)2

2σ2

)
, where

(1) S :=
{
x : ∥x− y1∥ − (w∗ +∆w) = ∥x− y2∥

}
(2) d := ∥y2 − y1∥, e := y2−y1

d , m = αe+ u, u ⊥ e is the orthogal decomposition of m
and denote ρ := ∥u∥.

(3)dist(m,S) = minr≥0

√(
t(r)− α

)2
+
(
r − ρ

)2
where t(r) is defined through√

t2 + r2 =
√

(t− d)2 + r2 + (w∗ +∆w), r ≥ 0.

Proof. Let w∗ be the dual weight corresponding to T µ̂
ν and let w := w +∆w. Denote Lw(y1) :={

x : ∥x− y1∥ − w ≤ ∥x− y2∥
}

and similarly for Lw(y2).

Define S :=
{
x : ∥x− y1∥ − w = ∥x− y2∥

}
. Without loss of generality, we assume y1 = 0. For

an arbitrary point m ∈ Rn, write the orthogonal decomposition

d := ∥y2∥, e :=
y2
d
, m = αe+ u, u ⊥ e, ρ := ∥u∥.

For every x write
x = t e+ v, t ∈ R, v ⊥ e, r := ∥v∥.
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Under this decomposition

∥x∥ =
√
t2 + r2, ∥x− y2∥ =

√
(t− d)2 + r2.

Hence x ∈ S iff

√
t2 + r2 =

√
(t− d)2 + r2 + w, r ≥ 0. (8)

Since for any fixed r,
√
t2 + r2 −

√
(t− d)2 + r2 is strictly increasing, solution to equation 8 is

unique and we denote it by t(r).

The squared distance between x = t e+ v and m is

∥x−m∥2 = (t− α)2 + ∥v − u∥2 = (t− α)2 + r2 + ρ2 − 2rρ cos θ,

where θ is the angle between v and u. For fixed (t, r) this expression is minimized when θ = 0, i.e. v
is chosen to be colinear with u. Without loss of generality set v = (r/ρ)u when ρ ̸= 0.

The minimal squared distance at any given (t, r) is therefore (t− α)2 + (r − ρ)2. Since t = t(r) is
uniquely determined by r, the distance optimization reduces to

dist(m,S) = min
r≥0

√(
t(r)− α

)2
+

(
r − ρ

)2
.

By a direct derivative analysis, the minimizer for dist(m,S) is unique.

Therefore, take m = m1, we have ν1(Lw(y1)) ≥ 1− 2 exp
(
−dist(m1,S)2

2σ2

)
.

D EXPERIMENT DETAILS

D.1 SYNTHETIC DATA

In this section, we use synthetic data to validate and illustrate our theoretical findings. Specifically,
we consider a 2D scenario where data points are sampled from circular regions. The source domain
consists of class-separated samples drawn from disjoint circles, whereas the target domain includes
clusters with partial overlap. The distribution of the generated data is visualized in Figure 3(a).
We compute the max-min values as described in Theorem 6 and present the results in Figure 3(b).
As shown in Figure 3(c), many of the generated pseudo labels within the overlapping region are
misclassified. However, after removing low-confidence predictions, the remaining samples are almost
entirely classified correctly, as illustrated in Figure 3(d). Notably, the separation between the two
clusters becomes significantly more obvious after this filtering step.
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(a) Sample distributions (b) Sample with g values

(c) Value gap = 0.09 (d) Value gap = 2.21

Figure 3: OT score performance on overlapping distributions.

D.2 REAL-WORLD DATASETS

To ensure a fair comparison, we following the training setting of Lee et al. (2022). In our main
experiments, we compare OT score with other confidence scores including Maxprob, Ent, Cossim,
and JMDS. The details for other confidence scores are presented in Appendix B. We compare the
performance of confidence scores on four standard UDA benchmarks: ImageCLEFDA, Office-Home,
and VisDA-2017. All code can be efficiently executed on a single NVIDIA RTX 4070 GPU without
requiring specialized hardware. For ImageCLEFDA, Office-Home datasets, we use ResNet-50
backbone pretrained on the ImageNet as a base network. The source model is trained for 50 epochs.
For VisDA-2017, we use ResNet-101 for GMM pseudo labeling and ResNet-50 for DSAN pseudo
labeling. The source model is obtained by finetuning a pretrained network on the source domain for
10 epochs. We use SGD optimizer with the momentum term set to be 0.9. We set lr=1e-4 for the base
network and lr=1e-3 for the classifier layer. For digit recognition tasks, we use the ResNet-18 network
as the base model. The network is initialized with random weights. We finetune this network on
source domains using lr=1e-4, epochs=50, momentum=0.9, decay=1e-4. For OT score computation,
we fix the entropic regularization parameter ε to be 0.0001.

Pseudo-label generation via DSAN: To obtain pseudo labels, we need to further train the neural
network using the DSAN algorithm with the following settings: number of training epochs = 20,
transfer_loss_weight = 0.5, transfer_loss = LMMD, learning rate = 0.01, weight
decay = 5 × 10−4, momentum = 0.9. lr_scheduler is enabled with lr_gamma = 0.0003,
lr_decay = 0.75. comparison for DSAN generated pseudo labels are provided in Table 5.

We report mean ± standard deviation over three independent runs (random seeds) in Table 6 for
Office-Home and Table 7 for VisDA-2017.
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Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw

OTScore 58.0± 0.6 79.6± 0.1 81.5± 0.1 69.6± 0.4 80.2± 0.8 80.0± 0.2

Method Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

OTScore 68.3± 0.5 57.6± 0.7 82.3± 0.4 73.2± 0.1 61.1± 0.9 84.7± 0.4 73.0± 0.1

Table 6: Accuracy (%) on Office-Home (ResNet-50).

Dataset Mean Accuracy Classwise Mean Accuracy

VisDA-2017 85.0± 0.3 87.8± 0.1

Table 7: Accuracy (%) on VisDA-2017.

Table 5: Evaluation of confidence scores based on AURC (DSAN).

Dataset Task Maxprob Ent Cossim JMDS OT Score

ImageCLEF-DA

C → I 0.0301 0.0318 0.0506 0.0258 0.0240
C → P 0.2024 0.2040 0.1913 0.1391 0.1331
I → C 0.0090 0.0109 0.0084 0.0105 0.0090
I → P 0.1135 0.1120 0.1607 0.1223 0.1119
P → C 0.0102 0.0121 0.0075 0.0096 0.0097
P → I 0.0136 0.0150 0.0186 0.0140 0.0135
Avg. 0.0631 0.0643 0.0729 0.536 0.0502

Office-Home

Ar → Cl 0.4306 0.4284 0.4170 0.4515 0.3403
Ar → Pr 0.2745 0.2738 0.2512 0.2849 0.2133
Ar → Rw 0.1469 0.1493 0.1521 0.1860 0.1157
Cl → Ar 0.2600 0.2631 0.2340 0.3228 0.2097
Cl → Pr 0.1757 0.1777 0.1612 0.2225 0.1503
Cl → Rw 0.1834 0.1848 0.1865 0.2246 0.1493
Pr → Ar 0.2371 0.2381 0.2245 0.2776 0.1984
Pr → Cl 0.3139 0.3105 0.3149 0.3302 0.2711
Pr → Rw 0.0974 0.0992 0.1037 0.1250 0.0817
Rw → Ar 0.1301 0.1318 0.1268 0.1751 0.1023
Rw → Cl 0.2581 0.2555 0.2641 0.2718 0.2112
Rw → Pr 0.0681 0.0684 0.0628 0.1026 0.0561
Avg. 0.2146 0.2150 0.2082 0.2478 0.1749

VisDA-2017 T → V 0.2301 0.2290 0.2289 0.2296 0.1799

E UNBALANCED CLASSES

Theorem 11. With the same notations of 9, suppose µ = p∗µ1 + (1− p∗)µ2 for some p∗ ∈ (0, 1).
If Li ≥ li + rν1

+ rν2
+ rµ1

+ rµ2
then argminp∈[0,1]W1(µ, ν) = p∗, where ν := pν1 + (1− p)ν2

for some p ∈ (0, 1).

Proof. W.L.O.G we assume p∗ = 1
2 . Let T denote an OT map between 1

2ν1 +
1
2ν2 and 1

2µ1 +
1
2µ2.

Suppose ν = ( 12 + δ)ν1 + ( 12 − δ)ν2. Let F1 be the set such that F1 ⊂ supp ν1 and ν1(F1) =
2δ

1+2δ

so that ( 12 + δ)ν1(F
C
1 ) = 1

2 . Let F2 ⊂ suppµ2 be defined as F2 := Tµ
ν (F1). This can be done due
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to Lemma 9. Given Lemma 9, it suffices to show the following inequality:∫
F1

∥Tµ
ν (x)− x∥d((1

2
+ δ)ν1) +

∫
FC

1

∥Tµ
ν (x)− x∥d((1

2
+ δ)ν1) +

∫
supp ν2

∥Tµ
ν (x)− x∥d((1

2
− δ)ν2)

≥W1(
1

2
ν1,

1

2
µ1) +W1(

1

2
ν2,

1

2
µ2).

Denote µ̄2 := (Tµ
ν )#((

1
2 − δ)ν2). We can decompose W1(

1
2ν2,

1
2µ2) = a+ b where a corresponds

to the cost on the source probability mass that forms µ̄2 and b corresponds to the cost on the rest of
source probability mass. We denote the source marginal corresponding to a as 1

2 ν̃2. Then it remains
to show ∫

F1

∥Tµ
ν (x)− x∥d((1

2
+ δ)ν1)− b

≥W1(
1

2
ν1,

1

2
µ1)−

∫
FC

1

∥Tµ
ν (x)− x∥d((1

2
+ δ)ν1)

+ a−
∫
supp ν2

∥Tµ
ν (x)− x∥d((1

2
− δ)ν2)

Note
∫
FC

1
∥Tµ

ν (x) − x∥d(( 12 + δ)ν1) achieves the optimal transport between ( 12 + δ)ν1 restricted

on FC
1 and 1

2µ1. Also,
∫
supp ν2

∥Tµ
ν (x) − x∥d(( 12 − δ)ν2) achieves the optimal transport between

( 12 − δ)ν2 and µ̄2. By triangle inequality properties of W1 distance, it suffices to show

LHS ≥W1(
1

2
ν1, (

1

2
+ δ)ν1|FC

1
) +W1(

1

2
ν̃2, (

1

2
− δ)ν2).

Since

RHS ≤ δrν1
+ δrν2

≤ LHS,

the optimality is proved.

We verify Theorem 11 with synthetic data generated within two circular clusters. We compute
(discrete) OT plans under unbalanced cluster settings; see Figure 4 and Figure 5. In this experiment,
we generate two equally sized clusters for the target samples, while the corresponding source
clusters are assigned proportions of 0.2 and 0.8, respectively. As shown in the results, the optimal
transport cost is minimized when the reweighting factor is correctly set to p = 0.2. This observation
supports our claim that optimizing the reweighting factor can effectively mitigate class imbalance
in optimal transport–based domain adaptation. However, this finding has not yet been validated on
real-world datasets, where the underlying distributions are significantly more complex. We leave this
investigation for future work.

Figure 4: Unbalanced clusters with p=0.5
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Figure 5: Unbalanced clusters
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F THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) only to aid with grammar, wording, and stylistic
polishing of text. All ideas, results, and claims are our own; we manually verified factual statements
and citations. Only non-sensitive draft text was provided to the tool, and all outputs were reviewed
and edited by the authors. Any remaining errors are our responsibility.
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