
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OT SCORE: AN OT BASED CONFIDENCE SCORE FOR SOURCE FREE UNSUPERVISED DOMAIN ADAPTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We address the computational and theoretical limitations of current distributional alignment methods for source-free unsupervised domain adaptation (SFUDA). In particular, we focus on estimating classification performance and confidence in the absence of target labels. Current theoretical frameworks for these methods often yield computationally intractable quantities and fail to adequately reflect the properties of the alignment algorithms employed. To overcome these challenges, we introduce the Optimal Transport (OT) score, a confidence metric derived from a novel theoretical analysis that exploits the flexibility of decision boundaries induced by Semi-Discrete Optimal Transport alignment. The proposed OT score is intuitively interpretable and theoretically rigorous. It provides principled uncertainty estimates for any given set of target pseudo-labels. Experimental results demonstrate that OT score outperforms existing confidence scores. Moreover, it improves SFUDA performance through training-time reweighting and provides a reliable, label-free proxy for model performance.

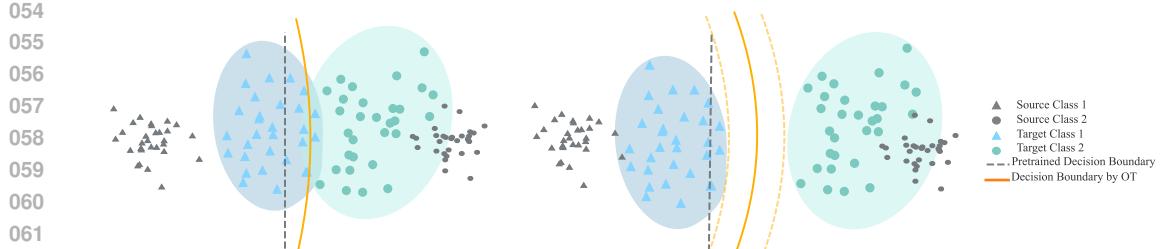
1 INTRODUCTION

In recent years, deep neural networks have achieved remarkable breakthroughs across a wide range of applications. However, if the distribution of the training and test data differs, significant performance degradation occurs, which is known as a domain shift (Tsymbal, 2004), which makes retraining critical for the model to re-gain the generalization ability in new domains.

Unsupervised domain adaptation (UDA) mitigates the domain shift problem where only unlabeled data is accessible in the target domain (Glorot et al., 2011). A key approach for UDA is aligning the distributions of both domains by mapping data to a shared latent feature space. Consequently, a classifier trained on source domain features in this space can generalize well to the target domain. Several existing works (Long et al., 2015; 2017; Damodaran et al., 2018; Courty et al., 2016; Rostami & Galstyan, 2023) exhibit a principled way to transform target distribution to be "closer" to the source distribution so that the classifier learned from the source data can be directly applied to the target domain thus pseudo-labels (or predictions) can be made accordingly.

This leads to the question of whether such transformations from the target to the source distribution can accurately match the corresponding class-conditional distributions. For any given target dataset, it is always possible to align its feature distribution with that of the source domain using a divergence function, regardless of whether classes overlap. However, performing UDA in this way is reasonable only if target features remain well-separated by the decision boundaries induced through alignment in the latent feature space—something that is typically difficult to determine in practice. Moreover, the marginal distribution alignment approach complicates the identification of samples with low-confidence pseudo-labels (i.e., samples close to overlapping regions), potentially causing noisy supervision and thus degrading classification performance. This issue becomes particularly critical when no labeled information for the target data is available. Some existing works (Luo & Ren, 2021; Ge et al., 2023; Le et al., 2021) minimize a class-conditional discrepancy between the class-conditional feature distributions $P_S(Z | Y)$ and $P_T(Z | Y)$. However, using pseudo labels from model predictions to determine the target class-conditional distributions exposes the alignment to noisy supervision—especially early in training.

Under the Optimal Transport (OT) framework, it has been investigated in some theoretical works that the generalization error on the target domain is controlled by both the marginal alignment loss and



054
055
056
057
058
059
060
061
062
063
064 Figure 1: (Left) Overlapping clusters. (Right) Separated clusters with flexible decision boundaries.
065
066

067 the entanglement between the source and target domains. For example, Redko et al. (2017) proves
068 the following:

069 **Theorem 1** (Informal Redko et al. (2017)). *Under certain assumptions, with probability at least
070 $1 - \delta$ for all hypothesis h and $\varsigma' < \sqrt{2}$ the following holds:*

$$072 \quad \epsilon_{\mathcal{T}}(h) \leq \epsilon_{\mathcal{S}}(h) + W_1(\hat{\mu}_{\mathcal{S}}, \hat{\mu}_{\mathcal{T}}) + \sqrt{2 \log\left(\frac{1}{\delta}\right) / \varsigma'} \left(\sqrt{\frac{1}{N_{\mathcal{S}}}} + \sqrt{\frac{1}{N_{\mathcal{T}}}} \right) + \lambda$$

073 where λ is the combined error of the ideal hypothesis h^* that minimizes the combined error of
074 $\epsilon_{\mathcal{S}}(h) + \epsilon_{\mathcal{T}}(h)$.
075

076 A bad pulling strategy on target domain \mathcal{T} might minimize W_1 term to 0 without any guarantee
077 for the λ term in the feature space. Similarly, Koç et al. (2025) also show that, during the optimal
078 transport association process, the source inputs x can be associated to target inputs x' that have
079 different matching labels. Minimizing the marginal Wasserstein distance between such entangled
080 pairs can cause the entanglement term to increase. To address these challenges, we will focus on the
081 following question in this work:
082

083 **Question: What is the condition on the domain shift so that the target distribution can be aligned
084 back to the source while preserving the correct class labels? Additionally, with only potentially
085 noisy target pseudo-labels available, is there a theoretically guaranteed and computable metric
086 to quantify the degree of violation of this condition?**

087 Formally, we seek conditions under which the OT between the marginals is label-preserving—i.e., it
088 decomposes into per-class OT between the class-conditional marginals. We formalize and prove these
089 conditions in Section 3. Guided by our theoretical analysis under the semi-discrete OT framework
090 (Section 3.2), we propose the **OT score**—a confidence metric designed to quantify uncertainty in
091 pseudo-labeled target samples. It measures the degree to which the assigned pseudo-label would
092 violate marginal alignment, thereby serving as a diagnostic of class-conditional alignment. As
093 illustrated in Figure 1, the OT score reflects the flexibility of decision boundaries induced by semi-
094 discrete OT alignment, which enables effective uncertainty estimation in the target domain. This
095 allows the algorithm to abstain from classifying samples with high uncertainty. Compared to fully
096 continuous or fully discrete OT formulations, semi-discrete OT is computationally more efficient,
097 especially in high-dimensional spaces and large-scale datasets. A detailed comparison with existing
098 confidence scores is provided in Appendix A.
099

100 We also propose two applications of OT score. First, within SFUDA it acts as a training-time
101 reweighting signal: less confident pseudo labels are down-weighted, suppressing harmful updates
102 and improving accuracy. Second, it provides a reliable label-free proxy for target performance: the
103 mean OT score serves as a surrogate for target error, enabling model selection without target labels.
104

105 Contributions:

106

- 107 • We provide theoretical justifications about allowed distribution shifts in order to have a
label-preserving OT.

108 • We define a novel confidence score, the OT score, which is theoretically interpretable
 109 and accounts for the geometry induced by OT alignment between the source and target
 110 distributions.
 111 • Experimental results demonstrate that filtering out low-confidence predictions consistently
 112 improves classification accuracy, and that the proposed OT score significantly outperforms
 113 existing confidence metrics across diverse pseudo-labeling strategies.
 114 • We demonstrate two practical uses of the OT score: (i) as a training-time reweighting
 115 signal for SFUDA that down-weights less confident target pseudo-labels to suppress harmful
 116 updates and improve accuracy; and (ii) as a label-free proxy for target performance, which
 117 enables model selection without target labels.

119 **Notation.** Given any probability measure μ and a measurable map T between measurable spaces,
 120 $T : \mathcal{X} \longrightarrow \mathcal{Y}$, we denote $T_\# \mu$ the pushforward measure on \mathcal{Y} which is characterized by $(T_\# \mu)(A) =$
 121 $\mu(T^{-1}(A))$ for measurable set A . Let $\hat{\mu}$ denote the corresponding empirical measure $\frac{1}{N} \sum_{i=1}^N \delta_{x_i}$
 122 where x_i are i.i.d. samples from μ . We also write $x \in \hat{\mu}$ to indicate $x \in \{x_i\}_{i=1}^N$. If not otherwise
 123 specified, $\|\cdot\|$ represents the Euclidean norm.
 124

125 2 OPTIMAL TRANSPORT AND DOMAIN ADAPTATION

128 In this section, we first present the domain adaptation problem. Then we give necessary backgrounds
 129 of optimal transport.

131 2.1 DOMAIN ADAPTATION

133 Let $\Omega \subseteq \mathbb{R}^d$ be the sample space and $\mathcal{P}(\Omega)$ be the set of all probability measures over Ω . In a general
 134 supervised learning paradigm for classification problems, we have a labeling function $f_{\theta^*} : \mathbb{R}^d \rightarrow \mathbb{R}^k$
 135 obtained from a parametric family f_{θ} by training on a set of points $\mathbf{X}^S = \{x_1^S, \dots, x_{N^S}^S\}$ sampled from
 136 a source distribution $P_S \in \mathcal{P}(\Omega)$ and corresponding one-hot encoded labels $\mathbf{Y}^S = \{y_1^S, \dots, y_{N^S}^S\}$.

137 Let $\mathbf{X}^T = \{x_1^T, \dots, x_{N^T}^T\}$ be a dataset sampled from a target distribution $P_T \in \mathcal{P}(\Omega)$ without label
 138 information. The difference between P_S and P_T may lead to a poor performance if we use f_{θ^*} for
 139 the new classification problem. In order to overcome the challenge of distributional shift, a common
 140 way is to decompose a neural network f_{θ} into a feature mapping ϕ_v composed with a classifier h_w
 141 such that $f_{\theta} = h_w \circ \phi_v$, followed by minimizing the distance between $(\phi_{v^*})_\# P_S$ and $(\phi_v)_\# P_T$ so
 142 that the target distribution will be aligned with the source distribution in the feature space. Then
 143 we may classify target data points based on the optimization result in the feature space. Various
 144 choices of divergence objective $D((\phi_{v^*})_\# P_S, (\phi_v)_\# P_T)$ can be utilized. In this work, we focus on
 145 the distributional alignment between $(\phi_{v^*})_\# P_S$ and $(\phi_v)_\# P_T$ using Wasserstein distance.

147 2.2 OPTIMAL TRANSPORT

149 2.2.1 GENERAL THEORY OF OT

150 Given two probability distributions $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$, the Wasserstein- p distance for $p \in [1, +\infty]$ is
 151 defined by

$$153 \quad 154 \quad W_p(\mu, \nu) := \left(\min_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|x - y\|^p d\gamma \right)^{\frac{1}{p}},$$

156 where $\Gamma(\mu, \nu)$ is the collection of all couplings of μ and ν . The optimization problem

$$158 \quad 159 \quad \min_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|x - y\|^p d\gamma \quad (KP)$$

160 is referred as the Kantorovich problem in optimal transport. It is shown by Kantorovich–Rubinstein
 161 Duality theorem that (KP) has a dual form (Santambrogio, 2015):

162 **Theorem 2** (Kantorovich–Rubinstein Duality).

163

$$164 \min_{(KP)} = \sup \left\{ \int_{\mathbb{R}^d} \phi(x) d\mu + \int_{\mathbb{R}^d} \psi(y) d\nu : (\phi, \psi) \in Lip_b(\mathbb{R}^d) \times Lip_b(\mathbb{R}^d), \phi(x) + \psi(y) \leq \|x - y\|^p \right\}.$$

165

166 *In addition, when the supremum in the dual formulation is a maximum, the optimal value is attained*

167 *at a pair (ϕ, ϕ^c) with ϕ, ϕ^c bounded and Lipschitz, where $\phi^c(y) := \inf_{x \in \mathbb{R}^d} \|x - y\|^p - \phi(x)$.*

168 With the dual problem introduced, Brenier (1991) proves Brenier’s theorem, which gives a sufficient

169 condition under which the minimizer of the optimal transport problem is unique and is induced by a

170 map $T = \nabla \phi$ for some convex function ϕ , i.e. the OT map exists.

172 Under mild conditions on μ and ν , Brenier’s theorem is satisfied when $c(x, y) = \|x - y\|_p$ for

173 $p > 1$. Although there is no guarantee about uniqueness of the optimal transport map when $p = 1$,

174 the existence of an optimal transport map can be proved through a secondary variational problem

175 Santambrogio (2015):

176 **Theorem 3** (Existence of optimal transport map when $p = 1$). *Let $O(\mu, \nu)$ be the optimal transport*

177 *plans for the cost $\|x - y\|$ and denote by K_p the functional associating to $\gamma \in \mathcal{P}(\Omega \times \Omega)$, the quantity*

178 $\int \|x - y\|^p d\gamma$. *Under the usual assumption $\mu \ll \mathcal{L}^d$, the secondary variational problem*

179

$$\min \{K_2(\gamma) : \gamma \in O(\mu, \nu)\}$$

180

181 *admits a unique solution $\bar{\gamma}$, which is induced by a transport map T .*

182 2.2.2 SEMI-DISCRETE OPTIMAL TRANSPORT

184 A special case of interest is when $\nu = \sum_{j=1}^m b_j \delta_{y_j}$ is a discrete probability measure. Adapting the

185 duality result to this setting, we have

187

$$W_p^p(\mu, \nu) = \max_{\mathbf{w} \in \mathbb{R}^m} \int_{\mathbb{R}^d} \mathbf{w}^c(x) d\mu + \sum_{j=1}^m w_j b_j,$$

188

189 and in this case, $\mathbf{w}^c(x) := \min_j \|x - y_j\|^p - w_j$.

191 We can define a disjoint decomposition of the whole space using the Laguerre cells associated to the

192 dual weights \mathbf{w} :

193

$$\mathbb{L}_{\mathbf{w}}(y_j) := \left\{ x \in \mathbb{R}^d : \forall j' \neq j, \|x - y_j\|^p - w_j \leq \|x - y_{j'}\|^p - w_{j'} \right\}.$$

194

195 Then

196

$$W_p^p(\mu, \nu) = \max_{\mathbf{w} \in \mathbb{R}^m} \sum_{j=1}^m \int_{\mathbb{L}_{\mathbf{w}}(y_j)} (\|x - y_j\|^p - w_j) d\mu + \langle \mathbf{w}, \mathbf{b} \rangle.$$

197

199 The optimization problem above can be solved by (stochastic) gradient ascent methods since the

200 j -th entry of gradient for the objective function can be computed via $b_j - \int_{\mathbb{L}_{\mathbf{w}}(y_j)} d\mu$. Once the

201 optimal vector \mathbf{w} is computed, the optimal transport map T_{μ}^{ν} simply maps $x \in \mathbb{L}_{\mathbf{w}}(y_j)$ to y_j Peyré

202 et al. (2019). Also, it can be shown such OT map is unique under mild assumptions (Hartmann &

203 Schuhmacher, 2017; Geiß et al., 2013). In the rest of the paper, for any $x \in \text{supp } \mu$ and $y_j \in \text{supp } \nu$,

204 we denote $\tilde{d}_{\mathbf{w}}(x, y_j) := \|x - y_j\|^p - w_j$. Convergence properties of semi-discrete optimal transport

205 have been studied extensively; see, e.g., Genevay et al. (2016) and Peyré et al. (2019) for details.

207 3 THEORETICAL ANALYSIS

208

209 In this section, we present theoretical insights into the use of OT for addressing DA problems.

210 Complete proofs of all theoretical results are provided in Appendix C. For clarity and tractability, we

211 focus on binary classification tasks. An extension to multiclass classification follows by a one-vs-all

212 reduction. As discussed in Section 2.1, our interest lies in neural network–based DA. To this end, we

213 adopt assumptions inspired by Neural Collapse (Kothapalli, 2022), a prevalent phenomenon observed

214 in well-trained neural networks. The extent to which the target feature distribution conforms to the

215 Neural Collapse structure depends on the severity of the distributional shift between the source and
target domains.

216 **Remark 1** (Neural Collapse). *Neural collapse (NC) is a phenomenon observed in well-trained neural*
 217 *networks where the learned features of samples belonging to the same class converge to a single*
 218 *point or form tightly clustered structures in the feature space, while the features of different classes*
 219 *become maximally separated. NC emerges while training modern classification DNNs past zero*
 220 *error to further minimize the loss (Papyan et al., 2020). During NC, the class means of the DNN's*
 221 *last-layer features form a symmetric structure with maximal separation angle, while the features*
 222 *of each individual sample collapse to their class means. This simple structure of the feature layer*
 223 *not only appears beneficial for generalization but also helps in transfer learning and adversarial*
 224 *robustness. There are three main theoretical frameworks proposed to explain the emergence of NC:*
 225 *"Unconstrained Features Model" (Lu & Steinerberger, 2022; Tirer & Bruna, 2022; Ji et al., 2021),*
 226 *"Local Elasticity" (Zhang et al., 2021) and "Neural (Tangent Kernel) Collapse" (Seleznova et al.,*
 227 *2024).*

228 In the following subsection, we focus on the setting where the class-conditional distributions in both
 229 the source and target domains are supported on, or concentrated within, bounded subsets of the feature
 230 space. Stronger NC in the source representation yields smaller cluster radii, thereby strengthening
 231 our results. Under this assumption, we analyze how data clusters are transported by the OT map.

232 **3.1 SUFFICIENT CONDITIONS FOR CORRECT CLASSIFICATION**

233 We begin by presenting a necessary condition on the target data distribution under which correct
 234 classification can be expected after applying optimal transport. The following theorem quantifies
 235 the relationship between the probability of misclassification and the concentration properties of
 236 class-conditional distributions. Intuitively, if each class distributions is concentrated within a bounded
 237 region and these regions are well-separated across classes, classification results after OT map will be
 238 correct with high probability.

239 **Theorem 4.** *Suppose for each of the probability measures μ_i, ν_i there exist disjoint bounded sets*
 240 *E_{μ_i} (or E_{ν_i}) such that $\mu_i(E_{\mu_i}) \geq 1 - \epsilon$ and $(r_{\mu_1} + r_{\nu_1} + l_1) + (r_{\mu_2} + r_{\nu_2} + l_2) < L_1 + L_2$,*
 241 *where r_{μ_i} (or r_{ν_i}) is the diameter of E_{μ_i} (or E_{ν_i}), $l_i = d(E_{\mu_i}, E_{\nu_i})$, $L_1 = d(E_{\mu_1}, E_{\nu_2})$, $L_2 =$*
 242 *$d(E_{\mu_2}, E_{\nu_1})$. Assume further that E_{ν_1} and E_{ν_2} are correctly separated by the trained classifier. Then*
 243 *with probability greater than $1 - 7\epsilon$, target samples will be correctly classified after the optimal*
 244 *transportation T_{ν}^{μ} .*

245 **Remark 2.** *Our concentration assumption applies to various probability distributions including*
 246 *subgaussian distributions.*

247 The proof is based on the intuitive observation from the following lemma:

248 **Lemma 5.** *Suppose we have probability measures μ_i and ν_i with bounded support. Also as-*
 249 *sume $\text{supp } \mu_1$ and $\text{supp } \mu_2$ are disjoint, $\text{supp } \nu_1$ and $\text{supp } \nu_2$ are disjoint. Let r_{μ_i} denote the*
 250 *diameter of the support of μ_i and set $l_i = d(\text{supp } \mu_i, \text{supp } \nu_i)$, $L_1 = d(\text{supp } \mu_1, \text{supp } \nu_2)$,*
 251 *$L_2 = d(\text{supp } \mu_2, \text{supp } \nu_1)$. Suppose $\mu := \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$, $\nu := p\nu_1 + (1-p)\nu_2$ for some $p \in (0, \frac{1}{2}]$. If*
 252 *$(r_{\mu_1} + r_{\nu_1} + l_1) + (r_{\mu_2} + r_{\nu_2} + l_2) < L_1 + L_2$, then $T_{\nu}^{\mu}(\text{supp } \nu_1) \subset \text{supp } \mu_1$ up to a ν negligible*
 253 *set.*

254 **3.2 SEMI-DISCRETE SETTING**

255 Although results in Section 3.1 provide valuable theoretical insights into OT alignment, they remain
 256 difficult to compute or verify in practical settings. In this section, we leverage the semi-discrete OT
 257 formulation to derive an equivalent condition for perfect classification under OT alignment. Building
 258 upon this, we introduce a novel quantity, OT score, that can be utilized in practice to post-check the
 259 performance of the classification from distributional alignment based DA algorithms. Also, we will
 260 show later how the following theorem inspires a way to recognize target data points classified with
 261 low confidence.

262 **Theorem 6.** *Suppose μ and ν are compactly supported. Then $(T_{\nu}^{\hat{\mu}})_{\#} \nu_1 = \hat{\mu}_1$ and $(T_{\nu}^{\hat{\mu}})_{\#} \nu_2 = \hat{\mu}_2$ if*
 263 *and only if*

$$264 \sup_{x \in \nu_1} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}}(x, y) - \tilde{d}_{\mathbf{w}}(x, z) \leq 0 \leq \inf_{x \in \nu_2} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}}(x, y) - \tilde{d}_{\mathbf{w}}(x, z),$$

265 where \tilde{d} is defined as in Section 2.2.2

270

Algorithm 1 OT score

With μ being the source measure and ν being the target measure, we define a new function $g(x) := \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}(x, y) - \tilde{d}(x, z)$. Hence, the g value gap $\inf_{x \in \nu_2} g(x) - \sup_{x \in \nu_1} g(x)$ reflects the flexibility of a classification boundary induced by semi-discrete OT and a larger g value gap implies better classification performance. See Figure 1 for a visual illustration.

In practice, this g value gap can be used as a post-check tool once target pseudo labels have been assigned by any algorithm. We can compute the gap $\inf_{x \in \nu_1} g(x) - \sup_{x \in \nu_2} g(x)$ based on pseudo-labeled partition of the target distribution ν_1 and ν_2 . In addition to global assessment, the individual $g(x)$ values can also serve as confidence indicators. Specifically, for target samples pseudo-labeled as class ν_2 , larger $g(x)$ values indicate higher classification confidence; conversely, for samples labeled as class ν_1 , smaller $g(x)$ values indicate higher confidence.

Remark 3. Although a similar version of Theorem 6 can be derived in the discrete OT setting using analogous techniques, we choose to adopt the semi-discrete OT formulation for computing the OT score in our work, due to the following reasons:

(1) **Efficient incremental optimization:** Semi-discrete OT can be updated incrementally with SGD instead of being solved from scratch. As target pseudo-labels evolve, we reuse the previous solution as initialization and perform a few mini-batch SGD updates to reflect the new assignments.

311 (2) **Handling ambiguity in low-confidence filtering:** In the discrete case, there exists ambiguity
 312 in determining which points should be eliminated as low-confidence samples—whether to remove
 313 points with split weights across transport plans, or those with only small transport margins. The
 314 semi-discrete formulation mitigates such ambiguity by providing more stable and geometrically
 315 meaningful transport behavior.

317 The following corollary might be helpful in some computation scenarios: it enables computing the
 318 semi-discrete OT for each component separately, thereby reducing the dimension of the dual weights.

Corollary 7. Under assumptions of 6 and suppose \mathbf{m} and \mathbf{l} are the weight vectors associated with $T_{\nu_1}^{\hat{\mu}_1}$ and $T_{\nu_2}^{\hat{\mu}_2}$, respectively. Then $(T_{\nu_1}^{\hat{\mu}})_{\#}\nu_1 = \hat{\mu}_1$ and $(T_{\nu_2}^{\hat{\mu}})_{\#}\nu_2 = \hat{\mu}_2$ if and only if

$$\sup_{x \in \mathcal{X}} \max_{z \in \hat{\mathcal{U}}_0} \min_{y \in \hat{\mathcal{U}}_1} \tilde{d}_{\mathbf{m}}(x, y) - \tilde{d}_{\mathbf{l}}(x, z) \leq \inf_{x \in \mathcal{X}} \max_{z \in \hat{\mathcal{U}}_0} \min_{y \in \hat{\mathcal{U}}_1} \tilde{d}_{\mathbf{m}}(x, y) - \tilde{d}_{\mathbf{l}}(x, z).$$

324 4 OT SCORE COMPUTATION

326 In this section, we extend the definition of OT score to multiclass setting and present the algorithm
 327 used for computation. Specifically, we model the source distribution in the feature space as a discrete
 328 measure and treat the target data as samples drawn from a continuous measure.

329 **Definition 1.** Suppose the source data (or features) \mathbf{X}^S consists of c classes. For each target sample
 330 x with pseudo label i and any class label j , we define the binary OT score as

$$332 \quad g_j(x) := \max_{y \in \mathbf{X}^{S_i}} \min_{z \in \mathbf{X}^{S_j}} \tilde{d}(x, z) - \tilde{d}(x, y),$$

334 where $\tilde{d}(\cdot, \cdot)$ requires computing the semi-discrete OT. The OT score is defined as

$$336 \quad g(x) := \min_j g_j(x).$$

338 We summarize our OT score computation in Algorithm 1. We represent the source distribution by
 339 class-wise mean features. Accordingly, the definition of g_j simplifies to $g_j(x) = \tilde{d}(x, \mu_j) - \tilde{d}(x, \mu_i)$,
 340 where μ_i and μ_j are the mean features of classes i and j , respectively. Under this setting, we show
 341 that classification accuracy increases as samples with low OT scores are filtered out.

342 **Theorem 8.** Let ν_1, ν_2 be the continuous probability measures with means m_1 and m_2 , respectively
 343 and $\hat{\mu}_i$ consists of singletons y_i . Denote $\nu := \frac{1}{2}\nu_1 + \frac{1}{2}\nu_2$ and $\hat{\mu} := \frac{1}{2}\hat{\mu}_1 + \frac{1}{2}\hat{\mu}_2$. Suppose $\nu_i(|X_i -$
 344 $m_i| \geq t) \leq 2 \exp\left(-\frac{t^2}{2\sigma^2}\right)$ and $\|m_1 - y_1\| + \|m_2 - y_2\| < \|m_1 - y_2\| + \|m_2 - y_1\|$, then
 345 $P\left(T_{\nu}^{\hat{\mu}}(X_i) \neq Y_i | g(X_i) > g\right) \leq 2 \exp\left(-\frac{\min_{i=1,2} \text{dist}(m_i, \mathcal{S})^2}{2\sigma^2}\right)$, where

$$348 \quad (1) \quad \mathcal{S} := \left\{ x : \|x - y_1\| - (w^* + g) = \|x - y_2\| \right\}$$

$$350 \quad (2) \quad d := \|y_2 - y_1\|, \quad e := \frac{y_2 - y_1}{d}, \quad m = \alpha e + u, \quad u \perp e \text{ is the orthogonal decomposition of } m$$

$$353 \quad (3) \quad \text{dist}(m, \mathcal{S}) = \min_{r \geq 0} \sqrt{(t(r) - \alpha)^2 + (r - \rho)^2} \text{ where } t(r) \text{ is defined through}$$

$$355 \quad \sqrt{t^2 + r^2} = \sqrt{(t - d)^2 + r^2} + (w^* + g), \quad r \geq 0.$$

357 5 APPLICATIONS AND EMPIRICAL EVALUATION

359 In this section, we present: (i) an Area Under the Risk–Coverage Curve (AURC) evaluation across
 360 confidence scores (Section 5.1); (ii) an SFUDA application using the OT score for training-time
 361 reweighting to improve accuracy (Section 5.2); and (iii) a label-free model-selection analysis showing
 362 that the mean OT score on the target set correlates with final accuracy (Section 5.3). Additional
 363 details and results are provided in Appendix D.

365 5.1 AURC COMPARISONS

367 To demonstrate the effectiveness of the proposed OT score, we compare it against several widely-used
 368 confidence estimation methods, including Maxprob, Entropy (Ent), and JMDS. The evaluation is
 369 conducted on four standard UDA benchmarks: Digits, Office-Home, ImageCLEF-DA, and VisDA-17.
 370 We compute confidence scores in the feature space extracted by the last layer of our neural network.

371 For evaluation, we adopt the Area Under the Risk-Coverage Curve (AURC) proposed by Geifman
 372 et al. (2018); Ding et al. (2020) and subsequently employed in Lee et al. (2022). Specifically,
 373 after obtaining the high-confidence subset $X_h^T := \{x_i^T \mid s(x_i^T, \hat{y}_i^T) > h\}$, where h is a predefined
 374 confidence threshold, the risk is computed as the average empirical loss over X_h^T , and the coverage
 375 corresponds to $|X_h^T| / |X^T|$. A lower AURC value indicates higher confidence reliability, as it
 376 implies a lower prediction risk at a given coverage level. Notably, when the 0/1 loss is applied, a high
 377 AURC reflects a high error rate among pseudo-labels, thus indicating poor correctness and calibration
 of the confidence scores.

Table 1: Evaluation of confidence scores based on AURC.

Dataset	Task	Maxprob	Ent	Cossim	JMDS	OT Score
Office-Home	Ar → Cl	0.3485	0.3592	0.3013	0.2885	0.2623
	Ar → Pr	0.1697	0.1789	0.1297	0.1237	0.1208
	Ar → Rw	0.1032	0.1133	0.0897	0.0797	0.0770
	Cl → Ar	0.2686	0.2849	0.2045	0.2362	0.2020
	Cl → Pr	0.1916	0.2027	0.1182	0.1483	0.1424
	Cl → Rw	0.1703	0.1837	0.1180	0.1275	0.1179
	Pr → Ar	0.2629	0.2753	0.1977	0.2123	0.2063
	Pr → Cl	0.3910	0.4052	0.3189	0.3193	0.3249
	Pr → Rw	0.0997	0.1085	0.0757	0.0786	0.0741
	Rw → Ar	0.1516	0.1621	0.1315	0.1369	0.1167
	Rw → Cl	0.3339	0.3463	0.2873	0.2664	0.2539
	Rw → Pr	0.0731	0.0796	0.0639	0.0737	0.0557
VisDA-2017	Avg.	0.2137	0.2250	0.1697	0.1743	0.1628
	T → V	0.3071	0.3203	0.2780	0.2021	0.1704
ImageCLEF-DA	C → I	0.0515	0.0570	0.0181	0.0325	0.0252
	C → P	0.1902	0.1991	0.1579	0.1459	0.1143
	I → C	0.0099	0.0131	0.0038	0.0055	0.0036
	I → P	0.1198	0.1221	0.1280	0.1170	0.1000
	P → C	0.0260	0.0303	0.0062	0.0216	0.0092
	P → I	0.0347	0.0382	0.0177	0.0276	0.0186
	Avg.	0.0720	0.0766	0.0553	0.0583	0.0452

Maxprob and Ent use labels assigned by the pretrained source classifier while Cossim, JMDS, OT score receive pseudo labels from a Gaussian Mixture Model (GMM), following the same setup of Lee et al. (2022).

To further assess the robustness of the proposed OT score under varying pseudo-label quality, we consider another case where the pseudo labels are generated by the DSAN algorithm (Zhu et al., 2020). Under this setting, only Cossim and OT score are capable of incorporating externally generated high-quality pseudo labels. Table 5 in Appendix D shows the significant benefits of leveraging high-quality pseudo labels. The OT score achieves the lowest AURC value in most adaptation tasks across the considered scenarios.

5.2 OT SCORE REWEIGHTING

We integrate the OT score into CoWA-JMDS (Lee et al., 2022) as a per-sample weight for pseudo-labeled target instances. For each target sample x_i , we set

$$w_i = 2 \cdot \text{OT}(x_i) \cdot \text{JMDS}(x_i),$$

where $\text{JMDS}(x_i)$ is computed online from features during training, while $\text{OT}(x_i)$ is computed from features extracted by the *pre-adaptation* model, thereby decoupling the confidence signal from the evolving target representation. Relying solely on the same training-time features that are continually updated by pseudo-labels risks self-reinforcement (confirmation bias): incorrect pseudo-labels \rightarrow representation drift \rightarrow inflated “confidence” \rightarrow further amplification. We mitigate this by computing the OT score from pre-adaptation features, which constrains the pseudo-label feedback loop and reduces confirmation bias. Here, the OT score is normalized to $[0, 1]$; the prefactor 2 offsets the dynamic-range compression induced by the product of two numbers in $[0, 1]$.

This integration yields higher accuracy than the original CoWA-JMDS. We evaluate on *Office-Home* (Tables 2) and *VisDA-2017* (Tables 3) in the SFUDA setting, reporting target-domain accuracy averaged over three seeds (see Appendix D). Training settings (backbone, optimizer, pseudo-labeling) follow Lee et al. (2022); the only change is the per-sample weight w_i .

5.3 MODEL COMPARISON

The OT score also serves as a *label-free* proxy for adaptation performance. This is particularly valuable when target labels are unavailable, as training accuracy on noisy pseudo-labels can be a misleading indicator (Zhang et al., 2016). At the end of adaptation training, we compute the mean

Method	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr	Avg
BAIT (Yang et al., 2020)	57.4	77.5	82.4	68.0	77.2	75.1	67.1	55.5	81.9	73.9	59.5	84.2	71.6
SHOT (Liang et al., 2020)	57.1	78.1	81.5	68.0	78.2	78.1	67.4	54.9	82.2	73.3	58.8	84.3	71.8
NRC (Yang et al., 2021)	57.7	80.3	82.0	68.1	79.8	78.6	65.3	56.4	83.0	71.0	58.6	85.6	72.2
ELR (Yi et al., 2023)	58.4	78.7	81.5	69.2	79.5	79.3	66.3	58.0	82.6	73.4	59.8	85.1	72.6
CPD (Zhou et al., 2024)	59.1	79.0	82.4	68.5	79.7	79.5	67.9	57.9	82.8	73.8	61.2	84.6	73.0
CoWA (Lee et al., 2022)	56.9	78.4	81.0	69.1	80.0	79.9	67.7	57.2	82.4	72.8	60.5	84.5	72.5
OTScore	58.0	79.6	81.5	69.6	80.2	80.0	68.3	57.6	82.3	73.2	61.1	84.7	73.0

Table 2: Accuracy (%) on Office-Home (ResNet-50).

Method	plane	bycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Avg
SFIT (Hou & Zheng, 2021)	94.3	79.0	84.9	63.6	92.6	92.0	88.4	79.1	92.2	79.8	87.6	43.0	81.4
SHOT (Liang et al., 2020)	94.3	88.5	80.1	57.3	93.1	94.9	80.7	80.3	91.5	89.1	86.3	58.2	82.9
NRC (Yang et al., 2021)	96.8	91.3	82.4	62.4	96.2	95.9	86.1	80.6	94.8	94.1	90.4	59.7	85.9
AdaCon (Chen et al., 2022)	97.0	84.7	84.0	77.3	96.7	93.8	91.9	84.8	94.3	93.1	94.1	49.7	86.8
ELR (Yi et al., 2023)	97.3	89.1	89.8	79.2	96.9	97.5	92.2	82.5	95.8	94.5	87.3	34.5	86.4
CPD (Zhou et al., 2024)	96.7	88.5	79.6	69.0	95.9	96.3	87.3	83.3	94.4	92.9	87.0	58.7	85.8
CoWA (Lee et al., 2022)	96.2	89.7	83.9	73.8	96.4	97.4	89.3	86.8	94.6	92.1	88.7	53.8	86.9
OTScore	95.6	89.0	82.8	78.3	96.3	98.0	91.2	86.8	95.5	94.7	89.9	55.7	87.8

Table 3: Accuracy (%) on VisDA-2017 (ResNet-101).

OT score over the target set predictions. As shown in Fig. 2, for a fixed source domain, the mean OT score provides an ordinal proxy of post-adaptation accuracy across targets: higher mean OT corresponds to higher accuracy. Moreover, comparing *MNIST*→*USPS* with *FLIP-USPS*→*USPS* shows that a source model obtained via pixel-value inversion (*FLIP-USPS*) yields substantially lower SFUDA performance than using *MNIST* as the source as shown in Table 4.

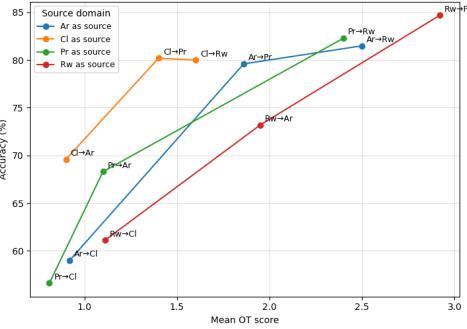


Figure 2: Mean OT Score vs. accuracy on Office-Home. Lines connect targets sharing the same source. Points denote individual target domains.

Table 4: Accuracy (%) on *USPS* with different sources.

Source	Mean Score	Accuracy (%)
<i>MNIST</i>	4.02	94.7
<i>FLIP-USPS</i>	0.55	47.8

6 CONCLUSION AND FUTURE WORK

We investigate theoretical guarantees about allowed distribution shifts in order to have a label-preserving OT. Using semi-discrete OT, we derive the OT score which considers the decision boundary induced by the OT alignment. The definition of OT score can be easily extended to other cost functions other than the standard Euclidean norm. Additionally, confidence scores are helpful for training-time sample reweighting and model comparison.

Currently, we address class imbalance in the OT-score computation by weighting the source class mean features with class proportions estimated from pseudo labels. However, when pseudo labels are unreliable, these estimates can be biased. Under the assumptions in Section E, we show that the OT objective is minimized when the source and target class proportions coincide (see Theorem 11). A natural next step is to model and propagate class-proportion uncertainty into the confidence score.

486 7 REPRODUCIBILITY STATEMENT 487

488 We have taken several steps to facilitate reproduction of our results. An anonymous code package
489 is provided in the supplementary materials. Experimental settings—datasets, preprocessing, model
490 architectures, hyperparameters and training schedules are summarized in Section 5 and Appendix D.
491 Theoretical results are stated with explicit assumptions and accompanied by complete proofs in
492 Section 3 (see also Appendix C).

494 REFERENCES 495

496 Shai Ben-David and Ruth Urner. On the hardness of domain adaptation and the utility of unlabeled
497 target samples. In *International Conference on Algorithmic Learning Theory*, pp. 139–153.
498 Springer, 2012.

499 Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. *Communi-*
500 *cations on pure and applied mathematics*, 44(4):375–417, 1991.

502 Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
503 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
504 295–305, 2022.

505 Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
506 adaptation. *IEEE transactions on pattern analysis and machine intelligence*, 39(9):1853–1865,
507 2016.

509 Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and Nicolas
510 Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.
511 In *Proceedings of the European conference on computer vision (ECCV)*, pp. 447–463, 2018.

513 Yukun Ding, Jinglan Liu, Jinjun Xiong, and Yiyu Shi. Revisiting the evaluation of uncertainty
514 estimation and its application to explore model complexity-uncertainty trade-off. In *Proceedings*
515 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp. 4–5,
516 2020.

517 Pengfei Ge, Chuan-Xian Ren, Xiao-Lin Xu, and Hong Yan. Unsupervised domain adaptation via
518 deep conditional adaptation network. *Pattern Recognition*, 134:109088, 2023.

520 Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. *Advances in*
521 *neural information processing systems*, 30, 2017.

522 Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. Bias-reduced uncertainty estimation for deep neural
523 classifiers. *arXiv preprint arXiv:1805.08206*, 2018.

525 Darius Geiß, Rolf Klein, Rainer Penninger, and Günter Rote. Optimally solving a transportation
526 problem using voronoi diagrams. *Computational Geometry*, 46(8):1009–1016, 2013.

527 Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-
528 scale optimal transport. *Advances in neural information processing systems*, 29, 2016.

530 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
531 classification: A deep learning approach. In *Proceedings of the 28th international conference on*
532 *machine learning (ICML-11)*, pp. 513–520, 2011.

533 Valentin Hartmann and Dominic Schuhmacher. Semi-discrete optimal transport—the case $p=1$. *arXiv*
534 *preprint arXiv:1706.07650*, 2017.

536 Yunzhong Hou and Liang Zheng. Visualizing adapted knowledge in domain transfer. In *Proceedings*
537 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 13824–13833, 2021.

538 Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J Su. An unconstrained layer-peeled
539 perspective on neural collapse. *arXiv preprint arXiv:2110.02796*, 2021.

540 Nazmul Karim, Niluthpol Chowdhury Mithun, Abhinav Rajvanshi, Han-pang Chiu, Supun Saman
541 rasekera, and Nazanin Rahnavard. C-sfda: A curriculum learning aided self-training framework for
542 efficient source free domain adaptation. In *Proceedings of the IEEE/CVF conference on computer*
543 *vision and pattern recognition*, pp. 24120–24131, 2023.

544 Okan Koç, Alexander Soen, Chao-Kai Chiang, and Masashi Sugiyama. Domain adaptation and
545 entanglement: an optimal transport perspective. *arXiv preprint arXiv:2503.08155*, 2025.

546 Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization. *arXiv*
547 *preprint arXiv:2206.04041*, 2022.

548 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
549 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
550 30, 2017.

551 Trung Le, Tuan Nguyen, Nhat Ho, Hung Bui, and Dinh Phung. Lamda: Label matching deep domain
552 adaptation. In *International Conference on Machine Learning*, pp. 6043–6054. PMLR, 2021.

553 Jonghyun Lee, Dahuin Jung, Junho Yim, and Sungroh Yoon. Confidence score for source-free
554 unsupervised domain adaptation. In *International conference on machine learning*, pp. 12365–
555 12377. PMLR, 2022.

556 Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
557 hypothesis transfer for unsupervised domain adaptation. In *International conference on machine*
558 *learning*, pp. 6028–6039. PMLR, 2020.

559 Mattia Litrico, Alessio Del Bue, and Pietro Morerio. Guiding pseudo-labels with uncertainty
560 estimation for source-free unsupervised domain adaptation. In *Proceedings of the IEEE/CVF*
561 *Conference on Computer Vision and Pattern Recognition*, pp. 7640–7650, 2023.

562 Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
563 deep adaptation networks. In *International conference on machine learning*, pp. 97–105. PMLR,
564 2015.

565 Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint
566 adaptation networks. In *International conference on machine learning*, pp. 2208–2217. PMLR,
567 2017.

568 Jianfeng Lu and Stefan Steinerberger. Neural collapse under cross-entropy loss. *Applied and*
569 *Computational Harmonic Analysis*, 59:224–241, 2022.

570 You-Wei Luo and Chuan-Xian Ren. Conditional bures metric for domain adaptation. In *Proceedings*
571 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 13989–13998, 2021.

572 Amit Mandelbaum and Daphna Weinshall. Distance-based confidence score for neural network
573 classifiers. *arXiv preprint arXiv:1709.09844*, 2017.

574 Tanya Nair, Doina Precup, Douglas L Arnold, and Tal Arbel. Exploring uncertainty measures in deep
575 networks for multiple sclerosis lesion detection and segmentation. *Medical image analysis*, 59:
576 101557, 2020.

577 Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
578 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):
579 24652–24663, 2020.

580 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
581 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

582 Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation
583 with optimal transport. In *Machine Learning and Knowledge Discovery in Databases: European*
584 *Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part*
585 *II 10*, pp. 737–753. Springer, 2017.

594 Ievgen Redko, Amaury Habrard, and Marc Sebban. On the analysis of adaptability in multi-source
595 domain adaptation. *Machine Learning*, 108(8):1635–1652, 2019.
596

597 Mohammad Rostami and Aram Galstyan. Overcoming concept shift in domain-aware settings
598 through consolidated internal distributions. In *Proceedings of the AAAI conference on artificial*
599 *intelligence*, volume 37, pp. 9623–9631, 2023.

600 Filippo Santambrogio. Optimal transport for applied mathematicians. *Birkhäuser, NY*, 55(58-63):94,
601 2015.

602

603 Mariia Seleznova, Dana Weitzner, Raja Giryes, Gitta Kutyniok, and Hung-Hsu Chou. Neural (tangent
604 kernel) collapse. *Advances in Neural Information Processing Systems*, 36, 2024.

605 Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural collapse.
606 In *International Conference on Machine Learning*, pp. 21478–21505. PMLR, 2022.

607

608 Alexey Tsymbal. The problem of concept drift: definitions and related work. *Computer Science*
609 *Department, Trinity College Dublin*, 106, 2004.

610 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2009.

611

612 Shiqi Yang, Yaxing Wang, Joost Van De Weijer, Luis Herranz, and Shangling Jui. Unsupervised
613 domain adaptation without source data by casting a bait. *arXiv preprint arXiv:2010.12427*, 1(2):5,
614 2020.

615 Shiqi Yang, Joost Van de Weijer, Luis Herranz, Shangling Jui, et al. Exploiting the intrinsic
616 neighborhood structure for source-free domain adaptation. *Advances in neural information*
617 *processing systems*, 34:29393–29405, 2021.

618

619 Li Yi, Gezheng Xu, Pengcheng Xu, Jiaqi Li, Ruizhi Pu, Charles Ling, A Ian McLeod, and Boyu
620 Wang. When source-free domain adaptation meets learning with noisy labels. *arXiv preprint*
621 *arXiv:2301.13381*, 2023.

622

623 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
624 deep learning requires rethinking generalization. *arXiv preprint arXiv:1611.03530*, 2016.

625

626 Jiayao Zhang, Hua Wang, and Weijie Su. Imitating deep learning dynamics via locally elastic
627 stochastic differential equations. *Advances in Neural Information Processing Systems*, 34:6392–
6403, 2021.

628

629 Lihua Zhou, Nianxin Li, Mao Ye, Xiatian Zhu, and Song Tang. Source-free domain adaptation with
630 class prototype discovery. *Pattern recognition*, 145:109974, 2024.

631

632 Yongchun Zhu, Fuzhen Zhuang, Jindong Wang, Guolin Ke, Jingwu Chen, Jiang Bian, Hui Xiong,
633 and Qing He. Deep subdomain adaptation network for image classification. *IEEE transactions on*
634 *neural networks and learning systems*, 32(4):1713–1722, 2020.

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A RELATED WORKS 649

650 **Theory about DA:** Several theoretical works have investigated the learnability and generalization
651 guarantees of domain adaptation (DA). Specifically, Ben-David & Urner (2012) analyzes the DA
652 learnability problem and sample complexity under the standard VC-dimension framework, and
653 identifies a setting in which no algorithm can successfully solve the DA problem. In a related
654 direction, Redko et al. (2019) provides a theoretical analysis about the existence of a hypothesis
655 that performs well across both source and target domains, and further establishes finite-sample
656 approximation properties of the λ term. Le et al. (2021) alleviates the label mismatching problem by
657 searching for a transformation T that satisfies the following conditions: (1) $T \# \mu_S = \mu_T$, and (2) T
658 preserves the labels.

659 **Confidence Scores:** Uncertainty estimation and confidence score have been prevalently employed in
660 machine learning to improve model robustness. In particular, ordinal ranking techniques have been
661 commonly used for selective classification (Lakshminarayanan et al. (2017); Geifman & El-Yaniv
662 (2017); Mandelbaum & Weinshall (2017); Nair et al. (2020)), where the goal is to prioritize or filter
663 samples based on their confidence scores in order to exclude low-confidence samples during training.
664 Karim et al. (2023) select reliable pseudo-labels by thresholding the maximum softmax probability of
665 the teacher’s augmentation-averaged prediction. Litrico et al. (2023) reweight the classification loss by
666 entropy, assigning higher weights to low-entropy (more confident) samples. Lee et al. (2022) propose
667 the JMDS score to effectively identify low-confidence samples, thereby enhancing the reliability of
668 the DA process. However, most existing confidence scores rely primarily on cluster-level information
669 in the feature space, without explicitly modeling the geometric relationship between domains. In
670 contrast, our proposed OT score take into account the geometry induced by the OT map, establishing
671 a stronger connection between the source and target domains when computing confidence scores.

672 673 B CONFIDENCE SCORES 674

675 We provide details of the confidence scores used for comparison. Let x_i^T denote the i -th target sample,
676 and let p_S represent the class probability predicted by the pretrained source model. Here, K is the
677 total number of classes, and $C_{\hat{y}_i^T}$ denotes the center of the cluster corresponding to the predicted
678 label \hat{y}_i^T for x_i^T .

$$\begin{aligned} 679 \text{Maxprob} (x_i^T) &= \max_c p_S (x_i^T)_c, \\ 680 \text{Ent} (x_i^T) &= 1 + \frac{\sum_{c=1}^K p_S (x_i^T)_c \log p_S (x_i^T)_c}{\log K}, \\ 681 \text{Cossim} (x_i^T) &= \frac{1}{2} \left(1 + \frac{\langle x_i^T, C_{\hat{y}_i^T} \rangle}{\|x_i^T\| \|C_{\hat{y}_i^T}\|} \right). \end{aligned}$$

682 JMDS score is computed by $\text{JMDS} (x_i^T) = \text{LPG} (x_i^T) \cdot \text{MPPL} (x_i^T)$. LPG is the Log-Probability
683 Gap computed from log data-structure-wise probability $\log p_{\text{data}} (x_i^T)$ using GMM on the target
684 feature space. MPPL provides high scores for samples whose GMM pseudo-label is the same based
685 on $p_S (x_i^T)$ and $p_{\text{data}} (x_i^T)$. Details about JMDS score can be found in Lee et al. (2022).

686 C PROOFS 687

688 *Proof of Theorem 4.* Due to the concentration assumptions on μ and ν , we can pick sets E_{μ_i} and
689 E_{ν_i} such that $\mu_1(E_{\mu_1}) = \mu_2(E_{\mu_2}) \geq 1 - \epsilon$. So $\frac{1}{2} + \frac{1}{2}\epsilon \geq \mu(E_{\mu_i}) \geq \frac{1}{2} - \frac{1}{2}\epsilon$. The same holds for
690 $\nu(E_{\nu_i})$.

702 Consider $F_i = (T_\nu^\mu)^{-1}(E_{\mu_i})$, we have $\nu(F_i) = \mu(E_{\mu_i}) \geq \frac{1}{2} - \frac{1}{2}\epsilon$ as well. Let $F = F_1 \cup F_2$. So
 703 $E_{\nu_i} \cap F$ is a bounded set with
 704

$$\frac{1}{2} + \frac{1}{2}\epsilon \geq \nu(E_{\nu_i} \cap F) = \nu(E_{\nu_i}) - \nu(E_{\nu_i} \cap F^c) \quad (1)$$

$$\geq \frac{1}{2} - \frac{1}{2}\epsilon - \nu(F^c) \quad (2)$$

$$\geq \frac{1}{2} - \frac{1}{2}\epsilon - \epsilon = \frac{1}{2} - \frac{3}{2}\epsilon \quad (3)$$

711 Without loss of generality, we assume $\nu(E_{\nu_1} \cap F) \geq \nu(E_{\nu_2} \cap F)$. Since $\nu \ll \mathcal{L}$, we can pick $R > 0$
 712 such that $\nu(E_{\nu_1} \cap F \cap B_R) = \nu(E_{\nu_2} \cap F)$.

713 Now consider the optimal transport map T_ν^μ restricted on $(E_{\nu_1} \cap F \cap B_R) \cup (E_{\nu_2} \cap F)$. By (Villani
 714 et al., 2009, Theorem 4.6), this restricted map is an optimal transport map between the marginal
 715 measures.

716 Since $\mu(T_\nu^\mu(E_{\nu_1} \cap F \cap B_R) \cup T_\nu^\mu(E_{\nu_2} \cap F)) = \nu((E_{\nu_1} \cap F \cap B_R) \cup (E_{\nu_2} \cap F)) \geq 1 - 3\epsilon$, we
 717 get an estimate $\mu((T_\nu^\mu(E_{\nu_1} \cap F \cap B_R) \cup T_\nu^\mu(E_{\nu_2} \cap F)) \cap E_{\mu_i}) \geq (1 - 3\epsilon) - (\frac{1}{2} + \frac{1}{2}\epsilon) = \frac{1}{2} - \frac{7}{2}\epsilon$.
 718 Therefore, we can use Lemma 9 to conclude that with probability greater than $1 - 7\epsilon$, target samples
 719 will be correctly classified after optimal transportation.

720 \square

721 **Lemma 9.** Suppose we have probability measures μ_i and ν_i with bounded support. Also as-
 722 sume that $\text{supp } \mu_1$ and $\text{supp } \mu_2$ are disjoint, $\text{supp } \nu_1$ and $\text{supp } \nu_2$ are disjoint. Let r_{μ_i} denote
 723 the diameter of the support of μ_i and set $l_i = d(\text{supp } \mu_i, \text{supp } \nu_i)$, $L_1 = d(\text{supp } \mu_1, \text{supp } \nu_2)$,
 724 $L_2 = d(\text{supp } \mu_2, \text{supp } \nu_1)$. Suppose $\mu := \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$, $\nu := p\nu_1 + (1-p)\nu_2$ for some $p \in (0, \frac{1}{2}]$. If
 725 $(r_{\mu_1} + r_{\nu_1} + l_1) + (r_{\mu_2} + r_{\nu_2} + l_2) < L_1 + L_2$, then $T_\nu^\mu(\text{supp } \nu_1) \subset \text{supp } \mu_1$ up to a negligible set.

726 \square

727 *Proof of Lemma 9.* Suppose there exists a set $A \subset \text{supp } \nu_1$ with $\nu(A) = \delta > 0$ and $T_\nu^\mu(A) \subset$
 728 $\text{supp } \mu_2$. Then there must be a set $B \subset \text{supp } \nu_2$ with $\nu(B) \geq \delta + 1 - p - \frac{1}{2} = \frac{1}{2} + \delta - p$ and
 729 $T_\nu^\mu(B) \subset \text{supp } \mu_1$. Since $\nu_i \ll \mathcal{L}$, we can pick $B' \subset B$ such that $\nu(B') = \delta$. Then for any
 730 measurable \tilde{T} such that $\tilde{T}(A) = T_\nu^\mu(B')$ and $\tilde{T}(B') = T_\nu^\mu(A)$,

$$\int_{A \cup B'} \|\tilde{T}(x) - x\| dx \leq \delta(r_{\mu_1} + r_{\nu_1} + l_1) + \delta(r_{\mu_2} + r_{\nu_2} + l_2) < \delta(L_1 + L_2) \leq \int_{A \cup B'} \|T_\nu^\mu(x) - x\| dx,$$

731 which contradicts the optimality of T_ν^μ .

732 \square

733 *Proof of Theorem 6.* Let \mathbf{w} be any weight vector associated with $T_{\bar{\nu}}^{\hat{\mu}}$. We start with the observation
 734 that $(T_{\bar{\nu}}^{\hat{\mu}})_{\#}\bar{\nu}_1 = \hat{\mu}_1$ and $(T_{\bar{\nu}}^{\hat{\mu}})_{\#}\bar{\nu}_2 = \hat{\mu}_2$ is equivalent to the following two conditions:

735 (1) For $\forall x \in \bar{\nu}_1$, $\tilde{d}_{\mathbf{w}}(x, \hat{\mu}_1) \leq \tilde{d}_{\mathbf{w}}(x, \hat{\mu}_2)$.

736 (2) And for $\forall x \in \bar{\nu}_2$, $\tilde{d}_{\mathbf{w}}(x, \hat{\mu}_2) \leq \tilde{d}_{\mathbf{w}}(x, \hat{\mu}_1)$.

737 (1) requires any point from $\bar{\nu}_1$ to be assigned to some point in $\hat{\mu}_1$ and (2) requires any point from $\bar{\nu}_2$
 738 to be assigned to some point in $\hat{\mu}_2$, i.e.

$$\sup_{x \in \bar{\nu}_1} \tilde{d}_{\mathbf{w}}(x, \hat{\mu}_1) - \tilde{d}_{\mathbf{w}}(x, \hat{\mu}_2) \leq 0 \leq \inf_{x \in \bar{\nu}_2} \tilde{d}_{\mathbf{w}}(x, \hat{\mu}_1) - \tilde{d}_{\mathbf{w}}(x, \hat{\mu}_2). \quad (4)$$

739 We rewrite 4 by unwarpping the definition of \tilde{d} to get

$$\sup_{x \in \bar{\nu}_1} \left(\min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}}(x, y) \right) - \left(\min_{z \in \hat{\mu}_2} \tilde{d}_{\mathbf{w}}(x, z) \right) \leq 0 \leq \inf_{x \in \bar{\nu}_2} \left(\min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}}(x, y) \right) - \left(\min_{z \in \hat{\mu}_2} \tilde{d}_{\mathbf{w}}(x, z) \right), \quad (5)$$

740 i.e.

$$\sup_{x \in \bar{\nu}_1} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}}(x, y) - \tilde{d}_{\mathbf{w}}(x, z) \leq 0 \leq \inf_{x \in \bar{\nu}_2} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}}(x, y) - \tilde{d}_{\mathbf{w}}(x, z). \quad (6)$$

741 \square

756 *Proof of Corollary 7.* Observe that $\mathbf{w}_1 = \mathbf{m} + C$ and $\mathbf{w}_2 = \mathbf{l} + D$ are also weight vectors for $T_{\bar{\nu}_1}^{\hat{\mu}_1}$
757 and $T_{\bar{\nu}_2}^{\hat{\mu}_2}$ for any constants C and D .
758

759 Moreover,

$$760 \sup_{x \in \bar{\nu}_1} \max_{z \in \mu_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}_1}(x, y) - \tilde{d}_{\mathbf{w}_2}(x, z) \leq \inf_{x \in \bar{\nu}_2} \max_{z \in \mu_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}_1}(x, y) - \tilde{d}_{\mathbf{w}_2}(x, z),$$

762 which is the same as
763

$$764 C - D + \sup_{x \in \bar{\nu}_1} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{m}}(x, y) - \tilde{d}_{\mathbf{l}}(x, z) \leq C - D + \inf_{x \in \bar{\nu}_2} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{m}}(x, y) - \tilde{d}_{\mathbf{l}}(x, z). \quad (7)$$

766 Choosing the difference $C - D$ allows us to conclude $(T_{\bar{\nu}}^{\hat{\mu}})_{\#} \bar{\nu}_1 = \hat{\mu}_1$ and $(T_{\bar{\nu}}^{\hat{\mu}})_{\#} \bar{\nu}_2 = \hat{\mu}_2$ by setting
767 $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2]$.
768

769 Conversely, let \mathbf{w} be the corresponding weight vector of $T_{\bar{\nu}}^{\hat{\mu}}$ and assume $(T_{\bar{\nu}}^{\hat{\mu}})_{\#} \bar{\nu}_1 = \hat{\mu}_1$, $(T_{\bar{\nu}}^{\hat{\mu}})_{\#} \bar{\nu}_2 = \hat{\mu}_2$. Then \mathbf{w}_1 (or \mathbf{w}_2) differs from \mathbf{m} (or \mathbf{l}) by some constant C (or D) (Geiß et al., 2013, Theorem 2). By Theorem 6,

$$772 \sup_{x \in \bar{\nu}_1} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}_1}(x, y) - \tilde{d}_{\mathbf{w}_2}(x, z) \leq 0 \leq \inf_{x \in \bar{\nu}_2} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{w}_1}(x, y) - \tilde{d}_{\mathbf{w}_2}(x, z),$$

774 which implies

$$775 C - D + \sup_{x \in \bar{\nu}_1} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{m}}(x, y) - \tilde{d}_{\mathbf{l}}(x, z) \leq 0 \leq C - D + \inf_{x \in \bar{\nu}_2} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{m}}(x, y) - \tilde{d}_{\mathbf{l}}(x, z),$$

777 i.e.

$$779 \sup_{x \in \bar{\nu}_1} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{m}}(x, y) - \tilde{d}_{\mathbf{l}}(x, z) \leq D - C \leq \inf_{x \in \bar{\nu}_2} \max_{z \in \hat{\mu}_2} \min_{y \in \hat{\mu}_1} \tilde{d}_{\mathbf{m}}(x, y) - \tilde{d}_{\mathbf{l}}(x, z).$$

781 \square
782

783 This proposition shows how the classification accuracy improves with samples conditioned on high
784 confidence scores Δw .
785

786 **Theorem 10.** Let ν_1, ν_2 be the continuous probability measures with means m_1 and m_2 , respectively
787 and $\hat{\mu}_i$ consists of singletons y_i . Denote $\nu := \frac{1}{2}\nu_1 + \frac{1}{2}\nu_2$ and $\hat{\mu} := \frac{1}{2}\hat{\mu}_1 + \frac{1}{2}\hat{\mu}_2$. Suppose $\nu_i(|X_i - m_i| \geq t) \leq 2 \exp\left(-\frac{t^2}{2\sigma^2}\right)$ and $\|m_1 - y_1\| + \|m_2 - y_2\| < \|m_1 - y_2\| + \|m_2 - y_1\|$, then
789 $P\left(T_{\nu}^{\hat{\mu}}(X_i) \neq Y_i | g(X_i) > \Delta w\right) \leq 2 \exp\left(-\frac{\min_{i=1,2} \text{dist}(m_i, \mathcal{S})^2}{2\sigma^2}\right)$, where

$$791 (1) \mathcal{S} := \left\{ x : \|x - y_1\| - (w^* + \Delta w) = \|x - y_2\| \right\}$$

$$793 (2) d := \|y_2 - y_1\|, \quad e := \frac{y_2 - y_1}{d}, \quad m = \alpha e + u, \quad u \perp e \text{ is the orthogonal decomposition of } m \\ 794 \text{ and denote } \rho := \|u\|. \\ 795$$

$$796 (3) \text{dist}(m, \mathcal{S}) = \min_{r \geq 0} \sqrt{(t(r) - \alpha)^2 + (r - \rho)^2} \text{ where } t(r) \text{ is defined through}$$

$$798 \sqrt{t^2 + r^2} = \sqrt{(t - d)^2 + r^2} + (w^* + \Delta w), \quad r \geq 0. \\ 799$$

800 *Proof.* Let w^* be the dual weight corresponding to $T_{\nu}^{\hat{\mu}}$ and let $w := w + \Delta w$. Denote $\mathbb{L}_{\mathbf{w}}(y_1) :=$
801 $\left\{ x : \|x - y_1\| - w \leq \|x - y_2\| \right\}$ and similarly for $\mathbb{L}_{\mathbf{w}}(y_2)$.
802

803 Define $\mathcal{S} := \left\{ x : \|x - y_1\| - w = \|x - y_2\| \right\}$. Without loss of generality, we assume $y_1 = \mathbf{0}$. For
804 an arbitrary point $m \in \mathbb{R}^n$, write the orthogonal decomposition
805

$$806 \quad d := \|y_2\|, \quad e := \frac{y_2}{d}, \quad m = \alpha e + u, \quad u \perp e, \quad \rho := \|u\|. \\ 807$$

808 For every x write
809

$$x = t e + v, \quad t \in \mathbb{R}, \quad v \perp e, \quad r := \|v\|.$$

810 Under this decomposition
811
812
813
814

$$\|x\| = \sqrt{t^2 + r^2}, \quad \|x - y_2\| = \sqrt{(t - d)^2 + r^2}.$$

815
816
817 Hence $x \in \mathcal{S}$ iff
818
819

$$\sqrt{t^2 + r^2} = \sqrt{(t - d)^2 + r^2} + w, \quad r \geq 0. \quad (8)$$

820 Since for any fixed r , $\sqrt{t^2 + r^2} - \sqrt{(t - d)^2 + r^2}$ is strictly increasing, solution to equation 8 is
821 unique and we denote it by $t(r)$.
822
823

824 The squared distance between $x = t e + v$ and m is
825
826

$$\|x - m\|^2 = (t - \alpha)^2 + \|v - u\|^2 = (t - \alpha)^2 + r^2 + \rho^2 - 2r\rho \cos \theta,$$

827 where θ is the angle between v and u . For fixed (t, r) this expression is minimized when $\theta = 0$, i.e. v
828 is chosen to be colinear with u . Without loss of generality set $v = (r/\rho)u$ when $\rho \neq 0$.
829
830

831 The minimal squared distance at any given (t, r) is therefore $(t - \alpha)^2 + (r - \rho)^2$. Since $t = t(r)$ is
832 uniquely determined by r , the distance optimization reduces to
833
834

$$\text{dist}(m, \mathcal{S}) = \min_{r \geq 0} \sqrt{(t(r) - \alpha)^2 + (r - \rho)^2}.$$

835 By a direct derivative analysis, the minimizer for $\text{dist}(m, \mathcal{S})$ is unique.
836
837

838 Therefore, take $m = m_1$, we have $\nu_1(\mathbb{L}_w(y_1)) \geq 1 - 2 \exp\left(-\frac{\text{dist}(m_1, \mathcal{S})^2}{2\sigma^2}\right)$.
839
840

□

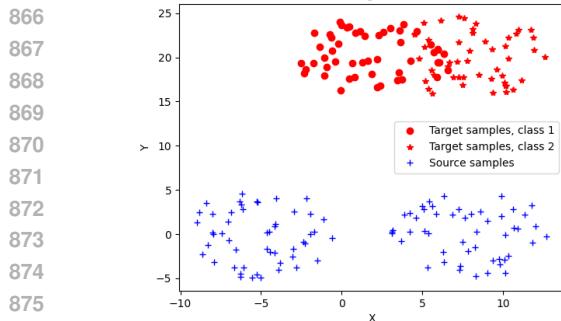
841 D EXPERIMENT DETAILS

842 D.1 SYNTHETIC DATA

843 In this section, we use synthetic data to validate and illustrate our theoretical findings. Specifically,
844 we consider a 2D scenario where data points are sampled from circular regions. The source domain
845 consists of class-separated samples drawn from disjoint circles, whereas the target domain includes
846 clusters with partial overlap. The distribution of the generated data is visualized in Figure 3(a).
847 We compute the max-min values as described in Theorem 6 and present the results in Figure 3(b).
848 As shown in Figure 3(c), many of the generated pseudo labels within the overlapping region are
849 misclassified. However, after removing low-confidence predictions, the remaining samples are almost
850 entirely classified correctly, as illustrated in Figure 3(d). Notably, the separation between the two
851 clusters becomes significantly more obvious after this filtering step.
852
853

864

865



(a) Sample distributions

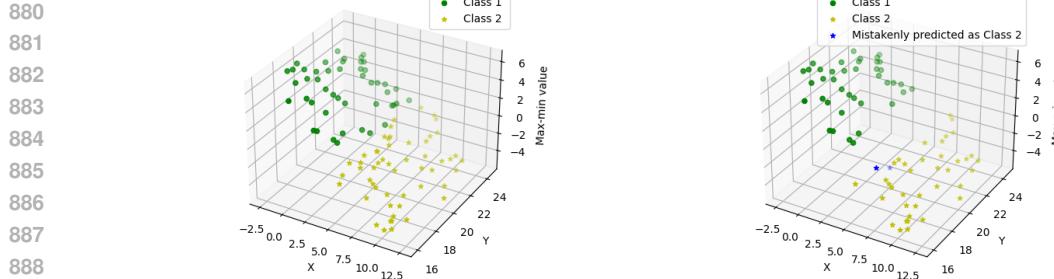
876

877

(b) Sample with g values

878

879



(c) Value gap = 0.09

890

891

892

893

894

895

D.2 REAL-WORLD DATASETS

896

897

To ensure a fair comparison, we follow the training setting of Lee et al. (2022). In our main experiments, we compare OT score with other confidence scores including Maxprob, Ent, Cossim, and JMDS. The details for other confidence scores are presented in Appendix B. We compare the performance of confidence scores on four standard UDA benchmarks: ImageCLEFDA, Office-Home, and VisDA-2017. All code can be efficiently executed on a single NVIDIA RTX 4070 GPU without requiring specialized hardware. For ImageCLEFDA, Office-Home datasets, we use ResNet-50 backbone pretrained on the ImageNet as a base network. The source model is trained for 50 epochs. For VisDA-2017, we use ResNet-101 for GMM pseudo labeling and ResNet-50 for DSAN pseudo labeling. The source model is obtained by finetuning a pretrained network on the source domain for 10 epochs. We use SGD optimizer with the momentum term set to be 0.9. We set lr=1e-4 for the base network and lr=1e-3 for the classifier layer. For digit recognition tasks, we use the ResNet-18 network as the base model. The network is initialized with random weights. We finetune this network on source domains using lr=1e-4, epochs=50, momentum=0.9, decay=1e-4. For OT score computation, we fix the entropic regularization parameter ε to be 0.0001.

911

912

913

914

915

916

917

Pseudo-label generation via DSAN: To obtain pseudo labels, we need to further train the neural network using the DSAN algorithm with the following settings: number of training epochs = 20, transfer_loss_weight = 0.5, transfer_loss = LMMD, learning rate = 0.01, weight decay = 5×10^{-4} , momentum = 0.9. lr_scheduler is enabled with lr_gamma = 0.0003, lr_decay = 0.75. Comparison for DSAN generated pseudo labels are provided in Table 5.

We report mean \pm standard deviation over three independent runs (random seeds) in Table 6 for Office-Home and Table 7 for VisDA-2017.

Method	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	Cl→Pr	Cl→Rw
OTScore	58.0 ± 0.6	79.6 ± 0.1	81.5 ± 0.1	69.6 ± 0.4	80.2 ± 0.8	80.0 ± 0.2
Method	Pr→Ar	Pr→Cl	Pr→Rw	Rw→Ar	Rw→Cl	Rw→Pr
OTScore	68.3 ± 0.5	57.6 ± 0.7	82.3 ± 0.4	73.2 ± 0.1	61.1 ± 0.9	84.7 ± 0.4
						Avg
						73.0 ± 0.1

925 Table 6: Accuracy (%) on Office-Home (ResNet-50).
926

Dataset	Mean Accuracy	Classwise Mean Accuracy
VisDA-2017	85.0 ± 0.3	87.8 ± 0.1

931 Table 7: Accuracy (%) on VisDA-2017.
932

933 Table 5: Evaluation of confidence scores based on AURC (DSAN).
934

Dataset	Task	Maxprob	Ent	Cossim	JMDS	OT Score
ImageCLEF-DA	C → I	0.0301	0.0318	0.0506	0.0258	0.0240
	C → P	0.2024	0.2040	0.1913	0.1391	0.1331
	I → C	0.0090	0.0109	0.0084	0.0105	0.0090
	I → P	0.1135	0.1120	0.1607	0.1223	0.1119
	P → C	0.0102	0.0121	0.0075	0.0096	0.0097
	P → I	0.0136	0.0150	0.0186	0.0140	0.0135
Office-Home	Avg.	0.0631	0.0643	0.0729	0.536	0.0502
	Ar → Cl	0.4306	0.4284	0.4170	0.4515	0.3403
	Ar → Pr	0.2745	0.2738	0.2512	0.2849	0.2133
	Ar → Rw	0.1469	0.1493	0.1521	0.1860	0.1157
	Cl → Ar	0.2600	0.2631	0.2340	0.3228	0.2097
	Cl → Pr	0.1757	0.1777	0.1612	0.2225	0.1503
	Cl → Rw	0.1834	0.1848	0.1865	0.2246	0.1493
	Pr → Ar	0.2371	0.2381	0.2245	0.2776	0.1984
	Pr → Cl	0.3139	0.3105	0.3149	0.3302	0.2711
	Pr → Rw	0.0974	0.0992	0.1037	0.1250	0.0817
	Rw → Ar	0.1301	0.1318	0.1268	0.1751	0.1023
	Rw → Cl	0.2581	0.2555	0.2641	0.2718	0.2112
	Rw → Pr	0.0681	0.0684	0.0628	0.1026	0.0561
	Avg.	0.2146	0.2150	0.2082	0.2478	0.1749
VisDA-2017	T → V	0.2301	0.2290	0.2289	0.2296	0.1799

958
959
960
961 **E UNBALANCED CLASSES**
962

963
964 **Theorem 11.** *With the same notations of 9, suppose $\mu = p^* \mu_1 + (1 - p^*) \mu_2$ for some $p^* \in (0, 1)$.
965 If $L_i \geq l_i + r_{\nu_1} + r_{\nu_2} + r_{\mu_1} + r_{\mu_2}$ then $\arg \min_{p \in [0, 1]} W_1(\mu, \nu) = p^*$, where $\nu := p\nu_1 + (1 - p)\nu_2$
966 for some $p \in (0, 1)$.*

967
968
969 *Proof.* W.L.O.G we assume $p^* = \frac{1}{2}$. Let T denote an OT map between $\frac{1}{2}\nu_1 + \frac{1}{2}\nu_2$ and $\frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$.
970 Suppose $\nu = (\frac{1}{2} + \delta)\nu_1 + (\frac{1}{2} - \delta)\nu_2$. Let F_1 be the set such that $F_1 \subset \text{supp } \nu_1$ and $\nu_1(F_1) = \frac{2\delta}{1+2\delta}$
971 so that $(\frac{1}{2} + \delta)\nu_1(F_1^C) = \frac{1}{2}$. Let $F_2 \subset \text{supp } \mu_2$ be defined as $F_2 := T_\nu^\mu(F_1)$. This can be done due

972 to Lemma 9. Given Lemma 9, it suffices to show the following inequality:
973

$$\begin{aligned} 974 \quad & \int_{F_1} \|T_\nu^\mu(x) - x\| d((\frac{1}{2} + \delta)\nu_1) + \int_{F_1^C} \|T_\nu^\mu(x) - x\| d((\frac{1}{2} + \delta)\nu_1) + \int_{\text{supp } \nu_2} \|T_\nu^\mu(x) - x\| d((\frac{1}{2} - \delta)\nu_2) \\ 975 \quad & \geq W_1(\frac{1}{2}\nu_1, \frac{1}{2}\mu_1) + W_1(\frac{1}{2}\nu_2, \frac{1}{2}\mu_2). \\ 976 \quad & \end{aligned}$$

977 Denote $\bar{\mu}_2 := (T_\nu^\mu)_\#((\frac{1}{2} - \delta)\nu_2)$. We can decompose $W_1(\frac{1}{2}\nu_2, \frac{1}{2}\mu_2) = a + b$ where a corresponds
978 to the cost on the source probability mass that forms $\bar{\mu}_2$ and b corresponds to the cost on the rest of
980 source probability mass. We denote the source marginal corresponding to a as $\frac{1}{2}\tilde{\nu}_2$. Then it remains
981 to show
982

$$\begin{aligned} 983 \quad & \int_{F_1} \|T_\nu^\mu(x) - x\| d((\frac{1}{2} + \delta)\nu_1) - b \\ 984 \quad & \geq W_1(\frac{1}{2}\nu_1, \frac{1}{2}\mu_1) - \int_{F_1^C} \|T_\nu^\mu(x) - x\| d((\frac{1}{2} + \delta)\nu_1) \\ 985 \quad & + a - \int_{\text{supp } \nu_2} \|T_\nu^\mu(x) - x\| d((\frac{1}{2} - \delta)\nu_2) \\ 986 \quad & \end{aligned}$$

987 Note $\int_{F_1^C} \|T_\nu^\mu(x) - x\| d((\frac{1}{2} + \delta)\nu_1)$ achieves the optimal transport between $(\frac{1}{2} + \delta)\nu_1$ restricted
988 on F_1^C and $\frac{1}{2}\mu_1$. Also, $\int_{\text{supp } \nu_2} \|T_\nu^\mu(x) - x\| d((\frac{1}{2} - \delta)\nu_2)$ achieves the optimal transport between
989 $(\frac{1}{2} - \delta)\nu_2$ and $\bar{\mu}_2$. By triangle inequality properties of W_1 distance, it suffices to show
990

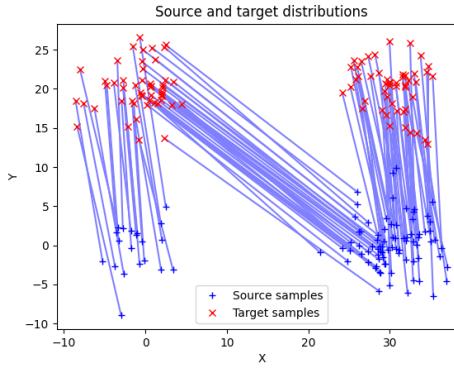
$$991 \quad LHS \geq W_1(\frac{1}{2}\nu_1, (\frac{1}{2} + \delta)\nu_1|_{F_1^C}) + W_1(\frac{1}{2}\tilde{\nu}_2, (\frac{1}{2} - \delta)\nu_2).$$

992 Since
993

$$994 \quad RHS \leq \delta r_{\nu_1} + \delta r_{\nu_2} \leq LHS,$$

995 the optimality is proved. \square
996

1000 We verify Theorem 11 with synthetic data generated within two circular clusters. We compute
1001 (discrete) OT plans under unbalanced cluster settings; see Figure 4 and Figure 5. In this experiment,
1002 we generate two equally sized clusters for the target samples, while the corresponding source
1003 clusters are assigned proportions of 0.2 and 0.8, respectively. As shown in the results, the optimal
1004 transport cost is minimized when the reweighting factor is correctly set to $p = 0.2$. This observation
1005 supports our claim that optimizing the reweighting factor can effectively mitigate class imbalance
1006 in optimal transport-based domain adaptation. However, this finding has not yet been validated on
1007 real-world datasets, where the underlying distributions are significantly more complex. We leave this
1008 investigation for future work.
1009



1010
1011
1012 Source and target distributions
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025 Figure 4: Unbalanced clusters with p=0.5

1026

1027

1028

1029

1030

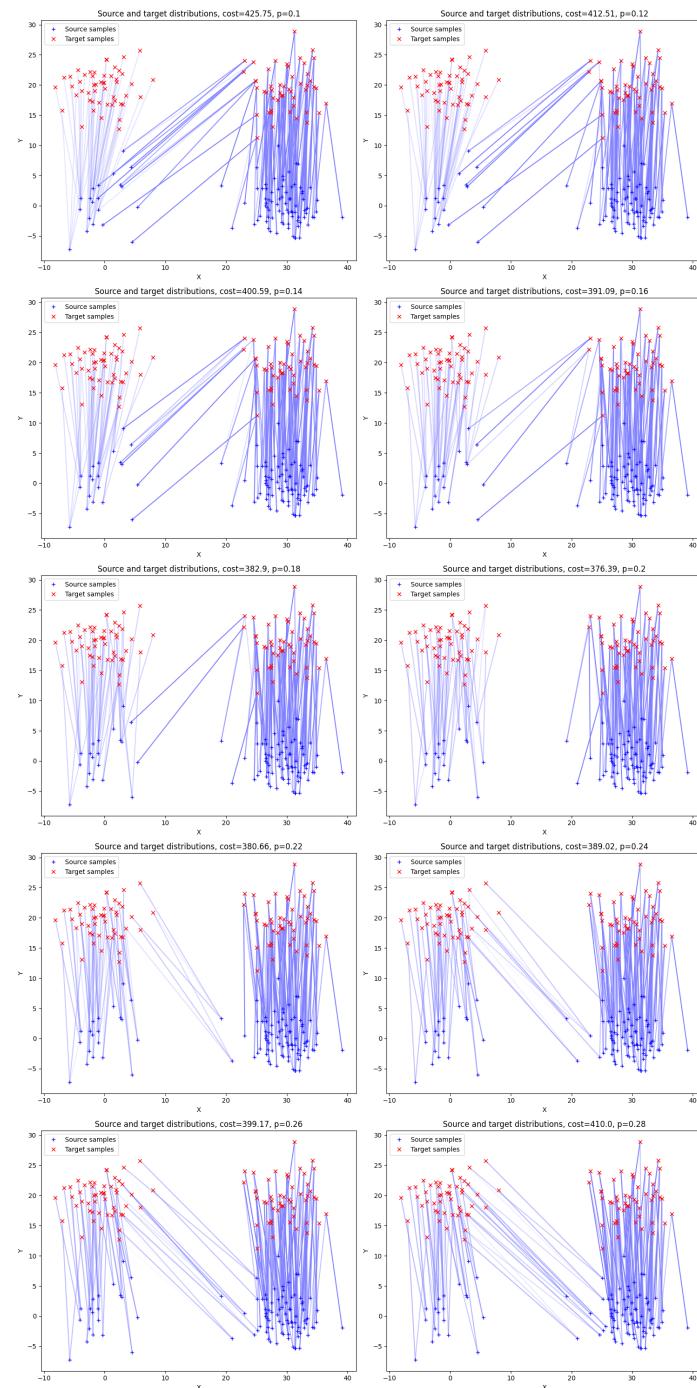


Figure 5: Unbalanced clusters

1074

1075

1076

1077

1078

1079

1080
1081

F THE USE OF LARGE LANGUAGE MODELS

1082
1083
1084
1085

We used a large language model (ChatGPT) only to aid with grammar, wording, and stylistic polishing of text. All ideas, results, and claims are our own; we manually verified factual statements and citations. Only non-sensitive draft text was provided to the tool, and all outputs were reviewed and edited by the authors. Any remaining errors are our responsibility.

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133